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The precise control of complex quantum systems promises numerous technological applications includ-
ing digital quantum computing. The complexity of such devices renders the certification of their correct
functioning a challenge. To address this challenge, numerous methods were developed in the last decade.
In this tutorial, we explain prominent protocols for certifying the physical layer of quantum devices
described by quantum states and processes. Such protocols are particularly important in the development
of near-term devices. Specifically, we discuss methods of direct quantum-state certification, direct-fidelity
estimation, shadow-fidelity estimation, direct quantum-process certification, randomized benchmarking,
and cross-entropy benchmarking. Moreover, we provide an introduction to powerful mathematical meth-
ods, which are widely used in quantum-information theory, in order to derive theoretical guarantees for
the protocols.
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I. INTRODUCTION

We are witnessing rapid progress in the experimen-
tal abilities to manipulate physical systems in their
inner quantum properties such as state superposition and
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entanglement. Most importantly, we begin to have pre-
cise control over complex quantum systems on scales
that are out of reach of simulations on even the most-
powerful existing classical computing devices. Harnessing
their computational power promises the development of
digital quantum computers that solve important problems
much faster than any classical computer. Envisioned appli-
cations also include, e.g., the study of complex phases of
matter in analog simulations and cryptographically secure
communication [1]. Hence, quantum technology promises
highly useful devices with diverse domains of applica-
tion ranging from fundamental research to commercial
businesses.

With the advent of these novel technologies comes the
necessity for certifying their correct functioning. The cer-
tification of quantum devices is a particularly daunting
task in the interesting regime of high complexity as most
straight-forward strategies based on classical simulations
are bound to fail. Indeed, predicting the behavior of com-
plex quantum devices quickly exhausts the available clas-
sical computing power. Ironically, it is the same complex-
ity that makes quantum technology powerful that hinders
their certification. This challenging prospective has already
motivated extensive effort in developing certification tools
for quantum devices in the last decades.

Intriguingly, numerous fields within the quantum sci-
ences have tackled the problem of certification from a
variety of different perspectives and have developed a large
landscape of different protocols. These protocols operate
under very distinct assumptions and resource requirements
that are well motivated by the different perspectives. For
example, certifying the correct function of a small-scale
quantum device used in basic research allows one to invest
sizeable effort. Here, one can potentially rely on a precise
model of the physics of the device and might aim at a
highly discriminative certificate providing plenty of infor-
mation. A very different example is the certification of a
server, correctly performing a quantum computation, by a
remote client with standard desktop hardware. Such a pro-
tocol should be light weight on the client side and not rely
on a detailed model of the server.

An attempt at a panoramic overview of the many
approaches that all fall within the field of quantum cer-
tification was recently conducted in Ref. [2]. Therein, a
very general classification framework for quantum certi-
fication protocols was proposed that is abstract enough to
capture their wide range. Let us start by sketching the gen-
eral framework. Thereby we can subsequently define the
narrower scope of this tutorial.

A. Anatomy of quantum certification protocols

A certification protocol is a set of instructions that
outputs either “accept” or “reject” concerning the

hypothesis that the device is functioning correctly, with a
certain level of confidence.

The correct functioning of a device is defined in terms
of a measure of quality. Such measures range from rigor-
ous worst-case discrimination of “fundamental” physical
objects modeling the device, to performance benchmarks
defined in terms of tasks directly on the application layer.
Note that in principle a measure of quality can be solely
defined in terms of a protocol that can be reproducibly
implemented. On the other hand, measures of quality that
directly aim at the deviation of physical objects modeling
the function of the device can provide an understanding of
the device that is highly attractive in the development of
the technology.

In this tutorial, we encounter a couple of such physically
motivated measures of quality and study their mathe-
matical properties and operational interpretations. These
measures all map to the real line. Certification protocols
then provide certificates that accept or reject the hypoth-
esis of the measure of quality being smaller than a given
ε. For this reason, most protocols that we present are esti-
mation protocols for specific measures of quality that can
be easily turned into ε-certification protocols by a standard
method.

Theoretically, it is convenient to describe the protocol
as involving three distinct objects, Fig. 1 (left). First, the
device that is under scrutiny. Ideally, we try to be fairly
conservative in the model and assumptions describing
the device. Second, the protocol employs a measurement
apparatus. The measurement apparatus, also a quantum
device, is typically assumed to be much more precisely
characterized compared to the device. Note that the device
and measurement apparatus are not necessarily physically
distinct devices. Choosing the split might be ambiguous
and yield different formulation of the assumptions of the
protocol. An extreme example are device-independent cer-
tification protocols that regard all quantum parts as a single
device that is not subjected to any assumptions. In particu-
lar, they do not involve an anyhow characterized separate
quantum measurement apparatus. The third object, is the
classical processor, a classical computing device, that
might take care of potentially required pre- and postpro-
cessing tasks for the device control and the processing
of the output data to arrive at a certificate or even com-
municates with the device and measurement apparatus in
multiple rounds of an interactive protocol.

The landscape of protocols can be roughly organized
according to three “axes.” The first axis comprises the set
of assumptions that are imposed on the device and mea-
surement apparatus to guarantee the functioning of the
protocol.

A second axis summarizes the complexity of the
resources that the protocol consumes. Each protocol
requires a certain number of different measurement set-
tings, its measurement complexity, that each require the

010201-2



THEORY OF QUANTUM SYSTEM CERTIFICATION PRX QUANTUM 2, 010201 (2021)

FIG. 1. Left: the theoretical description of protocols makes use of the distinction into the device, measurement apparatus, and
classical processor. Right: a complex quantum device comprises multiple abstraction layers. Different protocols aim at certifying
the functioning of the device on different layers. NISQ devices are not expected to feature a powerful logical-gate layer. Instead,
applications are directly tailored to the physical-gate layer.

implementation of measurements that involve a certain
quantum measurement complexity. To arrive at a final sta-
tistical estimate, a total number of repetitions of device
invocations are required, the scaling of which is referred
to as the sample complexity. Furthermore, as we already
highlight at the beginning, a particularly important figure
of merit for a protocol is that it comes with practically
manageable demands in space and time for the classical
processing tasks, its classical processing complexity. For
our present scope, the mentioned complexity categories
are the most important and are the focus of our discus-
sion. Note, however, that this list is by far not complete,
for example, interactive protocols might be compared in
terms of challenging demands in the timing of the device’s
control.

The third and final axis is the information gain of the
protocol. At a first glimpse this might come as a surprise as
a protocol that outputs “accept” or “reject” might
be regarded as always providing one bit of information.
But different measures of quality have different discrimi-
natory power among the hypothesis class that models the
device compatible with the protocol’s set of assumptions.
For example, let us imagine a device preparing quantum
states on demand. We might require the device to pro-
duce a quantum state that is ε-close in some distance
measure to a specific target state. An alternative speci-
fication of the device might require it to always output
the same quantum state but this quantum state should
only be within a specified set of quantum states. In this
situation, we can roughly say that the information gain
restricting the device (within its allowed hypothesis class)
is higher in the first specification compared to the latter
one.

Concomitant with less information gain, it is conceiv-
able that one can design a protocol for the latter specifica-
tion with significantly less complexity compared to the first
specification. Analysing the information gain in perform-
ing a certification task often allows one to derive lower
bounds on the complexity of any protocol for this task.
Beside the discriminatory power of the measure of qual-
ity, other intermediate steps in the certification protocol
can reveal significantly more information about the device
than is ultimately reflected in the measure of quality and
the final certificate. For example, a potential certification
protocol for our device that prepares quantum states might
perform a high-precision, complete tomographic recon-
struction of the quantum state and subsequently calculate
the measure of quality using the tomographic estimate
together with its error bounds. Conceptually, this exam-
ple illustrates that certification is a subtask of the broader
task of quantum system characterization, that encompasses
protocols aiming at different types of information about a
quantum system, e.g., identification of a quantum system
or testing for a specific property. Protocols that perform
quantum system identification or property estimation nat-
urally also give rise to certification protocols. Note that
in practice, the hidden information gain of a certification
protocol can provide valuable information to calibrate and
improve the device.

Another related task in quantum system characterization
is the benchmarking of quantum devices. Benchmarking
aims at comparing the performance of multiple devices.
This can be done by comparing the achievable ε-value
of ε-certificates of the respective devices. Benchmark-
ing especially provides pragmatic impetus towards mea-
sures of quality that are not directly interpretable on the
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physical layer. Instead, for the benchmarking of quantum
devices it suffices to implicitly define a reproducible per-
formance measure by specifying a protocol that returns the
measure. The only required justification is that the mea-
sure is expected to be correlated with the performance in
practically relevant tasks.

B. Quantum certification for near-term
devices—scalable certification of the physical layer

For this tutorial, we select protocols that are partic-
ularly important for the certification of near-term quan-
tum devices. Current and near-term quantum devices are
still expected to be fairly noisy and of intermediate size,
so-called noisy and intermediate scale quantum (NISQ)
devices [3]. On the one hand, NISQ devices are in a regime
of complexity where prominent certification methods that
use full tomographic characterization become practically
infeasible. On the other hand, there is still a large tech-
nological leap required in order to arrive at truly scalable
devices, e.g., implementing fault-tolerant quantum com-
puting. Such a full-fledged quantum device is described
using multiple layers of abstraction from the physical layer
over, e.g., physical- and logical-gate layers, to an applica-
tion layer, see Fig. 1 (right). When a device already comes
with multiple layers of abstraction one can also certify
the functioning on the higher levels. NISQ devices, how-
ever, allow only for a bit of abstraction above the physical
layer. For this reason, near-term quantum devices pose the
need for certification techniques that aim at the physical
layer but are scalable to the intermediate system sizes of
NISQ devices. Such scalable certification methods for the
physical layer are the focus of this tutorial.

In the long term, for complex quantum devices high-
level certification on the application level, also referred
to as verification, will become increasingly important.
With cryptographic techniques quantum computations can
be delegated to a remote server without revealing the
actual computations. The correct execution of such blind
quantum computation can be verified in different settings
without many assumptions [4–8]. We do not cover these
methods in this tutorial. Instead we refer to the review
[9] of existing approaches for verifying quantum compu-
tations on devices that are close to being able to accurately
perform a universal set of operations. Note that also on
the long run, the scalable certification of the physical layer
remains important for the diagnostic of the components of
more complex quantum devices in the development and
during run time.

We model the physical layer generically in terms of
quantum states and processes throughout the tutorial. The
model is general enough to capture different types of
quantum devices used, e.g., in quantum-communication
networks and analog simulators. Nonetheless, in this tuto-
rial we take the certification of digital quantum-computing

devices as our main guiding problem. Particularly, the last
two methods that we discuss, randomized benchmarking
(RB) and cross-entropy benchmarking (XEB), are specifi-
cally designed for digital quantum-computing devices. RB
aims at estimating the physical noise that compromises a
gate layer. XEB aims at certifying the generation of sam-
ples from a probability distribution encoded in a quantum
circuit. As such XEB can be regarded as a certification
for the application layer of a digital quantum-computing
device. But the application is deliberately designed very
close to the physical layer.

In addition, we choose a set of protocols that can be pre-
sented and analyzed using a common set of mathematical
methods. This allows us to combine our presentation of the
certification protocol with a detailed introduction into the
mathematical formalism that is required in order to prove
rigorous performance guarantees for the protocols.

Lastly, we restrict our focus to certification protocols
that employ measures of quality that are close to being nat-
ural measures of distance on the very fundamental physical
description of the devices as quantum states and quan-
tum processes. Also important and equally fundamental,
but not captured in this tutorial, is the certification of spe-
cific properties such as entanglement or nonclassicality.
Certain distinct properties, e.g., sufficiently high entangle-
ment, allow for the certification of specific quantum states
and processes even device independently. This class of
so-called self-testing protocols is reviewed in Ref. [10].

One of the most intriguing aspects of the field of quan-
tum certification is definitely the impressive stretch over
multiple disciplines that come into play. Quantum certifi-
cation is equally a field in applied mathematics, theoretical
computer science, applied numerical computer science,
experimental physics, and quantum hardware and software
engineering. It comprises proofs of theorems, classical
numerical studies of actual implementations, and perform-
ing the protocol in an actual quantum experiment including
a diligent analysis of “real-world” data. Each of the disci-
plines involved comes with its own methods accustomed
to the arising challenges. At the same time, looking at
certification on different stages from theory to experiment
holds valuable lessons that go in both directions. Hav-
ing said this, we present a practically well motivated but
theoretical formal framework for a set of quantum certifi-
cation protocols. We do not delve into the exciting world
of numerical and experimental implementations of the cer-
tification protocols that bring our model assumptions to
the harsh scrutiny of “real-world” physics. Instead, prac-
tical considerations and desiderata constantly serve as our
motivation and inform our discussion.

C. Structure and overview of the tutorial

The tutorial is split up in two major subsequent parts: the
first part focusing on certification protocols for quantum
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states, Sec. II, and the second part focusing on certification
protocols for quantum processes, Sec. III. Furthermore, the
tutorial consists of two different types of chapters: chapters
that introduce the mathematical preliminaries, and chap-
ters that present and analyze the certification protocols. We
try to bring these two types of chapters in a dialog that goes
back and forth between providing the motivation and tools
for understanding the mathematical framework and proto-
cols. The chapters on certification protocols conclude with
suggestions for further reading on variants and extensions
of the protocol and its theoretical analysis.

We highlight that the mathematical methods are core
foundations of the broad field of theoretical quantum infor-
mation and are by far not limited to quantum certification
or even quantum characterization in their applications.
Quite on the contrary, we expect the mathematical intro-
ductory chapters to serve as a valuable resource for stu-
dents and researches working on quantum information in
general. At the same time experts in quantum information
mainly interested in the presented certification methods
might want to simply skip the mathematical introductory
sections and focus on the protocols (Sec. II B, II D, II F,
II H, II J, III B, III C, and III D).

In more detail, the mathematical methods and certifica-
tion protocols presented here are the following: we start
our discussion on quantum states with a brief introduc-
tion to the mathematical formalism of quantum mechanics,
such as mathematical notions of operators and the model-
ing of quantum-mechanical measurements (Sec. II A). This
allows us to formally introduce quantum-state certification
as a one-sided statistical test in Sec. II B. Certification pro-
tocols rely on quantum-mechanical measurements, which
are probabilistic in nature. Therefore, the confidence of
the protocols is controlled using so-called tail bounds
introduced in Sec. II C. As an example for an applica-
tion of tail bounds, we derive the estimation error and the
confidence when estimating expectation values of observ-
ables in Sec. II D. In order to quantify the accuracy of
quantum-state preparations, we introduce relevant metrics
on quantum states in Sec. II E. A popular metric is given
by the (Uhlmann) fidelity. We provide a certification pro-
tocol in terms of the fidelity in Sec. II F. Stabilizer states
are an important class of quantum states that can be certi-
fied with particularly few Pauli measurements (Sec. II F 1).
Another approach to certification employs estimation pro-
tocols. Estimating the fidelity requires more measurements
compared to the one-sided certification protocol. A tool
to reduce the measurement effort is importance sampling
introduced in Sec. II G. Direct-fidelity estimation uses this
method to estimate the fidelity with respect to pure target
states from relatively few state copies, Sec. II H.

For the remaining part of the tutorial random quantum
states and random unitaries play an important role. For
this reason, we introduce them in Sec. II I. Certain random
unitary operations allow, in general, for an estimation of

the fidelity from fewer state copies than direct-fidelity esti-
mation, which we explain in Sec. II J on shadow-fidelity
estimation.

We start our discussion of quantum processes with some
mathematical preliminaries (Sec. III A), where we intro-
duce the Choi-Jamiołkowski isomorphism (also known as
channel-state duality), process fidelity measures quantify-
ing average-case error measures and a worst-case error
measure, the diamond norm. Most certification meth-
ods for quantum processes use average-case error mea-
sures. The presented quantum-state certification methods
can be translated to quantum processes using the Choi-
Jamiołkowski isomorphism. As an example, Sec. III B
presents the resulting protocol for direct quantum-process
certification. Such translated protocols, typically require
high-quality state preparations and measurements to probe
the quantum processes. A method tailored to quantum
gates that allows the average gate fidelity to be extracted
without requiring highly accurate state preparations and
measurements is randomized benchmarking (Sec. III C).
As our last protocol we discuss cross-entropy benchmark-
ing in Sec. III D; this method has been used by Google
to build trust in their recent experiment demonstrating
the potential power of quantum computers in the task of
generating certain random samples.

II. QUANTUM STATES

The first part of the tutorial is devoted to protocols
that aim at certifying that a quantum state generated by
a device is the correct one. We start by quickly reviewing
and introducing the mathematical formalism of quantum
mechanics. We expect that most of the presented mate-
rial and the used basic mathematical notions are already
known to the reader. Therefore, we are fairly brief in our
presentation and aim at quickly setting up the notation
that we use throughout the tutorial. For sake of com-
pleteness, we provide many details on the mathematical
formalism. However, the main ideas behind the proto-
cols and their theoretical guarantees can also be followed
with a more superficial understanding of the mathematical
preliminaries.

A. Mathematical objects of quantum mechanics

In order to discuss quantum states we set up some math-
ematical notation. We focus on finite-dimensional quantum
mechanics in accordance with our emphasis on digital
quantum computing. Hence, we assume all vector spaces
to be finite dimensional. The space of linear operators
from a vector space V to a vector space W is denoted
by L(V, W), and we set L(V) := L(V, V). A Hilbert space
is a vector space with an inner product 〈·, ·〉. Let H and
K be complex Hilbert spaces throughout the tutorial. We
denote the adjoint of an operator X ∈ L(H,K) by X †, i.e.,
〈k, Xh〉 = 〈X †k, h〉 for all h ∈ H and k ∈ K.
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As customary in physics, we use the bra-ket notation
(Dirac notation): we denote vectors by ket vectors |ψ〉 ∈ H
and linear functionals on H by bra vectors 〈ψ |, which are
elements of the dual space H∗. Furthermore, we under-
stand ket vectors and bra vectors with the same label
as being related by the canonical isomorphism induced
by the inner product. In bra-ket notation we frequently
drop tensor-product operators to shorten the notation,
e.g., |ψ〉|φ〉 := |ψ〉 ⊗ |φ〉 ∈ K⊗H or |ψ〉〈ψ | := |ψ〉 ⊗
〈ψ | ∈ K⊗H′ ∼= L(K,H) for |ψ〉 ∈ K and |φ〉 ∈ H.

To describe the state of a quantum system we require
the notion of density operators. The real subspace of self-
adjoint operators, X = X †, is denoted by Herm(H) ⊂
L(H) and the convex cone of positive semidefinite opera-
tors by Pos(H) := {X ∈ Herm(H) | 〈ψ |X |ψ〉 ≥ 0}. The
trace of an operator X ∈ L(H) is Tr[X ] :=∑

i 〈i|X |i〉,
where {|i〉} ⊂ H is an arbitrary orthonormal basis of H.
The vector space L(H) is itself a Hilbert space endowed
with the Hilbert-Schmidt (trace) inner product

〈X , Y〉 := Tr[X †Y]. (1)

The set of density operators is defined as S(H) := {ρ ∈
Pos(H) : Tr[ρ] = 1}.

Outcomes of a quantum measurement are modeled by
random variables. Abstractly, a random variable is defined
as a measurable function from a probability space to a mea-
surable space X . Here, we are exclusively concerned with
two types of random variable: (i) those that take values in
a finite, discrete set X ∼= [n] := {1, . . . , n} (understood as
the measurable space with its power set as the σ -algebra)
and (ii) those that take values in the reals X = R (with
the standard Borel σ -algebra generated by the open sets).
In practice, the underlying probability space is often left
implicit and one describes a random variable X taking
values in X directly by its probability distribution P that
assigns a probability to an element of the σ -algebra of X .
For example, for a random variable X taken values in R

and I ⊂ R an interval, we write P[X ∈ I ] for the probabil-
ity of X assuming a value in I . Abstractly speaking, P is
the push forward of the measure of the probability space
to X induced by the random variable X . Thus, P is suf-
ficient to describe X . The underlying probability space is,
however, important to define correlations between multi-
ple random variables, which are understood to be defined
on the same probability space.

The probability distribution of a discrete random vari-
able X taking values in a finite set X ∼= [n] is charac-
terized by its probability mass function pX : [n] → [0, 1],
k �→ pX (k) := P[X = k] := P(X ∈ {k}). A real random
variable X is characterized by its (cumulative) proba-
bility distribution PX : R → [0, 1], x �→ PX (x) := P[X <

x] := P[X ∈ (∞, x)] or in case it is absolutely continuous
by its probability density pX : R → [0, 1], x �→ pX (x) :=
dPX (x)/dx. Note that if a discrete random variable takes

values in a discrete subset of R we can also assign a
noncontinuous (cumulative) probability distribution.

The most general way to define a linear map from den-
sity operators S(H) to random variables is by means of
a positive operator-valued measure (POVM). A POVM is
a map from (the σ -algebra) of X to Pos(H). For a dis-
crete random variable X taking values in [n] a POVM is
uniquely defined by a set of effects {Ei ∈ Pos(H)}ni=1 with

n∑

i=1

Ei = 1H, (2)

where 1H ∈ L(H) denotes the identity operator. Strictly
speaking the POVM is the map on the power set of [n]
that extends k �→ Ek additively. It is convenient and com-
mon to refer to the set of effects as the POVM. A POVM
M (with effects) {Ei ∈ Pos(H)}ni=1 induces a map from
S(H) to random variables. To this end, we associate to
ρ the random variable Mρ with probability mass function
pMρ (k) := 〈ρ, Ek〉.

These are the ingredients to formalize the static pos-
tulates of quantum theory. We only require dynamics in
Sec. III on quantum-process certification.

Postulate (quantum states and measurements):
(i) Every quantum system is associated with a (separa-

ble) complex Hilbert space H.
(ii) The state of a quantum system, its quantum state, is

described by a density operator ρ ∈ S(H).
(iii) A measurement with potential outcomes in a finite,

discrete set O ∼= [n] is described by a POVM M with effects
{Ei}i∈[n].

(iv) If a quantum system is in the state ρ ∈ S(H) and
the measurement M is performed the observed outcome is
a realization of the random variable Mρ associated to ρ by
M.

The set S(H) is convex. Its extremal points are rank-one
operators. A quantum state ρ ∈ S(H) of unit rank is called
a pure state. In particular, there exist a state vector |ψ〉 ∈
H such that ρ = |ψ〉〈ψ |. The state vector associated to a
pure quantum state is only unique up to a phase factor. A
general quantum state is therefore a convex combination
of the form

∑
i pi|ψi〉〈ψi |, where p is a probability vector,

i.e., an entry-wise non-negative vector p ∈ R
d, p ≥ 0 that

is normalized, i.e.,
∑

i pi = 1. A quantum state that is not
pure is called mixed.

Given two quantum systems, their joint system should
also be a quantum system. This expectation is captured by
the following postulate.

Postulate (composite quantum systems): The Hilbert
space of two quantum systems with Hilbert spaces H1 and
H2, respectively, is the tensor product H1 ⊗H2.
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This construction induces an embedding from L(H1)

into L(H1 ⊗H2) by

A �→ A⊗ 1. (3)

Dually to that, for any state ρ ∈ S(H1 ⊗H2)

Tr[ρ(A⊗ 1)] = Tr[ρ1A], (4)

where ρ1 is ρ reduced to system 1. The reduced state
captures all information of ρ that can be obtained from
measuring system 1 alone and can be explicitly obtained
by the partial trace over the second subsystem

Tr2 : L(H1 ⊗H2)→ L(H1) (linear)

X ⊗ Y �→ Tr2[X ⊗ Y] := X Tr[Y] (5)

as ρ1 := Tr2[ρ].
By F ∈ L(H⊗H) we denote the flip operator (or swap

operator) that is defined by linearly extending

F|ψ〉|φ〉 := |φ〉|ψ〉. (6)

In a basis {|i〉}dim(H)
i=1 of H, we can express |ψ〉 ∈ H⊗

H by a coefficient matrix A ∈ C
dimH×dimH as |ψ〉 =∑

i,j Aij |i〉|j 〉. The coefficient matrix of F|ψ〉 is given by
the matrix transpose Aᵀ of A with entries (Aᵀ)i,j = Aj ,i.
Lemma 1 (The swap trick): Let F ∈ L(H⊗H) be the
flip operator from Eq. (6). For any X ∈ L(H) it holds that

Tr[F(X ⊗ Y)] = Tr[XY]. (7)

Proof. The identity can be checked by direct computation
with basis elements or by using tensor network diagrams.
We leave it as an exercise. �

B. A definition of quantum-state certification

In this section, we define what we mean by a certifica-
tion test for a quantum state. This definition will serve as
the blueprint for the specific protocols that we present in
the subsequent sections of the chapter. A state certification
test solves the task of making sure that a quantum state pre-
pared by a device ρ̃ is a sufficiently good approximation of
a target state ρ. Due to the statistical nature of quantum
measurements, the protocol for a certification test typically
requires multiple copies of the quantum states. For this rea-
son, it is appropriate to think of quantum-state certification
as the certification of a device that repeatedly prepares a
target state ρ.

In this tutorial we restrict our attention to single-round
protocols, where a fixed number nρ̃ of copies of a tar-
get state is prepared and measured subsequently. Without
further assumptions the output of the device is described

FIG. 2. The task of quantum-state certification is to detect
when a state preparation ρ̃ is not close to a chosen target state
ρ, i.e., when dist(ρ, ρ̃) > ε.

by an output state ρ̃ ∈ S[(Cd)⊗nρ̃ ] on which the measure-
ments are performed. Based on the measurement data the
classical postprocessor then decides to accept or reject the
hypothesis that the device prepared the target state within
a specified accuracy.

This procedure is formalized by the notion of an ε-
certification test, illustrated in Fig. 2. An ε-certification test
should output “accept” if the prepared state is the tar-
geted state in the majority of attempts. This requirement
is referred to as completeness. Additionally, one demands
an ε-certification to likely output “reject” in case the
prepared state deviates from the target state beyond a tol-
erance. The deviation is quantified in terms of a distance
measure on S(Cd) taking values in R+, the non-negative
reals, and “beyond tolerance” means that it exceeds a
certain tolerated error threshold ε > 0. We arrive at the
following definition for a single-round ε-certification test.
Definition 2 (Quantum-state ε-certification test): Let
ρ ∈ S(Cd) be a quantum state, the target state, ε > 0
and dist : S(Cd)× S(Cd)→ R+ be a distance measure.
An ε-certification test for ρ with respect to (w.r.t.) dist
consists of a quantum measurement on the device out-
put ρ̃ ∈ S[(Cd)⊗nρ̃ ] followed by classical postprocessing
of the measurement data outputting either “accept” or
“reject” and satisfying the completeness condition,

ρ̃ = ρ⊗nρ̃ ⇒ P[“accept”] ≥ 2
3

, (8)

and the soundness condition holds for the reduced states ρ̃i
of ρ̃,

dist(ρ, ρ̃i) > ε ∀i ∈ [nρ̃] ⇒ P[“reject”] ≥ 2
3

. (9)

Note that more generally one could also define cer-
tification tests with respect to measures directly on the
composite space S[(Cd)⊗nρ̃ ].

The terms completeness and soundness are inspired by
interactive proof systems. The role of these conditions can
be clarified from the perspective of statistical hypothesis
testing. In hypothesis testing one has a null hypothesis H0
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(usually the hypothesis that one hopes to disprove) and
an alternative hypothesis H1 and one needs to figure out
which is true based on statistical data. In this setting, there
are two types of error,

P[accept H1 | H0] (type-I error), (10)

P[accept H0 | H1] (type-II error). (11)

In state certification we choose null hypothesis H0 to
be “dist(ρ̃, ρ) > ε” and “ρ̃ = ρ” to be the alternative
hypothesis H1. Then, for the output of the ε-state cer-
tification test P[“reject” | ρ̃ = ρ] is the type-II error
and P[“accept” | dist(ρ̃, ρ) > ε] the type-I error. The
completeness condition, Eq. (8), corresponds to requiring
that the type-II error is bounded by 1/3. Analogously, the
soundness condition, Eq. (9), is the requirement that the
type-I error is bounded by 1/3.

For a test to meet the soundness and completeness con-
dition additional assumptions on the prepared state ρ̃ can
be required. A common assumption is that the device
prepares a sequence of independent states. This means that

ρ̃ = ρ̃1 ⊗ ρ̃2 ⊗ · · · ⊗ ρ̃nρ , (12)

with ρ̃i ∈ S(Cd) for all i. In principle, it is also conceiv-
able that a device prepares entangled states to maliciously
trick a certifier working under the independence assump-
tion. But in many circumstances minimal control over the
device or beliefs about its physically plausible limitations
justify the independence assumptions.

An even stronger assumption is that the prepared states
are independent and identically distributed (i.i.d.). In this
case, ρ̃ = ρ̃nρ . In the experimental practice it can be
challenging to fulfill this assumption. For example, drifts
in environmental parameters of a device can yield to
a systematic deviation of the state copies that defy the
i.i.d. assumption. Nonetheless, in many instances the i.i.d.
assumption may be justified by a basic understanding of
the functioning of the device and valid to a sufficient
degree. In some situations, the i.i.d. assumption can be
removed at the cost of a higher measurement effort using
[11] a quantum de Finetti theorem [12] or an improved
analysis [13,14].

The most important measures of complexity for an ε-
certification test are the following.
Definition 3 (Sampling complexity): The sample com-
plexity of a family of any such test {Tnρ̃ } is (the scaling
of) nρ̃ with d and ε.

The sampling complexity is the scaling of the number
of states that the device needs to prepare for the test with
the input parameters. In particular, in the context of dig-
ital quantum computing the statement that a “protocol is

efficient” is often understood as having sampling com-
plexity in O[polylog(d)] as this translates into a sampling
complexity in O[poly(n)] for a system of n qubits. Most
guarantees that we prove for protocols in this tutorial, will
consist in upper bounds on the sampling complexity of a
test.

Another important measure for the practical feasibility
of the protocol is the measurement complexity that quan-
tifies how difficult it is to perform the quantum measure-
ments of the protocol. In contrast to the precise definition
of the sampling complexity, the measurement complexity
should be regarded as a collection of different ways to for-
malize the demands of the measurement. For this reason,
the discussion of the measurement complexity is of more
qualitative nature.

In the context of state certification, an important aspect
of measurement complexity is the number of copies that
the POVM needs to act on simultaneously. The special
case that encompasses all the presented protocols are
sequential measurements where the measurements are only
performed on the nρ̃ individual state copies separately.
Therefore, the measurement device does not need to be
able to store state copies before performing a measurement
significantly lowering its complexity.

Another relaxation of the measurement complexity of
sequential measurements are nonadaptive measurements
where the performed measurement on an individual copy
does not depend on the previously obtained measurement
results. Furthermore, the complexity of the implementation
of the POVM can be quantified, e.g., by measures for the
complexity of the circuits required for its implementation
in terms of local gates. The qualitative assessment of the
measurement complexity as being experimentally feasible
or not can vary widely for different devices and platforms.

A certification test is only required to accept the tar-
get state. However, in practice, such a test will accept
states from some region around the target state with large
probability. This property of a certification test is called
robustness (against deviations from the target states). One
way of how such a robustness can be guaranteed is by
estimating the distance of the targeted state ρ and the pre-
pared state ρ̃, as we see in Sec. II H on fidelity estimation,
which bounds on the distance. In this way, one obtains
more information (a distance) than just certification (just
“accept” or “reject”).

Clearly, one can also certify through full quantum-
state tomography. However, the number of single sequen-
tial measurements in general required for tomography
of a state ρ̃ ∈ S(Cd) scales as �[d rank(ρ)] and as
�[d2rank(ρ)2] in the case two-outcome Pauli string mea-
surements [15]. So, for the relevant case of pure n-qubit
states this number scales at least as 2n. This measurement
effort becomes infeasible already for relatively moderate n.

In Sec. II H, we discuss that fidelity estimation can
work with dramatically fewer measurements than full
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tomography, when the target state has additional struc-
ture. In many situations, certification can work with even
fewer measurements than fidelity estimation thanks to an
improved ε-dependence in the sample complexity.

Our definition of a validation and certification test used
the somewhat arbitrary confidence value of 2/3. It is not
hard to see that as long as the failure probability is bounded
away from 1, the confidence can be amplified by repeating
the test multiple times.
Proposition 4 (Confidence amplification): Let Tnρ be an
ε-certification test of a quantum state ρ from nρ i.i.d. sam-
ples with maximum failure probability δ = 1

3 . We repeat
the certification test N times and obtain a new certifica-
tion test by performing a majority vote on the outcomes.
Then the new test satisfies the completeness and soundness
conditions

σ = ρ ⇒ P[“accept”] ≥ 1− δ, (13)

dist(ρ, ρ̃) > ε ⇒ P[“reject”] ≥ 1− δ, (14)

for all σ ∈ S(Cd), where δ = e−c N and c > 0 is an abso-
lute constant. The parameter 1− δ is also called the
confidence of the test.

Proof. This statement can be checked directly from
Definition 2. �

We remark that the statement of this proposition also
holds without the i.i.d. assumption. Here, only the proof of
the soundness condition, Eq. (9), changes, since ρ̃ might
be classically correlated or entangled across the nρ̃ subsys-
tems. However, one can show (see, e.g., [16, Lemma 14.1]
for the argument) that the worst case, given by a ρ̃ with
minimum rejection probability, corresponds to a product
state. This statement can be proven by choosing a basis for
(Cd)⊗nρ̃ for which the local measurements are all diago-
nal. Then the measurement outcomes only depend on the
diagonal entries of ρ̃ and, hence, a worst case ρ̃ is a pure
product state. This means that the worst case corresponds
to i.i.d. state preparations.

Finally, we want to mention that, especially in the
computer-science community, certification is often also
called verification. In particular from an epistemological
point of view, a physical model or hypothesis can never be
fully verified. Therefore, we stick to the term certification
for the physical layer where we actually model a device as
being in a quantum state. This allows one to reserve the
term verification to certification on higher level of device
abstraction such as the application layer.

C. Estimation and tail bounds

A main technical tool for deriving the sampling com-
plexity of certification protocols are tail bounds. The mea-
surement outcomes of a quantum-mechanical experiment

are random variables. Recall that the expected value of
a random variable X on a probability space (�,	, P) is
defined as

E[X ] =
∫

�

X (ω)dP(ω), (15)

which gives rise to the well-known expressions

E[X ] =
∑

k∈[n]

pX (k)xk and E[X ] =
∫

R

x pX (x)dx (16)

for a discrete, finite random variable X taking values in
{xk}k∈[n] or a (absolutely continuous) real random variable
X with pX the probability mass function or probability
density, respectively.

If we want to estimate a measure of quality, such as a
distance measure for quantum states, we have to construct
an estimator for that measure, which is a function of the
measured outcomes. An estimator Ê of a quantity E is itself
a random variable (pushing forward the measure on the
probability space). An estimator Ê for E is said to be unbi-
ased if E[Ê] = E. Our estimators will typically be families
of random variables depending on a number of samples,
i.e., the number of quantum states that the protocol con-
sumes. In our notation we often leave this dependency
implicit. We expect that if a protocol calculates an unbiased
Ê it reveals E accurately in the limit of infinite samples.
Such an estimator is called consistent. To capture the effect
of finite statistics, we introduce the notion of an ε-accurate
estimator.

Definition 5 (ε-accurate estimator): Let E ∈ R and ε,
δ > 0 A random variable Ê taking values in R is an
ε-accurate estimator for E with confidence 1− δ if

P[|Ê − E| ≤ ε] ≥ δ. (17)

The (scaling of) number of samples required for a family
of estimators to be an ε-accurate estimator is its sampling
complexity. The sampling complexity of estimators can be
derived using tail bounds of random variables.

Tail bounds for random variables are bounds to the prob-
ability that a random variable assumes a value that deviates
from the expected value, as visualized by the marked area
in Fig. 3. Indeed, for any non-negative random variable X
it is unlikely to assume values that are much larger than the
expected value E[X ]:

Theorem 6 (Markov’s inequality): Let X be a non-
negative random variable and t > 0. Then

PX (t) = P[X ≥ t] ≤ E[X ]
t

. (18)
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FIG. 3. The (upper) tail of a random variable X is the proba-
bility of X being greater than some threshold t. This probability
is given by the corresponding area under the graph of the
probability density function (PDF) of X .

Proof. Markov’s inequality is as elementary as its proof.
Let (�,	, P) be the probability space of X . For the proof
we denote the indicator function 1A of a subset A ⊂ � by

1A(x) :=
{

1 if x ∈ A
0 otherwise.

(19)

To prove Markov’s inequality we set {ω : X (ω) ≥ t} and
observe that

t 1{ω: X (ω)≥t}(ω′) ≤ X (ω′) (20)

for all ω′ ∈ �. Now taking the expected value of both sides
of this inequality. �

As a consequence of Markov’s inequality, the variance
of a real random variable X ,

Var[X ] = E[X 2]− E[X ]2, (21)

can be used to control its tails.
Theorem 7 (Chebyshev’s inequality): Let X be a ran-
dom variable, E[X ] = 0, with finite variance σ 2 :=
E[X 2]. Then

P[|X | ≥ t] ≤ σ 2

t2
(22)

for all t ≥ 0.

Proof. The proof follows by simply applying Markov’s
inequality to the random variable X 2. �

Note that the assumption of mean zero is not really
a restriction but only helps to state the theorem more
concisely. In the case of a random variable Y that does
not necessarily have a zero mean Chebyshev’s inequality
yields a tail bound by applying it to X := Y − E[Y]; see
also Fig. 3. The same argument can be made for the tail
bounds that follow.

A random variable X is called bounded if it takes val-
ues in a bounded subset of the reals almost surely. Its
empirical mean is (1/n)

∑n
i=1 Xi, where Xi ∼ X are i.i.d.

copies of X . In the case of bounded random variables,
the empirical mean concentrates much more than a naive
application of Markov’s or Chebychev’s inequality sug-
gests. More precisely, the following inequality holds (see,
e.g., [17, Theorem 7.20]).

Theorem 8 (Hoeffding’s inequality): Let X1, . . . , Xn be
independent bounded random variables with ai ≤ Xi ≤ bi
almost surely for all i ∈ [n] and denote their sum by Sn :=∑n

i=1 Xi. Then for all t > 0 it holds that

P[Sn − E(Sn) ≥ t] ≤ exp
[
− 2t2∑n

i=1(bi − ai)2

]
(23)

and

P[|Sn − E(Sn)| ≥ t] ≤ 2 exp
[
− 2t2∑n

i=1(bi − ai)2

]
. (24)

Proof. We only sketch the proof and recommend to flesh
out the details as an exercise. The second statement directly
follows from the first one. In order to prove the first one,
let s > 0, apply Markov’s inequality to

P[Sn − E(Sn) ≥ t] = P

{
es[Sn−E(Sn)] ≥ est

}
. (25)

The independence of the Xi allows one to factorize the
exponential and use the bounds on the range of Xi individ-
ually. Finally, choosing the optimal s yields the theorem’s
statement. �

Note that when one can additionally control the variance
of bounded random variables then the Bernstein inequal-
ity [17, Corollary 7.31] can give a better concentration,
especially for small values of t.

Another related tail bound is Azuma’s inequality, which
allows for a relaxation on the independence assumption
(supermartingales with bounded differences).

The median of means estimator is an estimator that
allows for much better tail bounds than the empirical mean
for the case of unbounded i.i.d. random variables with
finite variance. The intuition is that taking the median of
several empirical means is more robust against statistical
outliers compared to taking the overall empirical mean.

Theorem 9 (Median of means estimator, version of
[18, Theorem 2]): Let {Xi} be i.i.d. random variables
with mean μ and variance σ 2 and denote by Sk :=
(1/k)

∑k
i=1 Xi the empirical mean from k i.i.d. samples.

Take l empirical means Sk,j , j ∈ [l], that are (i.i.d.) copies

010201-10



THEORY OF QUANTUM SYSTEM CERTIFICATION PRX QUANTUM 2, 010201 (2021)

of Sk and set

μ̂ := median(Sk,1, . . . , Sk,�). (26)

Then

P

[∣∣μ̂− μ∣∣ > σ
√

4/�
]
≤ e−k/8. (27)

In particular, for any δ ∈ (0, 1), k = �8 ln(1/δ)� and m =
k�,

∣∣μ̂− μ∣∣ ≤ σ
√

32 ln(1/δ)
m

(28)

with probability at least 1− δ.
This theorem can be proven using Chebyshev’s inequal-

ity for the empirical means Sk,j and Hoeffding’s inequality
for a binomial distribution to obtain the concentration of
the median. We refer to Ref. [18] for further details.

Finally, it is often required to bound the probability that
at least one of several events is happening. For a series
of events A1, A2, . . . the union bound (Boole’s inequality)
guarantees that

P[A1 or A2 or . . . ] ≤
∑

i

P[Ai]. (29)

D. Expectation value estimation for observables

To familiarize ourself with the application of tail bounds
for the derivation of sampling complexities in quantum
estimation, we turn our attention to a very basic task in
quantum mechanics: the estimation of an expectation value
of an observable.

We formulate a general quantum measurement in terms
of a POVM. An important special case of a POVM is
a projector-valued measure (PVM) where the effects are
orthogonal projectors. A measurement described by a
PVM is also called a von Neumann/projective measure-
ment.

An observable quantity is modeled by a self-adjoint
operator A ∈ Herm(H). A self-adjoint operator has an
eigendecomposition A =∑n

α=1 aαPα with aα ∈ R and
orthogonal projectors Pi onto the eigenspaces. The set
of outcomes associated to the measurements of A is
its real eigenvalue spectrum spec(A) = {aα}α∈[n] and the
measurement is described by the PVM that has the pro-
jectors Pα as effects. Thus, associated to an observable
A is the map from S(H) to random variables ρ �→ Aρ
taking values in spec(A) with probability mass func-
tion pAρ (aα) = Tr[Pαρ]. This implies that the expectation
value of an observable A ∈ Herm(H) in the state ρ is
〈A〉ρ := E[Aρ] = Tr[ρA].

Given a quantum system in some state ρ ∈ S(H), we
wish to estimate 〈A〉ρ ; note that the expectation value itself

cannot be observed directly but needs to be estimated from
single measurements. One protocol for estimating 〈A〉ρ is
to perform the projective measurement of the observable
multiple times and use the observed empirical mean as an
estimator for 〈A〉ρ . Let A(i)ρ be the random variable describ-
ing the outcome of the ith measurement of A in state ρ. The
empirical mean estimator of m measurements is

Y(m) := 1
m

m∑

i=1

A(i)ρ . (30)

It is easy to see that Y(m) is an unbiased estimator for
〈A〉ρ . So how many copies of ρ does this protocol con-
sume in order to arrive at an ε-accurate estimate of 〈A〉ρ
with confidence 1− δ?

If the measurements are independent and the eigenvalue
spectrum of A is bounded, i.e., aα ∈ [a, b] for all α ∈ [n],
then Hoeffding’s inequality, Eq. (24), yields a bound on the
sampling complexity.
Proposition 10 (Estimation of observables): Let ρ ∈ S
(H) and A ∈ Herm(H) be an observable with spec(A) ∈
[a, b]. Choose ε > 0 and δ ∈ (0, 1). The empirical mean
estimator, Eq. (30), of the expectation value 〈A〉ρ from
measurements of A on m independent copies of ρ satisfies

|Y(m) − 〈A〉ρ | ≤ ε (31)

with probability at least 1− δ for all

m ≥ m0 = (b− a)2

2ε2 ln
2
δ

. (32)

Proof. Having m independent state copies implies that the
measurement outcomes are independent random variables.
We choose X1, . . . , Xm as independent copies of the ran-
dom variable Aρ/m. Then, the empirical mean estimator
is described by a sum of m independent random variables
Y(m) =∑m

k=1 Xk with bounded range Xk ∈ [a/m, b/m] for
all k. Hoeffding’s inequality yields

P
[∣∣Y(m) − 〈A〉ρ

∣∣ ≥ ε] ≤ 2 exp
[
− 2mε2

(b− a)2

]
(33)

for any ε > 0. We wish this probability to be small, i.e., we
require that

2 exp
[
− 2mε2

(b− a)2

]
≤ δ (34)

for some δ ∈ (0, 1) and determine the critical value m0
required for the estimation by solving the inequality for
m = m0, which yields Eq. (32). �

Proposition 10 guarantees that expectation values of
bounded observables can be estimated with a measurement
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effort that is independent of the Hilbert space dimension.
The confidence 1− δ can be improved exponentially fast
by increasing the measurement effort m.

One can define distance measures on S(H) in terms of
expectation values of a set of observables. Naturally, the
estimation protocol described in this section gives rise to
an ε-certification test w.r.t. such measures.

Further reading

Using the union bound, one can easily generalize Propo-
sition 10 to derive the sampling complexity of estimating
multiple observables. The total number of sufficient state
copies ρ to estimate � different observables then scales
as m0 ∈ O[� log(2�/δ)/ε2]. In this setting each observ-
able is estimated from a different measurement setting. In
contrast, Shadow estimation [19–21] provides a way to
estimate multiple observables from a single measurement
setting. For certain types of observables, the shadow esti-
mation has sampling complexity of m0 ∈ O[ln(2�/δ)/ε2]
[21].

We further discuss shadow-estimation techniques in the
context of state certification in Sec. II J.

E. Distance measures for quantum states

In our general definition of an ε-certification test,
Definition 2, requires a distance measure on S(H). In this
section we introduce some “natural” measures on quantum
states.

To this end, recall that any normal operator X ∈
L(H), i.e., any operator that commutes with its adjoint,
[X , X †] := XX † − X †X = 0, can be written in spectral
composition X =∑

i xiPi, where xi ∈ C are its eigen-
values and Pj = P2

j ∈ Pos(H) the corresponding spectral
projectors. There are several useful norms of an opera-
tor X ∈ L(H,K). For any operator X ∈ L(H,K) between
two Hilbert spaces H and K, the operator X †X is positive
semidefinite, i.e., in Pos(H). In consequence, it has a pos-
itive semidefinite square root |X | :=

√
X †X ∈ Pos(H).

The spectral norm (also known as operator norm)
‖X ‖op ∈ R+ of X is defined to be the largest eigenvalue of
|X |. The trace norm is ‖X ‖1 := Tr[|X |] and the Frobenius
norm ‖X ‖F :=

√
Tr[|X |2] =

√
Tr[X †X ]. These norms can

be defined in a variety of equivalent ways: the spectral
norm coincides with the norm induced by the �2-norm
on H via ‖X ‖op = sup‖v‖�2≤1 ‖X v‖�2 , a manifestation of
the Rayleigh principle. The Frobenius norm is induced by
the Hilbert-Schmidt inner product, Eq. (1). It can also be
expressed in terms of the matrix representation of X as
‖X ‖F =

∑
i,j |Xij |2. Finally, all three norms are instances

of the Schatten p-norms that are directly defined as �p -
norms on the singular value spectrum. The singular value
spectrum σ(X ) of X is defined as the eigenvalue spec-
trum of |X | and the �p -norms are given by ‖x‖�p :=

(∑
i |xi|p

)1/p . This gives rise to the unitarily invariant
Schatten p-norm ‖X ‖p := ‖σ(X )‖�p and ‖ · ‖op, ‖ · ‖1,
and ‖ · ‖F are the Schatten p-norms with p = ∞, 1, 2,
respectively.

The Euclidean inner product is bounded by �p -norms
by the Hölder inequality that states that for all x, y ∈ C

d

and pairs p , q ∈ {1, 2, . . . ,∞} with p−1 + q−1 = 1 (under-
standing 1/∞ = 0) it holds that

|〈x, y〉| ≤ ‖x‖�p‖x‖�q . (35)

The Hölder inequality generalizes the Cauchy-Schwarz
inequality, where p = q = 2. The Schatten p-norms inherit
a matrix Hölder inequality from the Hölder inequality: let
X , Y ∈ L(H,K) and p , q as before, then

|〈X , Y〉| ≤ ∥∥X †Y
∥∥

1 ≤ ‖X ‖p‖Y‖q. (36)

The Hölder inequality directly follows from the von Neu-
mann inequality Tr|AB| ≤ 〈σ(A), σ(B)〉, where the singu-
lar value spectra σ(A) and σ(B) are each descending [22].
Furthermore, the Schatten p-norms inherit the ordering of
the �p -norms, ‖X ‖∞ ≤ . . . ≤ ‖X ‖2 ≤ . . . ≤ ‖X ‖1 for all
X . Norm bounds in reversed order will in general introduce
dimensional factors. For low-rank matrices these bounds
can be tightened.
Lemma 11 (Reversed norm bounds): For all X ∈ L
(H,K) it holds that

‖X ‖1 ≤
√

rank(X ) ‖X ‖F ≤ rank(X ) ‖X ‖op . (37)

Proof. Let X ∈ L(H,K) and r = rank(X ). We can always
write X = XPr with Pr a rank-r projector onto the
orthogonal complement of the kernel of X . Now by
the matrix Hölder inequality, Eq. (36), ‖X ‖1 = ‖XPr‖1 ≤
‖Pr‖F ‖X ‖F =

√
r ‖X ‖F . For the second inequality, bound

again using the matrix Hölder inequality |Tr[X †X ]| ≤∥∥X †X
∥∥

1 ≤ ‖Pr‖1

∥∥X †X
∥∥

op = r ‖X ‖2
op. Taking the square

root we conclude that ‖X ‖F ≤
√

r ‖X ‖op from which the
second inequality follows. �

A natural metric on quantum states is the trace-distance
distTr : S(H)× S(H)→ R+,

distTr(ρ̃, ρ) = 1
2
‖ρ − ρ̃‖1 . (38)

We have already seen that compared to the other Schatten
p-norms the trace norm is the largest, i.e., the most “pes-
simistic” distance measure. Furthermore, the trace norm
has an operational interpretation in terms of the distin-
guishability of quantum states by dichotomic measure-
ments.
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Proposition 12: (Operational interpretation of the
trace distance): Let ρ, σ ∈ S(H). It holds that

distTr(ρ, σ) = sup
0≤P≤1

Tr[P(ρ − σ)]. (39)

Furthermore, the supremum is attained for the orthogonal
projector P+ onto the positive part of ρ − σ .

Proof. First we show that the supremum is attained for P+.
The self-adjoint operator difference can be decomposed as

ρ − σ = X + − X − (40)

into a positive part X + ∈ Pos(H) and a negative part
X − ∈ Pos(H). We note that

∥∥X ±∥∥
op ≤ 1. Since Tr[X + −

X −] = Tr[ρ − σ ] = Tr[ρ]− Tr[σ ] = 0, we have Tr[X +]
= Tr[X −]. Moreover, ‖ρ − σ‖1 = Tr[X +]+ Tr[X −]. The
last two statements together yield that the trace distance
between the two states is

1
2
‖ρ − σ‖1 = Tr[X +] = Tr[P+(ρ − σ)], (41)

where P+ is the orthogonal projector onto the support of
X +. It can be calculated by means of the singular value
decomposition of ρ − σ = U	V† as P+ = U+V†

+ with U+
and V+ the matrices with singular left and right vectors,
respectively, associated to the positive singular values as
its columns.

In order to show that the supremum cannot become
larger than the trace distance, we consider some operator
P with 0 ≤ P ≤ 1. Then, indeed,

Tr[P(ρ − σ)] = Tr[PX +]− Tr[PX −] ≤ Tr[PX +]

≤ ∥∥X +∥∥
1 =

1
2
‖ρ − σ‖1 , (42)

where we use the matrix Hölder inequality, Eqs. (36)
and (41), in the last two steps. �

Given two quantum states the optimal dichotomic
POVM measurement {P,1− P} to distinguish the two
states is the POVM that maximizes the probability of mea-
suring the outcome associated to P in one state and min-
imizes the same probability for the other state. Of course
exchanging the role of P and 1− P works equivalently.
We can think of the achievable differences in probabilities
as a measure for the distinguishability of ρ and σ . Proposi-
tion 12 shows that the trace distance of two states coincides
with the maximal distinguishability by any dichotomic
POVM measurements. This distinguishability of a single-
shot measurement can be amplified by measuring multiple
i.i.d. copies of a quantum state with {P,1− P}. We turn
this insight into an ε-certification test for pure states in the
next section.

Before we do this, let us introduce another important dis-
tance measure on quantum states. The (squared) fidelity of
two quantum state ρ, σ ∈ S(H) is defined as

F(ρ, σ) := ∥∥√ρ√σ∥∥2
1 . (43)

Note that

∥∥√ρ√σ∥∥1 = Tr
[√√

ρ σ
√
ρ

]
. (44)

While not any more directly evident from Eq. (44), the
fidelity is symmetric as is apparent from Eq. (43).

Some authors define the fidelity as
∥∥√ρ√σ∥∥1 without

the square. For this reason, one might want to refer to the
expression of Eq. (43) explicitly as the squared fidelity to
avoid confusion. For brevity, we however call F simply the
fidelity hereinafter.

The fidelity is more precisely not a measure of “dis-
tance” for two quantum states but of “closeness.” In
particular, F(ρ, ρ) = 1, which can be seen to be the max-
imal values of F(ρ, σ) for all ρ, σ ∈ S(H). Hence, 0 ≤
F(ρ, σ) ≤ 1 on S(H). Often it is convenient to work with
the infidelity 1− F(ρ, σ) as the complementary measure
of “distance.”

When at least one of the states ρ or σ is pure, say ρ =
|ψ〉〈ψ | then

F(ρ, σ) = 〈ψ | σ |ψ〉 = Tr[ρσ ] = 〈ρ, σ 〉, (45)

which can easily be proven using Eq. (44). Furthermore,
for both states being pure we have F(|ψ〉〈ψ | , |φ〉〈φ |) =
|〈ψ |φ〉|2 for all |ψ〉〈ψ | , |φ〉〈φ | ∈ S(H). Thus, for pure
states the fidelity is the overlap of the states and can be
related to the angle between the state vectors. We in fact
mostly encounter the case where at least one of the states
is pure and mostly work with Eq. (45) instead of Eq. (43).

The fidelity is related to the trace distance as follows.
Proposition 13: (Fuchs-van de Graaf inequalities [23,
Theorem 1]): For any states ρ, σ ∈ S(H)

1−
√

F(ρ, σ) ≤ 1
2
‖ρ − σ‖1 ≤

√
1− F(ρ, σ). (46)

Since the Fuchs-van de Graaf inequalities are not explic-
itly dependent on the Hilbert-space dimension one can
regard the trace distance and fidelity as equivalent mea-
sures of quality in many applications. Note however that
the square root on the right-hand side can still make a
painstaking difference in practice. Aiming at a trace-norm
distance of 10−3 can in the worst case require to ensure an
infidelity of 10−6. This can be a crucial difference when
it comes to the feasibility of certification. Importantly, the
square-root scaling is unavoidable for pure states.
Lemma 14: (Fuchs-van de Graaf inequality for pure
states): The upper bound of the Fuchs-van de Graaf
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inequality for pure states |ψ〉〈ψ | , |φ〉〈φ | ∈ S(H) is tight
and the following equality holds for all p ,

‖|ψ〉〈ψ | − |φ〉〈φ |‖p = 21/p
√

1− |〈ψ |φ〉|2. (47)

Furthermore, show that the equality actually holds for all
Schatten p-norms p ∈ {1, 2, . . . ,∞}.
Proof. Denote X := |ψ〉〈ψ | − |φ〉〈φ |. We have Tr[X ] =
0 and rank(X ) ∈ {0, 2}. Hence, X has two eigenvalues
λ > 0 and −λ < 0. This implies that λ2 = ‖X ‖2

F /2 =
1− 1 |〈ψ |φ〉|2, as directly follows by writing ‖X ‖2

F as a
Hilbert-Schmidt inner product. From the eigenvalues one
can calculate ‖X ‖p as Schatten p-norm, which yields the
result. �

In Lemma 14 we show that the upper bound of Eq. (46)
is tight for pure states. Conversely, one might hope for
more mixed states to arrive at an improved scaling closer
to the lower bound of Eq. (46). We review such a bound in
the analogous discussion of distance measures of quantum
channels, Theorem 54 in Sec. III A.

In the next section, we present protocols that aim at
directly providing an ε-certification test for certain states.
Sections II H and II J present two protocols that aim
at estimating the fidelity: direct-fidelity estimation and
shadow-fidelity estimation.

F. Direct quantum-state certification

In this section we present approaches to certification
protocols for quantum states that are direct in that they do
not use a protocol designed for another task, such as an
estimation protocol, as a subroutine. Our exposition mostly
follows the work by Pallister et al. [24]. We start with
perhaps the most direct attempt building on the insight of
Proposition 12. This proposition illustrates the interpreta-
tion of the trace distance as the maximal distinguishability
by a dichotomic POVM and shows that the optimal POVM
in this regard is given by the projection onto the positive
part of the state difference. This indicates that the best way
to distinguish a pure quantum state from all other states
is to measures the POVM that has the state itself as an
element.

We now turn this insight into an ε-certification test. It
can be most easily formulated in terms of the infidelity 1−
F as the distance measure.

Given a pure target state ρ = |ψ〉〈ψ | with a state vec-
tor |ψ〉 ∈ C

d, we consider the POVM {�,1−�} given
by � = |ψ〉〈ψ |. We call the outcome corresponding to �
“pass” and the one of 1−� “fail”. Then, for any
ρ̃ ∈ S(Cd) we have

P[“pass”] = Tr[�ρ̃] = F(ρ, ρ̃), (48)

i.e., the probability of the POVM returning “pass” is the
fidelity of the two states. This gives us a simple proto-
col that measures the POVM on a single state copy and
accepts when the result is “pass” and rejects otherwise.
This protocol is complete but not sound in the sense of
Definition 2 as the probability of an acceptance is fixed
to be 1− F(ρ, ρ̃), i.e., the probability of a false accep-
tance in not constantly bounded away from one. But using
more state copies we can boost the probability to detect
deviations of the form F(ρ, ρ̃) < 1− ε with some targeted
confidence 1− δ.

In order to be able to capture a class of large mea-
surement settings we first formulate the protocol for an
arbitrary dichotomic POVM measurements.

Protocol 15 (Naive direct quantum-state certification):
Let ρ ∈ S(Cd) be a pure target state and� ∈ Pos(Cd)with
‖�‖op ≤ 1. Denote by {�,1−�} the binary POVM given
by �, call the outcome corresponding to � “pass” and
the one of 1−� “fail”.

For state preparations ρ̃1, . . . , ρ̃nρ̃ ∈ S(Cd) the protocol
consists of the following steps.

As stated, this protocol is adaptive in that it can end
early in case of a rejection instance. However, one could
easily turn into a nonadaptive protocol without changing
the number of measurements in the performance guarantee
below.

For ρ a pure state and � = ρ the protocol is a cer-
tification protocol w.r.t. the infidelity as more precisely
summarized by the following proposition.

Proposition 16 (Performance guarantee I): Let ρ ∈ S
(Cd) be a pure target state and choose ε, δ > 0. Protocol
15 with � = ρ is an ε-certification test w.r.t. the infidelity
from nρ̃ independent samples for

nρ̃ ≥ ln(1/δ)
ε

(49)

with confidence at least 1− δ. Moreover, the protocol
accepts the target state ρ with probability 1.

Proof. The probability of the measurement outcome
“pass” in step i ∈ [nρ̃] is

P[“pass”|ρ̃i] = Tr[�ρ̃i] = Tr[ρρ̃i] = F(ρ, ρ̃i). (50)
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Hence, the final probability that the protocol accepts is

P[“accept”] =
nρ̃∏

i=1

F(ρ, ρ̃i). (51)

Clearly, if ρ̃i = ρ for all i ∈ [nρ̃] then the protocol accepts
almost surely. Now let us consider the case that the fidelity
is small, i.e.,

F(ρ, ρ̃i) = 〈ψ | ρ̃i |ψ〉 ≤ 1− ε ∀i ∈ [nρ̃]. (52)

Then the probability that the protocol wrongfully accepts
is

P[“accept”] ≤ (1− ε)nρ̃ . (53)

Now we wish this probability (type-II error) be bounded
by δ > 0, i.e.,

(1− ε)nρ̃ ≤ δ. (54)

This maximum type-II error is achieved for

nρ̃ ≥
ln

( 1
δ

)

ln
( 1

1−ε
) . (55)

We note that for ε ∈ [0, a] ⊂ [0, 1) the following bounds
hold:

ε ≤ ln
(

1
1− ε

)
≤ ln

(
1

1− a

)
ε

a
, (56)

which can be seen by using the fact that ε �→ ln[1/(1− ε)]
is smooth, has value 0 at 0, its first derivative is lower
bounded by 1, and its second derivative is positive. Hence,
for any nρ̃ ≥ ln(1/δ)/ε the required bound, Eq. (54), is
satisfied. �

As a remark, the minimum number of samples in
Eq. (55) scales as

ln
( 1
δ

)

ln
( 1

1−ε
) = ln(1/δ)

ε
+ O(1/ε2), (57)

so that Eq. (49) captures the leading scaling of Eq. (55).
Perhaps surprisingly, the sample complexity, Eq. (49),

of this direct certification protocol does not depend on the
physical system size at all. It has a zero type-I error and
one can control the type-II error via the parameter δ. How-
ever, for many target states it is not practical to directly
implement the required POVM. This motivates the follow-
ing more complicated strategies. Say, we have access to a
set of POVM elements

M ⊂ {M ∈ Pos(Cd) : ‖M‖op ≤ 1}. (58)

These encode the measurements that are experimentally
feasible. As one can only make finitely many measure-
ments, we assume that |M| <∞. Then for each state we

pick a POVM element M ∈ M with some probability and
consider the corresponding dichotomic POVMs {M ,1−
M }, where M has output “pass” and 1−M has output
“fail”. We refer to a set M of the form, Eq. (58), together
with a probability massμ : M → [0, 1],

∑
M∈M μ(M ) = 1,

as a probabilistic measurement strategy. Now we mod-
ify Protocol 15 by including a probabilistic measurement
strategy.

Protocol 17 (Direct state certification): Let ρ ∈ S(Cd)

be a pure target state and (M,μ) be a probabilistic measure-
ment strategy. For state preparations ρ̃1, . . . , ρ̃nρ̃ ∈ S(Cd)

the protocol consists of the following steps.

Let us assume that the prepared states are i.i.d. copies of
a state ρ̃. Then following Protocol 17 with strategy (M,μ)
the overall probability of measuring “pass” is

P[“pass”] =
∑

M∈M

μ(M )Tr[M ρ̃] = Tr[�ρ̃], (59)

where

� :=
∑

M∈M

μ(M )M (60)

is the so-called effective measurement operator. Below, we
see that it plays a similar role as the measurement operator
� in Protocol 15 when it comes to proving performance
guarantees. At the same time, it allows capturing more
sophisticated measurement strategies.

However, there is one constraint that allows for a simple
analysis of Protocol 17: we require that

Tr[�ρ] = 1, (61)

i.e., that there is no false reject of the target state ρ with
probability one. In particular, it requires that Tr[Mρ] = 1
for all M ∈ M. This constraint still allows for optimal
measurement strategies.

Proposition 18 ([24, Proposition 8]): Let ρ = |ψ〉〈ψ | be
a target state. Let 0 ≤ �′ ≤ 1 be an effective measurement
operator, Eq. (60), with Tr[�′ρ] < 1 so that Protocol 17 is
an ε-certification test w.r.t. infidelity from nρ̃ ′ i.i.d. sam-
ples. Then there exists an effective measurement operator
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0 ≤ � ≤ 1 with Tr[�ρ] = 1 so that Protocol 17 is an ε-
certification test w.r.t. infidelity from nρ̃ i.i.d. samples so
that nρ̃ ≤ nρ̃ ′ holds for sufficiently small ε.

The proof of this statement is a consequence of the
Chernoff-Stein lemma from information theory, which
quantifies the asymptotic distinguishability of two distri-
butions in terms of their relative entropy.

Since the constraint, Eq. (61), implies that there is no
false rejection the only remaining hypothesis testing error
is a false acceptance, which is the event where a state ρ̃
with F(ρ, ρ̃) < 1− ε is accepted. This event has a worst-
case probability over all states ρ̃ in the rejection region that
given as

P[“pass”] = max
ρ̃∈S(Cd):

Tr[ρρ̃]≤1−ε

Tr[�ρ̃]. (62)

In the following lemma we see that this maximum is
determined by the spectral gap

ν(�) := λ1(�)− λ2(�), (63)

of the effective measurement operator �, where λ1(�) ≥
λ2(�) ≥ . . . ≥ λd(�) are the eigenvalues of� in descend-
ing order.
Lemma 19 ([24], [25, Supplemental Material, Sec. I]):
Let ρ ∈ S(Cd) be a pure state, 0 ≤ � ≤ 1, Tr[ρ�] = 1,
and ε > 0. Then

max
ρ̃∈S(Cd):

Tr[ρρ̃]≤1−ε

Tr[�ρ̃] = 1− ν(�)ε. (64)

Proof. We note that Tr[ρ�] = 1 means that a state vector
|ψ〉 with ρ = |ψ〉〈ψ | is an eigenvalue-1 eigenvector of �.
Moreover, let us write � in spectral decomposition,

� =
d∑

j=1

λj Pj , (65)

with 1 = λ1 ≥ λ2 ≥ · · · ≥ λd and P1 = ρ. For the case
λ2 = 1 the choice ρ̃ = P2 yields a maximum of 1 in the
maximization, Eq. (64). Let us now consider the case λ2 <

1. Then for

ρ̃ = (1− ε)ρ + εP2 (66)

we have

Tr[�ρ̃] = 1− εTr[�ρ]+ εTr[�P2]

= 1− ε + ελ2 = 1− (1− λ2)ε, (67)

i.e., the claimed maximum in Eq. (64) is attained for some
feasible σ .

To show that the claimed maximum is actually the max-
imum we consider some state ρ̃ ∈ S(Cd) with Tr[ρρ̃] ≤
1− ε. We write ρ̃ as convex combination ρ̃ = (1− ε′)ρ +
ε′ρ⊥ and observe that ε′ ≥ ε. Then

Tr[�ρ̃] = Tr[ρρ̃]+
d∑

j=2

λj Tr[Pj ρ̃]

≤ Tr[ρρ̃]+ λ2

d∑

j=2

Tr[Pj ρ̃]

= 1− ε′ + λ2ε
′Tr

⎡

⎣
d∑

j=2

Pj ρ
⊥

⎤

⎦

= 1− ε′ + λ2ε
′Tr[ρ⊥]

= 1− ε′ + λ2ε
′ = 1− (1− λ2)ε

′

≤ 1− (1− λ2)ε. (68)

�
Given a measurement strategy with effective measure-

ment operator � this lemma provides a closed formula for
the false acceptance probability, Eq. (62). This allows us
to state the following guarantee for Protocol 17.
Proposition 20 (Performance guarantee II [24]): Let ρ
∈ S(Cd) be a pure target state and ε, δ > 0. We consider
an effective measurement operator, Eq. (60), satisfying 0 ≤
� ≤ 1 and Tr[�ρ] = 1 and having a spectral gap, Eq. (63),
bounded as ν(�) > 0. Then the certification test from Pro-
tocol 17 is an ε-certification test w.r.t. the infidelity from
nρ̃ independent samples for

nρ̃ ≥ ln(1/δ)
ε[1− λ2(�)]

, (69)

with confidence at least 1− δ. Moreover, the protocol
accepts the target state ρ with probability 1.

Compared to the sample complexity, Eq. (49), of the
naive Protocol 15, the sample complexity, Eq. (69), has an
overhead of a factor 1/ν(�),

Proof of Proposition 20. The proof is mostly analogous to
the one of Proposition 16.

Thanks to Lemma 19, the probability of wrongfully
accepting a state ρ̃ ∈ S(Cd) with F(ρ, ρ̃i) ≤ 1− ε is
bounded as

P[“pass”|ρ̃i] ≤ 1− ν(�))ε. (70)

Hence, the probability that Protocol 15 accepts is bounded
as

P[“accept”] ≤ (1− ν(�)ε)nρ̃ . (71)
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Imposing [1− ν(�)ε]nρ̃ ≤ δ and solving for nρ̃ yields

nρ̃ ≥ ln(1/δ)

ln
[

1
1−ν(�)ε

] (72)

and the bound, Eq. (56), finishes the proof. �
This proposition tells us that as long as � has a con-

stant gap between its largest and second largest eigenvalue
the sample complexity of the certification protocol has the
same scaling as the one where � is the target state itself.
Now it depends on the physical situation of what feasible
measurement strategies � are. Given a set M of feasible
measurements we can single out an optimal strategy as
follows.
Definition 21 (Minimax optimization): Let ρ be a pure
state and ε > 0. Moreover, let us assume that we have
access to a compact set of binary measurements given by
the operators M ⊂ {P : 0 ≤ P ≤ 1, Tr[Pρ] = 1}.

Then the best strategy � for the worst-case state prepa-
ration ρ̃ is

min
�∈conv(M)

max
ρ̃:Tr[ρρ̃]≤1−ε

Tr[�ρ̃]. (73)

and conv(S) denotes the convex hull of a set S, i.e., the set
of all convex combinations of elements in S. This quan-
tity is called minimax value and a strategy � where the
minimum is attained is called minimax optimal.

Such minimax optimizations are common in game the-
ory and risk analysis.

If there are no restrictions on the measurements of a
pure target state ρ, i.e., M = {P : 0 ≤ P ≤ 1, Tr[Pρ] =
1}, then � = ρ is minimax optimal.

For a number of settings with physically motivated mea-
surement restrictions, the minimax strategy, or at least
one that is close to it, is obtained. For instance, for sta-
bilizer states, which are ubiquitous in quantum informa-
tion. In the following we introduce stabilizer states and,
two-outcome Pauli measurements, we derive a minimax
optimal certification protocol for them.

1. Stabilizer states

Now we consider the certification of stabilizer tar-
get states by using a particularly suitable measurement
strategy in the direct certification Protocol 17.

Let us start with a few preliminaries on stabilizer states.
An n-qubit Pauli string is σs1 ⊗ · · · ⊗ σsn , where s ∈
{0, 1, 2, 3}n and {σi} are the Pauli matrices

σx := σ1 :=
(

0 1
1 0

)
, σy := σ2 :=

(
0 −i
i 0

)
,

σz := σ3 :=
(

1 0
0 −1

)
, σ0 := 12×2. (74)

Then the Pauli group Pn ⊂ U(2n) is the group generated
by all n-qubit Pauli strings and i1. An n-qubit state |ψ〉 is
a stabilizer state if there is an Abelian subgroup S ⊂ Pn,
called stabilizer (subgroup), that stabilizes |ψ〉 and only
|ψ〉, i.e., |ψ〉 is the unique joint eigenvalue-1 eigenstate of
all elements in that subgroup. Such subgroups are gener-
ated by n elements and contain |S| = 2n elements in total.
Note that they cannot contain the element −1.

An example of such a subgroup is the one of all Pauli
strings made of 1’s and σz’s.

It is not difficult to show that a general n-qubit stabilizer
state ρ with stabilizer S is explicitly given as

ρ = 1
2n

∑

S∈S
S. (75)

The measurement strategy for our direct certification of
stabilizer states essentially consists in measuring stabi-
lizer observables that are drawn uniformly at random from
the stabilizer group of the target state. We accept exactly
when the measurement outcome corresponds to the stabi-
lized eigenspaces of eigenvalue +1. This strategy is min-
imax optimal (Definition 21) among all strategies based
on measuring Pauli observables, i.e., two-outcome Pauli
measurements.
Theorem 22: (Minimax optimal two-outcome Pauli
measurements for STABs [24]): Let |ψ〉 we an n-qubit
stabilizer state with stabilizer group S ⊂ Pn with elements
S = {1 = S0, S1, . . . , S2n−1}. For i ∈ [2n − 1] denote by
Pi := 1

2 (1+ Si) the projector onto the positive eigenspace
of Si.

Then the minimax optimal measurement strategy for
having Pauli observables Pn as accessible measurements
(see Definition 21) is given by measuring Si with prob-
ability 1/(2n − 1). The resulting effective measurement
operator � = 1/(2n − 1)

∑2n−1
i=1 Pi satisfies �|ψ〉 = |ψ〉

and has the second largest eigenvalue

λ2(�) = 2n−1 − 1
2n − 1

. (76)

Proof. By Lemma 19, the minimax optimum is

min
�∈X

max
ρ̃: Tr[ρρ̃]≤1−ε

Tr[�ρ̃] = min
�∈X

[1− ν(�)ε]

= 1− εmax
�∈X

ν(�), (77)

where

X := {� ∈ conv(Pn) : �|ψ〉 = |ψ〉} = conv(S). (78)

We argue that the minimization over conv(S) can be
replaced by a minimization over conv(S ′) with S ′ :=
S \ {1}. To see this, observe that if � = (1− α)�′ + α1
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for α ∈ [0, 1] then ν(�) ≤ ν(�′). Then minimax optimal
measurement strategies are of the form

� =
2n−1∑

i=1

μj Pi, (79)

for a probability vector μ. We note that

Tr[�] = 2n−1 (80)

since Tr[Pi] = 2n−1.
Next, since |ψ〉 is an eigenvalue-1 eigenvector of �, we

have

� = 1⊕ �̃ (81)

and, hence

λ2(�) =
∥∥�̃

∥∥
op. (82)

Moreover, Tr[�̃] = 2n−1 − 1. The operator �̃ with the
minimal norm

∥∥�̃
∥∥

op under this constraint is of the form

�̃ = a1 for a > 0. Taking the trace of that equality, solv-
ing for a and denoting the orthogonal projector of |ψ〉〈ψ |
by |ψ〉〈ψ |⊥ := 1− |ψ〉〈ψ | yields

� = |ψ〉〈ψ | + 2n−1 − 1
2n − 1

|ψ〉〈ψ |⊥ , (83)

with

λ2(�) = 2n−1 − 1
2n − 1

. (84)

In order to finish the proof we show that� ∈ conv(S), i.e.,
that this choice of � is indeed compatible with Eq. (79).

We write the stabilizer state |ψ〉〈ψ | as combination of
the stabilizers [see Eq. (75)] and use that Sj = 2Pj − 1,

|ψ〉〈ψ | = 1
2n

⎛

⎝1+
2n−1∑

j=1

Sj

⎞

⎠

= 1
2n

⎡

⎣1+ 2
2n−1∑

j=1

Pj − (2n − 1)1

⎤

⎦

=
(

1
2n−1 − 1

)
1+ 1

2n−1

2n−1∑

j=1

Pj . (85)

With 1 = |ψ〉〈ψ | + |ψ〉〈ψ |⊥ this implies

2n−1∑

j=1

Pj = (2n − 1)|ψ〉〈ψ | + (2n−1 − 1)|ψ〉〈ψ |⊥ (86)

and, hence

1
2n − 1

2n−1∑

j=1

Pj = |ψ〉〈ψ | + 2n−1 − 1
2n − 1

|ψ〉〈ψ |⊥ , (87)

which is the � from Eq. (83) and also the measurement
strategy from the theorem statement. �

Corollary 23 (Sampling complexity [24]): Let us call the
outcome corresponding to Pi “pass” and the one corre-
sponding to 1− Pi “fail”. Then Protocol 17 is an ε-
certification test of ρ w.r.t. infidelity from nρ̃ independent
samples for

nρ̃ ≥ 2
ln(1/δ)
ε

, (88)

with confidence 1− δ. Moreover, ρ is accepted with prob-
ability 1.

Proof. According to Proposition 20 a number of measure-
ments

nρ̃ ≥ ln(1/δ)
εν(�)

(89)

is sufficient, where

ν(�) = 1− λ2(�)

= 1− 2n−1 − 1
2n − 1

= 2n−1

2n − 1
. (90)

This results in

nρ̃ ≥ 2n − 1
2n−1

ln(1/δ)
ε

. (91)

�
So, restricting from all measurements to Pauli measure-

ments results in at most a constant overhead of 2, cmp.
Proposition 16. We note that only very few of the 2n − 1
nontrivial stabilizers of ρ are actually measured. More
precisely, the measurements are the ones of randomly
subsampled stabilizer observables.

2. Extension towards fidelity estimation

Direct certification provides minimum information to
solve the certification task by just accepting or rejecting.
Often it is also desirable to actually know explicitly what
the distance or fidelity of a quantum-state implementation
ρ̃ to its target ρ is.

The direct quantum-state certification protocol, Eq. (17),
with effective measurement operator � [see Eq. (60)] can
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be turned into a estimation protocol for the fidelity F(ρ̃, ρ)
if � is homogeneous, i.e., of the form

� = |ψ〉〈ψ | + τ |ψ〉〈ψ |⊥ (92)

for some τ > 0 [14,26]; for instance, for stabilizer states,
Eq. (83) we have τ = [(2n−1 − 1)/(2n − 1)]. In this case,
we have

Tr[ρ̃�] = F(ρ̃, ρ)+ τ {Tr[ρ̃]− F(ρ̃, ρ)} (93)

and, hence,

F(ρ̃, ρ) = Tr[ρ̃�]− τ
1− τ = Tr[ρ̃�]− λ2(�)

ν(�)
. (94)

Therefore, an estimate on the expectation value of� yields
an estimate of the fidelity F(ρ̃, ρ).

We note that the number of measurements required
for estimating the expectation value up to an additive
error ε scales as 1/ε2. We also remember that in the
case where we can measure � as observable the estima-
tion task can be solved with a number of measurements
m ≥ (1/2ε2) ln(2/δ) with confidence 1− δ, see Proposi-
tion 10. However, in Protocol 17 we only assume access
to measurements M ∈ M that on some average give the
expectation value of �. In general, the number of mea-
surements |M| can be exponentially large, as is the case
for stabilizer states, cp. Theorem 22. Here, one could
use ides of Monte Carlo estimation and importance sam-
pling in order to perform this estimation efficiently; a
method that we introduce in Sec. II G. Subsequently,
we discuss direct-fidelity estimation, which relies on this
idea.

Further reading

The direct certification of maximally entangled states
was studied by Hayashi et al. [27,28]. Building on these
earlier works and the discussed framework of Pallister
et al. [24], direct certification protocols were then devel-
oped for other classes of quantum states featuring a (close
to) optimal sampling complexity. They include the follow-
ing settings:

(a) Stabilizer states and two-qubit states with single-
qubit measurements [24].

(b) Bipartite states [26,29], qubit case in an LOCC
setting [30].

(c) Hypergraph states [11] with improvements in effi-
ciency by Zhu and Hayashi [25] and a generalization to
weighted graph states [31].

(d) Dicke states [32,33].

(e) A general adversarial scenario without the assump-
tions of the state preparations being identical and indepen-
dent [13,14].

Protocols for the efficient verification of graph states,
which are certain stabilizer states, were developed in the
context of measurement-only blind quantum computation
[34] and interactive proof systems [35,36].

Efficient certification protocols for ground states of
locally interacting Hamiltonians were developed by
Cramer et al. [37] and extended by Hangleiter et al. [38]
to ground states enabling universal quantum computation.
In this line of research, fidelity witnesses [38–40] can be
used to measure and estimate on a fidelity lower bounds.
Also in the context of interactive proof systems efficient
ground-state certification schemes have been developed
[36,41].

Kalev et al. [42] have extended arguments from direct-
fidelity estimation [43] (see Sec. II H) and ground-state
certification [38] to the certification of stabilizer states.
They also use Bernstein’s inequality to give a quadratically
improved ε-scaling for large ε.

The work [37] solves the certification problem by
efficiently reconstructing the state assuming it to be of
matrix product form. Similar ideas based on ansatz state
tomography also work for permutationally invariant states
[44–46].

Takeuchi and Morimae [11] provide efficient results
on the certification of ground states of locally interact-
ing Hamiltonians, and hypergraph states, where the i.i.d.
assumptions on the state preparations is removed using
a quantum de Finetti theorem [12]. Hypergraph states
include quantum states that are generated by so-called IQP
circuits designed for demonstrating quantum supremacy
[47].

Global von Neumann measurements on multiple i.i.d.
copies of the prepared quantum state have been consid-
ered [48] (even with mixed target states), which leads to
a sample complexity scaling as nρ̃ ∈ O(d/ε) a version of
ε-certification of quantum states in S(Cd).

For a very helpful survey on quantum property testing
we refer to Ref. [49], where several methods and notions
of certification are reviewed.

G. Importance sampling

In the next section, we study direct-fidelity estimation,
where the fidelity between a target state and a state prepa-
ration is estimated from measurements that are drawn ran-
domly from a certain distribution depending on the target
state. The idea is to perform the measurements more often
that are particularly relevant to the fidelity estimation.

This idea is formalized by a Monte Carlo integration
technique called importance sampling. Monte Carlo inte-
gration aims at computing an integral F that is written as
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an expected value of some function f over a probability
distribution with density function p:

F := EX∼p [f (X )] =
∫

f (x)p(x)dx. (95)

The general idea is to draw i.i.d. samples X (1), . . . , X (m) ∼
p and take the empirical average

F̂ := 1
m

m∑

i=1

f (X (i)) (96)

as estimator for F . It is not difficult to see that F̂ is
unbiased. If Var[f (X )] <∞ then F̂ can be proven to
be consistent, i.e., F̂ converges to F for m →∞ in an
appropriate sense. Moreover,

Var[F̂] = Var[f (X )]
m

. (97)

Thereby the empirical variance also gives an estimate of
the estimation error. The estimation error can be controlled
by increasing the number of samples m.

Now, the integration, Eq. (96), relies on the ability to
sample from p . A popular way to make such sampling effi-
cient is importance sampling. The main idea of importance
sampling is to rewrite the integrand fp in Eq. (95) as

fp = fp
q

q (98)

for some probability distribution with density function q.
Then we can apply the Monte Carlo sampling idea (96)
with respect to q and draw X (1), . . . , X (m) ∼ q i.i.d. to
obtain the estimator

F̂q := 1
m

m∑

i=1

f [X (i)]
p[X (i)]
q[X (i)]

. (99)

It holds that Eq[F̂q] = F and

Varq[F̂q] = 1
m

Varq[fp/q] = 1
m

[∫
f 2p2

q
− F2

]
. (100)

One can show that the minimal variance is achieved by
choosing q as

q∗ := p|f |
Z

(101)

with a normalization factor Z such that q∗ is a probabil-
ity density. Note that for f ≥ 0 we have Eq∗[(fp/q∗)2] =
Ep [f ]2 = Eq∗[fp/q∗]2 and, thus, Varq∗[F̂q∗] = 0. So, if f
does not change its sign then a single sample from q∗

is sufficient for the exact estimation. This might seem
miraculous at first sight. But its is important to notice that
in order to determine the optimal q∗ one needs to know
the value of normalization Z and calculating Z is equiva-
lent to solving the integration problem. However, finding
nonoptimal but good choices for q can already speed up
the integration, as we see in the case of direct-fidelity
estimation.

H. Direct-fidelity estimation

We assume to be given access to state preparations ρ̃ ∈
S(Cd) of some target state ρ ∈ S(Cd). Direct-fidelity esti-
mation (DFE) [43,50] is a protocol to estimate the fidelity
Tr[ρ̃ρ] for the case where the ρ is a pure state, i.e., of
the form ρ = |ψ〉〈ψ |. In order to do so, the target states
is expanded into products of Pauli matrices, Eq. (74), of
the form σs1 ⊗ · · · ⊗ σsn with si ∈ {0, . . . , 4} and d = 2n

being the Hilbert space dimension. For sake of readabil-
ity we denote these Pauli products by W1, . . . , Wd2 in some
order and note that they are an orthogonal basis for the
space of Hermitian operators Herm(Cd)with respect to the
Hilbert-Schmidt inner product, Eq. (1),

1
d

Tr[WkWk′] = δk,k′ (102)

for all k, k′ ∈ [d2].
Given any operator σ ∈ Herm

(
C

d
)

we define its char-
acteristic function (or quasiprobability distribution) Wσ :
[d2] → R by

χσ (k) := Tr
[
σ

Wk√
d

]
. (103)

Thanks to the orthogonality relation, Eq. (102), we have

σ =
d2∑

k=1

χσ (k)
Wk√

d
(104)

and hence

Tr[ρσ ] =
d2∑

k=1

χρ(k)χσ (k) (105)

for any ρ, σ ∈ Herm(Cd).
Now, we use importance sampling (Sec. II G) to esti-

mate the sum, Eq. (105), for the case where the target state
ρ ∈ S(Cd) is a pure state. For this purpose we rewrite the
overlap, Eq. (105), as

Tr[ρρ̃] =
d2∑

k=1

χρ̃(k)
χρ(k)

χρ(k)2 (106)
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and define

qk := χρ(k)2. (107)

We choose q as the probability mass function of the impor-
tance sampling distribution on the sampling space [d2].
The purity of ρ can be written as

Tr[ρ2] =
d2∑

k=1

∣∣∣∣

〈
Wk√

d
, ρ

〉∣∣∣∣
2

=
d2∑

k=1

χρ(k)2 (108)

and equals 1 for ρ pure. Thus, q is indeed a normalized
probability vector.

We define random variable

Xk := χρ̃(k)
χρ(k)

(109)

for k ∼ q and find that Xk is an unbiased estimator of the
fidelity:

Ek∼q[Xk] =
d2∑

k=1

χρ̃(k)
χρ(k)

qk =
d2∑

k=1

χρ(k)χρ̃(k) = Tr[ρρ̃],

(110)

where the last identity is again Eq. (105).
In order to estimate the random variable Xk, we need

to know the value of the characteristic function χρ̃(k). By
Eq. (103), χρ̃(k) can be estimated as the expectation value
from repeated measurements of the observable Wk in the
prepared state ρ̃. Thus, we end up with an estimation pro-
cedure of Tr[ρρ̃] that involves two sources of randomness
and correspondingly proceeds in two steps. (i) We clas-
sically sample k from [d2] according to the importance
sampling distribution, Eq. (107), defined by the target state
ρ. (ii) For the randomly drawn k, we estimate Xk from
repeated probabilistic measurements of Wk. Combining the
estimates of the Xk we arrive at an estimate for Tr[ρρ̃] via
Eq. (110).

The following protocol summarizes these steps.

Protocol 24 (DFE [43]): Let ρ ∈ S(Cd) be a pure target
state and {Wk} a set of observables {Wk}. Let ε > 0 and δ >
0 be the parameters for the desired estimation accuracy and
maximum failure probability.

The protocol consists of the following steps in total
requiring nρ̃ state preparations.

(i) Draw i.i.d. samples k1, . . . , k� ∼ q from the impor-
tance sampling distribution, Eq. (107), where � := �1/ε2δ�
[or as Eq. (131) for well-conditioned states].

(ii) Measure each observable Wki a number of mi times
for i ∈ [�] with mi chosen as

mi :=
⌈

2
dχρ(ki)2�ε2 ln(2/δ)

⌉
(111)

(or as mi = 1 for well-conditioned states).
(iii) For each i ∈ [�] calculate empirical estimate of the

expectation value 〈Wki〉ρ̃ from the measurement outcomes.
From these estimates calculate the estimator X̂ki for Xki :=
χρ̃(ki)/χρ(ki) = 〈Wki〉ρ/

√
d χρ(ki).

(iv) Calculate Ŷ := 1
�

∑�
i=1 X̂ki .

(v) Output Ŷ as a fidelity estimator.

To derive a guarantee for DFE we have to control the
error made in the two estimation steps. To this end, we
consider the steps in reversed order: we consider Y :=
(1/�)

∑�
i=1 Xki with � i.i.d. samples ki ∼ q assuming per-

fect estimates Xki for the moment. The accuracy of Y as an
estimator of Tr[ρρ̃] can be controlled by increasing �. Sub-
sequently, we have to analyze the accuracy of the estimator
Ŷ of Y that uses the finitely many measurement outcomes.
Altogether we arrive at the following guarantee.
Theorem 25 (Guarantee for DFE [43]): Let ρ ∈ S(Cd)

be a pure target state. The number of expected state
preparations in Protocol 24 is

E[nρ̃] = E

�∑

i=1

mi ≤ 1+ 1
ε2δ

+ 2 d
ε2 ln(2/δ). (112)

If the state preparations are i.i.d. given by ρ̃ ∈ S(Cd) then
the fidelity estimate Ŷ is an 2ε-accurate unbiased estimator
of F(ρ, ρ̃) with confidence 1− 2δ.

Note that the sample complexity scales linearly in the
Hilbert space dimension. In contrast, the number of Pauli
measurements required for state tomography scales as
�̃[d2rank(ρ̃)2] [15].

Proof of Theorem 25. We start with bounding the estima-
tion error arising by taking the empirical average in step
(iv) of Protocol 24. We note that Xk defined in Eq. (109) is
an unbounded random variable in general, as χρ(k) can be
arbitrarily small. Hence, we use Chebyshev’s inequality,
Eq. (22), to derive a tail bound for Y. Using the definitions,
Eqs. (107) and (109), of q and X and that X is the unbiased
estimator, Eq. (110), the variance of X becomes

Vark∼q[Xk] = Ek∼q[X 2
k ]− Tr[ρσ ]2

=
d2∑

k=1

χρ̃(k)2

χρ(k)2
χρ(k)2 − Tr[ρσ ]2

= χρ̃(k)2 − Tr[ρσ ]2

= Tr[ρ̃2]− Tr[ρρ̃]2. (113)
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Hence,

Vark∼q[Xk] ≤ Tr[ρ̃2] ≤ 1. (114)

Using the basic insight of Monte Carlo estimation,
Eq. (97), we obtain

Varq[Y] = Eq{(Y − Tr[ρρ̃])2} ≤ 1/�. (115)

As Y is an unbiased estimator of Tr[ρρ̃], i.e., Eq(Y −
Tr[ρρ̃]) = 0, we can directly apply Chebyshev’s inequal-
ity, Eq. (22), to arrive at

P (|Y − Tr[ρρ̃]| ≥ ε) ≤ 1
ε2�

(116)

for any ε > 0. Hence, for any δ > 0 and

� ≥ 1
ε2δ

(117)

the failure probability is bounded by δ,

P (|Y − Tr[ρρ̃]| ≥ ε) ≤ δ. (118)

Now we bound the statistical error that arises from the esti-
mation of Xki from the measurement setup i ∈ [�] in step
(iii) of Protocol 24. For this purpose we write for each k
the eigendecomposition of Wk as

Wk =
∑

α

ak,αPk,α , (119)

with {Pk,α} being the projector onto the eigenspaces and
{ak,α} ⊂ {−1, 1} the eigenvalues of the Pauli string Wk. We
note that the expected measurement outcome is

E[ak,α] = Tr[Wkρ̃] =
√

d χρ̃(k). (120)

We denote by akj ,αj the measurement outcome for mea-
surement j ∈ [mi] and consider the following correspond-
ing empirical estimate of Xki [see Eq. (109)]

X̂ki := 1

mi
√

dχρ(ki)

mi∑

j=1

aki,αj . (121)

Then we consider the sum

�Ŷ =
�∑

i=1

X̂ki

=
�∑

i=1

mi∑

j=1

1

mi
√

d χρ(ki)
aki,αj . (122)

As E[�Ŷ] = �Y, using Hoeffding’s inequality, Eq. (24), on
the double sum with t = ε� and bounds

bi = −ai = 1

mi
√

d χρ(ki)
, (123)

we find that [without loss of generality we assume that
there are no i with χρ(ki) = 0]

P[|Ŷ − Y| ≥ ε] = P[|�Ŷ − �Y| ≥ �ε]

≤ 2 exp

⎡

⎣ −2ε2�2

∑�
i=1

∑mi
j=1

22

m2
i d χρ(ki)2

⎤

⎦

= 2 exp

⎡

⎣ −ε2�2

∑�
i=1

2
mid χρ(ki)2

⎤

⎦ . (124)

We wish that the tail bound

P

[∣∣∣Ŷ − Y
∣∣∣ ≥ ε

]
≤ δ (125)

holds. Therefore, we impose the right-hand side of
Eq. (124) to be bounded by δ, which is equivalent to

ln(2/δ) ≤ ε2�2

∑�
i=1

2
mid χρ(ki)2

. (126)

The choice of mi as in Eq. (111) guarantees that this bound
it always satisfied and, thus, Eq. (125) holds. Then combi-
nation of the tails bounds, Eqs. (118) and (125), with the
union bound, Eq. (29), proves the confidence statement,

P[|Ŷ − F(ρ, ρ̃)| ≤ 2ε] ≥ 1− 2δ. (127)

In order to calculate the final sample complexity, Eq. (112),
note that mi is a random variable itself, since ki and
hence χρ(ki) is randomly chosen. By the definition of the
sampling, Eq. (107), for fixed i we have

E[mi] =
d2∑

ki=1

miqki

≤ 1+ 2d
�ε2 ln(2/δ), (128)

where the +1 comes from the ceiling in Eq. (111). Using
the bound, Eq. (117), on �, the expected total number of
measurements is

E

�∑

i=1

mi ≤ 1+ 1
ε2δ

+ 2d
ε2 ln(2/δ). (129)

�
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We remark that DFE estimation can be extended to
sets of observables that are arbitrary orthonormal bases of
Herm(Cd). However, in this case the operator norm used
to bound the eigenvalues ak,α and hence the sampling com-
plexity can be larger. One can generalize DFE further to
frames that include over-complete bases, see Ref. [51].

The main contribution to the number of measurements
in the derivation of the sample complexity above can be
traced back to the application of Chebyshev’s inequality
in Eq. (116). This step can, however, be improved for the
following class of states.

Definition 26 (Well-conditioned states): We call an
operator ρ ∈ Herm(Cd) well-conditioned with parame-
ter α > 0 if for each k ∈ [d2] either |Tr[Wkρ]| ≥ α or
Tr[Wkρ] = 0.

A prominent example for well-conditioned states are
stabilizer states, Eq. (75). It is easy to show that every sta-
bilizer state ρ on n qubits with stabilizer S , Eq. (75), is
well conditioned with parameter α = 1:

Tr[Wkρ] = 1
d

∑

S∈S
Tr[WkS] ∈ {−1, 0, 1}, (130)

where the sum evaluates to 1 if Wk ∈ S , to−1 if−Wk ∈ S
and to 0 otherwise.

For such well-conditioned states the sample complexity
can be improved as follows.

Theorem 27 (DFE, well-conditioned states [43]): Let
ρ ∈ S(Cd) be a pure target state that is well conditioned
with parameter α > 0. Consider the estimator Ŷ from Pro-
tocol 24 modified by setting mi = 1 for all i ∈ [�] in step
(ii) of Protocol 24 and

� :=
⌈

2
α2ε2 ln(2/δ)

⌉
(131)

in step (i) of Protocol 24. If the state preparations are i.i.d.
given by ρ̃ ∈ S(Cd) then the fidelity estimate Ŷ is an ε-
accurate unbiased estimator of F(ρ, ρ̃) with confidence
1− δ.
Proof. With probability 1 we have

√
dχρ(ki) ≥ α for all

i ∈ [�]. Moreover, |√dχ̂ρ̃(ki)| ≤ 1. The estimator from
step (iii) of Protocol 24 is hence bounded as

|Xki | ≤
1
α

(132)

with probability 1. The estimator Ŷ is, thus, bounded as
|Ŷ| ≤ 1/α almost surely. Hoeffding’s inequality (24) with

t = ε� yields

P

(∣∣∣Ŷ − Tr[ρρ̃]
∣∣∣ ≥ ε

)
≤ 2 exp

(
−�α

2ε2

2

)
. (133)

Imposing

2 exp
(
−�α

2ε2

2

)
≤ δ (134)

and solving for � we find that

P[|Ŷ − F(ρ, ρ̃)| ≤ ε] ≥ 1− δ. (135)

�
Theorem 27 tells us that for well-conditioned states DFE

has a sampling complexity independent of the system size.
Reference [43] investigates the idea of removing “bad
events,” which are those that violate the well-conditioning
condition. Moreover, a two-step estimation procedure as in
Theorem 25 is considered also for well-conditioned states.

Finally, we look at how to turn DFE into a certification
protocol with respect to the trace distance.

We summarize the result in the following proposition.
Proposition 28: (Certification with respect to the trace
distance via DFE): Fix parameters ε̃, ε, δ > 0 with ε̃ ≤
1
2ε

2. Let Ŷ be the direct-fidelity estimator of the fidelity
F(ρ, σ) so that |Ŷ − F(ρ, σ)| ≤ ε̃ with confidence 1−
δ. We consider the protocol that accepts if Ŷ ≥ 1−
ε̃ and rejects otherwise. We choose the trace distance
distTr(ρ, σ) := 1

2 ‖ρ − σ‖1 as the distance measure.

(i) This protocol is an ε-certification test w.r.t. the
trace distance in the sense of Proposition 4, i.e., the
completeness and soundness conditions are satisfied with
confidence 1− δ.

(ii) The resulting sampling complexity of DFE for well-
conditioned states scales as 1/ε4.

(iii) Let ε′ < ε. This protocol can be turned into a
robust (ε, ε′)-certification test, i.e., into an ε-certification
test that is guaranteed to accept all states within an ε′-trace
norm ball around ρ with confidence 1− δ.

Proof. The proof follows from Definition 2 by direct cal-
culations. We leave filling in the details as an exercise. �

I. Random states and unitaries

Random ensembles of quantum states and unitary matri-
ces find ubiquitous applications in quantum-information
processing and, in particular, in certification and estimation
protocols. Roughly speaking, random unitary operations
together with a fixed quantum measurement allow infor-
mation about the entire state space to be quickly gained.
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Arguably the simplest probability distribution on the uni-
tary group U(d) is given by the Haar measure μU(d). In
general, for a compact Lie group the Haar measure is
the unique left and right invariant probability measure,
which generalizes the notion of a uniform measure. In
applications one is often interested in random variables
that are polynomials in matrix elements of a Haar ran-
dom unitary U and its complex-conjugate U†. In this case,
also all moments of the random variable are the expected
value of such polynomials. In this section we introduce the
mathematical theory required to explicitly calculate such
moments. To this end, we observe that any polynomial
pt(U, U†) of degree k can be written as the contraction with
two matrices A, B ∈ C

dk×dk

pk(U, U†) = Tr[BU⊗kA(U†)⊗k]. (136)

This motivates the definition of the kth moment operator
of a probability measure μ on U(d) as M(k)

μ : C
dk×dk →

C
dk×dk,

M(k)
μ (A) = EU∼μ

[
U⊗kA(U†)⊗k]

=
∫

U(d)
U⊗kA(U†)⊗kdμ(U). (137)

If we have an expression for the kth moment operator for
the Haar measure μU(d), we can calculate the expectation
value of arbitrary polynomials pk(U, U†) over U ∼ μU(d)
by a linear contraction, Eq. (136).

The crucial property that characterizes the kth moment
operator of μU(d) is the following: consider a fixed unitary
U ∈ U(d) then a short calculation exploiting the unitary
invariance of the Haar measure reveals that

U⊗kM(k)
μU(d)

(A) =M(k)
μU(d)

(A)U⊗k. (138)

We find that M(k)
μU(d)

(A) commutes with every unitary U
raised to the kth tensor power.

For a set of endomorphisms A ⊂ L(W) on a vector
space W one calls the set

comm(A) = {B ∈ L(W) | BA = AB ∀A ∈ A} (139)

of all endomorphisms that commute with all elements of A
the commutant of A. The following lemma establishes that
not only does M(k)

μU(d)
(A) commute with every unitary of

the form U⊗k but it is in fact the orthogonal projector onto
the commutant of A = {U⊗k|U ∈ U(d)}, where orthogo-
nality is understood with respect to the Hilbert-Schmidt
inner product, Eq. (1). As becomes motivated shortly, we
refer to

�(k) : U(d)→ U(dk), U �→ U⊗k (140)

as the diagonal representation of U(d).

Lemma 29 (kth moment operator): The kth moment
operator M(k)

μU(d)
is the orthogonal projector onto

comm{�k[U(d)]}, the commutant of the k-order diagonal
representation of U(d).

Proof. With Eq. (138) we establish that the range
of M(k)

μU(d)
is in comm{�k[U(d)]}. The converse also

holds since for A ∈ comm{�k[U(d)]} we calculate that
M(k)

μU(d)
(A) = AM(k)

μU(d)
(1) = A. Thus, it remains to check

the orthogonality [M(k)
μU(d)

]† =M(k)
μU(d)

. The orthogonality
requirement follows in very few lines of calculation using
linearity and cyclicity of the trace. �

Note that the argument of the proof applies more gen-
erally and yields the analogous result for arbitrary groups
equipped with a Haar measure, e.g., the uniform measure
on a finite group.

The commutant of the diagonal representation of the
unitary group can be characterized using a powerful result
from representation theory: Schur-Weyl duality. To set the
stage for explaining the result we start by reviewing some
basic definitions and results from representation theory.

1. Representation theory

Let us start with the most basic definitions. For a proper
introduction we refer to Simon’s book [52] and to Good-
man and Wallach’s book [53] for the representation theory
of the standard matrix groups.

Let G and H be groups.

(i) f : G → H is a (group) homomorphism if f (g1g2)

= f (g1)f (g2) for all g1, g2 ∈ G. Note that this condition
implies that f (eG) = eH and f

(
g−1

) = f (g)−1 for all g ∈
G.

(ii) A homomorphism R : G → GL(V) into the invert-
ible operators on a vector space V is called a linear (group)
representations. R is a unitary representation if R : G →
U(H) is a homomorphism to a unitary group U(H) ⊂
L(H) on some Hilbert space. We are concerned only with
such unitary representations and, hence, often omit the
word “unitary.”

(iii) A subspace V ⊂ H is said to be invariant if
R(g)V ⊆ V for all g ∈ G. R is called irreducible if the
only invariant subspaces are {0} and H itself. Irreducible
representations are also called irreps for short.

(iv) Two representations R : G → U(H) and R̃ : G →
U(H̃) are said to be unitarily equivalent if there is a unitary
operator W : H→ H̃ such that R̃(g) = WR(g)W† for all
g ∈ G.

If Ri : G → Hi for i = 1, 2 are two representations of G
then (R1 ⊕ R2)(g) := R1(g)⊕ R2(g) defines another rep-
resentation R1 ⊕ R2 : G → H1 ⊕H2. This representation
has H1 and H2 as invariant subspaces. Conversely, if a

010201-24



THEORY OF QUANTUM SYSTEM CERTIFICATION PRX QUANTUM 2, 010201 (2021)

representation R has a nontrivial invariant subspace V then
it can be decomposed as R = R|V ⊕ RV⊥ . By iterating this
insight, we have the following statement (see, e.g., [52,
Theorem II.2.3]).
Proposition 30 (Decomposition into irreps): Let R :
G → L(H) be a unitary representation of a group G on
a finite-dimensional Hilbert space H. Then (R,H) can be
decomposed into a direct sum of irreps (Ri,Hi) of G as

H =
⊕

i

Hi and R(g) =
⊕

i

Ri(g). (141)

Several irreps Ri1 , . . . , Rim in the decomposition,
Eq. (141), might be unitarily equivalent to each other. The
maximum number m is called the multiplicity of that irrep.
The space C

m in the resulting identification

m⊕

j=1

Rij (g) ∼= Ri1(g)⊗ 1m ∈ L(H1 ⊗C
m) (142)

is called the multiplicity space of Ri1 . The decomposition,
Eq. (141), is called multiplicity-free if all irreps Ri are
inequivalent, i.e., not isomorphic.
Theorem 31 (Schur’s lemma): Let R : G → U(H) be an
irrep of G on H. If A ∈ L(H) satisfies

AR(g) = R(g)A ∀g ∈ G (143)

then A = c1 for some c ∈ C.

Proof. The condition, Eq. (143), implies that R(h)A† =
A†R(h) for all h = g−1 ∈ G. Hence, this condition also
holds for Re(A) := 1

2 (A+ A†) and Im(A) := 1/2i(A− A†)

and A is a constant if they both are. Hence, it is sufficient
to prove the theorem for A ∈ Herm(H).

Let |ψ〉 be an eigenvector with A|ψ〉 = λ|ψ〉 and
Eigλ(A) := {|ψ〉 : A|ψ〉 = λψ} the full eigenspace. Then
R(g)|ψ〉 ∈ Eigλ(A) for all g ∈ G because AR(g)|ψ〉 =
R(g)A|ψ〉 = λR(g)|ψ〉. So, Eigλ(A) is an invariant sub-
space. Since Eigλ(A) �= {0} and R is an irrep, Eigλ(A) = H
follows. �

Corollary 32 (Irreps of Abelian groups): If G is Abelian
then every irrep has dimension 1.

Proof. Let R be an irrep of G on H. Theorem 31
implies that each g ∈ G has representation R(g) = cg1

for some constant cg . Hence, every subspace of H is
invariant under R. Since R is an irrep this is only
possible if dim(H) = 1. �

There is also a slightly more general version of Schur’s
lemma.
Theorem 33 (Schur’s lemma II): Let R : G → U(H)
and R̃ : G → U(H̃) be two irreps of G on finite-
dimensional Hilbert spaces H and H̃. If A ∈ L(H, H̃)

satisfies

AR(g) = R̃(g)A ∀g ∈ G (144)

then either A = 0 or R1 and R2 are unitarily equivalent up
to a constant factor.

Proof. The condition, Eq. (144), implies that for all g ∈ G

R(g)A† = A†R̃(g) (145)

and, hence,

R(g)A†A = A†AR(g), (146)

R̃(g)AA† = AA†R̃(g). (147)

Schur’s lemma (Theorem 31) implies that A†A = c1 and
AA† = c̃1 for constants c, c̃. Obviously, c = c̃, the eigen-
values of both operators have to coincide. Either c = 0 so
that A = 0 or W = A/

√
c is a unitary. In the latter case

WR(g) = R̃(g)W (148)

for all g ∈ G, i.e., R and R̃ are unitarily equivalent. �
A unitary W relating two representations R and R̃ as in

Eq. (148) is called an intertwining unitary of R and R̃.

2. Schur-Weyl duality and the commutant of the
diagonal action

To calculate the moments of random variables depend-
ing on Haar random unitaries, we are interested in under-
standing the commutant of the diagonal representation
of the unitary group. Formally, we define the diagonal
representation of U(d) on (Cd)⊗k as

�k
d : U(d)→ U

[
(Cd)⊗k] (149)

by linearly extending the action

�k
d(U)(|ψ1〉 ⊗ · · · ⊗ |ψk〉) := (U|ψ1〉)⊗ · · · ⊗ (U|ψk〉).

(150)

The representation �k
d has a duality relation with another

well-known representation on C
k: the representation πk of

the symmetric group Sk permuting the k tensor compo-
nents:

πk : Sk → U
[
(Cd)⊗k] ,

πk(σ ) [|ψ1〉 ⊗ · · · ⊗ |ψk〉] := |ψσ−1(1)〉 ⊗ · · · ⊗ |ψσ−1(k)〉.
(151)

We note that πk(σ ) and �d(U) commute for any σ ∈ Sk
and U ∈ U(d).
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Let us consider the following two irreducible repre-
sentations of the symmetric group, which appear in the
decomposition, Proposition 30, of πk for any k. We call
|�〉 ∈ (Cd)⊗k symmetric if πk(σ )|�〉 = |�〉 for all σ ∈ Sk
and antisymmetric if πk(σ )|�〉 = sign(σ )|�〉 for all σ ∈
Sk. The symmetric subspace Hsymk and antisymmetric sub-
space H∧k of (Cd)⊗k are the subspaces consisting of all
symmetric and all antisymmetric vectors, respectively.
Lemma 34 (Symmetric subspace): (i) The dimension
of the symmetric subspace Psymk (Cd)⊗k is

Tr[Psymk ] =
(

k + d − 1
d − 1

)
. (152)

(ii) The orthogonal projectors onto the symmetric and
antisymmetric subspace are

Psymk = 1
k!

∑

σ∈Sk

πk(σ )

and P∧k = 1
k!

∑

σ∈Sk

sign(σ )πk(σ ), (153)

respectively.

Proof. The first statement is a combinatorial one. The trace
of the symmetric projector is the number of ways to dis-
tribute k indistinguishable particles (bosons) into d boxes
(modes), i.e., the dimension of the corresponding subspace
of the bosonic subspace, which is known to be given by the
binomial coefficient.

The second statement follows, e.g., for Psymk by realiz-
ing that any symmetric vector in the range of Psymk and
that this operator is indeed a projector, i.e., that Psymk is
self-adjoint and Psymk Psymk = Psymk . �

For the case of k = 2 the decomposition into these two
subspaces is very familiar. It is easy to see that any matrix
can be decomposed into a symmetric and an antisymmetric
part, which are orthogonal to each other. This implies that

(Cd)⊗2 = Hsym2 ⊕H∧2 . (154)

Note that due to Corollary 32, both the symmetric and
the antisymmetric subspace are isomorphic to C

msym2 and
C

m∧2 , respectively. Here msym2 and m∧2 are the mul-
tiplicities of the two distinct one-dimensional irreps of
S2.

For k > 2 there is a similar decomposition with more
summands called Schur-Weyl decomposition. The Schur-
Weyl decomposition relies on a duality relation between
the commuting representations �k

d and πk. The repre-
sentations �k

d and πk span each other’s commutant as
algebras.

Theorem 35 (Schur-Weyl duality [53, Theorem 4.2.10]):
For the two commuting representations,
Eqs. (151) and (150), it holds that

comm {�k
d[U(d)]} = span [πk(Sk)] (155)

and

comm [πk(Sk)] = span {�k
d[U(d)]}. (156)

By Schur’s lemma such a duality relation implies that
the multiplicity spaces of the irreducible representation of
one representation are irreducible representations of the
dual representation and vice versa. In other words, C

d

decomposes into multiplicity-free representations of the
combined action U(d)× Sk. In order to state this composi-
tion, we write λ = (λ1, λ2, . . . , λl(λ)) � k for a partition of k
into l(λ) nonincreasing integers with λ1 ≥ 1 and fulfilling

k =
l(λ)∑

i=1

λi. (157)

Such partitions of integers label the irreducible represen-
tations of the symmetric group and the diagonal represen-
tation. As a consequence of Schur-Weyl duality one can
prove.
Theorem 36: (Schur-Weyl decomposition [53, Theo-
rem 9.1.2]): The action of U(d)× Sk on (Cd)⊗k given by
the commuting representations, Eqs. (151) and (150), is
multiplicity-free and (Cd)⊗k decomposes into irreducible
components as

(Cd)⊗k ∼=
⊕

λ�k,l(λ)≤d

Wλ ⊗ Sλ, (158)

where U(d) acts nontrivially only on Wλ and Sk acts non-
trivially only on Sλ. For any k ≥ 2, both Hsymk and H∧k

occur as components in the direct sum, Eq. (158).

The spaces Wλ are called Weyl modules and Sλ Specht
modules. Schur-Weyl duality implies that the Weyl mod-
ules are the multiplicity spaces of the irreps of Sk and,
similarly, the Specht modules are the multiplicity spaces
of the irreps of U(d).

Schur-Weyl duality, Theorem 35, and the resulting
decomposition, Theorem 36, give a simple characteriza-
tion of the commutant of the diagonal action. The relation,
Eq. (155), allows one to derive an expression for the k-
moment operator M(k)

μU(d)
as the orthogonal projector onto

the span of the symmetric group. But one has to be care-
ful since {πd

k (σ )}σ∈Sk is not an orthonormal basis. Note
that it only becomes an orthogonal set asymptotically for
large k, which can be exploited in some applications,
e.g., Ref. [54]. A general expression in terms of so-called
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Weingarten functions [55] was derived by Collins and Sni-
ady [56], see also the Supplemental Material of Ref. [57]
for a convenient expression of their result and a summary
of the derivation. For our purposes we only need to derive
an expression M(k)

μU(d)
for certain special cases, namely, for

k = 2 and when restricted to symmetric endomorphisms as
its input.

We begin with the second moment, k = 2.
Proposition 37 (Second-moment operator): For an ope-
rator A ∈ L(Cd ⊗C

d), d ≥ 2, it holds that

M(2)
μU(d)

(A) = csym2Psym2 + c∧2P∧2 , (159)

with csym2 = 2/[d(d + 1)]Tr[APsym2] and c∧2 = 2/[d
(d − 1)]Tr[AP∧2 ].

Proof. From Lemma 29 and Theorem 35 we know that
M(2)

μU(d)
(A) is a linear combination of the identity 1 and

the swap operator F from Eq. (6). For S2 the expansion of
the projectors onto the symmetric and antisymmetric sub-
space, Eq. (153), can be inverted yielding id = Psym2 +
P∧2 and F = Psym2 − P∧2 . This establishes the form of
Eq. (159). Since Psym2 and P∧2 are mutually orthogo-
nal projectors and M(2)

μU(d)
is an orthogonal projector the

coefficients are given by csym2 = Tr[APsym2]/Tr[Psym2] =
{2/[d(d + 1)]}Tr[APsym2] and c∧2 analogously. �

Second, we allow for arbitrary k but restrict the input of
M(k)

μU(d)
to endomorphisms that are itself symmetric, i.e.,

of product form. In this case we also find an orthogonal
decomposition as given by the following lemma.
Lemma 38 (Moment operator on symmetric opera-
tors): For any operator A ∈ L(Cd) it holds that

M(k)
μU(d)

(A⊗k) =
∑

λ�k,l(λ)≤d

cλPλ, (160)

with Pλ the orthogonal projector onto Wλ ⊗ Sλ and cλ =
Tr[PλA⊗k]/Tr[Pλ]. Furthermore, if the operator A is of unit
rank, then

M(k)
μU(d)

(A⊗k) = cPsymk , (161)

with c = Tr[Psymk A⊗k]/Tr[Psymk ].

Proof. We fix some A ∈ L(Cd) and denote E :=M(k)
μU(d)

(A⊗k). By the definition of the moment operator, Eq. (137),
E = ∫

U(d)(UAU†)⊗kdμU(d)(U) and it becomes apparent
that E commutes with πd

k (σ ) for any σ ∈ Sk. In other
words, E ∈ comm�k

d[U(d)] ∩ commπd
k (Sk) by Lemma 29.

By Schur’s lemma (Theorem 31) and the Schur-Weyl
decomposition, Eq. (158), we thus conclude that E acts
proportionally to the identity on every Weyl module Wλ

and Specht module Sλ. Denoting the orthogonal projector

onto Wλ ⊗ Sλ as Pλ, the operator E permits the decompo-
sition E =∑

λ�k,l(λ)≤d cλPλ with cλ ∈ C. Since the projec-
tors are onto mutually orthogonal the coefficients are given
by cλ = Tr[A⊗kPλ]/Tr[Pλ]. This establishes the lemma’s
first assertion for E.

Finally, for unit rank A, i.e., A = |ψ〉〈φ | with |ψ〉, |φ〉 ∈
C

d, we observe that Psymk A⊗kPsymk = Psymk |ψ〉⊗n 〈φ |⊗n

Psymk = A⊗k. Hence, cλ = 0 for all λ that do not corre-
spond to the symmetric subspace. This leaves us with the
lemma’s second expression for E and unit rank A. �

3. Uniformly random state vectors

One can also define a uniform distributed on pure quan-
tum states in multiple equivalent ways. First, one can draw
randomly from the complex sphere S(Cd), i.e., the set of
normalized vectors in C

d. Indeed, there is a unique uni-
form probability measure μ

S(Cd) on S(Cd) that is invariant
under the canonical action of U(d) on C

d. By definition
we see that a column |ψ〉 = U|0〉 of a Haar randomly
drawn unitary U ∼ μU(d) is distributed according to μ

S(Cd).
Finally, we can switch to density matrices by factoring
out a global phase. In more detail, the complex projec-
tive space CPd−1 := S(Cd)/U(1) is the set of state vectors
modulo a phase in U(1), which can be identified with
the set of pure density matrices CPd−1 ⊂ S(Cd). It also
has a uniform unitarily invariant probability distribution:
a uniformly random pure state |ψ〉〈ψ | can be obtained by
drawing |ψ〉 ∼ μ

S(Cd).
We can calculate the moments of polynomials that

depend on states drawn uniformly from μ
S(Cd) using the

moment operator M(k)
μU(d)

. To this end, note that any poly-
nomial pk(|ψ〉, 〈ψ |) of degree k in the component of each
|ψ〉 and 〈ψ | can be written as a contraction of |ψ〉〈ψ |⊗k

with some operator in L(Cdk
). For this reason the following

lemma summarizes everything we need.
Lemma 39 (Moment operator of random states): Let
K (k)
μ

S(Cd)
be the moment operator for |ψ〉 ∼ μ

S(Cd) explicitly
defined by

K (k)
μ

S(Cd)
:=

∫

S(Cd)
(|ψ〉〈ψ |)⊗kdμ

S(Cd)(ψ). (162)

It holds that

K (k)
μ

S(Cd)
= k!(d − 1)!
(k + d − 1)!

Psymk , (163)

where Psymk is the projector, Eq. (153), onto the symmetric
subspace.

Proof. As μ
S(Cd) is U(d) invariant, we find Kk =

M(k)
μU(d)

[(|ψ〉〈ψ |)⊗k]. Lemma 38 thus implies that Kk =
cPsymk with
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c = Tr[Psymk (|ψ〉〈ψ |)⊗k]
Tr[Psymk ]

.

Since Psymk acts trivially on |ψ〉 and it is normalized,
the enumerator evaluates to 1. The denominator is the
dimension of Psymk given by Eq. (152). �

4. Unitary, spherical, and complex-projective k-designs

With our excursion to representation theory we derived
expressions to calculate the moments of random variables
on uniformly random states and unitaries. The very same
results can also be used for certain other interesting prob-
ability distributions. To this end, note that if we want to
control only the first moments of a random variable that
is a polynomial of degrees � in a random state or uni-
tary, then our calculation will only involve the moment
operators M(k)

μU(d)
for k ≤ t�. In many applications it is suf-

ficient to control the expectation value and the variance
of low-degree polynomials. In these cases, any probability
distribution that reproduces the first couple of moments of
the uniform distributions can be used without changing the
mathematical expressions. This idea is formalized by the
definition of k-designs.
Definition 40 (Unitary k-design): A distribution μ on the
unitary group U(d) is a unitary k-design if its kth moment
operator, Eq. (137), coincides with the one of the Haar
measure,

M(k)
μ =M(k)

μU(d)
. (164)

Furthermore, a subset {U1, . . . , UnG} ⊂ U(d) is called a
unitary k-design if its uniform distribution is 1.

Note that by definition, any unitary k-design is also a
unitary (k − 1)-design for k ≥ 2.

A famous example of a unitary design in the context
of quantum computing is the Clifford group. The n-qubit
Clifford group Cln ⊂ U(2n) is the normalizer of the Pauli
group Pn (see Sec. 75),

Cln := {U ∈ U(2n) : UPnU† ⊂ Pn}. (165)

The n-qubit Clifford group is generated by the single qubit
Hadamard gate H and the phase gate S given by (see, e.g.,
[58, Theorem 10.6])

H = 1√
2

(
1 1
1 −1

)
and S =

(
1

i

)
(166)

together with the two-qubit CNOT gate

CNOT = |0〉〈0 | ⊗ 1+ |1〉〈1 | ⊗ σx (167)

acting locally on any qubit.

Together with the T = √S gate the Clifford group is a
universal gate set (see, e.g., [58, Sec. 4.5.3]).

The Clifford group is a unitary 3-design but not a uni-
tary 4-design [59–61]. Being a subgroup of the unitary
group the commutant of the diagonal action of the Clif-
ford group for k > 3 is, thus, a strictly larger space than
the span of the permutation group. A classification of the
“missing generators” of the commutant was done by Gross
et al. [62].

Analogously to unitary designs, we can define spheri-
cal k-designs. For a distribution μ on the complex sphere
S(Cd) we define the kth moment operator as

K (k)
μ :=

∫

S(Cd)
(|ψ〉〈ψ |)⊗kdμ(ψ). (168)

Definition 41: (Complex spherical and projective k-
design): A distribution μ on S(Cd) is a spherical k-design
if

K (k)
μ = K (k)

μU(d)
. (169)

Furthermore, a subset S(Cd) is called a spherical k-design
if its uniform distribution is 1. The corresponding distribu-
tion of |ψ〉〈ψ | is called a complex projective k-design.

See also Refs. [63,64] for related definitions.
Analogously to the relation of the uniform measure on

U(d) and S(Cd), a rather obvious but important example
of a spherical k-design is the orbit of a unitary k-design.
If μ is a unitary k-design for U(d) and |ψ〉 ∈ C

d then the
induced distribution μ̃ given by U|ψ〉 with U ∼ μ, is a
complex spherical k-design.

One can use this relation to see that the Clifford group
being a unitary 3-design implies the analogous statement
for stabilizer states. The set of all stabilizer states, Eq. (75),
is known to be a 2-design [65,66], actually even a 3-design
but not a 4-design [59,60,67].

Other examples for spherical designs that play impor-
tant roles in quantum system characterization are mutually
unbiased bases and symmetric, informationally complete
POVMs.

Mutually unbiased bases (MUBs) are sets of bases
with minimal overlaps. More explicitly, two orthonormal
bases {|ψi〉}i∈[d] ⊂ C

d and {|φi〉}i∈[d] ⊂ C
d are said to be

mutually unbiased if |〈ψi|φj 〉|2 = 1
d for all i, j ∈ [d]. For

instance, if U ∈ U(d) is the discrete Fourier transform then
the bases {|i〉}i∈[d] ⊂ C

d and {U|i〉}i∈[d] ⊂ C
d are mutually

unbiased. The number of MUBs in C
d is upper bounded

by d + 1 and, in prime power dimensions (e.g., for qubits),
there are exactly d + 1 MUBs [68,69]. However, it is a
well-known open problem to exactly obtain this number
for all d. Klappenecker and Roettler [70] showed that
maximal sets of MUBs are complex spherical 2-designs.
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A symmetric, informationally complete (SIC) POVM is
given by a set of d2 normalized vectors {|ψj 〉}j∈[d2] ⊂
S(Cd) ⊂ C

d satisfying

|〈ψi|ψj 〉|2 = 1
d + 1

∀i �= j . (170)

“Symmetric” refers to the inner products being all equal.
Zauner [71] has investigated SIC POVMs systematically.
Renes et al. [72] have shown that SIC POVMs are indeed
2-designs. Both works provide explicit constructions for
small dimensions.

J. Shadow-fidelity estimation

Another recently proposed approach to fidelity estima-
tion makes use of estimating so-called classical shadows
[20,21]. The principle idea of shadow estimation is to cal-
culate the least-squares estimator of a quantum state from
recorded classical measurement outcomes with measure-
ment setting drawn from a certain measurement frame. As
we see in this section such a POVM that allows for a quite
explicit analysis is given by a complex projective 3-design.

From the state’s least-squares estimator one can con-
struct estimators of multiple target functions of the state,
which are linear functions or even higher polynomials.
The sampling complexity of the derived estimators can
be captured by a so-called shadow norm that is defined
in terms of the measurement frame. The classical post-
processing complexity is determined by the complexity of
constructing the state estimator and evaluating the target
functions. Operationally, the analyzed POVM measure-
ment is assumed to be implementable by random unitaries
from a suitable ensemble and a consecutive basis mea-
surement. While shadow estimation is a rather broad and
flexible framework, we focus on the estimation of fidelities
with pure target states using unitaries that form a unitary 3-
design, e.g., multiqubit Clifford gates or suitable subgroups
thereof. Besides being an instructive example for shadow-
fidelity estimation, the 3-design setting can be equipped
with a performance guarantees that features a sampling
complexity O(ε−2) that does not scale with the Hilbert
space dimension. This system-size-independent scaling is
not achievable in general for other measurement frames.

The complete shadow-fidelity estimation (SFE) protocol
is the following.
Protocol 42 (SFE): Let μ be a distribution on U(d), {|b〉 :
b ∈ [d]} ⊂ C

d an orthonormal basis and ρ ∈ S(Cd) be a
target state.

The protocol consists of the following steps applied to
state preparations {ρ̃i}nρ̃i=1 ⊂ S(Cd). For each ρ̃i perform
the following steps.

(i) Draw Ui ∼ μ.
(ii) Perform the following experiment:

(I) Prepare ρ̃i.
(II) Apply the gate ρ̃i �→ Uiρ̃iU

†
i .

(III) Perform the basis measurement B and record the
outcome bi ∈ {0, 1}n.

(iii) Calculate

f̂i = (d + 1) 〈bi|Uiρ U†
i |bi〉 − 1. (171)

Output the median of means estimator, Eq. (26), of {f̂i}nρ̃i=1.

We present the protocol as iterations over combined
experimental and classical pre- and postprocessing steps.
Note, however, that one can complete the three stages
separately: first one can classically generate the complete
sequence of nρ̃ random unitaries. Then, one can subse-
quently perform the quantum experiment, i.e., all repeti-
tions of step (ii). Importantly, at this stage not even the
knowledge of the target state ρ is required. Storage of
the experimental outcomes, nρ̃ bit strings, requires nρ̃ log n
bits. These bit strings together with a prescription of the
random sequence of unitaries are then taken as the input of
the postprocessing algorithm that calculates the median of
means estimator. The complexity the classical postprocess-
ing depends on the complexity of calculating the overlap of
Eq. (171). For an arbitrary target state ρ the effort of per-
forming this task can scale exponentially in the number of
qubits. In contrast, for stabilizer states and Clifford group
unitaries the Gottesman-Knill theorem, see, e.g., Ref. [58],
allows for an efficient computation of the expression.

Shadow-fidelity estimation comes with the following
guarantee.
Theorem 43 (Guarantee for SFE): Consider Protocol 42
with μ being a unitary 3-design and ρ a pure target state.
Choose δ ∈ (0, 1), ε > 0 and a number

nρ̃ ≥ 160
1
ε2 ln

1
δ

(172)

such that it is a multiple of k = �8 ln(1/δ)�. Then, the
median of means estimator of the protocol is an ε-accurate
unbiased estimator of F(ρ, ρ̃) with confidence 1− δ for nρ̃
i.i.d. state preparations; the median is taken over l = nρ̃/k
means, each of which is an empirical mean of k realizations
of f̂i.

Theorem 43 shows that SFE requires a number of
state copies that for arbitrary pure target states does not
dependent on the Hilbert space dimension.

With the DFE protocol of Sec. II H we already encoun-
tered another fidelity estimation protocol. In contrast to
SFE, recall that DFE features a sampling complexity inde-
pendent of the Hilbert space dimension only for the class of
well-conditioned states, cmp. Theorem 27. Keep in mind,
however, that in order to additionally ensure an efficient
classical postprocessing also SFE requires further struc-
ture such as provided by stabilizer states. Finally, note that
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SFE and DFE, as presented here, make use of a different
type of measurement data. While SFE uses basis measure-
ment randomly selected from a large set of bases, DFE
uses the expectation values of observables. Correspond-
ingly, they differ in their requirements for experimentally
implementations.

The proof of the performance guarantee, Theorem 43,
proceeds in three steps: first, we have to establish that
the SFE estimator actually estimates the fidelity for pure
target states. To derive the sampling complexity of the
estimator a natural attempt would be to employ Hoeffd-
ing’s inequality. Unfortunately, the random variables f̂i
defined in Eq. (171) only have bounds scaling as O(d).
This becomes exponentially large in the number of qubits
and does not yield the desired scaling. The main insight
underlying the efficiency of shadow-fidelity estimation is
that due to the structure of the unitary 3-design the variance
of f̂i is still bounded in O(1). Thus, as a second step we
derive the bound for the variance. Finally, by combining
both results we arrive at the sampling complexity using the
tail bound for the median of mean estimator introduced in
Theorem 9. Using the median of mean estimator allows us
to derive a sampling complexity in O(ln δ−1) in the confi-
dence. Note that simply using a mean estimator in the SFE
protocol can also be equipped with a guarantee with sam-
pling complexity in O(δ−1) using Chebyshev’s inequality,
Theorem 7. A mean estimator might in a practical param-
eter regime even be more precise compared to the median
of mean estimator.

Lemma 44 (Unbiasedness of SFE estimator): Consider
Protocol 42 with μ being a unitary 2-design and ρ a pure
target state. Let f̂i be a random variable, Eq. (171), with
respect to a state preparation ρ̃. Then

E[f̂i] = F(ρ, ρ̃), (173)

where the expectation value is taken over both, U ∼ μ and
the subsequent random measurement outcome.

Proof. For convenience we suppress writing the index
i. Born’s rule for the probability of the measurement
outcomes gives us,

p(b) = 〈b|Uρ̃ U† |b〉 . (174)

Thus, the expectation value over U and the measurement
reads

E[f̂ ] = EU∼μ

{ d∑

b=1

〈b|Uρ̃U† |b〉 .

× [
(d + 1) 〈b|UρU† |b〉 − 1

] }
. (175)

The second term can be directly evaluated using the fact
that we sum over a basis,

d∑

b=1

EU∼μ 〈b|Uρ̃U† |b〉 = EU∼μ
[
Tr[Uρ̃U†]

]

= Tr[ρ̃]. (176)

The first term can be calculated using the 3-design property
of μ. More precisely, at this point we need only μ to be a
2-design. Recall that if U ∼ μ is a unitary k-design then for
any state |τ 〉 its orbit |φ〉 = U|τ 〉 with the induced measure
μ̃ is a state k-design. Thus, using Eq. (7) and Lemma 39
we calculate that

EU∼μ

[
(d + 1)

d∑

b=1

〈b|Uρ̃U† |b〉 〈b|UρU† |b〉
]

= (d + 1)
d∑

b=1

Tr
{
EU∼μ

[(
U†|b〉〈b |U)⊗2

]
(ρ̃ ⊗ ρ)F

}

= (d + 1)
d∑

b=1

Tr
{
E|φ〉∼μ̃

[
(|φ〉〈φ |)⊗2] (ρ̃ ⊗ ρ)F

}

= Tr [(1+ F)(ρ̃ ⊗ ρ)F]

= Tr[ρρ̃]+ Tr[ρ̃] Tr[ρ]. (177)

Combining both terms again and using that Tr[ρ] = 1, we
find that

E[f̂ ] = Tr[ρρ̃]. (178)

Assuming that ρ is a pure state establishes the statement,
Eq. (173). �

Next we bound the variance.

Lemma 45 (Variance bound for SFE): Consider Proto-
col 42 with μ being a unitary 3-design and ρ a pure target
state. Let f̂i be a random variable, Eq. (171), with respect
to a state preparation ρ̃. Then

Var[f̂i] < 5, (179)

where the variance is taken over both, U ∼ μ and the
subsequent random measurement outcome.

Proof. We again suppress the index i. The variance is

Var[f̂ ] = E

[
f̂ 2

]
− E[f̂ ]2. (180)

Using Born’s rule Eq. (174), Eq. (176), and that U|b〉 is
distributed as a complex spherical 3-design μ̃, the second
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moment can be written as

E

[
f̂ 2

]
= d(d + 1)2E|φ〉∼μ̃

{
〈φ| ρ̃ |φ〉 |Tr[|φ〉〈φ | ρ]|2

}

− 2E[f̂ ]+ Tr[ρ̃]. (181)

The first term in this expression can be calculated using the
3-design property of μ̃ and Lemma 39

E|φ〉∼μ̃

{
〈φ| ρ̃ |φ〉 |Tr[|φ〉〈φ | ρ]|2

}

= E|φ〉∼μ̃

{
Tr[ρ̃|φ〉〈φ |] Tr[ρ|φ〉〈φ |]2

}

= Tr
{
(ρ̃ ⊗ ρ ⊗ ρ)E|φ〉∼μ̃[|φ〉〈φ |⊗3]

}

= 6
d(d + 1)(d + 2)

Tr
[
(ρ̃ ⊗ ρ ⊗ ρ)Psym3

]
. (182)

We recall that the projector Psym3 onto the symmetric rep-
resentation of the symmetric group S3 is given by the sum
of all six permutations in S3. Those are the identity, three
transpositions, and the cyclic and anticyclic permutation.
Writing out this sum and tracking the resulting contrac-
tions (which can be most conveniently done using tensor
network diagrams) yields

E|φ〉∼μ̃

{
〈φ| ρ̃ |φ〉 |Tr[|φ〉〈φ | ρ]|2

}

= 1
d(d + 1)(d + 2)

(
Tr[ρ̃] Tr[ρ]2

+ 2Tr[ρ̃ρ] Tr[ρ]+ Tr[ρ̃]Tr[ρ2]+ 2Tr[ρ̃ρ2]
)

= 2+ 4F(ρ, ρ̃)
d(d + 1)(d + 2)

, (183)

where we use the normalization of the states and that ρ is
pure in the last identity. Combining Eqa. (180), (181) and
using Eq. (173) from the previous lemma and Eq. (183) we
find the upper bound

Var[f̂ ] = d + 1
d + 2

(2+ 4F)− 2F + 1− F2

< 2(1+ F)+ 1− F2 ≤ 5, (184)

with F := F(ρ, ρ̃) ∈ [0, 1]. �

We have now the ingredients to simply invoke Theorem
9 for the median of mean estimator as the final step.

Proof. By Theorem 9 and the assumptions of Theorem
43 we have for the median of mean estimator μ̂ with
confidence 1− δ

|μ̂− μ| ≤ σ
√

32 ln(1/δ)
nρ̃

, (185)

where μ = E[f̂i]. Now, Eq. (173) implies that μ = F(ρ, ρ̃)
and by Eq. (179) we have σ <

√
5. Requiring |μ̂−

F(ρ, ρ̃)| ≤ ε and solving the right-hand sides leads to the
sufficient condition nρ̃ ≥ 160ε−2 ln(1/δ). �

Further reading

Shadow-fidelity estimation builds on the idea of extract-
ing an incomplete description of a quantum state in order
to subsequently estimate its properties. For such an incom-
plete description that correctly predicts the expectation of
a set of observables Aaronson coined the term “shadow”
in Ref. [19]. The broader framework for shadow estima-
tion developed by Huang et al. [20,21] allows the sampling
complexity of different measurement frames to be derived
and is also not restricted to estimating fidelities. See also
Paini and Kalev [73] for a parallel work analyzing the
sampling complexity of estimating expectation values of
observables from measurement frames that are generated
using a group. Finally, we note that the linear cross-entropy
benchmarking protocol [74] presented in Sec. III D simi-
larly to SFE exploits a unitary 3-design as the measurement
frame to achieve a sampling complexity scaling indepen-
dently of the system size, as explicitly worked out by
Helsen et al. [75].

III. QUANTUM PROCESSES

In the first part of this tutorial we present different
approaches to certify quantum states. For the second part
we now turn our attention to the certification of quantum
processes, i.e., maps on quantum states.

As quantum technologies typically involve process-
ing quantum states, the task of their certification is
omnipresent. For example in quantum computing, pro-
cesses of interest might be individual quantum gates,
entire algorithms or a noise process that accounts for the
deviation from the ideal functioning of a device.

Many of the methods developed for quantum states can
be employed to derive analogous results for quantum pro-
cesses. In principle, we can always arrive at a certificate
for a quantum process by certifying its output states on
a suitably large set of input states. Similarly, maximally
entangling the input of a quantum process with ancillary
quantum systems allows one to operationally prepare a
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quantum state representing the quantum process via the
so-called Choi-Jamiołkowski isomorphism.

After reviewing the mathematical formalism for
describing quantum processes and discussing several mea-
sures of quality, we briefly discuss examples of translating
methods for direct state certification to quantum processes.

As we see below, these approaches come with poten-
tially severe drawbacks concerning the feasibility of the
measurements. The characterization of a quantum pro-
cess always involves the preparation of input states and
measurements on the output of the process. In this task so-
called state preparation and measurement (SPAM) errors
can be a serious obstacle for a reliable characterization.
This has motivated the development of quantum charac-
terization and verification methods that are robust against
such SPAM errors to quite some extent. One way to
achieve this robustness are self-consistent approaches that
aim at simultaneously characterizing quantum processes,
the state preparation and the measurement [76–78]. These
methods however require extensive effort in terms of the
number of measurement settings, sampling complexity and
classical postprocessing, and deliver far more information
than required for certification.

An important class of certification methods in the con-
text of digital quantum computing are randomized bench-
marking protocols [66,79,80]. Randomized benchmark-
ing protocols extract performance measures for quantum
gates by implementing random gate sequences of differ-
ent lengths and measuring the error that accumulates with
the sequence length. By studying the error dependence in
the sequence length randomized benchmarking protocols
are robust against SPAM errors. We present two prototypi-
cal types of randomized benchmarking protocols targeting
performance measures of a gate set and of individual gates
together with the theoretical analysis in the simplest setup
in Sec. III C.

Finally, in Sec. III D we turn our attention to a method
that is used in order to certify the correct implementation of
a quantum circuit in the context of demonstrating so-called
quantum supremacy [we use the term “quantum (compu-
tational) supremacy” strictly in its established technical
meaning [81] ]: cross-entropy benchmarking [74].

A. Quantum processes and measures of quality

A quantum process should model possible operations
taking quantum states to quantum states. Mathematically,
a quantum process is, thus, a linear map taking density
operators to density operators with suitable properties.
Therefore, we start with introducing some notation related
to linear maps between operator spaces.

In the following, let H,K be finite-dimensional Hilbert
spaces. The vector space of linear maps from L(H) to
L(K) is denoted by L(H,K) := L[L(H), L(K)]. We set
L(H) := L(H,H) and denote the identity by idH :=

1L(H) ∈ L(H). Often we just write id when it is clear
from the context what H is. A map � ∈ L(H,K) is called
Hermicity preserving if

�[Herm(H)] ⊂ Herm(K), (186)

positive if

�[Pos(H)] ⊂ Pos(K), (187)

and trace preserving if

Tr[�(X )] = Tr[X ] (188)

for all X ∈ L(H). Note that positive maps are also Hermic-
ity preserving.

The map � is called completely positive (CP) if �⊗
1L(H′) is positive for all Hilbert spaces H′ with iden-
tity map 1L(H′) ∈ L(H′). The set of CP maps is denoted
by CP(H,K) ⊂ L(H,K) and forms a convex cone. We
set CP(H) := CP(H,H). A completely positive and trace
preserving (CPT) map is also called a quantum channel
or just channel. The subset of CPT maps is denoted by
CPT(H,K) ⊂ CP(H,K) and forms a convex set. Again,
we set CPT(H) := CPT(H,H).

Lastly, a map � ∈ L(H,K) is called unital if �(1H) =
1K. Note that� is trace preserving if and only if its adjoint
(with respect to the Hilbert-Schmidt inner product) �† is
unital.

So, essentially, quantum channels are maps that take
density matrices to density matrices even when applied to
a part of a larger system. Usual unitary dynamics is of the
following form.

We use calligraphic letters to denote the adjoint repre-
sentation U ∈ L(H) of a unitary U ∈ U(H) given by

U(X ) := UXU†. (189)

These maps are quantum channels and are called unitary
(quantum) channels.

Unitary channels are invertible and the inverses are
again unitary channels.

1. The Choi-Jamiołkowski isomorphism

The Choi-Jamiołkowski isomorphism [82,83] provides
a duality between CP maps and bipartite positive semidef-
inite operators and allows the identification of channels
with certain states. It has many applications in quantum-
information theory and related fields. In particular, it gives
a practical criterion to check whether a given map is a
quantum channel. Furthermore, it allows us to derive cer-
tification methods for quantum processes from the already
presented methods for quantum states.
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For any vector space V, recall that there is the canonical
isomorphism

L(V) = V⊗ V∗, (190)

where V∗ := L(V, C) is the dual space of V. Furthermore,
if V is equipped with an inner product 〈 · | · 〉, we have the

canonical isomorphism v �→ (w �→ 〈v|w〉) identifying V
hc∼=

V∗. For linear maps of linear maps L(H,K) this simple
isomorphism induces a couple of identifications with other
vector spaces.

The Choi-Jamiołkowski isomorphism

C : L(H,K)→ L(K⊗H) (191)

is one of these isomorphism of vector spaces given by the
following sequence of simple identification:

L(H,K) = L(K)⊗ L(H)∗ = K⊗K∗ ⊗H∗ ⊗H
∼= K⊗H∗ ⊗K∗ ⊗H = L(K⊗H∗)
hc∼= L(K⊗H), (192)

where the natural isomorphism, Eq. (190), is denoted by
“=”, the isomorphism of changing the order of the vector
spaces by “∼=”, and identification marked by “hc” makes
use of the Hilbert space isomorphism H ∼= H∗.

More explicitly, the Choi-Jamiołkowski isomorphism
can be written in the following way. Let (|i〉)i∈[dim(H)] be
a basis of H and

|1〉 =
dim(H)∑

i=1

|i, i〉 ∈ H⊗H (193)

the unnormalized maximally entangled state. The Choi
matrix of X ∈ L(H,K) is given as

C(X ) = X ⊗ id(|1〉〈1 |). (194)

This characterization of C(X ) implies

Tr[BX (A)] = Tr[(B⊗ Aᵀ)C(X )] (195)

for all X ∈ L(H,K), A ∈ L(H) and B ∈ L(K), as can be
seen by direct calculations with basis elements or tensor
network diagrams.

Now we can connect the Choi-Jamiołkowski isomor-
phism to the properties of quantum channels.
Theorem 46 (CPT conditions): For any map X ∈
L(H,K) the following equivalences hold :

(i) X is trace preserving if and only if TrK[C(X )] = 1.
(ii) X is Hermicity preserving if and only if C(X ) is

Hermitian.

(iii) X is completely positive if and only if C(X ) is
positive semidefinite.

Proof. As an exercise or see, e.g., [84, Chapter 2.2]. �
For completeness, we remark that another important

consequence of the complete positivity of a map is the
existence of so-called Kraus operators. This gives another
item that could be added to Theorem 47: X is a CP map
if and only if there are (Kraus) operators K1, . . . , Kr ∈
L(H,K), where r = rank[C(X )] so that

X (A) =
r∑

i=1

KiAK†
i (196)

for all A ∈ L(H). Moreover, X is a CPT map if and only if
Eq. (196) holds with

∑r
i=1 K†

i Ki = 1.
In the context of quantum-information theory, another

normalization convention for the Choi-Jamiołkowski iso-
morphism is useful. For X ∈ L(H,K) we set

J(X ) := 1
dim(H)C(X ) (197)

with Choi matrix, Eq. (194). The theorem tells us that X is
a quantum channel if and only if J(X ) is a density matrix
with the reduction to H (obtained by tracing over K) being
a maximally mixed state. The so-called Choi state of a
channel X is

J(X ) = X ⊗ idH(φ+) ∈ S(K⊗H), (198)

where

φ+ := 1
dim(H) |1〉〈1 | ∈ S(H⊗H) (199)

is a maximally entangled state, i.e., has the strongest bipar-
tite quantum correlations possible in a precise sense. In
particular, the Choi state can be prepared by applying the
channel to this state.

Note that not every bipartite state corresponds to a chan-
nel. Indeed, the Choi-Jamiołkowski isomorphism is an
isomorphism of convex cones, C : CP(H,K)→ Pos(K⊗
H) but CPT(H,K) is mapped to a proper subset of S(K⊗
H). The reason is that the trace-preservation constraint of
channels corresponds to dim(H)2 many equalities whereas
the trace constraint of states is just one equality.

An important quantum channel and frequent model for
noise processes appearing in quantum technologies is the
depolarizing channel. The (quantum) depolarizing chan-
nel Dp : L(Cd)→ L(Cd) with parameter p ∈ [0, 1] is the
linear map defined by

Dp(X ) := pX + (1− p)Tr[X ]
1

d
. (200)
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2. Inner products of superoperators and fidelity
measures

The vector space of linear maps L(H,K) is also
equipped with a canonical inner product (the Hilbert-
Schmidt inner product for superoperators) given by

〈X ,Y〉 = Tr[X †Y] (201)

for any X ,Y ∈ L(H,K), where the trace can be calculated
using an orthonormal basis {E0, E1, . . . , Ed2−1} of L(H) as

Tr[X ] =
d2−1∑

i=0

〈Ei,X (Ei)〉 =
d2−1∑

i=0

Tr[E†
i X (Ei)]. (202)

The Hilbert-Schmidt inner product on L(H,K) coincides
with the inner product of the corresponding Choi matrices,
i.e., for any X ,Y ∈ L(H,K)

〈X ,Y〉 = 〈C(X ), C(Y)〉. (203)

We now consider the case where Y is a quantum chan-
nel and X a unitary quantum channel. Then, as we see
above, J(Y) and J(X ) are quantum states (density matri-
ces). Moreover, J(X ) is a pure state. In this case, the
above Hilbert-Schmidt inner product with the proper nor-
malization is the fidelity measures induced by the state
fidelity, Eq. (45), via the Choi-Jamiołkowski isomorphism,
Eq. (194),

Fe(X ,Y) := F[J(X ), J(Y)] = 1
dim(H)2 〈X ,Y〉; (204)

it is referred to as the entanglement (gate) fidelity.
In the context of digital quantum computing, another

very prominent fidelity measure for quantum processes
is the so-called average gate fidelity. The average gate
fidelity (AGF) between maps X ,Y ∈ L(H,K) is defined
as

Favg(X ,Y) :=
∫

S(Cd)
〈X (|ψ〉〈ψ |),Y(|ψ〉〈ψ |)〉dμ

S(Cd)(ψ),

(205)

where the integral is taken according to the uniform Haar-
invariant probability measure on state vectors of Sec. II I 3.
Note that the inner product here is the Hilbert-Schmidt
inner product of L(K) not L(H,K). From the definition
we see that the average gate fidelity Favg(X ,Y) is a mea-
sure of closeness of X and Y that compares the action of
X and Y on pure input states on average. Intuitively, if X
and Y deviate only in their action on a low-dimensional
subspace of H they can still have an average gate fidelity
close to 1.

For any X ,Y ∈ L(H,K)

Favg(X ,Y) = Favg(id,X † ◦ Y). (206)

This motivates the definition Favg(X ) := Favg(id,X ) for
X ∈ L(H).

The average gate fidelity is intricately related to the
Hilbert-Schmidt inner product on L(H,K) [85,86] (see
also Ref. [87]).

Proposition 47 (Inner product and Favg): For X ,Y ∈ L

(H,K) with d = dimH it holds that

〈X ,Y〉 = d(d + 1)Favg(X ,Y)− 〈X (1),Y(1)〉. (207)

This proposition implies that the average gate fidelity
is an inner product, i.e., a conjugate symmetric nonde-
generate form that is linear in its second argument. For
Hermicity-preserving X and Y the average gate fidelity
is real, Favg(X ,Y) ∈ R. Thus, on Hermicity-preserving
maps it is symmetric,

Favg(X ,Y) = Favg(Y ,X ). (208)

Associate to the average gate fidelity is the average error
rate or average infidelity,

r(X ,Y) := 1− Favg(X ,Y) (209)

that is also real valued for Hermicity-preserving maps. We
set r(X ) := 1− Favg(X ). For unital, completely positive
X , the average infidelity can be regarded as a distance to
other quantum channels in the following sense.

Lemma 48 (Infidelity as distance measure): Let X ∈
CP(H,K) be unital. For all Y ∈ CPT(H,K) it holds that
r(X ,Y) ≥ 0 and, r(X ,Y) = 0 if and only if X = Y .

Proof. Using Proposition 48, we have Favg(Y) = 1/[d
(d + 1)]〈id,Y〉 + 1/(d + 1). The overlap of the two CP
maps can be bounded via the Cauchy-Schwarz inequal-
ity as 〈id,Y〉 ≤ ‖id‖F ‖Y‖F with equality if and only if
Y = id. For Y ∈ CPT(H) it holds that ‖Y‖2

F ≤ d2 and
‖id‖2

F = d2. This can be seen, e.g., from the basis expan-
sion, Eq. (202), by choosing a unit-rank basis and applying
the Hölder inequality, Eq. (36). Therefore, 〈id,Y〉 ≤ d2.
We conclude that Favg(Y) ≤ 1 again with equality if and
only if Y = id, which implies the assertion. �

We still have to prove Proposition 48.

Proof of Proposition 48. By the virtue of Eq. (206), which
also holds for the inner products appearing in Eq.(207) it
suffices to prove the statement for X = id. Using Eq. (195)
and denoting the transposition map as T : L(H)→ L(H),
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A �→ Aᵀ, we can rewrite the average gate fidelity as

Favg(id,Y)

=
∫

S(Cd)
〈|ψ〉〈ψ | ,Y(|ψ〉〈ψ |)〉dμ

S(Cd)(ψ)

=
∫

Sd−1
Tr [|ψ〉〈ψ |Y(|ψ〉〈ψ |)] dμ

S(Cd)(ψ)

=
∫

S(Cd)
Tr

[
id⊗ T

(|ψ〉〈ψ |⊗2)C(Y)
]

dμ
S(Cd)(ψ).

(210)

Due to linearity, we can recast this expression with the
moment operator K (k)

μ
S(Cd)

of random states and use the
expression we derive in Lemma 39. Then,

Favg(id,Y) = Tr
[
id⊗ T

(
K (2)
μ

S(Cd)

)
C(Y)

]

= 2
d(d + 1)

Tr
[
id⊗ T(Psym2)C(Y)

]

= 1
d(d + 1)

{Tr [1C(Y)] + Tr [|1〉〈1 |C(Y)]},
(211)

where the last step follows from Psym2 = 1
2 (1+ F) with

the swap operator F from Eq. (6) and id⊗ T(F) = |1〉〈1 |.
Using Eq. (195) this time the other way around, we see that
the first summand of Eq. (211) is Tr[1C(Y)] = Tr[1⊗
1C(Y)] = Tr[Y(1)] = 〈id(1),Y(1)〉. From Eq. (194) it
directly follows that C(id) = |1〉〈1 |. Hence, the second
term of Eq. (211) is Tr [|1〉〈1 |C(Y)] = Tr [C(id)C(Y)] =
〈C(id), C(Y)〉 = 〈id,Y〉. Plugging these two expressions
into Eq. (211) and solving for 〈id,Y〉 yields the assertion
of the proposition. �

If X †Y trace-preserving, Eq. (207) simplifies to

〈X ,Y〉 = d(d + 1)Favg(X ,Y)− d, (212)

or, equivalently,

Favg(X ,Y) = 〈X ,Y〉 + d
d(d + 1)

. (213)

We conclude that for trace preserving and unital quantum
channels the average gate fidelity and the Hilbert-Schmidt
inner product are affinely related with a proportionality
constant in O(d−2). This is the same scaling as appearing
for the entanglement fidelity in Eq. (204). More precisely,
we find the affine relation between the two fidelities

Favg(X ,Y) = dFe(X ,Y)+ 1
d + 1

, (214)

still assuming X †Y being trace preserving and one of X
and Y being a unitary channel. For two unitary channels

U ,V ∈ CPT(H) with U, V ∈ U(d) we can further simplify
Eq. (213) to

Favg(V ,U) = |Tr[V†U] |2 − d
d(d + 1)

. (215)

For V = 1 this equality reflects that the average gate
fidelity measures how close U is to 1 on average where
the average is taken over its spectrum.

Furthermore, the identity, Eq. (207), also connects the
average gate fidelity to the Frobenius norm. This, in turn,
shows that the Frobenius norm is an average case error
measure as well.

Lastly, beside the entanglement fidelity, the Hilbert-
Schmidt inner product, the average gate fidelity, there is
another affinely related measure of quality that is particu-
larly convenient to work with in the analysis of randomized
benchmarking: the effective depolarizing parameter. Here,
we define the effective depolarizing parameter only for
trace-preserving maps via its linear relation to the fidelity.
If X is not trace preserving one can more generally define
it by explicitly first projecting on unital maps. Let X ∈
L(H,K) be trace preserving, its effective depolarizing
parameter is

p(X ) := dFavg(X )− 1
d − 1

. (216)

To justify its name let us have a look at the depolarizing
channel Dp , which is defined in Eq. (200) as the convex
combination of D1 = id and D0. The average gate fidelity
of these extremal channel can be quickly calculated to be
Favg(id) = 1 and Favg(D0) = 1/d. Thus, Favg(Dp) = p +
(1− p)/d. Plugging this into the definition of the effective
depolarizing parameter, Eq. (216), yields

p(Dp) = p . (217)

Another affinely related measure that is often used in this
context is the χ0,0 entry of the so-called χ -process matrix,
see, e.g., Ref. [88] for further details.

3. The diamond norm

The distance measures on quantum channels we
encounter so far can be regarded as average error mea-
sures. A more pessimistic, worst-case error measure is
induced by the trace norm on operators, the so-called
diamond norm. It measures the operational distinguisha-
bility of quantum channels. Hence, it plays an important
role in the certification of quantum processes. Indeed, also
error-correction thresholds require worst-case guarantees
without additional assumption on the error model, see, e.g.,
the discussion Refs. [87,89]. At the same time, certification
schemes that directly deliver certificate in diamond norm
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are very resource intense and typically practically infeasi-
ble. For this reason, the connection of the diamond norm to
the already introduced average error measures is the focus
of this section.

We start with defining the (1 → 1)-norm on L(H,K) to
be the operator norm induced by the trace norm,

‖X ‖1→1 := sup
‖A‖1≤1

‖X (A)‖1 . (218)

Note that if X is Hermicity preserving then the supre-
mum is attained for a Hermitian operator since in that
case X (A) = 1

2 [X (A)+X (A)†] = X
[ 1

2 (A+ A†)
]
. More-

over, since the trace norm is a convex function, we have
for any X ∈ L(H,K)

‖X ‖1→1 = sup
|ψ〉,|φ〉∈Sdim(H)−1

[‖X (|ψ〉〈φ |)‖1] . (219)

This means that the supremum is attained for rank-1 opera-
tors. For a Hermicity preserving X ∈ L(H), the supremum
is furthermore attained at |ψ〉 = |φ〉. Density operators are
normalized in trace norm. This implies that channels are
normalized in (1 → 1)-norm, i.e.,

‖X ‖1→1 = 1 ∀X ∈ CPT(H,K). (220)

In order to distinguish quantum channels one can use ancil-
lary systems. For this reason, we want to define a norm that
has good stability properties for the maps acting on com-
posite Hilbert spaces. This motivates the definition of the
diamond norm as a so-called completely boundedness (CB)
completion of the (1 → 1)-norm. We define diamond norm
for X ∈ L(H) by

‖X ‖� := ‖X ⊗ idH‖1→1 . (221)

Note that the diamond norm inherits the above mentioned
properties from the (1 → 1)-norm and preserves them
even when a map is applied only to part of a composite
Hilbert space. More precisely, the diamond norm has the
following properties.
Theorem 49: (Complete boundedness and (sub)multi-
plicativity): For any X ∈ L(H,K)

‖X ‖� := sup
H′
‖X ⊗ idH′‖1→1 , (222)

where the supremum is taken over all finite-dimensional
Hilbert spaces H′. Moreover,

‖X ⊗ Y‖� = ‖X ‖� ‖Y‖� , (223)

‖XZ‖� ≤ ‖X ‖� ‖Z‖� (224)

for all X ∈ L(H,K), Y ∈ L(H′,K′), and Z ∈ L(H′,H).

Proof. For the proof we refer, e.g., to Ref. [84, Chapter
3.3] or recommend proving it as an exercise. �

Theorem 50 tells us that the diamond norm precisely
captures the maximum distinguishability of quantum chan-
nels X ,Y ∈ CPT(H,K) in the following sense. One can
prepare copies of a state ρ ∈ S(H⊗H′) and apply either
X or Y to the parts on H to obtain states on K⊗H′. Then
Proposition 12 tells us that 1

2 ‖�⊗ idH′(ρ)‖1 is the distin-
guishability of the output states. Taking the supremum over
all (pure) states ρ yields the distinguishability of X and Y ,
which is given by the diamond distance 1

2 ‖X − Y‖�. In
particular, the theorem tells us that optimal distinguisha-
bility can be obtained by choosing H′ = H in a similar
sense as it can be detected when a map is not CP just using
H′ = H, cp. Theorem 47(iii).

Another way to distinguish quantum processes is to
prepare their Choi states and distinguish them, as char-
acterized by Proposition 12 via the trace norm. The fol-
lowing statements provide a relation of the two notions of
distinguishability of quantum channels.
Proposition 50 (Diamond norm and trace norm): For
any map X ∈ L(H,K)

∥∥J(X )
∥∥

1 ≤ ‖X ‖� ≤ dim(H)
∥∥J(X )

∥∥
1 , (225)

where J denotes the Choi-Jamiołkowski isomorphism,
Eq. (198).

The upper bound can be improved. For a Hermitian-
preserving map X ∈ L(H,K) the improved bound implies
[90, Corollary 2]

‖X ‖� ≤ dim(H)
∥∥Tr2[|J(X )|]∥∥∞ . (226)

Proof of Proposition 51. We prove the proposition in
terms of C(X ) = dim(H)J(X ). Denoting the Frobenius
norm again by ‖ · ‖F , it holds that

‖X ‖� = sup
A,B∈L(H)

‖A‖F=‖B‖F=1

[‖(1⊗ A)C(X )(1⊗ B)‖1] , (227)

as can be seen from Eq. (219) and rearranging the con-
tractions. Choosing A = B = 1/

√
dim(H) [corresponding

to the maximally entangled state Eq. (199)] establishes
the lower bound. The upper bound follows using Hölder’s
inequality, Eq. (36),

‖(1⊗ A)C(X )(1⊗ B)‖1

≤ ‖1⊗ A‖op ‖C(X )‖1 ‖1⊗ B‖op

= ‖1‖op ‖A‖op ‖C(X )‖1 ‖1‖op ‖B‖op

≤ ‖A‖F ‖B‖F ‖C(X )‖1 , (228)

and our normalization convention, Eq. (197). �
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It is not difficult to see that the bounds in Proposi-
tion 51 are tight, i.e., that there are X ,Y ∈ L(H,K) so that∥∥J(X )

∥∥
1 = ‖X ‖� and ‖X ‖� = dim(H)

∥∥J(X )
∥∥

1. These
results tell us that distinguishing quantum channels via
their Choi states is in general not optimal.

It is nonobvious how the diamond norm can actually be
computed in practically. Watrous has shown that the dia-
mond norm can be computed efficiently (in the dimension)
via a semidefinite program [91]. However, for the highly
relevant special case where the map is a difference of two
unitary channels the computation is much simpler.

Proposition 51: (Diamond-norm distance of unitary
channels): For any U, V ∈ U(d) the diamond-norm dis-
tance of the corresponding unitary channels is

1
2
‖U − V‖� =

√
1− dist

(
0, conv{λi}i∈[d]

)2, (229)

where λi are the eigenvalues of U†V, dist( · , · ) denotes the
Euclidean distance and conv( · ) the convex hull, both in
the complex plane.

This proposition reflects that the diamond distance is a
worst-case quantity, where the worst-case optimization is
done over the spectrum of the “unitary difference” U†V.
The geometric interpretation of this result is reviewed and
visualized in Ref. [92].

In order to prove the proposition we write the matrices
U and V as vectors. In general, (column) vectorization is
a map | · 〉 : C

n1×n2 → C
n1n2 that stacks the columns of a

matrix A ∈ C
n1×n2 on top of each other. For all matrices A,

B, and C with fitting dimensions it holds that

|ABC〉 = Cᵀ ⊗ A|B〉, (230)

where X ⊗ Y ∼= (Xi,j Y)i,j (defined by a block matrix)
denotes the Kronecker product of matrices X and Y.

Proof of Proposition 52. Starting with Eq. (219) and using
the Choi-Jamiołkowski isomorphism, Eq. (195), and the
vectorization rules for matrix products, Eq. (230), we can
write the diamond norm of the channel difference as

‖U − V‖�
= sup

A∈L(Cd)
‖A‖2=1

[‖(1⊗ A)(|U〉〈U | − |V〉〈V |)(1⊗ A)‖1]

= sup
‖A‖2=1

{‖|AU〉〈AU | − |AV〉〈AV |‖1}

= sup
‖A‖2=1

{∥∥|A〉〈A | − |AU†V〉〈AU†V|∥∥1

}
. (231)

Using Eq. (47) relating the trace-norm difference of two
trace-normalized, hermitian, unit-rank matrices to their

overlap yields

1
2
‖U − V‖� = sup

‖A‖2=1

{√
1− ∣∣〈A|AU†V〉∣∣2

}

= sup
‖A‖2=1

{√
1− ∣∣Tr[A2U†V]

∣∣2
}

= sup
ρ∈S(Cd)

{√
1− ∣∣Tr[ρU†V]

∣∣2
}

=
√

1− min
ρ∈S(Cd)

∣∣Tr[ρ U†V]
∣∣2

=

√√√√√1− min
p∈[0,1]d
∑

i pi=1

⎧
⎨

⎩

∣∣∣∣∣
∑

i

piλi

∣∣∣∣∣

2
⎫
⎬

⎭

=
√

1− dist (0, conv{λi}). (232)

�
Practical certification schemes for quantum processes

will typically certify w.r.t. the Hilbert-Schmidt overlap,
average gate fidelity or an equivalent quantity. In terms
of the infidelity r(X ) = 1− Favg(X ), the diamond norm
and the average gate fidelity are in general related by the
following inequalities.
Proposition 52: (Infidelity and diamond norm [93,
Proposition 9]): For any X ∈ CPT(Cd) it holds that

d + 1
d

r(X ) ≤ 1
2
‖id−X ‖� ≤

√
d(d + 1)r(X ). (233)

Proof. The proof combines Proposition 51 with the Fuchs-
van de Graaf inequality, Eq. (46). Latter yields

1− F[J(id), J(X )]

≤ 1
2
‖J(id)− J(X )‖1 ≤

√
1− F[J(id), J(X )],

(234)

where we already drop a square root on the lower bound.
Since J(id) = (1/d)|1〉〈1 | is of unit rank and Her-

mitian, it holds that F[J(id), J(X )] = 〈J(id), J(X )〉 =
Fe(id,X ). We can cast this in terms of the average gate
fidelity via Eq. (214),

F[J(id), J(X )] = d + 1
d

Favg(X )− 1
d

. (235)

Plugging Eq. (235) into Eq. (234) yields

d + 1
d

[1− Favg(X )]

≤ 1
2
‖J(id)− J(X )‖1 ≤

√
d + 1

d

√
1− Favg(X ).

(236)
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Finally, from Proposition 51 the proposition’s assertion
follows. �

Proposition 53 leaves us with an unsatisfactory state of
affairs in two regards: first, the upper bound of the diamond
norm introduces a dimensional factor O(d). In the context
of quantum computing, this leaves us with a potentially
large factor scaling exponentially O(2n) with the number
of qubits n. Second, the upper bound scales with the square
root of the infidelity. For unitary quantum channels one
can in fact tighten the lower bound to

√
r(X ) [87]. The

lower bound for unitary quantum channels indicates that
the square-root scaling is unavoidable in general. Practi-
cally, this means that to certify in diamond norm requires a
certificate in infidelity that is orders of magnitude smaller.
Particularly, for small system sizes this can be a key obsta-
cle for the certification of the worst-case performance of
quantum processes.

Fortunately, if a quantum process is highly incoherent,
i.e., far away from being unitary, one can derive a lin-
ear scaling of the diamond-norm distance in the infidelity.
The incoherence can be controlled by the so-called unitar-
ity introduced by Wallman et al. [94]. For X ∈ L(H) the
unitarity is defined as

u(X ) = d
d − 1

Favg(X ′,X ′), (237)

where d = dimH and X ′ ∈ L(H) is the defined by

X ′(A) = X (A)− Tr[X (A)]1/
√

d. (238)

One can straightforwardly check that u(U) = 1 for every
unitary channel U . On the other hand, in Refs. [87,94] a
lower bound on u in terms of the infidelity r is derived
for trace-decreasing maps. ForX ∈ L(H) and Tr[X (1)] ≤
Tr[1] it holds that

u(X ) ≥ umin =
[

1− d
d − 1

r(X )
]2

. (239)

Kueng et al. [87] established that quantum channels sat-
urating this lower bound exhibit a linear scaling of the
diamond-norm distance in terms of the infidelity.
Theorem 53: (Worst-case bound for incoherent chan-
nels [87, Theorem 3]): Let X ∈ CPT(H) be unital, d =
dim(H). ‖id−X ‖� ∈ O[r(X )] if u = umin + O[r2(X )].

We leave it with this qualitative statement and refer to
Ref. [87, Proposition 3] for a quantitative statement. See
also Ref. [95].

B. Direct quantum-process certification

We see in Sec. II B, that quantum states can be certi-
fied with measurement strategies resembling the optimal

POVM P+ for distinguishing quantum states of Propo-
sition (12). By means of the Choi-Jamiołkowski iso-
morphism strategies for quantum states can be lifted to
quantum processes: operationally, one prepares the Choi
state, Eq. (194), by applying the process to a state that is
maximally entangled with an ancillary system. Then one
certifies the Choi state using a protocol for quantum states.
The resulting certification protocols certifies with respect
to the entanglement gate fidelity, Eq. (204), of the channels
that coincides with the state fidelity of the Choi states.

References [96–98] use the direct state certification
method of Sec. II B [24,25] in this way.

Moreover, for certain measurement strategies the pro-
tocol can be performed without using entanglement with
ancillary systems. These, prepare-and-measure versions
use an effective measurement strategy � of the form [96]

� =
∑

i

piNi ⊗ ρᵀ
i . (240)

For this measurement strategy the expectation value in the
Choi state is

Tr[�J(Ũ)] =
∑

i

piTr[(Ni ⊗ ρᵀ
i )J(Ũ)] (241)

and can be recast, thanks to Eq. (195), as

Tr[(Ni ⊗ ρᵀ
i )J(Ũ)] = Tr[NiŨ(ρi)]. (242)

While the dichotomic POVM defined by Ni ⊗ ρᵀ
i for

each i originally acts on the Choi state J(Ũ), the form
of Eq. (242) suggests a simpler, straight-forward exper-
imental implementation: of the dichotomic POVM: one
prepares the state ρi, applies the channel U under scrutiny,
and measures the dichotomic POVM given by Ni on
the state Ũ(ρi). Thus, effective measurement strategies
of the form [96] can indeed be implemented by simple
prepare-and-measure schemes.

For Clifford unitaries this method yields a simple direct
certification test. The Choi state of a Clifford unitary chan-
nel is a stabilizer state and can hence be verified with the
methods of Ref. [24] discussed in Sec. II F 1. The fol-
lowing proposition gives a theoretical guarantee for this
protocol. It can be derived as a corollary of the results of
Sec. II F 1.

Proposition 54: (Direct certification of Clifford opera-
tions, [96, Proposition 3]): Let C be an n-qubit Clifford
operation. We consider the state certification of Protocol
17 applied to its Choi state J(C), which is a stabilizer state.
This yields an ε-certification test of J(C) w.r.t. infidelity
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from nρ̃ independent such state preparations for

nρ̃ ≥ 2
ln(1/δ)
ε

(243)

with confidence 1− δ. Moreover, the target J(C) is
accepted with probability 1.

This test corresponds to a similar certification test of C
w.r.t. entanglement gate infidelity 1− Fe and can be imple-
mented as a prepare-and-measure scheme via Eq. (242).

Further reading

The three works of Refs. [96–98] all follow the pre-
sented certification strategy based on direct state certifica-
tion. Moreover, they discuss several additional aspects: Liu
et al. [96] study non-trace-preserving processes and mea-
surements, Zhu and Zhang [97] analyze the general multi-
qudit case and strategies based on projective 2-designs, and
Zeng et al. [98] discuss entanglement-property detection.

Similar to direct state certification also fidelity estima-
tion protocols can be lifted to quantum processes. To this
end, one applies the state fidelity estimation to the output
of the process applied to randomly chosen input states. The
original DFE proposal by Flammia and Liu [43] already
includes the application to quantum channels by sampling
from the eigenstates of multiqubit Pauli operators as the
input states. Furthermore, simplifications arising for Clif-
ford gates are discussed. See also the parallel work by da
Silva et al. [50]. A strategy to estimate the average gate
fidelity by inputting states drawn at random from com-
plex projective 2-designs was studied by Bendersky et al.
[99]. Reich et al. [100] determined the minimal number
of required input states for the fidelity estimation of quan-
tum processes. See also the related work by Hofmann
[101]. Reich et al. also provide a quantitative compara-
tive overview over all the before-mentioned approaches in
Ref. [102].

C. Randomized benchmarking

The schemes presented in the previous section fail in the
presence of sizeable SPAM errors. In the context of digital
quantum computing, this sensibility to SPAM errors is dra-
matically reduced by so-called randomized benchmarking
(RB) protocols [66,79,80,103,104]. These protocols can
extract certain quantitative measures of a quantum process
associated to a quantum-gate set. The process can be, for
example, a certain gate, an error channel or an error map
associated to the deviation of a quantum-gate set from its
ideal implementation. While still concerned with the phys-
ical layer of a quantum device, randomized benchmarking
protocols already make explicit use of a gate layer, the
abstraction at the heart of digital quantum computing.

Randomized benchmarking comprises a large zoo of dif-
ferent protocols. Therefore, we begin with a fairly general

description. The principle idea to achieve the SPAM-
(error) robustness is the following: after preparing an input
state, one applies the quantum process under scrutiny mul-
tiple times in sequences of different length before perform-
ing a measurement. Thereby, the effect of the process on
the measurement is attenuated with increasing sequences
length. At the same time errors in the state preparation and
measurements enter the measured quantities only linearly
and are independent of the sequence length. In this way, fit-
ting the attained signals for different sequence lengths with
functions depending on the length reveals properties of the
quantum process disentangled from the SPAM errors.

A prototypical RB protocol implements this rough idea
for a digital quantum computer as follows. Let G ⊂ U(d)
be a subgroup of unitary operations and φ : G → L(Cd)

be their implementation on a quantum computer. In simple
RB protocols φ(g) just models the faulty implementation
of G on the actual device. More generally, the targeted
implementation of the protocol can also include, e.g., a
nonuniform sampling over the group or the implementa-
tion of another fixed gate after G. Also in these cases φ is
the faulty version of the targeted implementation.

Note that the assumption of the existence of such a map
φ already encodes assumptions on the quantum device and
its noise process: The map φ might model the compila-
tion into elementary gates, effects and imperfections of the
physical control and noise. All these steps are not allowed
to depend on the gate sequence the gate is part of, the over-
all time that evolves during the protocol, or other external
variables.

With these ingredients we can state a prototypical RB
protocol, see Fig. 4 for an illustration.

Protocol 55 (Prototypical RB): Let G ⊂ U(d) be a sub-
group, ρ ∈ S(Cd) an initial state, and M = {M ,1−M } ⊂
Pos(Cd) a measurement. Furthermore, let M ⊂ N be a set
of sequence lengths.

For every sequence length m ∈M, we do the following
estimation procedure multiple times.

Draw a sequence g = (g1, . . . , gm) of m group ele-
ments chosen i.i.d. uniformly at random. For the sequence
calculate the inverse elements ginv = g−1

1 g−1
2 · · · g−1

m .
For each sequence preform the following experiment:

(i) Prepare ρ.
(ii) Apply Sg = φ(ginv)φ(gm) . . . φ(g2)φ(g1), i.e., the

sequence of implementations of g followed by the imple-
mentation of ginv, to ρ.

(iii) Perform the measurement M.

Multiple repetitions of the experiment yield an estimator
p̂g for the probabilities

pg(m) = Tr[MSgρ]. (244)
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FIG. 4. Illustration of a prototypical RB protocol. After the
preparation of an initial state, one applies a random sequence of
unitaries g = (g1, . . . , gm) succeeded by an inversion gate and
final measurement of M . This experiment is repeated for differ-
ent sequences and different sequence lengths m. In the classical
postprocessing, the decay parameter of resulting empirical esti-
mates for different sequence lengths m are extracted and reported
as the RB parameters.

Repeating these steps for different random sequences, we
can calculate an estimator p̂(m) for

p(m) = Eg1Eg2 · · ·Egmp(g1,g2,...gm)(m). (245)

Postprocessing: extract the decay parameters of the data
M→ [0, 1], m �→ p̂(m) and report as the RB parameters.

More generally, RB protocols might go beyond Protocol
56 in various ways: for example, by calculating the inverse
of a sequence only up to specific gates, using a different
measure than the uniform measure for drawing the group
elements of the sequence, or performing a measurement
POVM with multiple outputs or measurements adapted to
the sequence. In addition, the postprocessing might com-
bine different RB data series in order to get simpler decay
signatures.

The first step in the theoretical analysis of RB proto-
cols is to establish the fitting model of the RB data p(m).
Ideally, p(m) is well approximated by a single exponen-
tial decay. Subsequently, the RB decay parameters can in
certain settings be connected to the average gate fidelity of
a noise process effecting the implementation map, as we
now discuss.

The data model of most RB protocols can be understood
as estimating the m-fold self-convolution of the implemen-
tation map [105]. More precisely, for φ,ψ : G → L(Cd)

we can define a convolution operation as

φ ∗ ψ(g) = Eg̃φ(gg̃−1)ψ(g̃). (246)

Note that this definition naturally generalizes, e.g., the dis-
crete circular convolution on vectors in C

n, which can
be seen as an operation on functions on the finite group
(Zn,+)→ C. With the convolution, Eq. (246), we can
rewrite the averages of the RB sequences as

EgSg = Eg1,g2,...,gmφ(g
−1
1 g−1

2 · · · g−1
m )φ(gm) · · ·φ(g2)φ(g1)

= Eh1,h2,...,hmφ(h
−1
m )φ(hmh−1

m−1) · · ·φ(h2h−1
1 )φ(h1)

= φ∗(m+1)(id), (247)

where the replacements h1 = g1 and hj = gj hj−1 for j ∈
{2, . . . , m} have been made the second equality, id denotes
the identity element of G and φ∗k denotes the k-fold convo-
lution of φ with itself. In expectation the RB data p(m) is
thus a contraction defined by M and ρ of the (m+ 1)-fold
self-convolution of φ evaluated at the identity element.

In the simplest instance of an RB protocol one can
directly calculate this expression: namely, when G is a uni-
tary 2-design, the targeted implementation is simply the
action of G as quantum gates, and the noise in φ can be
modeled by a single gate-independent quantum channel
� ∈ CPT(Cd). Denoting by G the (adjoint) action of g as
the unitary channel X �→ G(X ) = gXg†, we have the noise
model

φ(g) = � ◦ G. (248)

With this ansatz for φ we can calculate that

Eg∈GmSg = φ∗(m+1)(id) = �[Eg∈GG†�G]m. (249)

The operator twμ : L(Cd)→ L(Cd), X �→ EU∼μ[UXU†]
appearing in Eq. (249) is the so-called (channel) twirling
map and appears in different contexts in quantum informa-
tion. If we write out the twirling map with the individual
unitaries it reads

twμ(X ) = (ρ �→ EU∼μ{UX [U†(ρ)U]U†}). (250)

It becomes apparent that twμ is related to second moment
operator M(2)

μ , Eq. (137), by simple vector-space isomor-
phisms. Recall that for a unitary 2-design μ Proposition 37
gives us an explicit description of M(2)

μ . We can simply
track the isomorphism to derive the following convenient
expression.
Theorem 56 (Twirling of channels [79,86]): Let X ∈ L

(Cd) be trace preserving and μ be a unitary 2-design. Then

twμ(X ) = Dp(X ), (251)

where Dp is the depolarizing channel, Eq. (200), and p(X )
is the effective depolarizing parameter defined in Eq. (216).
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Proof. First we note that any map X ∈ L(Cd) is uniquely
determined by (X ⊗ id)(F), which is a similar construc-
tion as the Choi-Jamiołkowski isomorphism. This iso-
morphism is given by Tr2,3[(X ⊗ id)(F)⊗ A] = X (A) but
its explicit form is not needed. Hence, we can make
the isomorphisms between the twirling map twμ and the
second-moment operator M(2)

μ from Eq. (137) explicit by
writing

[twμ(X )⊗ id](F)

= EU∼μ{(U⊗ 1)X ⊗ id[(U† ⊗ 1)F(U⊗ 1)](U† ⊗ 1)}
= EU∼μ{(U⊗ 1)X ⊗ id[(1⊗ U)F(1⊗ U†)](U† ⊗ 1)}
= EU∼μ[(U⊗ U)X ⊗ id(F)(U† ⊗ U†)]

=M(2)
μ [X ⊗ id(F)]. (252)

For μ a unitary 2-design, M(2)
μ takes the value of the

moment operator of the Haar measure. Schur-Weyl duality,
Theorem 35, tells us that

M(2)
μ [X ⊗ id(F)] ∈ span{1, F}. (253)

Observing that D0 ⊗ id(F) = 1/d and trivially D1 ⊗
id(F) = F, we conclude that

twμ(X ) ∈ span{D0,D1}. (254)

Furthermore, one quickly checks that if X is trace preserv-
ing so is twμ(X ). Hence, twμ(X ) is an affine combination
of D0 and D1. Thus, twμ(X ) = Dp holds for some p ∈ C

and it remains to determine p . One way forward is a
straight-forward calculation using the expressions for the
coefficients provided by Proposition 38. A shortcut is to
calculate the effective depolarization of both sides. Due to
the unitary invariance of μ

S(Cd), it follows from Eq. (205)
that Favg(X ) = Favg[tw(X )] and correspondingly for the
affinely related effective depolarization parameter p(X ) =
p[tw(X )]. Combined with p(Dp) = p , Eq. (217), yields
the theorem’s assertion. �

Theorem 57 allows us to explicitly calculate the RB
data model from Eq. (249). To this end, a short calcula-
tion reveals that Dm

p = Dpm . With this we find the RB data
model to be

p(m) = Tr[M̃�Dp(�)m(ρ̃)]

= p(�)mTr[M̃�(ρ̃)]+ [1− p(�)m]Tr[M̃�(1/d)]

= p(�)mTr[M̃�(ρ̃ − 1/d)]+ Tr[M̃�(1/d)],
(255)

with M̃ and ρ̃ denoting the potentially faulty implementa-
tion of the measurement M and initial state ρ.

If we define the so-called SPAM constants

A := Tr[Ẽ�(ρ̃ − 1/d)] and B := Tr[Ẽ�(1/d)],
(256)

Eq. (255) yields the simple RB fitting model

p(m) = A pm + B. (257)

Thus, fitting a single exponential decay to the estimator
p̂(m) yields estimates p̂ , Â and B̂ for the model param-
eters p , A, and B. In particular, the estimated RB decay
parameter p̂ is an estimator for the effective depolarizing
parameter p(�) of the error channel �. Recall that the
effective depolarizing parameter is affinely related to the
average gate fidelity, Eq. (205) via Eq. (216). From the RB
decay parameter, we thus equivalently obtain an estimate
for the average gate fidelity of the noise channel � as

F̂avg =
(

1− 1
d

)
p̂ + 1

d
. (258)

Note that the resulting estimate of Eq. (205) is robust
against SPAM errors, which only enter the SPAM con-
stants A and B.

Deriving rigorous performance guarantees for the esti-
mator RB estimator p̂ is involved: it requires the analysis
of confidence region of the estimator p̂g(m) of Eq. (244)
that is a random variable of the quantum-measurement
statistics and p̂(m) obtained by the subsampling of the
sequences g. Furthermore, the error of these estimators
for each m enters the errors of the fidelity estimator via
the exponential fitting procedure. This step depends on the
choice of algorithm and the estimated sequence lengths.

Using the fact that p̂(m) is the mean estimator of
a bounded random variable, one can use Hoeffding’s
inequality, Theorem 8, to derive confidence intervals for
an overall sampling complexity that is independent of
the number of qubits in the regime of high fidelity. Such
bounds however are prohibitively large for practical imple-
mentations. A refined analysis by Wallman and Flammia
[93] derived tighter bounds for short sequences and small
number of qubits. However, bounds that are practical and
scalable in the number of qubits require a careful analy-
sis of the variance of the estimator p̂g(m) over the choice
of the random sequences. For G being the Clifford group,
Helsen et al. [106] work out explicit variance bounds
for the estimator p̂g(m) and derive sampling complexities
for p̂(m) that are practical, independent of the number of
qubits and scale favorable with the sequence length. To
this end, they employed a refined representation theoreti-
cal analysis of the commutant of the fourth-order diagonal
action of the Clifford group [61,107] in order to calculate
the corresponding moment operator; an endeavour that is
complicated by the fact that the Clifford group itself is not
a unitary 4-design.
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A rigorous analysis of a simplified fitting procedure was
derived in Ref. [108]. Therein (again using trivial bounds
on the variance) the authors show that a ratio estimator for
the infidelity r = 1− p that employs the estimates of p(m)
for two different sequence length has multiplicative error
using an efficient number of samples again in the regime
of high fidelity.

All of these performance guarantees indicate that in
principle RB protocols can be efficiently scalable in the
number of qubits. To ensure also an efficient classical pre-
processing of the prototypical RB protocol it is important
to have an efficiently tractable group structure so that the
inverse of the gate sequence can be computed.

For the important example of the Clifford group, the
Gottesman-Knill theorem, see, e.g., [58], allows computa-
tion of the inverse of a sequence gm · · · g2g1 in polynomial
time (with respect to the number of qubits). Furthermore,
since the Clifford group is a unitary 3-design [59,60], it
meets the requirement of Theorem 57. For this reason the
presented analysis applies to the Clifford group under the
assumption of gate-independent noise.

It is natural to ask of additional examples of groups
that constitute a unitary 2-design and are covered by the
presented analysis without modifications. But it was estab-
lished that these two requirements are already surprisingly
restrictive. A complete classification of so-called 2-groups
(2-design groups) is summarized in Ref. [109]. In fact, if
one requires a family of 2-groups that can be constructed
for an arbitrary number of qubits, one is left with sub-
groups of the Clifford group or SU(d) itself as the only
examples [109–111].

We provide more details how the analysis of the pro-
totypical RB protocol can be generalized in the further-
reading paragraph at the end of the section. Now, we
want to discuss another variant of RB that is particularly
important as tool for certifying quantum gates.

Interleaved randomized benchmarking

The prototypical RB protocol estimates the effective
depolarizing parameter or the average gate fidelity of the
average error channel of a gate set. In contrast, interleaved
RB protocols [112] allow one to extract the effective depo-
larizing parameter of individual gates from a group with
respect to their ideal implementation provided the noise is
sufficiently incoherent.

In an interleaved RB protocol one performs in addition
to the standard RB protocol a modified version, where the
random sequences are interleaved with the specific target
gate. The second experiment yields estimates for the effec-
tive depolarization parameter of the error channel associ-
ated to the group concatenated with the error channel of the
individual target gate. Under certain assumptions the effec-
tive depolarization parameter of the implementation of the

target gate can be estimated from the decay parameters of
both RB protocols.
Protocol 57 (Interleaved RB): For G ⊂ U(d) and a tar-
get gate gT ∈ G

(1) follow Protocol 56,
(2) follow Protocol 56 but modify the sequences to be

g = (g1, gT, g2, gT, g3, . . . , gT, gm), (259)

where gT is the target gate and gi ∈ G for i ∈ [m] are drawn
uniformly at random. The inverse ginv is also calculated
with respect to the modified sequence g.

The output of the protocol are the decay parameters of both
experiments.

For the analysis we again consider a “mostly” gate-
independent noise model and assume that G is a unitary
2-design. In the noise model we assume that the same noise
channel � ∈ CPT(H) follows the ideal implementation of
all gates but the target gate, i.e.,

φ(g) = � ◦ G (260)

for all g ∈ G \ {gT}.
The first step of the protocol is the unmodified RB proto-

col. If we neglect that φ deviates from the form, Eq. (260),
on gT, we can apply the analysis of the previous section
for gate-independent noise and conclude that the protocol
outputs and estimator for the effective depolarizing con-
stant p(�). For example, for a large group it is plausible
to neglect the contribution of the noise associated to the gT
gate to the group average.

It remains to analyze the second protocol. In analogy to
Eq. (246) we can in general rewrite

Eg1,...,gmSg

= Eg1,...,gmφ(g
−1
1 g−1

T g−1
2 g−1

T . . . g−1
m )

× φ(gm)φ(gT) . . . φ(g2)φ(gT)φ(g1)

= Eg1,...,gmφ(g
−1
m ) . . .

× φ(g3g−1
2 g−1

T )φ(gT)φ(g2g−1
1 g−1

T )φ(gT)φ(g1),

by substituting gi with gig−1
i−1g−1

T for all i > 1.
Inserting the noise model, Eq. (260), yields

Eg1,...,gmSg = �
[
Eg∈G G†G†

Tφ(gT)�G
]m

. (261)

This is the same expression as Eq. (249) with � replaced
by G†

Tφ(gT)�. Hence, applying the same arguments as
in the analysis of the standard RB protocol for uni-
tary 2-designs yields a single-exponential fitting model
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with decay parameter estimating the effective depolarizing
parameter p[G†

Tφ(gT)�]. The second part of the inter-
leaved RB protocol, thus, yields an estimate of the effective
depolarizing parameter or equivalently, via Eq. (258), of
the fidelity of the error map G†

Tφ(gT) of the target gate GT
concatenated with the error channel �.

From p(�) and p[G†
Tφ(gT)] it is indeed possible to infer

p[G†
Tφ(gT)]. In meaningful practical regimes this how-

ever requires additional control the unitarity of � [88]: for
sequences of unitary channels the infidelity of their com-
position can scale quadratically in the sequence length in
leading order. In contrast, highly nonunitary channels will
feature a close to linear scaling in the sequence length.
Thus, using the unitary one can derive bounds for fidelity
measures of composite channels that exploit the linear
scaling. We simply state the required bound without proof
for interleaved RB.
Theorem 58 (Composite channel bound [88]): For any
two quantum channels X ,Y it holds that

∣∣∣∣p(X )−
p(XY)p(Y)

u(Y)

∣∣∣∣ ≤
√

1− p(Y)2
u(Y)

√

1− p(XY)2
u(Y) .

(262)

With an estimate for the unitarity û(�), Theorem 59
allows estimation of the effective depolarizing constant and
thus the average gate fidelity of the target gate by

F̂avg[φ(gT),GT] = d − 1
d

p̂[G†
Tφ(gT)]p̂(�)

û�
+ 1

d
(263)

up to a systematic error that is given by evaluating the
right-hand side of Eq. (262). The systematic error is small
in the regime where u(�) ≈ p(�)2, which is the case
if � is decoherent. The unitarity of � can be estimated
using variants of the RB protocol itself developed in
Refs. [94,113].

Alternatively, one can just assume that the error is suffi-
ciently incoherent, i.e., that |1− p(�)2/u(�)| ≤ ε. Con-
ditioned on this external belief, one obtains the simpler
estimator

F̂avg[φ(gT),GT] = d − 1
d

p̂[G†
Tφ(gT)]
p̂(�)

+ 1
d

(264)

that comes with a systematic error that is controlled in ε.
Thereby, interleaved RB can be used to arrive at average-
performance certificates of individual quantum gates.

We have already seen that for interleaved RB control-
ling the unitarity is helpful in deriving tighter error bounds.
In addition, estimating the unitarity can also yield relevant
worst-case performance bounds in terms of the average
gate fidelities using Theorem 54.

Further reading

Randomized benchmarking was originally developed in
a series of work focusing on the unitary group and Clifford
gates [66,79,80,103,104].

The early analyses used the gate-independent noise
model, Eq. (248), which we also assume here. In many
applications this is however a questionable assumption.
After first perturbative approaches to derive the RB signal
model under gate-dependent noise by Magesan et al. [104,
114] and Proctor et al. [115], Wallman rigorously derived
the fitting model for unitary 2-designs in Ref. [116].

Using the elegant description of the RB data as the
m-fold convolution of the implementation map, recently
proposed by Merkel et al. [105], one can abstractly under-
stand the result as follows: as the standard discrete circular
convolution, the convolution operator of maps on a group
can be turned into a (matrix) multiplication using a Fourier
transform. This abstract Fourier transform for functions on
the group is defined to be a function on the irreducible
representations of the group. In the case of RB, this func-
tion is matrix valued, and we observe matrix powers of
the Fourier transforms for every irreducible representation
superimposed by a linear map. For every irreducible repre-
sentation, for sufficiently large m, the matrix powers are
proportional to the mth power of the largest eigenvalue
of the matrix-valued Fourier transformation. Contributions
from other eigenvalues are suppressed. In this sense RB
is akin to the power method of numerical linear algebra
but in Fourier space [117]. A rigorous analysis requires
to perturbatively bound the contribution of the subleading
eigenvalues. For unitary 2-groups the adjoint representa-
tion decomposes into two irreducible representations the
trace representation and the unital part of the quantum
channel. For close to trace-preserving maps the trace rep-
resentation will only contribute a very slow decay, i.e.,
a constant contribution to the fitting model, and the RB
decay parameter is the dominant eigenvalue of the uni-
tal representation. Wallman [116] derived norm bounds
for the contribution of subleading eigenvalues and showed
that the contribution is exponentially suppressed with the
sequence length. Furthermore, Wallman showed that there
is a gauge choice of the gate set such that the decay param-
eter can be connected to the average gate fidelity of the
average error channel over the gate set. For qubits this
gauge was demonstrated to yield a physical gate set by
Carignan-Dugas et al. [118]. The physicality of this gauge
is, however, in general not guaranteed and a counter exam-
ple is given by Helsen et al. [75]. As discussed by Proctor
et al. [119], this complicates the interpretation of the RB
decay rates as related to average fidelities that have a clear
physically interpretation.

While the Clifford gates are definitely a prominent use
case in the benchmarking of digital quantum computers,
more flexible RB protocols require analyzing groups that
are not a unitary 2-design.
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Randomized benchmarking protocols for other groups
were developed in Refs. [120–127]. These protocols, for
example, allow inclusion of the T gate in the gate set
[121] or characterization of leakage between qubit regis-
ters by using tensor copies of the Clifford group [120].
As the adjoint representation of other groups typically
decomposes into multiple irreducible representation, RB
data is expected to feature multiple decays in general.
For a description of a flexible postprocessing scheme for
general RB type data and performance guarantees see
Ref. [75].

In order to isolate the different decays, multiple vari-
ants of RB has been developed. These either rely on
directly preparing a state that has high overlap with only
one irreducible representation or cleverly combining data
from different RB experiments to achieve the same effect.
Many of these techniques can be understood as variants of
the character-benchmarking protocol developed by Helsen
et al. [127]. Character benchmarking uses inversions of
the RB sequence not to the identity but randomly drawn
gates from the group. In the classical postprocessing data
sequences of different end gates are linearly combined
weighted according to the character formulas. Thereby, the
data is projected onto the irreducible representation of the
respective character and can be subsequently fitted by a
single decay.

Interleaved RB was proposed in Refs. [112,128] and
demonstrated in practice. Already standard RB provides
a trivial bound for individual gates of the group by simply
attributing the average error to a single gate. In the original
proposal of interleaved RB, the analysis does not allow for
rigorous certificates that go significantly beyond this triv-
ial bound for few qubits [88]. A general bound by Kimmel
et al. [129], was considerably refined using the unitarity by
Carignan-Dugas et al. [88]. Thereby it was established that
if the error channel is sufficiently incoherent interleaved
RB yields rigorous certificates for individual gates with
reasonable error bars. There exist multiple variants of the
interleaved RB scheme [130–133]. Another class of inter-
leaved RB was introduced in Ref. [134]. Here, the average
gate fidelity of individual gates is inferred from measure-
ments of random sequences of gates that are drawn from
the symmetry group of the gate. The individual gates are
not part of the group itself and are also not included in the
inversion of the sequence.

Another practically very interesting variation of RB
arises when one does not draw the gates from the uni-
form but another distribution over the group [103,115,125,
135]. For example, drawing the sequences randomly from
the generating gates of the group, reduces the required
sequence lengths [115].

Other quantities that can be measured by variants of
the RB protocols are the unitarity [94,113], measures for
the losses, leakage, addressability and cross-talk [120,136,
137]. Furthermore, RB of operations on the logical level of

an error-correcting quantum architecture was proposed in
Ref. [138].

Combining different relative average gate fidelities
obtained by interleaved RB schemes can be used to acquire
tomographic information about the error channel provid-
ing actionable advise to an experimentalist beyond a mere
benchmarking and certification [129]. Using SPAM-robust
data, these tomography schemes are in addition resource
optimal for the unitary gates [139] and Clifford gates [57].
For Pauli channels tomographic information can be effi-
ciently obtained performing a character RB protocol on
multiple qubits simultaneously [140–143].

A general framework with few theorems that establishes
the RB fitting model of essentially all known RB schemes
under gate-dependent noise is developed in Ref. [75].
The central assumption employed therein to control con-
tributions from subdominant eigenvalues of the Fourier
transformation is a closeness condition to a reference
representation in diamond norm averaged over all group
elements. Moreover, a unifying review of RB is provided.

D. Cross-entropy benchmarking

The final protocol we discuss in this tutorial is cross-
entropy benchmarking (XEB) [74]. XEB gained impor-
tance recently: it was used in order to experimentally
collect evidence that a quantum computer can perform a
task that basically no existing classical computer can solve
in a reasonable amount of time [144].

In Ref. [144] XEB is performed in two distinct variants:
one variant aims at extracting fidelity measures averaged
over random sequences of individual gates. This protocol
can be regarded as a special case of the character random-
ized benchmarking protocol [75,127] that we touch upon
in Sec. III C. The second variant aims at certifying the cor-
rect sampling from the measurement output distribution of
a single specific circuit. This second variant of XEB is the
focus of this section. It can be seen as an instance of a
certification protocol on the application layer of a digital
quantum computer. In consequence, it is commonly also
referred to as a verification protocol for sampling tasks.
But the application, sampling from a distribution encoded
in a quantum circuit, is deliberately chosen very close to
the physical layer.

XEB was proposed as a protocol in the context
of demonstrating quantum supremacy. Experimentally
demonstrating that a quantum computer can outperform
current classical computers in some task is regarded as
one of the mayor milestones in developing quantum-
computing technologies. The accuracy of the quantum
operations and number of qubits of today’s devices do
not permit instances of interesting quantum algorithms
that solve NP problems such as Shor’s algorithm for inte-
ger factorization, at least not problem instances that come
even close to being troublesome for a classical computer
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[3]. This motivated the proposal of demonstrating quan-
tum supremacy in the task of generating samples from a
probability distribution that is specified as the measure-
ment distribution of a quantum circuit. This is a task that
a quantum computer solves very naturally even though it
might not be of any practical use [74,145]. At the same
time one can prove that certain random ensembles of quan-
tum circuits yield probability distributions that can not be
efficiently sampled from on a classical computer [146].

Besides establishing evidence for the hardness of solv-
ing the sampling task on a classical computer, a crucial
ingredient in demonstrating quantum supremacy is a certi-
fication protocol that guarantees that one has implemented
the correct distribution.

The approach taken in Ref. [144] is to build trust in the
correct functioning of the device for circuits that are still
amenable to calculating a couple of outcome probabili-
ties on a classical super-computer. To this end, the XEB
protocol was used. The measures that XEB tries to esti-
mate are the cross-entropy difference and its variant the
cross-entropy fidelity.

Cross-entropy and cross-entropy fidelity

In the context of certifying a sampling task it is natu-
ral to directly consider measures of quality that compare
two probability densities describing the measurement out-
comes. While the measures we study in this tutorial so far
are concerned with the physical layer; measures directly
comparing two probabilities can be regarded as measures
on the application layer.

For a quantum circuit U acting on n qubits, we denote its
measurement probability mass function in a basis {|x〉}x∈[d]
after preparing a fixed initial state |ψ〉 by pU : [d] → [0, 1]
with

pU(x) = |〈x|U |ψ〉|2 . (265)

A well-known statistical measure [147] to relate two
probability mass functions q, p : [d] → [0, 1] is the cross
entropy

HX (q, p) = −
∑

x∈[d]

q(x) ln[p(x)]. (266)

For p = q we find that HX (q, q) = −∑
x q(x) ln[q(x)]H(q)

is the standard Shannon entropy. One can show that H(q) is
the minimal value of the cross-entropy HX (q, p), a relation
known as Gibbs’ inequality [148].

In the context of quantum supremacy demonstrations
one expects the target probability distribution that one aims
to implement to be of Porter-Thomas shape. We say that
a probability mass function p : [d] → [0, 1] is of Porter-
Thomas shape if the tail distribution of p(x) regarded as a
random variable for x drawn uniformly at random from [d]

is well approximated by an exponential decay function,

Px∼puni [p(x) > p] ≈ e−dp , (267)

where puni denotes the uniform distribution. Note that
while the left-hand side of Eq. (267) is discontinuous,
the right-hand side allows us to approximately think of
the distribution of p(x) as being described by the con-
tinuous probability density pPT(p) = de−dp of the Porter-
Thomas distribution [149]. We use this description in our
theoretical analysis multiple times.

The motivation to study distributions of Porter-Thomas
shape stems from considering Haar random unitaries in
place of the quantum circuit U. For U ∈ U(d) drawn from
the Haar measure μU(d) one can show that the absolute
value of its matrix entries have the probability density
pe(p) = (d − 1)(1− p)d−2. In the limit of d ! 1, pe(p) is
described by the Porter-Thomas distribution [149]

pPT(p) = d exp(−dp). (268)

Note the similarity with the density of the χ2 distribution
with 2 degrees of freedom. For fixed U and again in the
limit of large d, one can hence argue that the probability
mass function pU is of Porter-Thomas shape [74].

Assuming that pU is of Porter-Thomas shape, Boxio
et al. [74] showed that a straightforward calculation reveals

HX (pU, pU) = H(pU) = ln(d)+ γ − 1, (269)

HX (puni, pU) = ln(d)+ γ , (270)

where γ is the Euler-Mascheroni constant and puni(x) =
1/d is the uniform probability mass function.

The introduction of the so-called cross-entropy differ-
ence as a performance measure in sampling tasks for
quantum supremacy brought the cross entropy into focus.
Reference [74] introduced the cross-entropy difference as
a performance measure in sampling tasks

dXE(q, p) := HX (puni, p)− HX (q, p), (271)

where puni is the uniform distribution. The cross-entropy
difference, thus, measures the excess in cross entropy that
q has with p beyond the uniform distribution.

Boxio et al. [56] argue that for Haar random unitaries the
corresponding measurement densities pU are generically
of Porter-Thomas shape. The motivation of the cross-
entropy difference is highly relying on this observation. By
definition, we have that dXE(puni, p) = 0 for any p . If p is
of Porter-Thomas shape, Eqs. (269) and (270) show that
dXE(p , p) = 1. Note however that there still exist proba-
bility distributions that score even higher in cross-entropy
difference than p itself.
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Another measure introduced in this context is the cross-
entropy fidelity [144]

FX (q, pU) =
∑

x∈[d]

q(x)[dpU(x)− 1]. (272)

Before discussing the XEB protocol to estimate HX and
FX let us illuminate the motivation of FX in the context of
certifying sampling tasks.

First, the cross-entropy fidelity can be regarded as a lin-
ear approximation to the cross-entropy difference and as
such as a simpler version of it. The constant shift in the
definition of FX is chosen such that FX (puni, p) = 0 for
puni the uniform density and any probability density p .
If pU is assumed to be of Porter-Thomas shape one can
calculate that FX (pU, pU) = 1. This motivates the expecta-
tion that performing high in cross-entropy fidelity indicates
successfully solving the sampling task for typical random
circuits U.

Note that if U is drawn at random from a unitary 2-
design μ, we can reproduce the Porter-Thomas value of
FX (pU, pU) in expectation over U using Lemma 38. We
first calculate

EU∼μ[p2
U(x)] = EU∼μ[| 〈x|U |ψ〉 |4]

= 〈x |⊗2
EU∼μ[(U|ψ〉〈ψ |U†)⊗2]|x〉⊗2

= 〈x |⊗2Psym2 |x〉⊗2

Tr[Psym2]

= 2
d(d + 1)

. (273)

Hence, we find that

EU∼μ[FX (pU, pU)] =
∑

x∈[d]

d EU∼μ[p2
U(x)]− 1

= 2d
d + 1

− 1 = d − 1
d + 1

= 1+ O(1/d). (274)

Thus, if U is drawn from a distribution, where we have
suitable control over higher moments we can hope to proof
concentration around the expectation with high probability
for large d. For Haar random unitaries Levy’s lemma [150]
directly yields a corresponding statement.

For the moment, we leave this as a motivation for the
estimating FX and HX and turn to the XEB protocol.

Cross-entropy benchmarking protocol

The crucial structural insight of XEB is that FX and HX
are both of the form

Ef =
∑

x∈[d]

q(x)f [pU(x)], (275)

with f (p) = fF(p) = dp − 1 for the cross-entropy fidelity
and f (p) = fH (p) = − ln(p) for the cross-entropy. This
observation suggests a simple protocol, akin to impor-
tance sampling (Sec. II G), for empirically estimating both
quantities if we have access to samples of one of the
distributions.
Protocol 59 (XEB [74,144]): Let U be a description of
a quantum circuit, |ψ〉 ∈ C

d be an initial states and B =
{|x〉}x∈[d] an orthonormal basis of C

d.

(1) Prepare U|ψ〉 on a quantum computer and mea-
sure in the basis B a number of m times to collect the
measurement outcomes O = (x̃1, . . . , x̃m) ∈ [d]m.

(2) Calculate on a classical computer for each x̃ ∈ O the
value of pU(x̃).

(3) Return the estimator

Êf = 1
|O|

∑

x̃∈O
f [pU(x̃)], (276)

where f is fF or fH for estimating the cross-entropy fidelity
or cross entropy, respectively.

It is important to keep in mind that step 2 requires that
a classical computer can compute individual probabilities
of the circuit. For this reason, XEB cannot be used directly
for circuits that are not classically simulable. Instead, one
can investigate the performance on restricted subclasses of
circuits that are still tractable on a powerful classical com-
puter and from these results extrapolate the performance in
the regime where one expects quantum supremacy.

If we assume that the target distribution pU is defined
using a Haar randomly drawn unitary U, we can derive a
guarantee for Protocol 60 for the linear cross entropy using
the techniques that we presented in this tutorial. Such a
guarantee was derived by Hangleiter [151].
Theorem 60: (Linear XEB sampling complexity [151]):
Let U ∈ U(d) be a Haar random unitary, |ψ〉 ∈ C

d and
B = {|x〉}dx=1 ⊂ C

d an orthonormal basis. Denote by pU
the associated measurement probability mass function,
Eq. (265), and by p̃U the implemented probability mass
function. Choose ε, δ > 0 and

m ≥ e2

2ε2 ln2
(

2d
δ

)
ln

(
2
δ

)
. (277)

Then, Protocol 60 returns with confidence 1− δ an unbi-
ased ε-accurate estimator Êf for FX (p̃U, pU).

The proof of the theorem relies on bounding the range
of the random variable pU(x̃) and applying the Hoeffding’s
inequality (23). We have already seen that for U drawn
from the Haar measure, pU is asymptotically of Porter-
Thomas shape. In particular, large probabilities in pU are
exponentially suppressed. For this reason, we expect that
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with high probability over the choice of U, pU(x) will
be bounded for all x. The following lemma makes this
expectation explicit.

Lemma 61 (pU is bounded with high probability): Let
U ∈ U(d) be a Haar random unitary and {|x〉}di=1 be an
orthonormal basis of C

d. Then, the measurement probabil-
ity mass function pU : [d] → [0, 1], pU(x) = | 〈x|U |0〉 |2,
fulfils pU(x) ≤ b for all x with probability of at least
1− de−db/e.

One way to prove the lemma is via the Porter-Thomas
density, Eq. (268). We follow a more self-contained strat-
egy by calculating the moments of pU. Then, the bound on
the moments can be translated to an exponential tail bound
using the following consequence of Markov’s inequality.

Theorem 62: (Subexponential tail bound, e.g., [17,
Proposition 7.11]): Let X be a random variable satisfying

E[|X |k]1/k ≤ αβ1/kk (278)

for all k ≥ 2. Then, for all t ≥ 2,

P[|X | ≥ eαt] ≤ βe−t. (279)

Proof. Applying Markov’s inequality, Eq. (18), and the
theorem’s assumption gives for k ≥ 2

P[|X | ≥ eαt] = P[|X |k ≥ (eαt)k]

≤ E[|X |k]
(eαt)k

≤ βe−k
(

k
t

)k

. (280)

Now choosing k = t yields the claim. �

Proof of the Lemma 62. We start by calculating the
moments of pU(x) as a random variable depending on U ∼
μU(d). First note that by definition pU(x) = |〈x|U |0〉|2 =
|〈x|ψ〉|2 with ψ drawn uniformly from S(Cd). Using the
moment operator K (k)

μ
S(Cd)

for |ψ〉 ∼ μ
S(Cd), Lemma 39 and

Eq. (153), we find that for all x ∈ [d]

EU∼μU(d)[pU(x)k]

= E|ψ〉∼μ
S(Cd)

[ 〈x |⊗k(|ψ〉〈ψ |)⊗k|x〉⊗k]

= 〈x |⊗kK (k)
μ

S(Cd)
|x〉⊗k

= k!(d − 1)!
(k + d − 1)!

( 〈x |)⊗kPsymk |x〉⊗k

= k!(d − 1)!
(k + d − 1)!

‖|x〉‖k =
(

k + d − 1
k

)−1

. (281)

Due to the inequality
(n

k

) ≥ (n/k)k, it holds for k ≥ 1 that(d+k−1
k

) ≥ [(d + k − 1)/k]k ≥ (d/k)k and, thus,

EU∼μU(d)[pU(x)k] =
(

k + d − 1
k

)−1

≥ kkd−k. (282)

By Theorem 63, this moment bound translates into the tail
bound

P[pU(x) ≥ t] ≤ e−dt/e (283)

for t ≥ 2e/d. Finally, using the union bound we conclude
that

P{pU(x) ≥ t ∀x ∈ [d]} ≤ de−dt/e, (284)

which completes the proof. �

Proof of Theorem 61. Let d = 2n. The estimator Êf is
the sum of m i.i.d. random variables f [pU(x̃)]. By the
form, Eq. (275), it is clear that Êf is an unbiased esti-
mator for Ef . The estimator Êf is the sum of m i.i.d.
random variables f [pU(x̃)]. Using Lemma 62 pU(x) ≤
b := (e/d) ln(2d/δ) with probability 1− δ/2. Thus, with
same probability, the random variable f [pU(x̃)], which is
in Eq. (275), is bounded by db− 1 = e ln(2d/δ). Now
Hoeffding’s inequality, Eq. (24), with failure probability
δ/2 yields the statement. �

Following the same strategy, one can also derive a sam-
pling complexity in O[ε−2 ln2(d) ln(1/δ)] for estimating
the cross entropy HX (p̃U, pU) by Protocol 60 [151]. Since
the cross entropy f [pU(x̃)] involves the logarithm, the
upper bound on the range of pU of Lemma 62 is no longer
sufficient to ensure boundedness of the random variables
that enter the estimator. In addition, one needs a lower
bound on the range of pU. This is not possible with our
bounds on the moments. Instead, one has to explicitly
calculate the tail distribution, Eq. (268).

From an estimate of the cross entropy one can calcu-
late an estimate of the cross-entropy difference by shifting
with HX (puni, pU). If the ideal circuit is sufficiently close
to a Haar random unitary, one can analytically calculate
HX (puni, pU). Alternatively, taking the average of the val-
ues calculated in step 2 provides a numerical estimate for
HX (puni, pU).

Ultimately, theoretical results for the hardness of sam-
pling tasks require closeness of the probability mass func-
tions in total variation (TV) distance or TV norm

‖q− p‖TV = 1
2

∑

x∈[d]

|q(x)− p(x)|. (285)

Without additional assumptions, it is not possible to derive
a TV norm bound from the cross entropy. A counter exam-
ple is discussed in Ref. [146]. Therein, Bouland et al. also
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hint at a possible bail out. An insightful presentation of
the argument is also given in Ref. [151]. Very close to the
desired bound is Pinsker’s inequality [147]

‖q− p‖TV ≤
√

DKL(q, p)
2

(286)

that bounds the TV norm in terms of the Kullback-Leibler
divergence DKL(q, p) := HX (q, p)− H(q). The Kullback-
Leibler divergence DKL(q, pU) is unfortunately not of
the form, Eq. (275), and cannot be directly estimated
by a XEB protocol. In addition to the estimate of the
cross entropy, the DKL(q, pU) requires an estimate of the
entropy of the implemented mass function q. If we assume
that the noise in our implementation only increases the
entropy such that H(q) ≥ H(p), we can avoid this obsta-
cle and swap H(q) for H(p), the entropy of the ideal
probability mass function. Thus, instead of DKL(q, p) we
consider DXE(q, p) = HX (q, p)− H(p). If H(q) ≥ H(p),
then DKL(q, p) ≤ DXE(q, p) and a TV norm bound is given
in terms of DXE(q, p) via Pinsker’s inequality.

Similar to the cross-entropy difference, Eq. (271),
DXE(q, p) can be estimated by measuring HXE(q, p) with
Protocol 60 and either estimating the shift H(p) analyti-
cally or numerically from the computed values pU(x̃i) of
step 2. If the ideal probability mass function is of Porter-
Thomas shape then one can calculate that DXE(q, p) =
1− dXE(q, p) and the above discussion can be translated
to the cross-entropy difference.

Further reading

The idea of demonstrating quantum supremacy in the
task of sampling from certain probability distribution that
naturally arise in quantum systems goes back to the pro-
posal of boson sampling in a linear optics [145,152]. Even
earlier, Terhal and DiVicenzo derived evidence for the
hardness of the sampling task associated with simulat-
ing restricted classes of quantum circuits [153]. Besides
random circuit sampling [74] multiple supremacy pro-
posals exist, e.g., for other restricted classes of quantum
computations [145,154–157] or for processes arising in
quantum simulation [158,159], see also Refs. [160–162].
A series of additional theoretical works collects evidence
for the robust hardness of the resulting approximate sam-
pling tasks, e.g., [146,163–165], and more fine-grained
statements about the sufficient scaling [166–168].

It was realized early on that the verification of quan-
tum supremacy is a daunting task [169,170]. One might
hope that it is possible to perform a noninteractive black-
box verification. Such a verification certifies the sampling
task solely from the samples itself. Unfortunately, the
same features of a probability distribution that guaran-
tee the classical hardness of the sampling task prohibit

the efficient verification from samples on a classical com-
puter [171]. Optimal but nonefficient strategies for general
verification problems were studied in Ref. [172].

We focus on cross-entropy estimation for the quan-
tum supremacy verification [74]. Another measure of the
form, Eq. (275), is employed in the heavy outcome gener-
ation (HOG) test, which uses a heavy-side function as f
[173]. A refined notion of the heavy outcome generation
test is the binned outcome generation (BOG) test pro-
posed in Ref. [146]. Note that these protocols still require
an efficient simulation of the quantum circuit on another
computing device. One approach to overcome this bot-
tleneck is to run the quantum circuit as part of a larger
circuit that includes so-called traps, subcircuits that can
be efficiently simulated [174]. Naturally, approaches for
quantum-state and -process certification can also be used to
verify a sampling task under a varying set of assumptions.
It is an ongoing endeavour to develop classical strategies
for spoofing verification protocols for quantum supremacy
with successes reported, e.g., in Refs. [175,176] and for
collecting evidence for the hardness of classical spoofing
[177].

An extensive, recent overview over verification and cer-
tification methods in the context of quantum supremacy
can be found in Ref. [151].
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