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We provide the first evidence that under certain conditions, electrons may naturally behave like a Grover
search, looking for defects in a material. The theoretical framework is that of discrete-time quantum walks
(QW), i.e. local unitary matrices that drive the evolution of a single particle on the lattice. Some of these are
well-known to recover the (2 + 1)–dimensional Dirac equation in continuum limit, i.e. the free propagation of
the electron. We study two such Dirac QW, one on the square grid and the other on a triangular grid reminiscent
of graphene-like materials. The numerical simulations show that the walker localises around a defect in O(

√
N)

steps with probability O(1/ logN). This in line with previous QW formulations of the Grover search on the 2D
grid. But these Dirac QW are ‘naturally occurring’ and require no specific oracle step other than a hole defect
in a material.

Quantum Computing has three main fields of applications
for quantum computing : quantum cryptography ; quantum
simulation ; and quantum algorithms (e.g. Grover, Shor...).
Whilst the first two are considered short and mid term applica-
tions respectively, the last one, perhaps the most fascinating, is
generally considered to be a long term application. This is be-
cause of the common understanding that we will need to build
scalable implementations of universal quantum gate sets with
fidelity 10−3 first, and implement quantum error corrections
then, in order to finally be able to run our preferred quantum
algorithm on the thereby obtained universal quantum compu-
ter. This seems feasible, yet long way to go.

In this letter we argue that this may be a pessimistic view.
Scientists may get luckier than this and find out that nature ac-
tually implements some of these quantum algorithms ‘sponta-
neously’. Indeed, the hereby presented research suggests that
the Grover search may in fact be a naturally occurring phe-
nomenon, when fermions propagate in crystalline materials
under certain conditions.

Amongst all quantum algorithms, the reasons to focus on
the Grover search [14] are many. First of all because of its
remarkable generality, as it speeds up any brute force O(N)
problem into a O(

√
N) problem. Having just this quantum

algorithm would already be extremely useful. Second of all,
because of its remarkable robustness : the algorithm comes
in many variants and has been rephrased in many ways, in-
cluding in terms of resonance effects [23] and quantum walks
[10].

Remember that a quantum walks (QW) are essentially lo-
cal unitary gates that drive the evolution of a particle on a
lattice. They have been used as a mathematical framework for
different quantum algorithms [3, 27] but also for quantum si-
mulations e.g. [4, 11, 13]. This is where things get interesting.
Indeed, it has been shown many of these QW admit, as their
continuum limit, some well-known PDE of physics, such as
the Dirac equation [7, 12, 15, 21]. Recall that the Dirac equa-
tion governs the free propagation of the electron. Thus, these
Dirac QW provided ‘quantum numerical schemes’, for the fu-
ture quantum computers, to simulate the electron. For instance
[17] shows that it is possible to describe the dynamics of fer-

mions in graphene using QW. This is great, but now let us turn
things the other way round : this also means that fermions pro-
vide a natural implementation of these Dirac QW. Could they
be useful algorithmically?

Here we provide evidence that these Dirac QW work fine
to implement the diffusion step of the Grover search. Thus,
fermions may provide a natural implementation of this step.
However, recall that the Grover search is the alternation of
a diffusion step, with an oracle step. The later puts on a mi-
nus one phase whenever the walker hits the solution of the
problem. Could the oracle step be naturally implemented in
terms of fermions, as well ? Here we provide evidence that the
mere presence of hole defect suffices to implement an effec-
tive oracle step.

This paper focusses on Dirac QW in (2 + 1)–dimensions,
on both the square grid and the triangular grid. The trian-
gular grid is of particular interest for instance because of its
ressemblance to several naturally occurring crystal-like mate-
rials. Moreover, it features topological phase effects which, by
creating edge states around the hole defect, may help improbe
localization. Notice the Grover search has already been des-
cribed on triangular grids in [2, 9] and that, more generally,
the Grover search has already been expressed as a QW on a
variety of graphs before, yielding O(

√
N log(N)) time com-

plexity algorithms [1, 22, 25]. The aim of this contribution is
to point out that simple variations of these are in fact naturally
occurring phenomenon—with the hope to open a new and
more direct route towards implementing the Grover search.

DIRAC QUANTUM WALKS

We consider QW both over the square and the triangu-
lar grid, i.e. a grid formed by tiling the plane regularly with
equilateral triangles. Consider the line segments along which
the facets of the squares (or triangles) are glued, and place
a point in the middle. The walker lives on those points. For
the square grid we may label these points by their positions
in Z2, for the triangular grid this would be a subset of Z2.
The walker’s ‘coin’ or ‘spin’ degree of freedom lies inH2, for
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FIGURE 1: Quantum Walks scheme on triangular (left) and squared
(right) lattice.

which we may chose some orthonormal basis {|v−〉 , |v+〉}.
The overall state of the walker lies in the composite Hil-
bert space H2 ⊗ HZ2 and may be thus be written |ψ〉 =∑

x ψ
−(x) |v−〉 ⊗ |x〉+ ψ+(x) |v+〉 ⊗ |x〉, where the scalar

field ψ− (resp. ψ+) gives, at position x ∈ Z2, the amplitude
of the particle being there and about to move backward (resp.
forward) along a certain direction u. We use (t,x) ∈ N×Z2,
to label respectively instants and points in space and let the
evolution operator be, in natural units :

|ψ(t+ ε)〉 = ΠiWiTi,ε |ψ(t)〉 (1)

with the set of coin-state-dependent discrete translation ope-
rators Ti,ε, each along directions ui, defined as :

Ti,ε

(
ψ+(x)
ψ−(x)

)
=

(
ψ+(x + uiε)
ψ−(x− uiε)

)
and Wi ∈ U(2). The QW we consider in this paper are Dirac
QW, meaning that

ΠiWiTi,ε ≈ exp(iεHD) (2)

as we neglect the second order terms in ε, and with HD the
Dirac Hamiltonian in some well-chosen representation and in
~ = c = 1 units, e.g. HD = pxσx + pyσy +mσz .

Square grid. Let us consider the unit vectors along the x–
axis and y–axis, namely {ux,uy} and use them to specify the
directions of the translations Tx,ε and Ty,ε. Eq. () then reads :

U = W+Ty,εW−Tx,ε

where W± = exp(iσxθ±) with θ± = ±(π4 ± εm) and m a is
real constant, namely the mass. In the formal limit for ε→ 0,
the Eq. recovers the Dirac Hamiltonian in (2 + 1)–spacetime.
Iterates of the walk converge towards solutions of the Dirac
Eq., as was proven in full rigour in [6].

Triangular lattice. For the triangular lattice let us consi-
der the unit vectors {u0,u1,u2}, as in Fig. 1 and defined by

uk = cos

(
2kπ

3

)
ux + sin

(
2kπ

3

)
uy for k = 0, 1, 2.

and use them to specify the directions of the translations Ti,ε.
Eq. () then reads :

e−iεHD = WT2,εWT1,εWT0,ε

with W = ei
π
3 e−i

α
2 σye−i

π
3 σzei

α
2 σye

−iε 3√
5
mσz the coin ope-

rator. In [5] it has been proved in detail by some of the authors
how this particular choice also leads, in the continuum limit,
to the Dirac Hamiltonian in (2 + 1)–spacetime.

Defects. A sector of a crystallographic lattice may be in-
accessible, e.g. due to surface defects such as the vacancy of
an atom (e.g. Schottky point defect) and others. These affect
the physical and chemical properties of the material, inclu-
ding electrical resistivity or conductivity. In fact all real so-
lids are impure with about one impurity per 106 atoms [16].
Here we model these defects in the simplest possible way :
locally, a small number of squares or triangles are missing—
thereby breaking the translation invariance of the lattice. In
other words, the walker is forbidden access to a ball B of unit
radius, as in Fig. 2. This is done by reflecting those signals that
reach the boundary ∂B of the ball, simply by letting W = I2
on the facets around ∂B.

Edge states. In both of these Dirac QW, one may notice
that wherever we replace the coinW by identity, the walks re-
duce to just anti-clockwise rotation, see Fig. 1. Still, the opera-
tors and have different topological properties around ∂B. The
square lattice walk has vanishing Chern number and trivial to-
pological properties [18], whereas the triangular walk has to-
pologically non-trivial and Chern number equal to one [19].
In the triangular case the positive and negative component de-
couple respectively in the grey and the white triangles, and
may be thought of as inducing polarized local topological cur-
rents of spin, called edge states [26]. According to [26], this
phenomenon will be observed whenever initial states have an
overlap with ∂B, elsewhere the walker does not localize and
explores the lattice with ballistic speed. Thus, we expect these
topological effects to play a role in the triangular case only.

Our conjecture is that, starting from a uniformly super-
posed wavefunction, the walker will, in finite time, localise
around the hole defect in O(

√
N) steps, with probability in

O(1/ log(N)), with N the total number of squares/triangles.
In the following we discuss the numerical evidence we have
for such a conjecture.

GROVER SEARCH

Our numerical simulations over the square and triangular
grids are exctly in line with a series of results [1, 10, 10, 25]
showing that 2D spatial search can be performed in O(

√
N)

steps with a probability of success in O(1/ logN). With
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FIGURE 2: Hole defect in triangular (left) and squared (right) lattice.
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FIGURE 3: Square grid periodic localization. Probability of being
localized around the center of the hole defect versus time. For m = 0
and N = 2500.

O(logN) repetitions of the experiment one makes the
success probability an O(1), yielding an overall complexity
of O(

√
N logN). Making use of quantum amplitude ampli-

fication [8], however, one just needs O(
√

logN) repetitions
of the experiment in order to make the probability an O(1),
yielding an overall complexity of O(

√
N logN). This bound

is unlikely to be improved, given the strong arguments given
by [20]. In particular [22, 24] explain why the extra

√
logN ,

with respect to Grover’s original algorithm, is unlikely to be
removed.

These work were not using Dirac QW, nor defects. Our aim
here is demonstrate that QW which recover the Dirac equa-
tion, also perform a Grover search, as they propagate over the
discrete surface and localise around its defects. More concre-
tely we proceed as follows : (i) Prepare, as the initial state
the wavefunction which is uniformly superposed ever every
square or triangle, and whose coin degree of freedom is also
the uniformly superposed (|v+〉+ |v−〉)/

√
2. Notice that am-

plitude inside the hole defect is zero ; (ii) Let the walker evolve
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FIGURE 4: Square grid scalings. Peak probability of being localized
around the hole defect, versus the number of squares in the grid. The
inset shows the peak recurrence time.

with time ; (iii) Quantify the number of steps t before the wal-
ker reaches its peak probability p of being localized in a ball of
radius 2 around the center of the hole defect, and estimate this
probability ; (iv) Characterize t(N) and p(N), i.e. the way the
peak recurrence time and the peak probability depend upon
the total number of squares/triangles N .
Indeed the probability of being found around the hole defect
has a periodic behavior, see in Fig. 3 : for instance over a
square lattice of N = 2500 sites, for m = 0, the peak re-
currence time is t = 50, and the maximum probability is
p ' 10−1. The dependencies in N were interpolated from
the data set shown Fig. 4, we observe that t(N) =

√
N

and p(N) ' 1/ logN , with a prefactor depending upon m.
Clearly, repeating the experiment an O(logN) number of
times will make the probability of finding the hole defect as
close to 1 as desired, leading to an overall time complexity in
O(
√
N logN). Again we could, instead, propose to use quan-

tum amplitude amplification [8] in order to bring the needed
number of repetitions down anO(

√
logN), leading to an ove-

rall time complexity in O(
√
N logN). But it seems that this

would defeat the purpose of this paper to some extent : since
our aim is to show that there is a ‘natural implementation’ of
the Grover search, we must not rely on higher-level routines
such as quantum amplitude amplification.

Over the triangular grid the situation is slightly more intri-
cate, as two phenomena seem to coexist.
On the one hand, the Grover search is again at play. Indeed the
data set of Fig. 5, confirms the results obtained over the square
grid : the peak recurrence time is again t(N) ' O(

√
N),

and its corresponding peak probability is again p(N) '
O(1/ logN) for large N , although this time with a prefac-
tor that depends upon the mass. Again this leads to an overall
complexity of O(

√
N logN), or O(

√
N logN) using ampli-

tude amplification.
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FIGURE 5: Triangular grid scalings. Recurring peak probability of
being localized around the hole defect, versus the number of triangles
in the grid. The inset shows the peak recurrence time.

On the other hand, a topological effect is at play. Indeed, an
edge state rapidly appears, on the boundary ∂B of the hole
defect. This first peak’s probability also seems to scale as
p′(N) ' O(1/ logN), but with an occurrence time t′m which
is constant in N whenever m > 0. At first this seems extre-
mely promising, suggesting that the hole defect may be found
in O(logN), breaking Grover’s optimality bound. On second
thoughts one realizes that this is overoptimistic, and that this
scaling cannot hold for large N . Indeed, if the first peak’s oc-
currence time t′m is constant, then its amplitude can only ever
be drawn from the πt′m

2 adjacent sites, each of which star-
ted with probability 1/N . Summing them all yields πt′m

2
/N .

Thus p′(N) is, in the long run an O(1/N) : the first peak
brings no complexity advantage. By augmenting the mass as
a function ofN , one can augment t′m(N) and escape this upper

bound, but then t′m(N) needs again be an O(
√
N). Still, at the

technical level it may be advantageous, for instance, to tune
the mass so that t′m(N) equals t(N) and have both the Grover
search effect and the topological effect interfere constructi-
vely.

CONCLUSION

It is now common knowledge that Quantum Walks (QW)
implement the Grover search, and that some QW mimic the
free propagation of the electron. Yet, could this mean that free
electrons naturally implement the Grover search? Answering
this question positively may be the path to a serious technolo-
gical leap, whereby experimentalist would bypass the need for
a full-fledged scalable and error-correcting Quantum Compu-
ter, and take the shortcut of looking for ‘natural occurrences’
of the Grover search instead.
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FIGURE 6: Triangular grid edge states appearance. First peak pro-
bability of being localized around the hole defect, versus the number
of triangles in the grid. The inset shows the occurring time of this
first peak.

So far, however, this idea has remained unexplored. The
QW used to implement the Grover diffusion step had nothing
to do with the Dirac QW used to simulate the electron. Mo-
reover, the Grover oracle step seemed like a rather artificial,
involved controlled-phase, far from something that could oc-
cur in nature. This contribution begins to remedy both these
objections.

Indeed, we used Dirac QW over both the triangular and the
square grid as the Grover diffusion step. Instead of alternating
this with an extrinsic oracle step, we coded for the solution
directly inside the grid, by introducing a hole defect. We ob-
tained strong numerical evidence showing that the Dirac QW
localize around the hole defect in O(

√
N) steps with proba-

bility O(1/ logN), just like previous QW implementations of
the Grover search would. We observed how sometimes topo-
logical effects come into play that may be of technical help.

Our next step is to use Dirac QW to locate not just a hole
defect, but a particular QR code–like defect, amongst many
possible others that could be present on the lattice. This would
bring us one step closer to a natural implementation of an un-
structured database Grover search.

Acknowledgments The authors acknowledge inspiring
conversations with Fabrice Debbasch, that sparked the idea
of Grover searching for surface defects and enlightening dis-
cussions on topology with Alberto Verga. This work has been
funded by the Pépinière d’Excellence 2018, AMIDEX fonda-
tion, project DiTiQuS.

∗ Electronic address: pablo.arrighi@univ-amu.fr
† Electronic address: giuseppe.dimolfetta@lis-lab.fr

[1] Scott Aaronson and Andris Ambainis. Quantum search of spa-

mailto:pablo.arrighi@univ-amu.fr
mailto:giuseppe.dimolfetta@lis-lab.fr


5

tial regions. In 44th Annual IEEE Symposium on Foundations of
Computer Science, 2003. Proceedings., pages 200–209. IEEE,
2003.

[2] G. Abal, R. Donangelo, M. Forets, and R. Portugal. Spatial
quantum search in a triangular network. Mathematical Struc-
tures in Computer Science, 22(3) :521–531, June 2012. arXiv :
1009.1422.

[3] Andris Ambainis, Andrew M Childs, Ben W Reichardt, Robert
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