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The security of messages encoded via the widely used RSA public key encryption system rests on
the enormous computational effort required to find the prime factors of a large nunbsing
classical(conventional computers. In 1994 Peter Shor showed that for sufficiently |age
quantum computer could perform the factoring with much less computational effort. This paper
endeavors to explain, in a fashion comprehensible to the nonexpert, the RSA encryption protocol;
the various quantum computer manipulations constituting the Shor algorithm; how the Shor
algorithm performs the factoring; and the precise sense in which a quantum computer employing
Shor’s algorithm can be said to accomplish the factoring of very large numbers with less
computational effort than a classical computer. It is made apparent that factéropgnerally
requires many successive runs of the algorithm. Our analysis reveals that the probability of
achieving a successful factorization on a single run is about twice as large as commonly quoted in
the literature. ©2005 American Association of Physics Teachers.
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[. INTRODUCTION quantum computer employing Shor’s algorithm can be said
to accomplish the factoring of very large numbers with less
Recently published papérs have attempted to explain computational effort than a classical computer. Many details
how a quantum computer differs from a classical, that is, @f the underlying number theory, which are important not
conventional, computer. However, neither of these papers ofnly for understanding why the RSA system works, but also
fers a detailed discussion of the factoring algorithm develfor comprehending how Shor’s algorithm enables the factor-
oped by Peter Shdin 1994, although this algorithm, whose ization of large numbers, are discussed in the appendices.
implementation could frustrate one of the most widely used Except for its discussion of the Shor algorithm, which is
modern methods of encrypting messages, provides the mogesigned for a quantum computer, this paper is concerned
impressive known illustration of the increased computingsolely with classical computers. In particular, | assume that
power potentially attainable with quantum computers. Thisthe enciphering and deciphering procedures described in Sec.
paper furnishes a self-contained explanation of Shor’s algoH are performed with classical computers, which experience
rithm, as well as of the algorithm’s relevance to modernhas demonstrated is practical with numbers of the size pres-
cryptography. Shor’s original papeand other publications ently being used as RSA keys. The possible use of quantum
discuss the Shor algorithm in a manner suitable for quanturaomputers to perform this enciphering and deciphering and
computing specialist:® Less technical presentations more other aspects of quantum cryptography and/or computation
suitable for the nonspecialist readers of this journal also araside from Shor’s algorithm are beyond the scope of this
available’° Various Web sites link to a wide variety of pub- paper. Also beyond the scope of this paper are the observed
lications in the quantum computing literature, organized un-and anticipated difficulties involved in actually constructing
der numerous suitable headings including Shor’s algorithm. functioning quantum computers. These difficulties are well
The contents of this paper can be summarized as followgliscussed in the literature, for example, in Ref. 6.
Section Il first describes the basic elements of classical cryp-
tography, wher&keysare employed to encipher and/or deci-
pher messages to prevent those messages from being readlhyCRYPTOGRAPHY, KEY DISTRIBUTION
anyone other than their intended audience. Section Il theaND NUMBER THEORY
explains in detail the enciphering and deciphering procedures
in the RSA systemd!~! an important modern scheme for  As Ekert has observeld,“Human desire to communicate
sending secret messages. These explanations and illustratiosecretly is at least as old as writing itself and goes back to the
require the presentation of the number theory underlying théeginnings of our civilization.” The full history of secret
RSA system. Without some understanding of this underlyingcommunication until about 1965 is recounted by KahBe-
number theory, the ability of the RSA system to transmitvelopments after about 1965, including those advances in
secure messages seems magical. Section Il goes on to esecret communication to which Shor’s algorithm pertains,
plain how the security of the RSA system critically dependsare described by Singli,who also(but less fully than Kahn
on the fact that using classical computers to factor largeeviews the pre-1965 history. Katincarefully defines the
numbers requires huge outlays of computer resources aridrmsplaintext(the original uncoded messageryptogram
time. The relevance of Shor’s factoring algorithm to the se<{a writing in code, for example, the enciphered mesgday
curity of the RSA system thereby becomes evident. After(the information or system employed to encipher the plain-
briefly summarizing the relevant properties of quantum comiext message cryptography (the acts of enciphering the
puters, Sec. Il fully describes and illustrates Shor’s algo-plaintext into a cryptogram, and/or of deciphering the cryp-
rithm. Section Ill also explains the precise sense in which dogram by someone who knows the kesind cryptanalysis
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(the art/science of code breaking, that is, of ferreting the keyelated deficiency that if Bob wants to receive secret mes-
from the cryptogram This paper adopts Kahn's terminol- sages from more than one Alice, then he either must set up
ogy. different keys with each Alice or else risk the possibility that
Until about 1975 cryptographers employsgmmetricor ~ one Alice will intercept and readily decipher a message sent
private (also known assecrej key systems only’ In such  to Bob by another Alice.
systems the key used by Ali¢eonventionally the sender of ~ These deficiencies are avoidedasymmetriqcommonly
the cryptogramto encipher the message is the same as théermedpublic) key systems, where the key Alice employs to
key Bob (conventionally its receiveremploys to decipher encipher her message is not the same as the key Bob em-
the cryptogram. One of the simplest type of symmetric keygloys to decipher the cryptogram he receives. The differ-
(which also appears to have been the earliest type to be er@nces between symmetric and asymmetric key systems can
ployed, dating back to nearly 2000 B*).is termedsubsti-  be visualized in terms of a safe: With a symmetric system the
tution. In substitution-key cryptography the cryptogram is key Alice employs to open the safe and lock her message
constructed from the plaintext by replacing each leipéthe  inside it is the same as the key Bob employs to open the safe
alphabetin the plaintext with some other chosen expressionand remove the message. With an asymmetric system Alice’s
The replacement expression can be another letter of the g€y enables her to open the safe just enough to insert her
phabet, or a symbol of some kind, or an arbitrary combinamessage, but no more. Only Bob’s key can open the safe’s
tion of letters and symbols. The same letter of the alphabet if0or sufficiently to permit message remo%aindeed in the
different portions of the plaintext may be replaced by differ-RSA systent, one of the most commonly employed public
ent expressions. The key is the chosen replacement schenk&Y systems, Alice’s enciphering key is made public; it is not
In the very simplest substitution keys, which for the purposeat all secret but rather is available to any Alice who wishes to
of this paper may be termeshique substitutionAlice and ~ Send Bob an encrypted message. Bob’s deciphering key re-
Bob agree that the replacements will be unique and one tBhains his secret. The nature of the RSA system is given in
one, that is, any given letter in the plaintext always is re-the following.
placed by the same expression, and different letters of the
alphabet are replaced by different expressions. Althougia, The RSA public key system
cryptograms constructed via unique substitution keys can ) _ ) )
seem impregnable, especially when the key involves unusual Bob creates his RSA public key system in the following
taking advantage of the peculiarities of the languggs- P andd, and then computes their produdt=pgq. Next he
sumed to be known or correctly guess@dwhich the plain- also computes the produghb=(p—1)(q—1)=N+1—(p
text had been written, as 15th century Arab cryptologistst+ ), and then selects a positive integewhich is coprime
already knew® The writings of Edgar Allan Pé/é) and to ¢ (meaning thake and ¢ have no common prime factors
Arthur Conan Doyl provide celebrated fictional cryp- other than L Finally he computes a positive integéisuch
tanalyses of unique substitution cryptografimsthese cases that the produck =de has the remainder unity when divided
with English plaintexts where letters of the alphabet had by ¢. Bob now has all the required components of his public
been replaced by symbols. In the most transparent uniquieey system except the specified convenient-to-use symmetric
substitution cryptograms a single alphabet letter is substikey whereby any Alice can convert her plaintext into a cryp-
tuted for each plaintext letter, consistent with a preselectetbgram consisting of a sequen€ of positive integersc,
cipher alphabetCryptograms constructed in this fashion, but which she then will further encrypivia Bob’s proclaimed
employing a different cipher alphabet each day, are regularlprocedur¢into the sequencs of positive integers actually
published in many newspapers as puzzles to be decipheragnt to Bob.
by readers using, for example, the fact that in English the The nonsecret components of Bob’s public key system,
letter e is by far the most frequeftt. which Bob now is ready to broadcast for the benefit of one
But substitution cryptograms need not be constructed wittand all, are(i) the positive integerdl ande, which here will
unique keys. Moreover, nonunique substitution cryptogram®e termed thé&key numbeiand encryption exponentespec-
can be and have been made very difficult to cryptanalyse. Aively; (ii) the details of the symmetric key Alice will use to
famous illustration of this last assertion is provided by theconstruct heiC, and which Bob also will use to reconstruct
Enigma machine employed by the German army duringAlice’s original plaintext message once he has deciph&ed
World War I, which constructed cryptograms where eachand thereby recovere@ (the only restriction orC is that
letter was replaced by a single letter as in newspaper cryveryc must be less thaN); and(iii) the surprisingly simple
tograms, but where the cipher alphabet employed to enciphgarocedure for constructing the elemestsf S from the ele-
any given plaintext varied not merely from day to day, butmentsc of C, namelys is the integer remainder wheaf is
also from one plaintext letter to the next, in accordance wittdivided byN.!! Note that the symmetric key which Alice and
a predetermined randomly selected complicated %key. Bob share now is completely public; there is no attempt
Whether or not very difficult to cryptanalyse, however, all whatsoever to keep it secret. Similarly, Alice transmits her
substitution and other symmetric key cryptographic systeméinally enciphered cryptograrf to Bob via perfectly open
have a deficiency known as ttkey distribution problemas = communication channels, for example, by email. The secret
numerous author@.g., Ekert®) have observed: Before Alice procedure by which Bob extracts the origif@from S par-
and Bob can begin exchanging cryptograms, they mustllels, but is not the direct inverse of, the public procedure
exchange—in a non-encrypted form—the information neceswhich constructeds from C, namely, for eacts Bob com-
sary to establish their key. They cannot be confident that thiputes the integen which is the remainder whesf is divided
information exchange has not been intercepted unless thgy N.** Bob is confident that because he has kept the decryp-
exchange takes place in the same room, and perhaps not eviizn exponentd secret, he and only he possesses the secret
then?® Symmetric key cryptographic systems also have theey that enables deciphering &f
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At this juncture it is instructive to illustrate the encryption c®=s (mod N). 2
and decryption of messages in this RSA public key system of . . , . .
Bob’s, in particular the dread message to Bob from Alice that>Milarly Bob’s secret key procedure for decipherigan
“The FBI came.” To do so, it first is necessary to specify the P& written asc=u, where
symmetric key. A possible easily usable symmetric key, =y (mod N). 3)
which Singh suggest, requires Alice to replace each letter ) o ,
of the alphabet by its ASCII equivalent. AS&liis the pro- ~ Finally, the expression yieldind from e is
tocol that converts computer keyboard strokes into the ge=1 (mod ¢). (%)
seven-bit electrical impulses that transmit our email; each _ . _
impulse is the binary representation of a positive intdgss ~ Because Eq(1) means there is no remainder wher b is
than 2=128). In ASCII the 26 upper case letters A through divided bym, Eq. (1) can be restated as
Z are represented by the integéirs base 1065 through 90; a—b=0 (mod m). (5)
the corresponding lower case letters are represented by the ) o )
integers 97 through 122; a space between words is repr&ut if a—b is exactly divisible bym, then so isa—b—m,
sented by the integer 64; the ASCII integer representations dhat is, if Eq.(1) holds, then it is also true that
other communication symbols, for example, the period orthe  ,_p4 (mod m). (6)
comma, are irrelevant here. Similarly, it is simpler to ignore
the distinction between upper and lower cases, and to repr&quations(1) and (6) imply that Eg.(2), though perfectly
sent the letters A through Z by the integers 2 through 27correct, does not uniquely determis&ithout the additional
respectively, saving the integer 1 for the space betweegondition thatsis a positive integer less thaw, which then
words. guarantees thatis indeed the integer remainder whehis

Thus, Alice’s C, corresponding to her dread message, idivided by N. Similarly Eq.(3) does not uniquely specify
21,9,6,1,7,3,10,1, 4, 2, 14, 6. These integers are writtewithout the additional condition that is a positive integer
in base 10, and, unless otherwise noted, integers will be writless than\.
ten in base 10 in the remainder of this paper. That Alwith The use of congruences eases Alice’s task of constructing
Bob’s blessing may choose to write her integers in anotherher cryptogramsS from C via Eq. (2). In particular, for the
base, or may transmit he3 to Bob via email(where the key numbemMN =55, encryption exponerg=23, and the ex-
digits 0 through 9 she uses to write her base 10 integers withmpleC, Alice’s Sis 21, 14, 51, 1, 13, 27, 10, 1, 9, 8, 49, 51.
be converted into electrical impulses that are the ASCIIBy using the decryption exponedt=7 in Eq.(3), Bob can
seven-bit binary equivalents of the base 10 integers 4&hen decrypt thisinto Alice’s original C. These calculations
through 57, respectivel) does not affect the validity of any  are illustrated in Appendix A. Appendix C contains the proof
conclusions given in the following. that the RSA system enables Bob to correctly decipher every

Next it is necessary to choose the ppiandq of primes S Alice transmits and the proof of the fact that E¢@)—(4)
whose product yields thd our hypothetical Bob had broad- jmply thatu=c whenN=pq and¢=(p—1)(q—1).
cast for Alice’s use. | will choose the pair 5 and 11, which
makesN=55, a conveniently small number for illustrative
purposes, but still large enough to satisfy the requiremen&
that N exceeds everg in C. The quantity p=4x10=40. '

Thus | now can choose=23, consistent with the require-  The exampleS was obtained from the examp@ by suc-
ment thate be coprime tog. To complete Bob’s public key, cessively inserting each individualinto Eq. (2). But inser-
we need a positive integersuch that whenle is divided by  tion of the same into Eq.(2) always yields the sam® For
¢, the remainder is unity. The integet= 7 fits the bill, asthe example, because both the third and last numbe€are 6,
reader can verify. The convenient method which Bob can usboth the third and last numbers Biturn out to be 51. In
to find d in actual RSA practice is presented in Appendix other words, our exampl8 is identical to theS into which
D4. Alice’s original plaintext would have been enciphered using
Finally, | am in a position to illustrate how Alice con- an appropriate unique substitution key of the sort described
structs her cryptogrars from C. To do so efficiently, how- at the beginning of Sec. II. Of course, with actual RSA key
ever, it is desirable to introduce the modular arithmetic no-numbersN the actually encountereslin S typically will be
tation employed in number theofS. very large, not the two digit numbers less than 55 of our
exampleS. Nevertheless, it is now apparent that, despite the
RSA system’s number theoretic sophistication, if Alice con-
B. Modular arithmetic formulation of the RSA public tinues to routinely enciphelvia Eq. (2)] her plaintext into
key system individual e_Iement$ one letter at a time, then the varloE_Is
she transmits to Bob could be readily cryptanalysed, without
If the positive integeb is the remainder when the positive any need to guess Bob’s decryption exporgot to employ
integera is divided by the positive integen, thena—b is  EQ.(3) at all. In particular, because Alice does not attempt to
exactly divisible bym. In number theory, if a difference of keep secret the messagBshe sends to Bob, the relative
two integersa and b (each of which may be positive or frequencies and other characteristics of the var®us her
negative is exactly divisible by the positive integen, then ~ messages, assumed to be written in English, are readily as-

Cryptanalysis of RSA system messages

we saya andb are congruent modulm, and write® certainable. Consequently the standard deciphering
technique¥ 22 applicable to symmetric unique substitution
a=b (mod m). (1) keys will work quite well(for example, the observation that
Thus the procedure for obtaining the elemesté Sfrom the  a relatively infrequens,; almost invariably is followed by
elementsc of C can be written as anothers, suggests; is g ands, is u).
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However, there is no requirement that Alice obt&by  D. Modern RSA systems and factoringN=pq
successively inserting each individuainto Eq.(2). For in-  with classical computers
stance, Alice can simply and efficiently obtain a very much

more difficult to cryptanalys&’ by first converting heiC It follows that Bob can be confident in the security of his

. , . | RSA system, provided there is no practical likelihood that a
into a newC compo§§d of mtgggrs constrl'Jct'ed from would-be codebreaker will be able to deduce the prime fac-
Ia_lrge blocks of the ergmad: entries; the only limit on the torsp andq of N from the publicly known quantitiesl and
size of these blocks is that eachmust be less than the key e The basis for Bob's confidence is the difficulty of factor-
numberN. ObVlOUSly, there can be essentla”y no avallableing, with classical ComputerS, numbekks of the astonish-
useful information, for the purposes of cryptanalysis,ingly large magnitudes typically employed in modern RSA
about the relative frequencies with which blocks of saykeys. According to recent publications by RSA Security, the
40 letters occur in English, especially when during thecompany founded by the inventors of the RSA system, key
enciphering those letters can be interrupted by punctuationumbersN of 1024 binary digits are now the recommended
marks, as well as by superfluous digit combinations. Thusand popularly employed sizes for corporate #5024 bi-
returning to our illustrative C, whenever Bob’s key nary digits correspond to 309 decimal digits.

numberN exceeds 1#, Alice could make her illustrative The most obvious way to factor a large intedéthat is

S very much more difficult to decipher by inserting into not a prime is to perform the sequence of divisions\Ndby

Eqg. (2) not the individual 12c’'s comprising the illustra- the integers 2,3,= /N until a factor ofN is found. IfN has
tive C, but rather the single 40-digit integerc’ only two prime factors, each of the order ¢N, then ap-
=2143790906449201290703821001045802143806. d'his proximately\/ﬁ divisions would be required to find the fac-
is composed of 20 pairs of digits where, reading from left totors of N. Thus, as Eke?t has pointed out, this straightfor-
right, the pairs whose magnitudes are less than 28 comprisgard procedure cannot possibly be relied on to yield the
the original 12c’s in their correct order irC, but each pair prime factors of really large numbeis, numbers of 100
exceeding 28 is superfluous and randomly chosen. Alice’slecimal digits say, which, although very large by ordinary
insertion of thisc’ into Eq.(2) would yield a singles’ com-  standards, are very much smaller than the present RSA-
prising Alice’s entire new sequenc® to be transmitted to fecommended key numbers of 309 decimal digits. For a 100
Bob. Thiss' would have no discernible features related todecimal digit numben, that is, forN of the order of 16

the presence of those superfluities; yet Bob, after recapturingPproximately 18 divisions may be required to ensure fac-
¢’ from this s’ using Eq.(3), would instantly be able to toring by this straightforward procedure. Even if the average
recognize and discard the superfluous pairs, that is, he woufime for a single division is as small as s, already a
have no difficulty reconstructing Alice’s original “The FBI Very small time for today’s fastest computéfshe total time
came” from his recaptured’. Alice could similarly break ~required to factoN~10'in this fashion would be-10*’s,

up, into successively transmitted blocks of 40 digits, mes& duration much longer than 4.32.0'"s=13.7 billion years,
sages longer than our illustrative “The FBI came.” the present estimate of the age of the univérse.

This 40-block scheme is by no means the only conceivable Nevertheless, in 1994 the 129 decimal digit public key
means of replacing a letter by lett6rby anS’ whose ele- numberN known as RSA-129 was factored after only eight
mentss’ bear no useful relation to the characteristics of theToNths of number crunching, thereby winning a symbolic
language in which the original plaintext message was writ$100 prize Martin Gardner had offered in 1977, shortly after

ten. Moreover, modern RSA key numbexspermit blocks ~ RoA-129 was first made _publi€. This accomplishment
considerably larger than merely 40 decimal digits. In short V@S made possible by the ingenuity of mathematicians who

; : : .~ .Were able to devise factoring procedures far more powerful
available and feasible encryption systems make the IIke“t an the brute force procedure we just described. In particu-

hood that Alice’s RSA-system messages could be decipherq r, RSA-129 was factored using thguadratic Sieve®
via the aforementioned techniques, even after receipt by thg " 1999 RsA-155 (correspondinggto 512 binary digits
would-be decipherer of many openly transmitted messag as factored after no more than seven months of

of hers, virtually zero. On the other hand, techniques tha omputing time® using the even more powerfulumber
depend primarily on language properties are not the onlyeq sieve?”’ngHis factorization of RSA-155, in response to

conceivable means whereby a third party might seek to deg,q Factoring Challeng? started in 1991 by RSA Security,

cipher Alice’s RSA messages to Bob. Descriptions of alteryg the primary reason that RSA Security increased its recom-

native deciphering schemes are beyond the scope of this paianded key numbeN size from the previous RSA-155 to
per. It is sufficient to state that no known means Ofyne present RSA-30%, RSA Security now recommends a
deciphering RSA messages is computationally more practlcqgey number size of 2048 binary digitRSA-617 for ex-
than decipherment via factorization of the key numNein tremely valuable key® The wisdom of this recommenda-
particular, in 1996 a very thorough examinatioof the se-  tion is manifested by two recent successful factorizations in
curity of the RSA system found that “While it is widely response to the Factoring Challenge. Factorization of RSA-
believed that breaking the RSA encryption scheme is as dif1 60 (corresponding to 530 binary digite/as announceédon
ficult as factoring the key numbét, no such equivalence has 1 April, 2003. The announcement stated that RSA-160 was
been proven.” | am not aware of any later publications thatfactored in less time than RSA-155, and made use of fewer
contradict this conclusion. The relevance of being able tGomputers in parallel. The announcement that RSA{td4
factor N is that once the primep and g factoring N are  responding to a number of 576 binary digitsad been fac-
known, the value ofp immediately is yielded by the relation tored came on 3 December, 2003, only eight months fiter.
¢=(p—1)(g—1). Knowing ¢ and Bob’s publicly broadcast As of this writing the time and computer facilities needed to
encryption exponerg, we can easily determine Bob’s origi- factor RSA-174 have not been released.

nally secret decryption exponedt(see Appendix D % That RSA-155 was factored with the expenditure of about
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the same amount of computing time as RSA-129 reflects ndactorization. We will begin with this factorization method.

only the improved power of the number field sieve over theThe relevant properties of quantum computers are summa-

guadratic sieve, but also the fact that classical computers haized in Sec. Il B. Section Il C then carefully describes and

greatly improved in speed during the mere five year intervalllustrates Shor’s algorithm. Some concluding remarks perti-

from 1994 to 1999. This improvement is expected to con-nent to the algorithm are given in Sec. IV. Sections Il and IV

tinue, as the comparison of the factorization times of RSA-help clarify the claim that factoring increasingly large key

155 and RSA-160 exemplifies. Thus it is estimated that bynumbers ultimately should require less computational effort,

2009 a computer costing no more than $10 million will bethat is, ultimately should be more feasible with quantum

able to factor RSA-309 in less than one moffthtCorre-  computers employing Shor’s algorithm than with classical

spondingly, it is anticipated that by 2010 the standard RSA.omputers.

key number size will be 2048 binary digit$,and by 2030

will be 3072 binary digit® (corresponding to RSA-925

Inherent in these anticipations is the well-founded belief thafA. Factoring N=pq using the order property

if classical computing is all that is available, then RSA publicof integers coprime toN

key systems can be kept secure via increases of key number e .

size ho matter how much classical computers improve, be- L€tndenote a positive integer coprimeNo=pq, wherep

cause the magnitude of the computing effort needed to factdnd g are two distinct large primes. For any sushlet f;,

a large numbeN increases very rapidly with increasigy ] =1,2,3,..., be the remainder whehis divided byN. Then,
An analysis of the number field sieypresently the most as with Eqs(2) and(3), f; is uniquely specified by

efficient general-purpose factoring technitfufor numbers ni=f. (mod pq) )

N of modern key number sizdeads to the conclusion that o Pq

the numberv of bit operations required to factor a large key together with the condition €f;<N. As explained in Ap-

numberN with a classical computer is expected to increasependix B, for anyn

with N no less rapidly thafi*!

" s n?=nP~Y@" V=1 (mod pq), 9
v(N)=exil (1.90(InN)(InIn N)= implying f,=1 for all n. For any givenn, however, there
=ex (1.32LY3(log, L)%, (7)  may exist other integers<dj<¢=(p—1)(q— 1) for which

whereL =log, N, and a bit operatid? denotes an elemental fi=1- The smallest sugh to be denoted by, is termed® the
computer operation, e.g., the addition of two bits. Theorderof nmodulopg. Thus, using Eqsil) and(5), Eq. (8)
growth of the right side of Eq(7) as a function ofL is  for j=r can be restated as

termed?® subexponential_ that is, more rapidly_ than any n"—1=0 (mod pq). (10)
power ofL, but less rapidly than expj. For a given com- _

puter, that is, for a specified number of processors of speci- Suppose now the order of some integern<N and
fied speeds, the timg(N) to perform the factoring should be Ccoprime toN is known (how r actually is determined is dis-
proportional tor(N). Thus Eq.(7) predicts that the afore- cussedlln the followlg)g Supp(_)se further thatis even, nec-
mentioned hypothesized $10 million computer, which in©SSary in order that”* be an integer and thus meaningfully
2009 will be able to factor RSA-309 in less than a month€mployable in congruences. Then E#0) implies

(say two weekp still will require about 60 million years to (n"2—1)(n"2+1)=0 (mod pq). (11
factor RSA-617. We add that even for very lafdethe com- o .
puting effort required to find a pair of primgsand q of ~ Because by definition is the/gmallest power oif_or which
magnitude~ N is surprisingly smalf* so that the ability to  Ed- (10) holds, the factor i"“—1) on the left side of Eq.
keep ahead of classical computer factorization abilities vig11) cannot be exactly divided byq, that is,

_steadily_ inc_rea_lsin_g k_ey numbal sizes is not Iimitgd by any n"2—1%0 (mod pq). (12)
impracticality in finding key numberBl=pq. Similarly, al- ) ) .
though it may be thought that the increasing encryption and "€ second factor on the left side of Eg1) is not subject to

decryption times inevitably associated wittultimately will ~ &ny such restriction, that is, it is possible that

provide a practical upper bound on its size, as of the fore- 21 1=0 (mod pq). (13

seeable future any such bound, although it may exist in . . ,

principle, will be utterly inconsequenti&?. It is not necessary that EqL3) hold. It is possible that
In summary, Bob's confidence in the present and future  n/241=£0 (mod pq). (14)

security of the RSA systems appears to be justified if classi-
cal computing is all that is available. On the other hand, hidf both Egs.(12) and (14) hold, we have the case that the

confidence in the continued security of RSA systems would?roduct on the left side of Eq11) is exactly divisible bypg,

not be well founded if quantum computers able to employalthough neither factor in this product is exactly divisible by
Shor’s algorithm could be constructed, as we now demonpd. It follows that, to avoid contradiction, one of the factors
strate. in the product on the left side of E(l1), such as the factor

(n”?—1), must be divisible byp but not byg, while the

, other factor, 6”2+ 1), is divisible byq but not byp. When

lll. FACTORING USING SHOR'S ALGORITHM the orderr of n moduloN is even, therefore, and Egdl2)
Shor’s algorithm, which is designed to take advantage ofnd(14) both hold, Bob’s proclaimed key numbli=pq is

the inherent potential of quantufn contrast to classical immediately factored by computing the following two great-

computers, exploits a factorization method that differs fromest common divisorggcds: N with (n"?+1), andN with

the sieves that presently are employed for large key numbein'2—1). Alternatively, one can factdd by first computing

525 Am. J. Phys., Vol. 73, No. 6, June 2005 Edward Gerjuoy 525



q, say, as the gcd dfl with (n">+1), and then determining B. Quantum computers
p via division of N by this g. The convenient Euclidean al-
gorithm for finding the ged of two integers is described N gitfer from classical computers. | will briefly summarize
Appendix D 1‘. . the background needed about quantum computers to compre-

The probability that a randomly selected<N=pq and  henq the functioning of Shor’s algorithm, beginning with
coprime toN will have an even order satisfying Eq(14)is 3 quote from Grovef:“Just as classical computing systems
approximatelyz.”" Moreover, as explained in Appendix D1, are synthesized out of two-state systems called bits, quantum
calculating the ged of a pair of large numbers using classicatomputing systems are synthesized out of two-state systems
computers is a straightforward procedure requiring neglicalledqubits The difference is that a bit can be in only one
gible computing time compared with the factorization timesof the two states at a time. On the other hand a qubit can be
given in Sec. IID. Therefore, the feasibility of factoring a in both states at the same time.” Any measurement of the
large N=pq via the procedure described in the precedingstate of a qubit, like any measurement of the state of a clas-
paragraph depends primarily on the feasibility of determin-sical bit, can yield only one or the other of two and only two
ing the order of n moduloN for arbitrarily selectedh. With possible states. Because a qubit is a quantum mechanical
classical computers this determination requires solving theystem describable by a wave function, however, the two
discrete log problerf® Experience has shofhthat classical ~exclusive possible outcome states for a state measurement
factoring of largeN=pq via solutions to the discrete log Performed on a qubit typically will depend on measurement
problem is not more feasible than factorimg using the details, which is not the case for a classical bit. Suppose for
sieves discussed in Sec. IID. instance that our qubit is a spirparticle, one of many con-

On the other hand, with quantum computers determinin eivable physq:al realizations of a qubit in a practical quan-
r, and thereby factoringy, becomes feasible using the peri- UM cor'npu,teF. Then a measurement of the component of
odicity property of the sequende, j=1,2,3,..., defined via the pa(;tlclles slpln alo;:_g r:hxedlrectlondca;]n ylelg the reisults
Eq. (8). Namely, it is proved in Appendix A that for anyall f+§ and —3 only, tolwdlc co(rjrespon t ?j orthogonal wave
the integerd,, f,,...,f,_4, f,=1 are different, but that for unctions commonly denoted bi+2z) and | -2), respec-

hi in th L q e | & tively. Similarly, if a measurement of the component of spin
each) In the range & =<r and every positive integec We 554 they direction is performed on a particle which has

havefj=f;, =fjo=""=f  =fj =" Inother  peen found to have spin} along thez direction, the only
words, the sequende, j=1,2,3,..., is periodic with period  possible results again are; and —3 only, to which corre-
For example, returning now to our illustrativé=55 key  spond orthogonal wave functiorjs-y) and |—y) respec-
number, forn=16 the orderr=5 and the sequenck is tively. But neither of the wave functiorjsty) and|—vy) is

(starting withj=1) 16, 36, 26, 31, 1, 16, 36, 26, 31, 1, 16, identical with the wave functioi+z) or |—z). Rather each
36,.... Similarly forn=12, the order =4 and the sequence of the wave functiond+z) and |—z) is a known linear
fjis 12, 34, 23, 1, 12, 34, 23, 1, 12, 34,.... Shor’s algorithmcombination of the wave functiorjs-y) and|—y) and vice
employs the quantum computer analog of Fourier transforversa>>3

mation to extract the orderfrom a quantum computer wave . .

function that has been specially constructed to exhibit this 1+ The computational basis: Quantum computer wave

periodicity for some randomly selected Moreover, the functions
Computational effort required to determimeusing Shor’s To enable convenient emp|oyment of a qub|t for compu-
algorithm increases witN no more rapidly than some power tational purposes, namely, in order that the two possible out-
of N, and increases much more slowly withthan does the comes of state measurements on the qubit be consistently
effort required to factoN using a classical computer. Clas- interpretable as corresponding to the binary integers 0 and 1
sical computer factoring via the solution of the discrete logrespectively, it is necessary to assume that the qubit state
problem does not result in a slower increase/@fl) with N measurement always will be performed in the same way, for
than Eq.(7), because with such computers the number of bittxample, with a Stern-Gerlach apparatus always lined up
operations required to calculate a Fourier transform is proalong the positive direction if the qubit is a spif particle.
portional toNL=L2", that is, increases with even more  With this assumption the pair of orthogonal wave functions
rapidly than does the right side of E¢7).%° describing the two possible qubit state measurement out-
| emphasize that once a suitabiehas been determined COMes customarily are denoted ) and |1). These wave
using Shor’s algorithm, the factorization Nfusing Eqs(12) ~ functions comprise the so-calletbmputational basisand
and(14) can be routinely performed on a classical computer@'€ interpretable respectively as corresponding to the binary

Referring to our illustrations in the preceding paragraph, fofntégers 0 and 1. The wave functigih describing any arbi-
the choicen=12 Shor's algorithm will yieldr=4. Then trary state of the qubit, which is a linear superposition of any

from the sequencé; for n—12 we need to insert, ,— f, pair of orthogonal wave functions, typically is expanded in

=34 (which is congruent to #2modulo 55 into Eq. (11). terms of|0) and|1) only:

Because Eqg12) and(14) both are satisfied for thif,, we W= pul0)+v1), (15
immediately know thaf,+1=35 must be divisible by one whereu and v are a pair of complex numbers satisfying
of the factors of 55in this case 5, as we would determine by 2 5

computing the ged of 35 and B5and thatf,— 1=233 must |ul*+[v*=1. (16)
be divisible by the other factor of 56n this case 1), as we Equation(16), which expresses that is normalized to unity
would determine either by computing the gcd of 33 and 55 ofas ard0), |1) and all other wave functions discussed below
(more simply by direct division of 55 by its already deter- permits the interpretation thaj:|? is the probability that a
mined factor of 5. state measurement will yield the outcome corresponding to

Mermint and Grovef explain how quantum computers
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0, and|v|? is the probability that the same measurement willstate| 1)z sum to unity. Note that the square of the coefficient
yield the outcome corresponding to 1. of | B)g in Eq. (20), which represents the probability of find-
A quantum computer is a collection of qubits, and thus iting qubitB in the statd3) knowingthat a measurement on
is a quantum mechanical system whose state must be dgubit A in the two-qubit state described by of Eq. (17)
scribable by a normalized wave function. Consider, in Paralready has yielded0),, differs from |’}’ﬁ0|2 representing
ticular, a computer composed of just two qubits, labeled\by the probability,without any such knowledgéhat measure-
andB. There now are at mostx2=4 possible different out-  ents on the qubit paid, B in the two-qubit state described
comes of state measurements on the pair of quAIt8 1, \p il find qubit A in state|0), and qubitB in state| 8) .

(whettrertﬁerformedf sirqyltgfne?util_y or succ;asswm};:nse- The modification of Eq(20) appropriate to the circumstance
quently, the wave Tunctiont” of this computer must be a y, 4 o actually had been found in stat&), rather than in

linear superposition of at most four orthogonal two-qubit ba-State|0>A is obvious. Equally obviougstarting again with

ts;i(\a/\:]a\/ti f%lcu&rés’ (\:I;m%mgsti m(;rﬁlbfzgiysdlsfoudsj ;‘D; c|z(1)r>1 be the two-qubit system in the state describedibypf Eq. (17)]
BY/A s that(i) the probability of finding qubiB in state| 8)g (B is

=|00), |0)g|1)p=|01), [1)g|0)a=|10), and |1)g|1 . . .
Eilli Irl o>t?1|er>Cvor|ds> th(i n>1Eé)|st>Aen|er21| Wo- ut|3it>(B:(|)n2|A uterelther 0 or ) without any attempt to ascertain the state of
; ' 9 q P 2 with the sum of these probabilities

wave function has the form qubit A is 2] vgq

=345, 7./?=1; and (i) if B actually is found in state
W= 0 00) + Y01/ O1) + 1 10) + 14/ 11), (170 |B)g (B either 0 or 3, the original¥ collapses into the wave
where in the computational basis wave functitd®, etc., it

function ¥ 5| B)g, Where
is understood that the two binary digits reading from left to _ 2 29-1
right correspond to the outcomes of state measurements on Va=17eol 417l T 1 7a0l O)at vl Dal- - (2D
qubits B and A, respectively, and where the associated am- These considerations are immediately extensible to larger
plitudes yqg, etc., are complex numbers satisfying quantum computers, composed @2 qubits. Because a
2 9 2 5 state measurement on any given qubit can have at most two

| Yool * [ vorl*+ 0"+ [722*=1. (18) different outcomes, state measurements on the entire collec-
The digit pairs 00, 01, 10, and 11 indexing the computationation of qubits comprising a@-qubit quantum computer can
basis wave functions appearing in EJ7) are the binary have at most 2 different outcomes. Correspondingly, the
system representations of the decimal system integers Wave functionW describing any state of g-qubit quantum
through 3, with the proviso that each such binary represencomputer is a linear superposition of at mo8tdtthogonal

tation is to consist of no fewer than two digits. Thus ELj)
can be rewritten as

W= 1y0/0)+ y1|1) + 2/ 2) + 3/3), (19

where the basis wave functiofi$ and associated amplitudes
vi, i=1-3, are merely relabelings, respectively, of the basis

wave functions|00), [01), etc., and of the amplitudegy,,
Yo1:s etc.

2. Wave function collapse and the Born rule

In Egs. (17) and (18) each|yp,|? is the probability that
measurements on the qubit pdir B in the two-qubit state
described by¥ will yield state |a), for qubit A and state

g-qubit basis wave functions. If we index theggubits byk
running from 1 tog, then the 2 computational basis wave
functions for the computer can be taken to be

0)4/0)g-1°+[0)2|0),=[00 --00),
10)6/0)g_1---10)11),=(00--01,...,
|1>g|0>g71'"|0>2|1>15|10"Ol>,

etc., and in analogy to Eq19) the most generag-qubit
quantum computer wave function can be expressed as

(22

| B)g for qubit B, wherea and 8 can have the values 0 and 1 with

only. It is conceivable, however, that the observer will seek
to measure the state of quigitonly, without any attempt to

ascertain the state of quii In this event| yoo|2+ | y10? is
the probability of finding A in state [0),, and |yg?
+|7y14? is the probability of findingA in state|1),. If a
measurement on qubi is performed, andA actually is
found to be in stat¢0),, then the original wave functiow
of Eq. (17) is said to have beereducedor collapsedby the
measurement into the new wave functidh’'=W¥g|0)a,
where the one-qubit wave functiobig for qubit B is

Wo=[|v00l®+ 71021~ ¥00l 05+ Y10/ 1 )&l (20)
Equation (20) is in accordance with th&orn rule which
Mermin® discusses. The normalizing factof |yod?
+]y102]"Y?in Eq. (20) is needed to ensure thét’ and V¥
are normalized wave functions, that is, thatlii and in the
state ofB described by the one-qubit wave functitry, the
individual probabilities of finding qubiB in state|0)g and in
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29-1

=2 i), (23
=0

29-1

;O lyil?=1. (24)

In Egs.(23) and(24) the integers are conveniently written
in the decimal system, as in E@l9); the binary system
representation of eachconsists of no fewer thag digits.
Each computational basis wave functigi) represents a
g-qubit state, where for evely; 1<k<g, the outcomedO or

1) of a state measurement on thkih qubit equals thekth
digit (reading from right to leftin the binary system repre-
sentation of; | ;|2 is the probability that when the computer
is in the state described by the wave functibrof Eq. (23),
state measurements on the collectiongodubits will have
the same outcomes as if the computer wave function is sim-
ply |i). Moreover, if, while the computer is in the state de-
scribed byWV of Eq. (23), the computer operator were to
measure, for example, the states of qubits 1, 2 qrahd
obtain the outcomed ), |0),, and|1),, respectively, these
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measurements would collapsg into the wave function prospect of actually constructing a physical realization of
Wy=%,_3[|1):/0),|1)g], where the ¢—3)-qubit wave any nontrivial unitary operatiob) on so large a collection of

function, qubits seems hopeless at first sight, even if there is reason to
) —12 _ believe that a physical realization &f must exist. Fortu-
Vy-3= 2 |7j| 2 7j|J>. (25 nately, however, and absolutely crucial for the practical po-
i j

tential of quantum computation, it can be proved that every
describes the state of the remaining qubits 3,4=1)  conceivable unitary operation on an arbitrarily laggubit
knowing that state measurements on qubits 1, 2,gaincthe ~ quantum computer, even an operation involving simulta-
g-qubit system described by had yielded the outcomes neous modifications of the environments of g# 2 qubits,
[1)1, |0),, and|1>g respectively. In additionj in Eg. (25) can be reproduced via an appropriate sequence of unitary
runs over all integers whosg-digit binary representations One-qubit and two-qubit operations offiMoreover, numer-
begin with 1 and end with OInow reading from left to ous methods based solely on known physics for achieving

right). physical realizations of these basic unitary one-qubit and
two-qubit operations(also known asuniversal quantum
3. Operations on quantum computers: Unitarity gates®) have been proposéd although admittedly the ac-

, tual implementation of many of these potential physical re-
It can be assumed that thgrqubit quantum computer ajizations may prove to be difficult in practice.
wave function¥ of Eq. (23), like the wave function of any  For the purposes of this paper it is reasonable to assume
other quantum mechanical system, evolves in accordanggat quantum computers consisting of arbitrarily large assem-
with the nonrelativistic time-dependent Sctiimger equa- blages of qubits, capable of performing any desired compu-

tion, tational algorithm that can be formulated in terms of unitary
oV ih operations, will eventually be constructed. Given this as-
WZEH , (26) sumption, a measure of the quantum computational effort

required to perform any given algorithm, indeed the only

whereh is Planck’s constant and the Hammoni,;h which  obvious measure, is the number of universal quantum gates
may be time dependent, is an appropriate Hermitian operatdpat must be strung together to perform the algorithm on a
capable of acting on the various computational basis wavguantum computer. In essence the universal quantum gate
functions|i) appearing in Eq(23). In this circumstance the ©OP€rations play the role, for quantum computation, that the
wave function(t) at any timet=0 is related to the wave bit operations referred to in connection with E@) play for

. 7 classical computation.
function ¥(0) att=0 by We now are able to make precise the meaning of the oft-

W(t)= U‘I’(O), (27)  repeated assertion that the Shor algorithm enables a quantum
A~ N -~ A ) ) computer to factor large key numbeks=pq with far less
where, becauseH is Hermitian, U=U(t) is a linear computational effort than using a classical computer re-
normalization-conserving - operafdr, that is, a unitary quires. In particular, with a quantum computer using Shor’s
operator> Whatever the physical realizations of the indi- aigorithm, the numbemw, of universal quantum gates re-
vidual qubits comprising the quantum computer may be, thg ired to determine an orderthat will enable factorization

computer’s utility as a computational tool de_pends on theys 4 largeN = pq via Eq. (11) has been estimat&fito be
ability (of the person performing the computatidn control

the evolution of its wave function. But this desired controlled vo(N)=0[(In N)2(InInN)(InInInN)]=0[L?%(log, L)
evolution, which generally requires modifying the environ-
ments of the individual qubit€for example, when the qubits X(logz log, L)1, (28

are spin3 particles, rotating the individual magnetic fields whereL =1log, N as in Eq.(7). The symbolD, denotingorder
acting on those particlgsis necessarily an evolution oF ¢ 5 i 57 that there exists a constakitsuch that for suf-
under Eq.(26). Thus the desired controlled evolution also 'Sfiéiently largeN

described by Eq(27), that is, it involves a unitary operation
on the initial wave function¥(0). Vq(N)$K[L2(|ng L)(log, log, L)]. (29
Accordingly each planned operation in the sequence of
operations constituting any proposed quantum computing al? connection with Eqs(28) and (29) it is useful to recog-
gorithm, for example, Shor’s algorithm, must be a unitarynize that for largeN the number of qubits required to repre-
operation. Postulated nonunitary operations on a quantusentN is essentiallyL. To be precise, for any real number
computer, no matter how seemingly attractive, are irrelevank=1, let[x] denote the largest integer less than or equal to
and thus of no interest for the use of the computer as dhen it is easily seen that the number of qubits needed to
computational tool, because no nonunitary operation will beepresent ani is [ log, N]+1, which for largeN differs neg-
attainable with any actual physical realizations of the qubitdigibly from L.
comprising the computer. Therefore, note that each of the Our discussion has overlooked a needed refinement to Eq.
guantum computing operations in Shor’s algorithm is uni-(28), as well as the fact that in practice the actual factoriza-
tary. tion of N using Shor’s algorithm requires computational op-
The impossibility of constructing a physical realization of erations(for example, classical computer gcd calculations
any nonunitary operation does not imply that every conceivbeyond the universal quantum gate operations whose number
able unitary operation on a quantum computer can be physis estimated in Eq(28) (see Sec. IY. However, the discus-
cally realized. Furthermore, if the computer is composed of &ion in Sec. IV implies that for the purposes of this paper
large number of qubits, for example, thousands of quibiss neither the aforementioned refinement nor such neglected
is likely in practical applications of Shor’s algorithmthe  computational operations negate the utility of E2Q) as a
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measure of the computational effort required to factor a largdeen considering unitary operators which are predictably
N=pg with a quantum computer using Shor’s algorithm. controllable[that is, which during each step of the computa-
Therefore, a comparison of Eqg) and(29) correctly quan-  tional algorithm will cause the computer wave functin0)
tifies the reduction in the computational effort required toto evolve into some desire#i(t)], Uy, of Eq.(30) generally
factor a largeN that is achievable with a quantum computer.js ot predictably controllable. Rather thi, we obtain as a
That is, according to Eq7) the number of elemental com- reqit of the measurement generally is only one of many
puter operations needed to accomplish the factorizatidd of oo N . .

ssibleUy,, whose likelihoods of turning up in the actual

with a classical computer increases faster than any power o asurement operation we have performed depend on the
L=log, N. In contrast, the needed number of elemental com- P P P

puer Gperatlons using & cuanm computer ncreases ony 112 1 Coefioerty 1 B (29, only aterwe ok
little more rapidly thanL? (indeed surely less rapidly than =

L3) according to Eq(29). _malny ﬁossibleu,\,I (":Illctgally has bbeefn obthained. Correspond-
To illustrate the practical import of this reduction, let us ingly, there generally Is no way beiore the measurement op-

repeat the numerical exercise presented immediately beloffation to introduce a sequence of universal quantum gates
Eq. (7), only this time for a quantum computer. For any that will reproduce the unitary operatbh, of Eq. (30) that
sufficiently large quantum computer, that is, for any quanturrctually is attained.

computer composed of sufficiently many qubits to handle the

Shor algorithm determination offor all relevantN, the time  C. The operations constituting Shor’s algorithm

7q(N) needed to' complete the.factorization. of a lafge Shor’s original formulation of his algorithm has been
should be approximately proportional #g(N) given by Eq.  given an admirably readabley nonspecialisisstep-by-step
(29), irrespective of the value df appropriate for that com- rescription by Williams and Clearwat@which my presen-
puter. Suppose we were able to construct a quantum COrgation will follow closely, but also will expand on and illus-

puter which, like the classical computer we hypothesizeqraie Each subheading in this section briefly describes one of
previously, could factor RSA-309 in two weeks time. Thennq eight steps.

this same quantum computer should be able to factor RSA- . . . _ L
617 in no more than about nine weeks, in contrast to the 68 Determine the minimum computer size required: Divide
million years for the classical computer. the qubits into two registers

Moreover, it is reasonable to believe that a sufficiently gpgyg algorithm seeks to accurately discern the periodic-
large quantum computer will be able to factor RSA-309 '”ity with period r manifested by the sequench, j
about two weeks or=1.2x 10Ps. For RSA-309, that is, for _ 1,2,3,..., obtained from Ed8) for some chosem Tc; do

L=1024, the value ofy, from Eq. (29) is only 3.5<10° o "o algorithm must operate on sequences that are many
even assuming is as large as 100, which seems doubtful. herinds in length, much as in conventional classical Fourier
Therefore, to factor RSA-309 in two weeks, the average timgyansformation. In practice the ordemay attain its maxi-

for performing a quantum gate operation need be no fastey, possible valuep—1)(q—1)/2, which for largeN is

than about 30Qus, which should be no problem f(_Jr quantum likely to be only slightly smaller than half oki=pq (see
computer elements, whether operating on atomic, molecular,

or photonic scales. In short, once sufficiently large quantunﬁd‘ppend'x B. For our exampleN =55, the order equgls its
computers become available, Bob no longer will be justifi-maxImum allowed yalue 20 fo'r fuIIy. 16 of the 40 integers
ably confident that he can maintain the security of Alice’s" <55 that are coprime to 55, includingas small as 2 and
RSA-coded messages to him, merely by increases of his pr@_s_large as, 53. Copsequently, the accurate determination of
claimed key number size, in the face of anticipated improveSing Shor’s algorithm generally requires the use of powers
Before finishing this discussion of operations on quanturMum powerj = j .., employed be no less thay?, a recom-
computers, it is important to note that wave function collapsmendation this paper acceptdViliams and Clearwatéf
ing measurements on any part of a gquantum computerecommend o, be even greater, namely at lea®l?2 Thus,
though normalization conserving by virtue of the Born rule, following Shor, the quantum computer being employed to
are not—strictly speaking—quantum computing operationgleterminer via Shor’s algorithm must contain at least
of the sort discussed earlier. In particular, ¥, denote the enough qubits to represent powersip to jma=N? The
wave function defined immediately preceding E@5). minimum number of qubits needed to represent the integer
Then, as Mermin has discusskbecause bot¥ of Eq. (23) N?2 is [log, N?]+1. Thus, the quantum computer should con-
and¥, are normalized wave functions expressible as lineatain a set ofy=[log, N°]+1 qubits, which will comprise
superpositions of the very same set 8fd@thogonal compu- registerY. In addition, the computer must contain a second
tational basis wave functions, there must exist a unitary opset of qubits, here termed registr capable of storing the

eratorU,, such that computed values of;, which can be as large &— 1. The
A size of this register will be taken to be its minimum possible
Vy=UyV. (30) value z=[logy(N—1)]+1 qubits. Note that becausl is

known to be the product of a pair of odd primes and thus is
Because¥ can be thought of a®(0), the computer wave not a power of 2, it follows that 2 1<N2<2Y.
function at timet=0 when the measurement operation be- For largeN the difference betweeflog,(N?)]+1 and 4
gan, and¥, can be thought of a¥ (t), the computer wave =log,(N?), like the difference betwednog,(N—1)] andL or
function at timet>0 when the measurement has been combetweerlL andL + 1, is negligible for the purpose of estimat-
pleted, Eq.(30) appears to have the same form as &7). ing the computational effort required to accomplish the vari-
The subtle difference is that whereas in EB7) we have ous individual steps in Shor’s algorithm. Thus, in any subse-
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guent estimatey can be replaced byl2 (ignoring the fact . 1 R 1

that 2L need not be an integefThis is the same replacement Uyl0y=—=(|0)+]|1)), Uull)=—=(]0)—|1)).

for y employed to obtain Eq.(28). For the purpose of such V2 V2

estimates the difference betweeflog,(N%)]=2L and (32
[l0g,(2N?)]=2L+1 also is negligible, meaning that the esti- U,, is known to be unitar§® The factor W2 in Eq. (32)
mated computational effort required to accomplish the varignapled], to preserve normalization, as we know a unitary
ous individual steps constituting Shor’s algorithm do not de'operation must® Denote the operation that performs the
pend significantly on whether we prefer the Shor or the,;4amard on qubik alone, without affecting any other qu-
Williams-Clearwater estimates of the requirggly. Further- bits, byOHk- Next consider the result of operating Wli}]—ik
more, we now can conclude that unless for lakgthe actu- on a computational basis wave functifiny for which the

ally required value ofj ;5 is very much smaller than Shor kth dici . . : 4 .

- g . igit (reading from right to leftin the binary expansion
ar.ﬁ'(r::apati’ adetzrrr:t“r:-lr]ng;:d Egre:\eol?[ylef:;tt?\g?]gaz cﬁrgﬁ; of j is 0 (not 1), meaning that the product of one-qubit basis
it requ quantu by - wave functions constitutingy )y includes the factof0), (not

bits in size. In other words, factoring a key number of the . . .
presently recommended size RSA-309 corresponding t131>'<)' TO obtain this desired resul'g, we need qnly p.ut the
sSubscriptk on every one of the basis wave functions in Eq.

1024 binary digitgrecall Sec. 11 D seemingly would require
y digits D gy d 32). Moreover, because our preséify contains no|1),

a quantum computer of at least 3072 qubits in size; factorin ; : ) )
RSA-617 would require a quantum computer of more tharPasiS state, we are here concerned only with the first equality

6000 qubits in size. in Eq. (32). It follows that, except for the factor 4Z, the
operationU,, on our presentj)y merely replaces0), in
li)y by [0),+]1),, while leaving|j)y otherwise unchanged.
In the binary expansion of the integgrhowever, changing
the kth digit from 0 to 1(always reading from right to left
After ordering and indexing thg qubits in registerY as  produces the binary expansion of the intege2*~*. There-

discussed in connection with Eq22)—(25), the complete fore when|j), contains nd 1) basis state,
set of computational basis wave functions for those qubits

can be written a$j )y, where the subscript indicates that we ~ i ket
are writing wave functions for registéf, j is an integer, 0 UHk|J>Y:E[|J>Y+|J 25N
<j=2Y-1, which will be written in decimal notation. When N N . N
registery is in the state described by the basis wave function Now perform they operationsUy;, Uyz, Ups,....Uny
i)y, the binary digit representation pfmmediately reveals sequentially(first Uy;) on the initial registefy wave func-
the one-qubit basis stati) or 1), of each of the qubits  tion |0),=¥{>. We know|0)y contains nd1); factors for
in registerY. It is understood that qubk (1<k<y), whose  anyj, 1<i<y. Thus we surely can employ E(B3) for the
basis states are identified by the subsckiptorresponds to  first of these operations to obtain

the kth digit, reading from right to left, in the binary system

representation of. The computational basis wave functions 0 1 0

for register Z similarly are denoted byi),, where O<i vy :UH1|O>:E[|O>Y+|O+2 )]

<27—1. It is postulated that initially every one of thyetz

2. Load the first register with the integers less than
or equal to 2—1

(33

qubits constituting the quantum computer can be set into its 1

own one-qubit0) basis state, that is, the initial wave func- = T[|0>Y+|l>y]

tion of the entire quantum computer #{=]0),|0);, 2

where the subscrigf denotes the wave function of the entire 1 2

computer. Proceeding with the algorithm requires transform- = —2 i)y - (34

ing the initial registery wave function¥{?=|0)y to its V2i=0

second step form, Becausel,,; has been defined so that it performs the Had-

2Y-1 amard operation on qubit 1 only, the wave functi@rﬁ})

‘P$S=27y’2j20 i)y, (3D (like ¥{?) does not contain the factdl),, as is directly

evidenced by the fact that both the integers 0 and 1 on the
that is, requires replacing the initig)y by the sum on the right side of Eq.(34) are less than 2. Consequently, we also
right side of Eq.(31), wherein a measurement of the state ofcan employ Eq(33) for the second of these sequential op-
registerY has an equal chance of yielding any of the integerserations, thereby finding fod ;;,U 4| 0) = U, ¥ (P=w(2) |
between 0 and 22-1 inclusive. There are ¥2independent
li)y on the right side of Eq(31). Thus, the factor 2¥?
guaranteesVZ® is normalized. Because we knoW?<2Y
—1, the sum in Eq(31) includes every less than or equal to
Shor’s recommendefl = N>.

The transformation of0)y to W2° of Eq. (31) is accom- 13

plished by the use of the one-qubit operatidp known as a = EZO i) - (35
Hadamardtransformation, which is definédiso that the re- :
sults of the Hadamard operation on the one-qubit basis staféecause every one of the integers on the right side of Eq.
wave functiond0) and|1) are (35) is less than 422, \Ifﬁ(z) surely does not contain the

w@=10 2
Y —E H2[|O>Y+|1>Y]_E[[|O>Y+|O+2>Y]

Dy +[1+2)v]]
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factor|1),, permitting use of Eq(33) to evaluatd:JHglPS,Z’. showed that it is unitary. The number of universal qua?tum
Proceeding in this fashion, it is readily seen that the result ofates required to perform this unitary operatior’is

the full sequence of Hadamard operations| @y is O[L?(log, L)(log;log, L)]. Let us illustrate Eq.(37) when
N=55 andn=16. In these circumstances, as discussed in

2Y-1 . L
~ A NN ) Sec. llIA, r=5 and the sequenck (now starting withj
— — oyl
W= Uy Ui -1 UnUnal 0)=277% 2, i)y =0) is 1, 16, 36, 26, 31, 1, 16, 36, 26, 31, 1, 16, 36,....
(36) Accordingly, in this illustrative case E@37) is
The right side of Eq(36) is the desired?2S of Eq. (31). It WE=27Y7[|0)y| 1)z +[1)y]16),+|2)y]36),
is generally agreéd that the above-defined Hadamard one- 131265+ 14Y|31) 5+ 15| 1)+ |16) |16
qubit operations are universal quantum gates. Accordingly, [3)126)2[4)v[3D 2+ [S)v|1)2+[6)v116)2
iatc;:ompligrsﬂng this second step transformation of the initial +17)y|36)2+|8)v|26) 7+ [9)y|31),+|10)y|1)
0)y to ¥~ requires no more thay=2L universal quantum y
AR +]12)y|16) 7+ [12)y|36) -+ |2
—Lvlfay-1)z]- (39
3. Selectann andj for each j in register Y, place As Eq.(39) illustrates, the sequence of regisebasis wave
the remainder f=n’ (mod N) into register Z functions|1)7, [f1)z, [f2)7,..../fv_1)7 in Eq. (37) mani-

After this just completed second step, the wave function ofests the same periodicity withas does its originating se-
the entire computer isF25=w2%0),, meaning that after duencef;, O<j<2Y—1.
completion of the first stage, a state measurement on register
Z still is guaranteed to yield the integer O only, irrespective of
what value of came from a simultaneous state measuremeny, Measure the state of register Z
on registerY. For the next step amcoprime toN is required. ] o
As Appendix B explains, such am can be obtained, with The entire computer now is in the state represented by
probability essentially indistinguishable from unity, simply V&> of Eq. (37). The objective of the next three steps in the
by choosing an arbitrary integér either in the range €i algorithm is to extract the value offrom the just discussed
<N or in the range ¥i<2Y—1. Whether any selected in- periodicity of 23, Note that although we know 3° has the
tegeri actually is coprime toN readily can be tested by form given in Eq.(37), until we begin making measurements
calculating the ged of andN using a classical computéas  on registerZ, we can have no idea of what values fyf
discussed in Appendix D)1but the probability such a ran- actually are appearing in E(B7). Moreover, the wave func-
domly choseri will not be coprime toN is so small that the tion collapse discussed in Sec. 1l B2 means that any single
effort of computing this gcd does not seem worthwhile. If themeasurement on regist& though it surely will reveal one
select(.ad.is not.coprime td\, this fact will become apparent of the values off; appearing in Eq(37), will automatically
when it is realized that the value of the supposed order destroy all information about the other valuesfpf Never-
inferred as in step 7, does not satisfy Ef0). Appendix B theless, the next step in the algorithm is to measure the state
explains that no integercan satisfy Eq(10) when the inte-  of registerz. Suppose this registeZ measurement on the
gernin Eq. (10) is not coprime taN. In this event it will be  computer in the state represented by &) yields the par-
necessary to repeat steps 27 after choosing a différent tjcyjar value f. (of the r possible valuesf,=1, f;,

which will almost certainly be coprime td. Such repetitions f,,...f,_1). Then after the measurement the wave function
yeenfro1).

often are required even when the chosda coprime toN of registerY takes its fourth step form

(see Sec. llICB
Assuming now an =n coprime toN actually has been 45 _1/2Q_1
selected, the next step of the algorithm transfols to its Vy'=Q bzo [k+br)y, (39

third step form
where Eq.(39) has retained those and only thd$g, in Eq.

35 Ao , (37) that are multiplied byif,);. Q equals the number of
vE=27" ,Zo [vIfiz, 37 terms in Eq.(37) containing the factolf,),; the factor
, , _ ~12 js necessary to guarantee the wave functiofr of

where f; |sgsdef|ned by Eq.(8). With the computer wave Eq. (39) is normalized, consistent with the Born rdle.
function > of Eq. (37), the result of a state measurement  Tq nhelp comprehend the structure of Eg9) and to see
on the CO||eCti0n Of qubItS in I’egiste_.’l’must y|e|d one Of the hOW the magnitude @ is estimated, |et us return to oty
remainder integers £f;<N—1 prescribed by Eq.(8). —55 n=16,r=5 example. Suppose the result of the regis-
Moreover, because of the periodicity bf demonstrated in  ter z measurement on the computer in the state represented
Appendix A, every one of thé; in Eq. (37) must equal one  py Eq. (38) was f;=36. Then after the measurement, the
of the (all necessarily differentf,, f,,....f,=fo=1. No  wave function of registeY in this fourth stage of the opera-
other integers can result from a state measurement on regigen of the algorithm was
ter Z after completion of the second stage of the algorithm.
In particular, bepcause is coprime toN by gefinition, Sl?Ch a W= Q YA [2)y+|T)y+[12)y+ +[2+5(Q-1)].
measurement now cannot possibly yield the previoualy (40)
completion of the first stgpassured result 0. Evidently the measurement has shifted the dependence on

I shall not detail the operation that transformiig> to W2>  from the periodicity withr of the sequenc;) in Eq. (37),
of Eq. (37). The operation is fully discussed by SHonho  to the periodicity of an arithmetic progressiomith the com-

2Y-1
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mon differencer) of the integersj=k+br indexing the It is worth remarking that because in step 5 the operation
computational basis wave functioff)y appearing in Eq. Ugy does not involve th& register, the same E¢45) for the

(39). It is evident from Eq.(40) that the value ofQ in Eq.  probability of finding theY register in the stat¢c)y would

(39) is determined by the condition thit-r(Q—1) cannot  hold even if the step 4 measurement of theegister’s state
exceed 2—1, the largesi appearing in Eq(37). Because had been postponed to the present step, that is, even if the
0<k<r and Q is an integer by definition, this condition states of both registers had been simultaneously measured

implies after performance of the quantum Fourier transform opera-
Cte—1oy tion, as Shotand VolovicH prescribe. For pedagogical pur-
Q=[r*(2’=1-k)]+1, (41 poses, however, it is preferable to measure the states of the

with [x] denoting the largest integer less than or equal.to two registers in two separate steps, as Wiliams and
We see that unless’x is an integerQ in Eq. (39) either Clearwatet® alsc_) recognize. o

equalg 2Y/r] or [2¥/r]+ 1, depending on the value &f for _ To grasp the |mpI|c§t|ons of Eq45), it is helpful to con-
the largeN cases of interest here, either of these two possibl§'der first the exceptional case for which the ordes a
values ofQ is well approximated by ¥r, becausg <N/2 ~ Power of 2. In this circumstanc& exactly equals Ar as
(see Appendix Bwhereas 2>N? (as noted in Sec. Il C)1 explained in Sec. Il C 4. Correspondingly, E45) becomes
When 2/r is an integer, howevefrecall the illustrativef; _
sequenceN=55, n=12 discussed in Sec. DA Eq. (41) sin? mrc

=(2Y0)" !
makesQ exactly equal to ¥r for every allowed value ok. Pe=(2Q) Sin(arrc/2Y) (46)
) ) Becausec is an integer &<c<2Y—1, Eq. (46) implies P,
5. Perform_ a quantum Fouru_ar transform operation =0 for anyc other than values o for which rc/2Y is an
on the register Y wave function integerd, as can occur becausé&/R now is an integer. For
The desired finally is extracted from¥ S of Eq. (39) via \?Vﬁghexceptlonal values af, namely, the values of for
a quantum Fourier transform operatiblxr. The operation
Ut transforms any statg )y in registerY to c d
2Y-1 5— T =0, (47

OFT“)Y:Z_WZ > e27TijC/2y|C>Y- (42
c=0

N ) the right side of Eq(46) becomes 0/0, and we have to return
After the operationUgr, therefore, the wave function for o Eq.(43), where we see that except for the common factor

registerY takes its fifth step form e2mke/2’ ayery term in the sum ovey for givenc is unity.
R 2Y-1Q-1 The number of terms in the sum@ So, wherr is a power
\P$S=UFT‘II4YS=(2YQ)—1/2CEO bgo g2mi(krbnel2| ey of 2 and theY register is in the state described by the wave

function $° of Eq. (43), the probabilityP,, that theY reg-
(43 ister will be found in the basis stale)y is zero except when

It has been shoviff!thatU g1 can be written as a product of ¢ satisfies Eq.(47), in which caseP.=(2Q) Q?=1/.
universal quantum gates, implying thgtFT is unitary, as Moreover, because<2, the only values ot that can be

required. The number of gates requireddiL2).%6 observed are those corresponding to the integens the
In Eq. (43) the coefficient of any giveft)y is a geometric  '@Nge Gsd_<r. Thus the '_[otal probability of observing these
series and can be trivially summed to give values ofcis rP =1, as it must be. o
o1 _ , Cons_lder now the more general circumstance in which _the
5s 1 poikey 1 g2mireQ/2 orderr is not purely a power of 2. Then there no longer exist
VP=(2Q) 12, ek [c)y values ofc that satisfy Eq(47) for every integed such that
=0 1-e O=d<r. In fact, if r is odd, we see that there are no values
2Y-1 of ¢ satisfying Eq(47). Also we know from the discussion in
=(29Q) M2y g2mike/2gmire(Q-1)/2/ Sec. IlIC4 thatQ—2Y/r now equals a noninteget where
c=0 —1<¢<1. Accordingly, wherr is not a power of 2, the nu-

) merator in Eq.(45) is not zero except possibly at a limited
« sin(7rcQ/2Y) c) (44) number of very special values of In other words, for most,

sin(mre/2Y) v perhaps all, values of &, now is not zero. Nevertheless, for
each integed in the allowed range, the probability of ob-
serving the result in a measurement on thé register re-
mains large for, and only for, these exceptional values of

This measurement will find th¥ register in a particular that—though no longer satisfying E¢47)—come close to
state|c)y. The probabilityP. of finding the statdc)y is  doing so. To quantify this assertion, note first that because
given by the square of the absolute value of the coefficient of <N/2, the maximum allowed value odi/r [namely 1

6. Measure the state of the Y register

[c)y in Eq. (44), namely, —1/r)] surely is less than the maximum allowed value of
_ c/2Y (namely 1—1/2Y, which is greater than+ 1/N?). Thus,
siré(mreQl2Y) . ) ;
P.=(2Q) L ———=" 7 (45) because the spacing between successive values2bfis
sirP(arrc/2Y) 27, every allowed value ofl/r either exactly satisfies Eq.
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(47) for some value ot or else differs from some/2Y by no  inference is accomplished, | observe first that, because
more than 27Y/2. In other words, whem is not purely a <N/2, there can be only one permissible fractibin satis-

power of 2, Eq.(47) is replaced by fying Eq. (48) for a givenc. Here “permissible” means that
d is an integer and €d<r<N/2. To prove this assertion,
__9 <2792, (49) note that ifd,/r, andd,/r, are distinct permissible frac-

2y tions, that is, ifd, /r{#d,/r,, then

with the assurance that for each allowed valuelf, there
exists a single €c; satisfying Eq.(48) (except when the
equality holds for such a;, in which case the equality holds
for a secondc=c,=c;*+ 1, corresponding ta/r lying ex-
actly halfway between two successive values/@f). There-
fore, whenc satisfies Eq(48), we have

c d
52 F+82_y, (49

where —3<s<3.

d; dp

rh I

1 4
>—> (52

diro—dsryg
rifo” N2’

riro

because whed; /r,#d,/r,, the integer ¢;r,—d,r;) can-
not equal 0. On the other hand, df,/r; andd,/r, each
satisfy Eq.(48) for the same,

d; d, c d, c d;
2 1) N

rh I

If we employ Eq.(49) in Eq. (45), the probability of find- c d, c d;
ing the Y register in this|c)y state(whenr is no longer a = v I v
power of 2 is seen to be 2 2| |2 1
-y
5 _(ZyQ)_lsinz(TrrsQ/ZV) _ Q sir¥(mreQ/2) <2(2712)
¢ site(mrel?) 29 (mreQ/2)? oyl ;
(50 BN (53

where we have used the fact that s#x. The equality in Eq.
(50) holds only whens=0. Because 2is very large com-
pared to both unity and<<N/2, the estimation of the right

side of Eq.(50) by the replacement @ by 2¥/r (Q actually S that tat ¢ ofY themist
differs from 2/r by a quantity¢, |§<1) can be seen to h uppose now that our state measurement oY tregister

introduce an inconsequential error. In other words, the argu as yielded gc)y state whose satisfies Eq(48). The actual
ment of the sine function on the right side of E§0) may be evall_Jatlon of thisd/r (now kn_ownytc_) be umq@gfrom Eq.
taken to beme. Hence Eq(50) yields (48) is perform_eq by expanding/2’ into a cqntmued frac-
tion, as Shotoriginally proposed. | shall not discuss here the
. sir? e o, 1 4 construction of continued fraction expansidas.provide an
> =T 5T T (51 illustrative expansion in the following as well as an explana-
(me) (ml2)" rm tion of the relation between continued fraction expansions
where the second inequality results from recognizing thagnd gcd calculationgsee Appendix DR Suffice it to say
sinx/x is a decreasing function of in the range G&x=<, that the continued fraction expansion of any rational number
and then replacingg| by its maximum allowed valug. Be- X provides a series of fractioniith each fraction in lowest
cause there is such@and associate® for each of ther ~ terms called convergentsto x, such that each successive
allowed values ofl in Eq. (48), we conclude that even when convergent furnishes an improved approximation.té key
[ is not a power of 2, the total probabili§=rP, of finding  theorem is that i/b is a fraction satisfyiny
the Y register in a statéc)y for which c satisfies Eq(48) is
2 1
not less than 4#°=0.4. Z x|
This result forP has been obtained by Ekert and Jo3ita; b 2b%’
is larger than the value d? originally quoted by Shat.It is
clear from its derivation, however, that this lower bound ofthena/b is one of the continued fraction convergentsxto
0.4 (though rigorously derivedconsiderably underestimates Equation(48) has the form of Eq(54), with x=c/2’ and
the magnitude oP that is likely to be encountered in prac- a/b=d/r. Because 2>N?, the right side of Eq(48) is less
tice. For example, if in Eq(51) |¢| is replaced not by its  than (2N?)~%, which in turn is less than (%) ' because
maximum value but rather by its average valjehen Eq.  r<N/2. This theorem implies thal/r must be one of the
(51) yields P.=8/r w?, corresponding t®=0.81. The use continued fraction convergents w2, that is, expanding
of the average value d€| to estimateP is reasonable, be- /v in jts series of continued fraction convergents inevitably
cause in general the vallue ofdepends o, as can be seen will yield d/r in lowest terms. Note that this result demon-
from Eq.(49), remembering that’2r is not an integer unless g ates the critical importance of choosing the sizd the Y
ris a power of 2. register to be much greater thah Indeed, if 2<N?/4, the
) ) right side of Eq.(48) would be greater than N?, which
7. Determine d. Attempt to infer the value of r would no longer ensure that/r is one of the continued
After a value ofc has been obtained, that is, after the statefraction convergents to/2Y. Similarly, if 2Y<N?/4, the right

measurement on registaf prescribed in step 6, it still is side of Eq.(53) would be greater than 8. Thus, Eq.(53)
necessary to infer the value fTo help understand how this would no longer be inconsistent with EG2), implying that

Because Eq€52) and(593) are inconsistent, the impossibility
of finding two distinctd/r satisfying Eq.(48) for the samec
is proved.

=

(54)
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it is now no longer guaranteed that there is only one permisdesirability of using an averag|) for asserting that the
sible d/r satisfying Eq.(48). quantity 442 discussed following Eq51) greatly underes-
Let me illustrate this beautifully simple continued fraction timates the probability of measuring statel, that can yield
method of determiningd/r. To factor our illustrativeN d/r.
=55 via Shor’s algorithm, & register ofy=12 qubits will To more accurately estimate this probability, note that if
be employed, as shown in Sec. IIIC1 {2 2048<N? c/2Y>d/r satisfies Eq(48), thenc—2,c—1, c, andc+1
=3025<2Y=4096). The order ofi=37 isr =20, the largest  will each satisfy Eq(56). Similarly, if c/2¥<d/r satisfies Eq.
possible value of for this N. Ford=11, the value ofi/r is (48), thenc—1, ¢, c+1, andc+ 2 will each satisfy Eq(56).
exactly 0.55. We havegi=0.549 80, 3532=0.55005, and In either case, by adding the appropriate f& from Eq.
27Y/2=0.000 12, which is less than 0.000-20.55- %5 but  (45), using sirk<x as in Eq.(50), and approximating by
greater than 0.00065355—0.55. If we assume the state 2¥/r as was done in deriving E¢51), we find that the prob-
measurement on th¥ register has yielded the stale)y  apility P, of measuring a statie)y that will haved/r as a
consistent with Eq(48) for r =20 andd=11, the value ot continued fraction convergent w2 is
must have been 2253. We now expand 2253/4096 in a con-

tinued fraction: Sir? e 1 1 1 1
Pe=—3 2T 2t 2t 2"
2253 1 1 7T \(1+e)® & (1-g)° (2-¢&)
4096 4096/2253 1+1843/2253 N , . &7
where G<e=<3, and the prime orP; indicates that we have
B 1 summed over the appropriate foBg. For e=3, we obtain
1+1/(2253/1843 P.=80/97%r =0.90f; using the average=3; we obtainP/
=0.935¢.
_ 1 55 We return to our illustrative continued fraction expansion
T 1+ 1/(1+410/1843 (553 and readily verify that each of the continued fraction expan-
sions of 53, %522 and 53¢ as well as the Eq555) expansion
B 1 of 222 haves: as a convergent, consistent with our employ-
- 1+ 11+ 1/(1843/410] ment of Eq.(57) to estimate the probability of correctly in-
ferring d/r from a state measuremejaf) .
1
1+ 1[1+1/(4+ 203/410] 8. Repeat steps-2Z/ until factorization of N is achieved
1 Inferring the value of need not immediately lead to fac-
= , (55p  torization ofN, however. In the first place, as was mentioned
1+ 141+ 1[4+ 1/(2+4/203 ]} in Sec. Il A, the probability that will meet the necessary

requirements for being able to factdr namely that is even

: _ : , and satisfies Eq(14), is only about:.*’ Thus although the
first convergent, namely; dropping the fractiortys in Eq. probability of being able to infed/rzvia a single measure-

(55D yields the second convergent, nargséiyo.5555. Each  ent of they register is so high, namely over 90%, never-
of these two convergents differs frofs by an amount theless, it will be necessary to run through the entire se-
whose absolute value exceeds 0.000 12, that is, each of the&ﬁence of steps 2—7 at least twice on the average before a
convergents fails to satisfy E¢48) and so cannot equal the §/r \whoser can be employed to factd¥ is obtained. The
desiredd/r. However, the third convergent, obtained by gniire sequence must be repeated starting from stepe2
dropping the fractionsy; in Eq. (55b), is 2, confirming the  gon't have to make any new decisions about the sizes of the
theorem quoted in the preceding paragraph. Mor;aover, beegisters because after step 7 théregister is in whatever
cause we know <N/2, which in this example is?, the  siate|c), was measured. The wave function of this state is
result thatd/r = 55 immediately implies that =20, because nothing like the initial loading wave functioW’ 2> of Eq.

any other fraction equal tg, for example %, inevitably has (31) from which the Shor algorithm operations departed, be-
a denominator greater tha ginning with step 3. Also, unless we already have cleared
| next observe that because<N/2, not merely less than registerZ to the statd0), the operations described in steps
N, it follows from Eq.(54) that even if the right side of Eq. 2 and 3 will not yield the desire® 35 of Eq. (37). Although
(48) had been replaced by, the values ot/2’ satisfying  the v register wave function always will be brought to its
the modified Eq(48) would have continued fraction conver- jnjtia| loading form, Eq.(31), in these repetitions, that is,
gents equal tal/r. But 2>N? implies 2/2<2/N?. In other  gjthough step 2 always will be the same, the choice of
words, if a state measurement on teegister yields ac)y  step 3 had better be different. Otherwise, carrying the algo-
whosec satisfies rithm through to step 7 will again yield anthat cannot be
employed to factolN.
Furthermore, even granting that theselected in step 3
does possess an ordethat is employable to factd¥, infer-
ring r from the computed!/r may not be as simple as the
this ¢/2Y also will haved/r as a continued fraction conver- discussion in Sec. Il C 7 suggests at first sight. Suppose that
gent ofc/2Y, even though the value @fmay not satisfy Eq. for our N=55, n=37, r=20 example, the register state
(48). Therefore, we have another readam addition to the measurement had yielded= 2048, which forr =20 satisfies

and so on. Dropping the fractioffs in Eq. (553 yields the

d _
1=, (56)
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Eqg. (48 with d=10. But the computer operator doesn't would infer with high probability(greater than 0.9 as we
know r=20; all the operator knows is thg§e=1 the sole discussefithatr is a multiple of 10. Once having discovered
convergent(which has to be in lowest termgo 2 The that 370=34 (mod55), the operator would infer with the
operator immediately will discover %491 (mod 55), so same high probability that=20, because 383x10>%
that 2 surely is not the order of 37, but then what? Each ofind therefore cannot kre Indeed, once having verified that
the fractions?, £, £...5 equals} and has a denominator less 372°=1 (mod 55), the knowledge that ¥#34 (mod 55)
than 2, that is, each of these denominators could be thémmediately enables the factors 5 and 11N#55 to be
desiredr. In principle, the operator could test the powersdetermined.

372, 37, 37,...(mod55) until he/she came to 3%
=1 (mod55). For the larg#l of interest, such as in RSA-
309, persistently trying to determimrein this crude fashion IV. CONCLUDING REMARKS

after the registelY measurement has yleldt(’ed a convergent e have now completed our presentation of the operations
with a denominatob for which b<N andn®#1 (modN)  constituting Shor’s algorithm. The algorithm involves the ap-
would be ridiculous and would negate the whole point ofplication of unitary operations at steps 2, 3, and 5. The esti-
using Shor’s algorithm. Shdrhas suggested the operator mated numbers of gates required to accomplish each of these
should try a few small multiples df, for example,  and  steps are stated in the text under their respective headings.
3b; but after findingn?® andn®’s1 (modN), the operator Let us denote these estimated numbersigy, vqs, and
seemingly would have little choice but to repeat steps 2-7 in, 5, respectively. The estimated total number of gates re-
the hope that for the newly selectacdthe nevyly measured _quired, denoted by, in Eq. (28), equalsyg,+ vgz+ vgs. In

c¢/2¥ would have a convergent whose denominator actually i$ne [imit of very largeN, the estimates,, and v4s become

T, uOt a factortpfr. " . {to have t negligible compared toy3. Accordingly, Eq.(28) equates
eat0 \é\;em:\ gy—;ngiioreergl?:t:? ?rﬁfgﬁ)l/\;s);ﬁlegsszmﬁlveth% re-Vq 0 Vq3'3'4 Equation(28) has not taken into account the
gperatorphas selected anposysessing an employabl%a is operations, gate or otherwise, required to perform the state
difficult to say. A seeming overestimate of the expected num_measurements postulated in steps 4 and 6. We have seen that

. . . X the quantum computer can carry out the algorithm with no
ber of such repetitions follows from considerations first ad- ; R
more than about 3 qubits. It is difficult to see why the

vanced by Shorand refined by Ekert and Josz@he num- . ; ) :

ber of positive integers less tharr that are coprime to is  equired numben, of measurement operations, including
(1), where ¢ is Euler’s totient functioff* (the subject of € postmeasurement operations needed (Eg restore the com-
Appendix B. Then if P’ is the probability(equal to at least PUter wave function to its starting form¥’c’=10)y|0)z,
0.9 as we have septhat a measurement on théregister should be other than proportional to the number of qubits.
will yield a c/2Y with a convergent equal to sonr, 0 Consequently, the failure to include state measurement op-

n_pr ; o tions in no way invalidates employing E@8), which
=d<r, thenP"=P’'¢(r)/r is the probability that the mea- era oo . .
surement will yield a convergent equal tadér whered is grows somewhat faster thadr? with increasingN, to esti-

) e mate the growth witiN of the computing effort required to
Fr{lergreer:ﬁ% r. For sufficiently larger, Ref. 5 quotes the perform a factorization oN using Shor’s algorithm.

If repetitions of the algorithm steps are necessary in prac-
¢(r) 0.56 1.17 tice, then these repetitions should be taken into account in
r = ninr = log, 0gT (58 any estimate, such as in E@8), of the total number of gates

22 required to determine a factorization bf [recall that Eq.

Because the typical is expected to increase dbincreases, (28) gives only the dependence of= v43 onN]. If there are
Eq. (58) suggests that whatever may be the number of repa number of repetitions that do not increase withfor ex-
etitions of steps 2—7 otherwise requirddr example, repeti- ample, the expected number of repetitions associated with
tions because is not always employable to factd¥), these the fact that some will not be employable to factoN, the
repetitions might need to be increased by abous llogp r inclusion of this number does not require a correction of Eq.
because of the just discussed complications associated wit@8). On the other hand, the number of repetitions suggested
fractionsd/r in Eqg. (56) whered is not coprime tar. by Eqg.(58), although very likely a considerable overestimate

This estimated increase in the required number of repetiof the actual number of required repetitions associated with
tions probably is an overestimate because it does not takide desirability of measuring@'r for whichd is prime tor,
into account the likelihood that the operator will infewith- probably does require some modification of E2g8). If we
out recourse to repetitions whers only a small multiple of  assume that the typicak<N/2 tends to be some fixed frac-
the denominatob of the measured convergent, for example,tion of N, then for largeN we can replace ladog,r by
whenb equalsr/2 orr/3. The operator also may be able to |og, log, N, thereby concluding that our earlier discussion of
minimize the number of requi.red repetitiops by recognizingEq_ (28) should have been Supp|emented by an upper bound,
(as Shot has remarkedthat if starting with the sam& (N}, on the expected number of universal quantum gates
yields two measured convergents which have denominatoia; will actually have to be employed in a Shor algorithm
b, <N/2 andb,<N/2 with b, coprime tob,, then the only  determination of the orderneeded to factoN. The required
way for r to be a multiple ofb; and b, is forr to be a  modification is obtained via multiplication of,(N) in Eq.
multiple of byb,, which now may be sufficiently large to (28) by log,L, yielding
ensure that is either 2,b, or 3b,b,. For instance, for our B 5 "
N=55,n=237,r=20 example, if after obtaining the conver- vquf N) =O[L"(log; L)*(log; log, L) ]. (59)
gents, the operator were to repeat steps 2—7 with the same Equation(59) only very minimally weakens our earlier con-
and if this repeat should yield the convergénthe operator  clusions from comparing Eq$7) and(28), or from comput-
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ing the actual magnitude of,(N) given by Eq.(29). For N2x N2 unitary matrix. Because an arbitrary unitary matrix
instance, whereas previously we concluded that a quantumf this dimensionality containbl* free parameters, one ex-
computer that could factor RSA-309 in two weeks timepects that reproducing a givex®x N2 unitary matrix will
should be able to factor RSA-617 in no more than about ninQequire a sequence of no fewer thaﬁ/16 One_qubit and
weeks, Eq(59) leads to the conclusion that a quantum com-tyo-qubit gates. This observation, based on trivial dimen-
puter which can factor RSA-309 in no more than two weekssjonal considerations, suggests that for most classical com-
will factor RSA-617 in at most ten weeks. puter algorithms the growth of computational effort with
After a c has been measured, as described in step 6, thgumber size will not be diminished merely by recasting the
following calculations still must be performed) infer anr algorithm into a form usable in a quantum computer.
from the measured, which generally involves a continued  Finally, we remark that factorization of a numb¥e=pq
fraction expansion(ii) verify that the inferred satisfies Eqs. g g quantum computer using Shor’s algorithm actually
(10), (12), and(14) (as it must if thisr is to be used to factor pas peen accomplish€l.Although the number factored,
N), which involves computing’ andn?(modN); and(iii)  namely 15, is the smallest possible product of odd primes,
obtain the factorg and q of N, which involves computing  the accomplishment is notable. It also is notable, however,
greatest common divisors. At present it is not contemplateghat becauses(15)=4x2=8, the only possible values of
that any of these calculations will be accomplished by ayerer =2 andr =4, meaning that in this quantum computer
computer other than a purely classical one. The efforts refactoring demonstration, the value ofcould be inferred
quired to accomplish these computations have not been ifrom Eq. (47) for any chosem coprime to and less than 15,
cluded in Eq.(28), nor could they be, because H@8) esti-  without the complications attendant on the much more usual

mates the number of universal quantum gates required, n@frcumstance in which has to be inferred from Eq48).
the number of classical computer bit operations as in(Eq.

On the other hand, the efforts to perform these classical calyckNOWLEDGMENTS

culations are not irrelevant to any realistic estimate of the

potential utility of Shor's algorithm for factoring increas- | thank Paul Reilly for numerous enlightening discussions,
ingly largeN. For none of these computations do the numbeespecially on the RSA system. | am indebted to Joseph Bur-
of required bit operations increase withmore rapidly than dis for carefully checking the manuscript, including its ref-
the right side of Eq(59) (see Appendix  Consequently, erences. | also am indebted to Sam Scheinman for data on
Eq. (59) correctly exhibits the maximum expected growth RSA enciphering and deciphering.

with increasingN=pq of the total computational effort,

quantum plus classical, required to complete a factorizatioMPPENDIX A: CONGRUENCE MANIPULATIONS,

of N using Shor’s algorithm. Correspondingly, the conclu-ILLUSTRATIVE RSA OPERATIONS,

sions we have drawn from comparing E¢8) and (28) re- ~ AND PERIODICITY OF REMAINDERS f;

main valid, except for the very minimal weakening discussed
immediately after Eq(59), even though the derivation of Eq.
(28) ignored the classical computer calculations presently in
herent in the use of Shor’s algorithm.

Until Shor produced his algorithm, it was generally be-
Il_eved that the com!outatu_)nal effort required to-fagmr the congruence symbet were the equality symbotk. For
=pq grew more rapidly withN than any polynomial irL example Eq(1) and
=log, N. Shor’s demonstration that the use of a quantum
computer could decrease this growth to slower thdrwas x=y (mod m) (A1)
astonishing, and has greatly accelerated attempts to constrygiply
a functioning quantum computer. The key Shor algorithm
operation, the operation that enables the greatly diminished aX=by (mod m) (A2)
growth of the computational effort witN, is the quantum  and
Fourier transfornJ .1 operation. The quantum Fourier trans- _
form is a direct generalizatiotio quantum mechanical basis bx=ay (mod m). (A3)
state$ of the classical discrete Fourier transform, which in Accordingly Eq.(1) implies
turn is nothing more than a discretized version of the con-  _z_ . (mod m) (A%)
ventional Fourier integral transform. Thus it is not surprising o _ o
that application o . to the wave functionp¢5 of Eq. (39) for any positive integer. Equa_tlons(AZ)—(A4) can be trivi-
yields a new wave function, nameﬂjf’,s of Eq. (44), where ally demonstratedf remembering that Eq(l) meansa=b

the probabilityP, (that a measurement on teregister will +wm for some positive or negative integex There are a
yield the basis statge)y) is large only for those values af few permissible {nanlptulatt)lops of equ:ahueg tTE}[t- have no t

. AT . congruence counterparts, but any such manipulations are no
from which the periodicity withr inherent in Eq(40) can be g P y P

inferred. What i kable. h 4 wh K relevant here. Unless explanatory comments seem required,
interred. atis very remarkable, however, and w at'ma Ctherefore, the remainder of this appendix will manipulate
possible the comparatively slow increase witlof v,(N) in congruences as if they were equalities.

Eq. (28), is the fact that although the discrete Fourier trans- The use of congruence manipulations to conveniently
form calculation require®(NL) bit operations the opera- compute Alice’sS=21, 14, 51, 1, 13, 27, 10, 1, 9, 8, 49, 51
tion Ugr can be accomplished with on@(L?) universal  from her illustrativeC=21, 9, 6, 1, 7, 3, 10, 1, 4, 2, 14, 6
quantum gates, as stated following E43). It must be re-  will now be shown. Our illustrative RSA key number and
membered thalg; is a 2X2Y matrix, that is, at least an encryption exponent, to be inserted into E8) along with

A comparison of Egs(1l) and (5) illustrates the proposi-
tion that (subject to the important proviso that all the con-
gruences must have the same modutyscongruences like
Egs. (1)—(5) have the useful property that in many respects
they can be manipulated as if they were equalities, i.e., as if
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eachc in C, are N=55 ande=23, respectively. Consider
Alice’s first c=21. Instead of determining the corresponding
s by tediously computing:®=(21)?% and then dividing by
55, Alice proceeds as follows:

(21)>=441=1 (mod 55, (A5)
(21)%=(1)"*=1 (mod 55, (AB)
(21)%%=(21)(21)%=21(1)=21 (mod 55. (A7)

So the firsts in S turns out to equal the first=21. The
seconds is obtained not quite as simply, but much more
easily than having to exactly computé*9namely,

(9)2=81=26 (mod 53, (A8)
(9)*=(26)2=676=16 (mod 55, (A9)
(9)8=(16)2=256=36=—19 (mod 55, (A10)
(9)1°=(—19)(26)=—494=—54=1 (mod 55,
(A11)
(9)%°=(1)?>=1 (mod 59, (A12)

(9)2=(9)?%9)%(9)=(26)(9)=234=14 (mod 55.

(A13)
Thus the second is 14. Similar congruence manipulations
on C readily yield the completé&s. Similarly, it is readily
verified that Bob's secret decryption exponeht 7 really
does decipher thiSinto C, namely, that in accordance with
Eq. (3), (21)"=(21)(21F=21(mod 55) using Eq(A5);
(14)>=196=31, (14\=961=26, (14)=(14)(31)(26)
=(14)(36)=9 (mod 55),....

The permissibility of these congruence manipulations also

immediately implies the periodicity of the remainddysde-
fined by Eg.(8). Using Eq.(10), we see thalfH,EnJ*r
=n'n"=n'=f; (mod pq), implying thatf;, =f;, because
by definition all thef; are positive numbers less thad
similarly ;. ,,=n/"'n"=n/"'=f, (mod pq). It also is
readily seen that all thg;, 1<j=r, are different. For sup-
pose f,=f,, where each ofa#b lies in the range of.
Suppose further thai<b. Thenn®=n?(mod pq), imply-
ing "°—n?=n?(n®"2-1) is divisible by pg. This means
n®~2—1 must be divisible by g, becausa has been chosen
to be coprime tgpg. On the other hand, it is not possible to
have n°~2=1 (mod pq) because by definitiorr is the
smallest value of for whichn'=1 (mod pq).

APPENDIX B: EULER’S TOTIENT FUNCTION
AND THE PROOF r<N/2 FOR N=pq

For any positive integem, Euler’s totient functioff* ¢»(m)
is the number of positive integers less thamthat are
coprime tom, where by definitionp(m) always is less than
m. Euler prove that if a is coprime tom, then

a®?™=1 (mod m). (B1)

Let us calculatepy(N) for N=pq, wherep andq are odd
primes. The only numbers less thidrthat are not coprime to
N are multiples ofp and g. There areq—1 integersp,
2p,...,(q—1)p less thanN; similarly there arep—1 mul-
tiples of g that are less thaN. Because none of these num-
bers can coincide and be less tHdn
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d(N)=N—-1—-[(p—1)+(g—1)]=pg—p—q+1
=(p—1)(g—1).

Evidently the RSA¢ introduced in Sec. Il A and employed in
Egs. (4) and (9) is ¢(pq). The explicit dependence oM
=pg was dropped in those equations because no confusion
could result. Equally evident is that E¢B1) immediately
implies Eq.(9). | note that ifn is not coprime tgoq, that is,
if nandpq have a common factor>1, thenf; in Eq. (8)
also must be divisible by, as is immediately seen because
Eq. (8) meansni—fj=ypq, for y equal to an integer. Con-
sequently, Eq(10) cannot hold for any integer unlessn
actually is coprime t@q.

If nis coprime topq, Eq.(9) is supplemented by

n(P~D@-D2=1 (mod pq),

(B2)

(B3)

wheren is coprime topg. To prove Eq(B3) it is convenient
to start from the form taken by EgB1) whenm is an odd
prime p. Evidently ¢(p)=p—1, so that

aP =1 (mod p), (B4)

wherea is coprime top. Equation(B4) is known as Fermat’s
Little Theorem stated by Fermat in 16%0Because also is
an odd prime, §—1)/2 is an integer, so that E¢B4) im-
plies, using Eq(A4),

aP~V@=b2=1 (mod p). (B5)

But if a also is coprime tay, then it similarly is true that

a@-V(P-L2=1 (mod q). (B6)

If aiis coprime to botlp andqg, however, thera is coprime to
pq, that is,a is ann as defined at the outset of Sec. Il A.
Furthermore, for any positive integerif z— 1 is separately
divisible by a primep and by another primg, thenz—1 is
divisible by the producpq. Hence Eqgs(B5) and(B6) imply
Eqg. (B3). Equation(B3) in turn implies that the order of
anyn moduloN=pq is less than or equal t¢(N)/2, so that
r<N/2, an inequality that is crucial to the derivation of the
important Eq.(57).

The probability that a randomly selected positive integer
less thanN will be coprime toN is

¢(N)_1_ p—1+g-1
N—1 N—1

(B7)

using Eq.(B2). For actual RSA key numbers, for example,
RSA-309, the right side of EqB7) will be indistinguishable
from unity for all practical purposes. For instance, if the
smaller ofp andq is not less thamN'#, the larger ofp andq
will be no greater thaiN®“ and the right side of EqB7) is
approximately N4 which, even for a key number as
small as RSA-155, differs from unity by approximately
103, Correspondingly, for actual RSA key numbers the
magnitude of¢(N) can be taken equal td for all practical
purposes. It is worth noting that becau#éN) also equals
the number of integers coprime toN in the rangedN+1
<i<2N, 2N+1<i<3N, etc., the probability that a ran-
domly selected integer less th&f (or less than ) will be
coprime toN also can be taken equal to unity for all practical
purposes.
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APPENDIX C: PROOF THAT THE RSA SYSTEM
CORRECTLY DECIPHERS

Equations(2) and (3), together with the definition oN,
imply

u=(c®%=c® (mod pq). (CY

Becauseal and e are positive integers by definition, Ed)
implies

de=1+zp=1+z(p—1)(q—1), (C2)

wherez is a positive integer. Because by definitiorand c
are positive integers less thatN=pq, knowing u
=c (modpq) impliesu=c. Thus to prove that the RSA sys-
tem enables Bob to correctly decipher Alice’s message,
need to show that

ctzp-D@a-V=¢ (mod pq). (C3
If cis coprime toN, then Eq.(9) implies
c*P V@ V=1 (mod pg), (C4)

from which Eq.(C3) immediately follows after multiplying
both sides of Eq(C3) by c. If c is not coprime topq, ¢
<N is divisible byp or g but not by both. Suppose thats
divisible by g, that is, suppose=Dbq, with b a positive
integer less thap. Then Eq.(B4) holds fora=c and implies

cip-@-1=1 (mod p)_ (C5)

But if x—y is divisible by p, thenq(x—Yy) is divisible by
gp, implying further thatbg(x—y) is divisible by gp.
Hence Eq(C5) implies

bgcd - VP-Y=pq (mod qp). (Co)

Equation(C6) is Eq. (C3) for the case that=bq. Corre-
spondingly, Eq.(C3) will hold if c is divisible by p. We
conclude that Eq(C3) holds for everyc in Alice’s crypto-
gram whetherc is coprime toN or not. This completes the
demonstration that the RSA system enables Bob to correctl
decipher Alice’s cryptogram.

APPENDIX D: CLASSICAL COMPUTER
CALCULATIONS RELEVANT TO SHOR’S
ALGORITHM FACTORIZATION

This appendix discusses the various classical comput
calculations discussed in this paper. The results 1-3 in th

wherez, is a non-negative integer and<,<s;. Becaus«

is a divisor ofsy ands;, Eq.(D1) implies x is a divisor of
s,. If we proceed in this fashion, always dividing the previ-
ous divisors; by the previous remaindes; , ;, we obtain a
sequence of remaindess, Ss,...,Sj41, Sjt2,-.-, €ach of
which is a multiple ox. Moreover, because eashis greater
than s;,;, the sequence eventually must terminate with
somes,, ,=0, that is, eventually there will be the simple
equation

(D2)

It now can be seen thajf ; is not merely a multiple ok
(which is the gcd o6, ands;), but rathers, . ;= X. Equation
[D2) shows thats, is a multiple ofs,.;. The preceding
equation in the series, namely

Sk= ZkSk+1-

(D3)

then impliess,_; also is a multiple of,, ;. Thus, proceed-
ing back through the series of equations that led from Eq.
(D1) to Eq.(D3), it can be concluded that bo#l ands; are
multiples ofs,, ;. Hence,s,,; must be a divisor ok, the
gced of s; ands;. But we already have shown thatis a
divisor of s; 1. Consequentlyx must be identical t®, 1,

the last remainder beforg ,,=0. If s, 1=1, thens, is
coprime tosy.

I will illustrate the use of the Euclidean algorithm to find
the factor 5 ofN=55 when, as explained at the end of Sec.
III'A, it is deduced forn=12 thatf,+ 1=35 must be divis-
ible by one of the factors of 55. We have 55X 35+ 20;
35=1%20+15; 20=1X15+5; 15=3X5+0. Therefore 5 is
the gcd of 55 and 35. Similarly, suppose we had decided to
verify that 12 actually is coprime to 55. Now we have=56
X12+7; 12=1X7+5; 7=1X5+2; 5=2X2+1; 2=2X1+0.

So 1 is the gcd of 12 and 55, that is, 12 really is coprime to

Sk—1=Zk— 1Skt Sk+1-

5.
How many classical computer bit operations are required
t obtain the gcd of two large numbeks and N,<N; via
the Euclidean algorithm? Defind.;=log,N;, and L,
=log, N,. As discussed following Eq29), for largeN;, N,
the quantitiesd;, L, differ negligibly from the number of
digits in the binary expansions df;, N,, respectively. Then
according to a theorem by Lami®&the number of divisions

eq,eeded to find the gcd dfl; and N, using the Euclidean

glgorithm is at mosO(L ;). The number of bit operations in

following are the bases for the assertions made in Sec. A1 one of these divisions hardly can exceed the number of

about the growth withN of the classical computer calcula-
tions required to factoN=pq using Shor’s algorithm. How
Bob can determine his decryption exponettfrom ¢

= ¢(N) and his encryption exponesetis described in Ap-

pendix D 4.

1. Greatest common divisors and the Euclidean algorithm

A convenient method for computing the gcd of two posi-
tive integers was first described by Euclid. My discussion o
the Euclidean algorithm closely follows Ros&hSuppose
the integex=1 is the gcd of the two positive integesgand
s, Wheresy>s;>1. The Euclidean algorithm determines
as follows. Divides, by s;, thereby obtaining the remainder
s,=0. By definitions,<s; and

50: Zosl+ 52 y (Dl)
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it operations in the first of those divisions, where the divi-
dend N; and divisorN, are at their respective maximum
values. Although at first sight the number of bit operations
required to divideN; by N, is O(L;L,), *in actuality, there
exist’? sophisticated classical computer algorithms which for
large N, N, reduce the number of bit operations required
for this division to O[L;(log,L,)(log,log,L,)]. Conse-
quently, the number of computer bit operations required to

fobtain the gcd of two large numbeh$; and N, using the

Euclidean algorithm iQ[Lf(Iogz Ly)(log,log, Ly)].

Returning to the discussion in Sec. IV of the classical
computer calculations required for factoring using Shor’s al-
gorithm, the two numbers whose gcd is required always will
be no larger thaN=pqg and 1+f,,, where according to
Eq. (8) everyf; is less tharN by definition. Once am per-
mitting factorization ofN has been inferred, only a single
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gcd computation will be needed to complete the factorizatiorduring factorization via Shor’s algorithm may grow with in-
of N. No such gcd calculation is needed until a usables  creasingN as fast as, but surely no faster than, the right side
been inferred. It follows that the number of bit operationsof Eq. (59).

required for the gcd calculations involved in factoriiy

=pqg using Shor’s algorithm will not grow faster than 4 Finding the decryption exponent

O[L?(log, L)(log, log, L)], the same growth rate as given b
Ec[]. (2(8).92 Hog; loge )] J J Y We need to solve Ed4) for d, knowinge and ¢. There is

a known closed formula fog(¢), the totient function ofe,
in terms of the prime factors ap.”® Thus if we could factor
2. Continued fraction expansions ¢, we immediately could findd. Namely becausee is

coprime to¢ (recalling Sec. Il A, using Eq.(B1) implies
Rosefi? has explicitly demonstrated that the divisions per- P ¢ g A g Eq.B1) imp

formed in finding the gcd of the positive integessands; e?¥=1 (mod ¢). (D4)
via the Euclidean algorithm are the same as the diViSiO”%onsequentIy Eq) is solved by

performed in constructing the continued fraction expansion

of the fractions,;/s,. By way of illustration, suppose we d=e#?~* (mod ¢). (D5)

seek the ng of the integers 2253 and 4096 whose ratio was WhenN is of the magnitude of modern RSA key numbers1

expanded in the continued fraction of E@5). We have  factoring ap=(p—1)(q—1)=N can be difficult, though
4096=. 1X2253+1843; .225% 1X1843+410; 1843=4x410 perhaps not as difficult as factorid= pq itself. In practice,
+203; 416-2x203+4; and so on. Evidently the diViSIOnS ¢ efore 4 probably would be determined as follows. Equa-
performed to obtain these relations are identical with thos"ﬁon (4) means there is an integkrsuch that

performed in constructing the right side of E§5). Thus to
estimate the number of bit operations required to compute ed=1+Kke. (D6)

the contl_nued _fractlon convergents of any ami@/ m_easured _Equation(D6) is a Diophantine equatiorin the unknownsk

as o_Ies_cnbed_ in Sec. Il C6, the_result obtained in Appendixq d, whose solution can be fouftby working backward

D 1is immediately applicable. Itis necessary only to observg;om the set of equations constituting the Euclidean algo-
that for sufficiently largeN, the value ofy=log, 2 differs  jthm for the gcd ofe and ¢.

negligibly from 2L =log, N°. Accordingly, the number of bit | will illustrate this method of solving Eq(4) for N=55.
operations required to perform a typical continued fractionye have$=40, and have choses=23. The Euclidean al-
expansion of a measuren2’ should beO[(2L)*(10g,2L)  gorithm equations for obtaining the gcd of 40 and 23 are
X (loglog, 2L)]=0[L*(log, L)(log log, )], the same result 40=1x23+17; 23=1x17+6; 17=2X6+5; 6=1X5+1;

as obtained in Appendix D 1 for the Shor algorithm gcd cal-5=5x1+0, verifying thate is coprime toN. Now, working
culation. backward we have 65=1; 5=17—2X6, so 6-(17—2X6)

Unlike the gcd case, however, a continued fraction expan=3x6—17=1; 6=23—-17, so 3X(23-17)—17=3x23-4
sion is required every time @2 is measured. The expected x17=1; 17=40-23, so 3X23—4X(40—23)=7x23—4
number of repetitions of such measurements has been dis40=1. This last equation is of the form of E¢D6), and
cussed in Sec. lIlIC 8 and in Sec. IV. Those discussions indiimplies 7x23=1 (mod 40. Therefore the desirediequals 7,
cated that a probable overestimate of the required number afs asserted at the end of Sec. Il A.
repetitions is 2 loglL, implying that the overall number of bit It is apparent that the computing effort required of Bob to
operations required to perform the continued fraction expandetermine higl via this procedure is utterly negligible com-
sions during factoring by Shor’s algorithm may grow with pared to the computing effort he will endure in decrypting
increasingN as fast as, but no faster than, the right side ofthe many messages he expects to receive from Alice.

Eq. (59).
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