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The security of messages encoded via the widely used RSA public key encryption system rests on
the enormous computational effort required to find the prime factors of a large numberN using
classical~conventional! computers. In 1994 Peter Shor showed that for sufficiently largeN, a
quantum computer could perform the factoring with much less computational effort. This paper
endeavors to explain, in a fashion comprehensible to the nonexpert, the RSA encryption protocol;
the various quantum computer manipulations constituting the Shor algorithm; how the Shor
algorithm performs the factoring; and the precise sense in which a quantum computer employing
Shor’s algorithm can be said to accomplish the factoring of very large numbers with less
computational effort than a classical computer. It is made apparent that factoringN generally
requires many successive runs of the algorithm. Our analysis reveals that the probability of
achieving a successful factorization on a single run is about twice as large as commonly quoted in
the literature. ©2005 American Association of Physics Teachers.
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I. INTRODUCTION

Recently published papers1,2 have attempted to explai
how a quantum computer differs from a classical, that is
conventional, computer. However, neither of these papers
fers a detailed discussion of the factoring algorithm dev
oped by Peter Shor3 in 1994, although this algorithm, whos
implementation could frustrate one of the most widely us
modern methods of encrypting messages, provides the m
impressive known illustration of the increased comput
power potentially attainable with quantum computers. T
paper furnishes a self-contained explanation of Shor’s a
rithm, as well as of the algorithm’s relevance to mode
cryptography. Shor’s original paper3 and other publications
discuss the Shor algorithm in a manner suitable for quan
computing specialists.4–6 Less technical presentations mo
suitable for the nonspecialist readers of this journal also
available.7–9 Various Web sites link to a wide variety of pub
lications in the quantum computing literature, organized
der numerous suitable headings including Shor’s algorithm10

The contents of this paper can be summarized as follo
Section II first describes the basic elements of classical c
tography, wherekeysare employed to encipher and/or dec
pher messages to prevent those messages from being re
anyone other than their intended audience. Section II t
explains in detail the enciphering and deciphering procedu
in the RSA system,11–13 an important modern scheme fo
sending secret messages. These explanations and illustra
require the presentation of the number theory underlying
RSA system. Without some understanding of this underly
number theory, the ability of the RSA system to transm
secure messages seems magical. Section II goes on t
plain how the security of the RSA system critically depen
on the fact that using classical computers to factor la
numbers requires huge outlays of computer resources
time. The relevance of Shor’s factoring algorithm to the
curity of the RSA system thereby becomes evident. Af
briefly summarizing the relevant properties of quantum co
puters, Sec. III fully describes and illustrates Shor’s alg
rithm. Section III also explains the precise sense in whic
521 Am. J. Phys.73 ~6!, June 2005 http://aapt.org/ajp
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quantum computer employing Shor’s algorithm can be s
to accomplish the factoring of very large numbers with le
computational effort than a classical computer. Many det
of the underlying number theory, which are important n
only for understanding why the RSA system works, but a
for comprehending how Shor’s algorithm enables the fac
ization of large numbers, are discussed in the appendice

Except for its discussion of the Shor algorithm, which
designed for a quantum computer, this paper is concer
solely with classical computers. In particular, I assume t
the enciphering and deciphering procedures described in
II are performed with classical computers, which experien
has demonstrated is practical with numbers of the size p
ently being used as RSA keys. The possible use of quan
computers to perform this enciphering and deciphering
other aspects of quantum cryptography and/or computa
aside from Shor’s algorithm are beyond the scope of t
paper. Also beyond the scope of this paper are the obse
and anticipated difficulties involved in actually constructin
functioning quantum computers. These difficulties are w
discussed in the literature, for example, in Ref. 6.

II. CRYPTOGRAPHY, KEY DISTRIBUTION
AND NUMBER THEORY

As Ekert has observed,14 ‘‘Human desire to communicate
secretly is at least as old as writing itself and goes back to
beginnings of our civilization.’’ The full history of secre
communication until about 1965 is recounted by Kahn.15 De-
velopments after about 1965, including those advance
secret communication to which Shor’s algorithm pertai
are described by Singh,16 who also~but less fully than Kahn!
reviews the pre-1965 history. Kahn15 carefully defines the
termsplaintext ~the original uncoded message!, cryptogram
~a writing in code, for example, the enciphered message!, key
~the information or system employed to encipher the pla
text message!, cryptography ~the acts of enciphering the
plaintext into a cryptogram, and/or of deciphering the cry
togram by someone who knows the key!, andcryptanalysis
521© 2005 American Association of Physics Teachers
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~the art/science of code breaking, that is, of ferreting the
from the cryptogram!. This paper adopts Kahn’s termino
ogy.

Until about 1975 cryptographers employedsymmetricor
private ~also known assecret! key systems only.17 In such
systems the key used by Alice~conventionally the sender o
the cryptogram! to encipher the message is the same as
key Bob ~conventionally its receiver! employs to decipher
the cryptogram. One of the simplest type of symmetric ke
~which also appears to have been the earliest type to be
ployed, dating back to nearly 2000 B.C.18! is termedsubsti-
tution. In substitution-key cryptography the cryptogram
constructed from the plaintext by replacing each letter~of the
alphabet! in the plaintext with some other chosen expressi
The replacement expression can be another letter of the
phabet, or a symbol of some kind, or an arbitrary combi
tion of letters and symbols. The same letter of the alphabe
different portions of the plaintext may be replaced by diffe
ent expressions. The key is the chosen replacement sch
In the very simplest substitution keys, which for the purpo
of this paper may be termedunique substitution, Alice and
Bob agree that the replacements will be unique and on
one, that is, any given letter in the plaintext always is
placed by the same expression, and different letters of
alphabet are replaced by different expressions. Altho
cryptograms constructed via unique substitution keys
seem impregnable, especially when the key involves unu
or unfamiliar symbols, they actually are readily decipher
taking advantage of the peculiarities of the language~as-
sumed to be known or correctly guessed! in which the plain-
text had been written, as 15th century Arab cryptologi
already knew.19 The writings of Edgar Allan Poe20 and
Arthur Conan Doyle21 provide celebrated fictional cryp
tanalyses of unique substitution cryptograms~in these cases
with English plaintexts! where letters of the alphabet ha
been replaced by symbols. In the most transparent un
substitution cryptograms a single alphabet letter is sub
tuted for each plaintext letter, consistent with a preselec
cipher alphabet. Cryptograms constructed in this fashion, b
employing a different cipher alphabet each day, are regul
published in many newspapers as puzzles to be deciph
by readers using, for example, the fact that in English
letter e is by far the most frequent.22

But substitution cryptograms need not be constructed w
unique keys. Moreover, nonunique substitution cryptogra
can be and have been made very difficult to cryptanalys
famous illustration of this last assertion is provided by t
Enigma machine employed by the German army dur
World War II, which constructed cryptograms where ea
letter was replaced by a single letter as in newspaper c
tograms, but where the cipher alphabet employed to encip
any given plaintext varied not merely from day to day, b
also from one plaintext letter to the next, in accordance w
a predetermined randomly selected complicated ke23

Whether or not very difficult to cryptanalyse, however,
substitution and other symmetric key cryptographic syste
have a deficiency known as thekey distribution problem, as
numerous authors~e.g., Ekert14! have observed: Before Alice
and Bob can begin exchanging cryptograms, they m
exchange—in a non-encrypted form—the information nec
sary to establish their key. They cannot be confident that
information exchange has not been intercepted unless
exchange takes place in the same room, and perhaps not
then.24 Symmetric key cryptographic systems also have
522 Am. J. Phys., Vol. 73, No. 6, June 2005
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related deficiency that if Bob wants to receive secret m
sages from more than one Alice, then he either must se
different keys with each Alice or else risk the possibility th
one Alice will intercept and readily decipher a message s
to Bob by another Alice.

These deficiencies are avoided inasymmetric~commonly
termedpublic! key systems, where the key Alice employs
encipher her message is not the same as the key Bob
ploys to decipher the cryptogram he receives. The diff
ences between symmetric and asymmetric key systems
be visualized in terms of a safe: With a symmetric system
key Alice employs to open the safe and lock her mess
inside it is the same as the key Bob employs to open the
and remove the message. With an asymmetric system Ali
key enables her to open the safe just enough to insert
message, but no more. Only Bob’s key can open the sa
door sufficiently to permit message removal.25 Indeed in the
RSA system,7 one of the most commonly employed publ
key systems, Alice’s enciphering key is made public; it is n
at all secret but rather is available to any Alice who wishes
send Bob an encrypted message. Bob’s deciphering key
mains his secret. The nature of the RSA system is given
the following.

A. The RSA public key system

Bob creates his RSA public key system in the followin
fashion:11 He first selects two different large prime numbe
p and q, and then computes their productN5pq. Next he
also computes the productf5(p21)(q21)5N112(p
1q), and then selects a positive integere which is coprime
to f ~meaning thate andf have no common prime factor
other than 1!. Finally he computes a positive integerd such
that the productL5de has the remainder unity when divide
by f. Bob now has all the required components of his pub
key system except the specified convenient-to-use symm
key whereby any Alice can convert her plaintext into a cry
togram consisting of a sequenceC of positive integersc,
which she then will further encrypt~via Bob’s proclaimed
procedure! into the sequenceSof positive integerss actually
sent to Bob.

The nonsecret components of Bob’s public key syste
which Bob now is ready to broadcast for the benefit of o
and all, are~i! the positive integersN ande, which here will
be termed thekey numberandencryption exponent, respec-
tively; ~ii ! the details of the symmetric key Alice will use t
construct herC, and which Bob also will use to reconstru
Alice’s original plaintext message once he has deciphereS
and thereby recoveredC ~the only restriction onC is that
everyc must be less thanN!; and~iii ! the surprisingly simple
procedure for constructing the elementss of S from the ele-
mentsc of C, namelys is the integer remainder whence is
divided byN.11 Note that the symmetric key which Alice an
Bob share now is completely public; there is no attem
whatsoever to keep it secret. Similarly, Alice transmits h
finally enciphered cryptogramS to Bob via perfectly open
communication channels, for example, by email. The se
procedure by which Bob extracts the originalC from S par-
allels, but is not the direct inverse of, the public procedu
which constructedS from C, namely, for eachs Bob com-
putes the integeru which is the remainder whensd is divided
by N.11 Bob is confident that because he has kept the dec
tion exponentd secret, he and only he possesses the se
key that enables deciphering ofS.
522Edward Gerjuoy
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At this juncture it is instructive to illustrate the encryptio
and decryption of messages in this RSA public key system
Bob’s, in particular the dread message to Bob from Alice t
‘‘The FBI came.’’ To do so, it first is necessary to specify t
symmetric key. A possible easily usable symmetric k
which Singh suggests,26 requires Alice to replace each lette
of the alphabet by its ASCII equivalent. ASCII27 is the pro-
tocol that converts computer keyboard strokes into
seven-bit electrical impulses that transmit our email; e
impulse is the binary representation of a positive integer~less
than 275128). In ASCII the 26 upper case letters A throu
Z are represented by the integers~in base 10! 65 through 90;
the corresponding lower case letters are represented by
integers 97 through 122; a space between words is re
sented by the integer 64; the ASCII integer representation
other communication symbols, for example, the period or
comma, are irrelevant here. Similarly, it is simpler to igno
the distinction between upper and lower cases, and to re
sent the letters A through Z by the integers 2 through
respectively, saving the integer 1 for the space betw
words.

Thus, Alice’s C, corresponding to her dread message
21, 9, 6, 1, 7, 3, 10, 1, 4, 2, 14, 6. These integers are wri
in base 10, and, unless otherwise noted, integers will be w
ten in base 10 in the remainder of this paper. That Alice~with
Bob’s blessing! may choose to write her integers in anoth
base, or may transmit herS to Bob via email~where the
digits 0 through 9 she uses to write her base 10 integers
be converted into electrical impulses that are the AS
seven-bit binary equivalents of the base 10 integers
through 57, respectively27! does not affect the validity of any
conclusions given in the following.

Next it is necessary to choose the pairp andq of primes
whose product yields theN our hypothetical Bob had broad
cast for Alice’s use. I will choose the pair 5 and 11, whi
makesN555, a conveniently small number for illustrativ
purposes, but still large enough to satisfy the requirem
that N exceeds everyc in C. The quantityf54310540.
Thus I now can choosee523, consistent with the require
ment thate be coprime tof. To complete Bob’s public key
we need a positive integerd such that whende is divided by
f, the remainder is unity. The integerd57 fits the bill, as the
reader can verify. The convenient method which Bob can
to find d in actual RSA practice is presented in Append
D 4.

Finally, I am in a position to illustrate how Alice con
structs her cryptogramS from C. To do so efficiently, how-
ever, it is desirable to introduce the modular arithmetic n
tation employed in number theory.28

B. Modular arithmetic formulation of the RSA public
key system

If the positive integerb is the remainder when the positiv
integera is divided by the positive integerm, thena2b is
exactly divisible bym. In number theory, if a difference o
two integersa and b ~each of which may be positive o
negative! is exactly divisible by the positive integerm, then
we saya andb are congruent modulom, and write28

a[b ~mod m!. ~1!

Thus the procedure for obtaining the elementss of S from the
elementsc of C can be written as
523 Am. J. Phys., Vol. 73, No. 6, June 2005
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Similarly Bob’s secret key procedure for decipheringS can
be written asc5u, where

sd[u ~mod N!. ~3!

Finally, the expression yieldingd from e is

de[1 ~mod f!. ~4!

Because Eq.~1! means there is no remainder whena2b is
divided bym, Eq. ~1! can be restated as

a2b[0 ~mod m!. ~5!

But if a2b is exactly divisible bym, then so isa2b2m,
that is, if Eq.~1! holds, then it is also true that

a[b1m ~mod m!. ~6!

Equations~1! and ~6! imply that Eq. ~2!, though perfectly
correct, does not uniquely determines without the additional
condition thats is a positive integer less thanN, which then
guarantees thats is indeed the integer remainder whence is
divided byN. Similarly Eq. ~3! does not uniquely specifyu
without the additional condition thatu is a positive integer
less thanN.

The use of congruences eases Alice’s task of construc
her cryptogramS from C via Eq. ~2!. In particular, for the
key numberN555, encryption exponente523, and the ex-
ampleC, Alice’s S is 21, 14, 51, 1, 13, 27, 10, 1, 9, 8, 49, 5
By using the decryption exponentd57 in Eq. ~3!, Bob can
then decrypt thisS into Alice’s originalC. These calculations
are illustrated in Appendix A. Appendix C contains the pro
that the RSA system enables Bob to correctly decipher ev
SAlice transmits and the proof of the fact that Eqs.~2!–~4!
imply that u5c whenN5pq andf5(p21)(q21).

C. Cryptanalysis of RSA system messages

The exampleS was obtained from the exampleC by suc-
cessively inserting each individualc into Eq. ~2!. But inser-
tion of the samec into Eq. ~2! always yields the sames. For
example, because both the third and last numbers inC are 6,
both the third and last numbers inS turn out to be 51. In
other words, our exampleS is identical to theS into which
Alice’s original plaintext would have been enciphered usi
an appropriate unique substitution key of the sort descri
at the beginning of Sec. II. Of course, with actual RSA k
numbersN the actually encountereds in S typically will be
very large, not the two digit numbers less than 55 of o
exampleS. Nevertheless, it is now apparent that, despite
RSA system’s number theoretic sophistication, if Alice co
tinues to routinely encipher@via Eq. ~2!# her plaintext into
individual elementss one letter at a time, then the variousS
she transmits to Bob could be readily cryptanalysed, with
any need to guess Bob’s decryption exponentd or to employ
Eq. ~3! at all. In particular, because Alice does not attempt
keep secret the messagesS she sends to Bob, the relativ
frequencies and other characteristics of the variouss in her
messages, assumed to be written in English, are readily
certainable. Consequently the standard deciphe
techniques19–22 applicable to symmetric unique substitutio
keys will work quite well~for example, the observation tha
a relatively infrequents1 almost invariably is followed by
anothers2 suggestss1 is q ands2 is u!.
523Edward Gerjuoy
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However, there is no requirement that Alice obtainS by
successively inserting each individualc into Eq. ~2!. For in-
stance, Alice can simply and efficiently obtain a very mu
more difficult to cryptanalyseS8 by first converting herC
into a newC8 composed of integersc8 constructed from
large blocks of the originalc entries; the only limit on the
size of these blocks is that eachc8 must be less than the ke
numberN. Obviously, there can be essentially no availa
useful information, for the purposes of cryptanalys
about the relative frequencies with which blocks of s
40 letters occur in English, especially when during t
enciphering those letters can be interrupted by punctua
marks, as well as by superfluous digit combinations. Th
returning to our illustrative C, whenever Bob’s key
numberN exceeds 1040, Alice could make her illustrative
S very much more difficult to decipher by inserting in
Eq. ~2! not the individual 12c’s comprising the illustra-
tive C, but rather the single 40-digit integerc8
52143790906449201290703821001045802143806. Thic8
is composed of 20 pairs of digits where, reading from left
right, the pairs whose magnitudes are less than 28 comp
the original 12c’s in their correct order inC, but each pair
exceeding 28 is superfluous and randomly chosen. Alic
insertion of thisc8 into Eq.~2! would yield a singles8 com-
prising Alice’s entire new sequenceS8 to be transmitted to
Bob. This s8 would have no discernible features related
the presence of those superfluities; yet Bob, after recaptu
c8 from this s8 using Eq. ~3!, would instantly be able to
recognize and discard the superfluous pairs, that is, he w
have no difficulty reconstructing Alice’s original ‘‘The FB
came’’ from his recapturedc8. Alice could similarly break
up, into successively transmitted blocks of 40 digits, m
sages longer than our illustrative ‘‘The FBI came.’’

This 40-block scheme is by no means the only conceiva
means of replacing a letter by letterS by an S8 whose ele-
mentss8 bear no useful relation to the characteristics of
language in which the original plaintext message was w
ten. Moreover, modern RSA key numbersN permit blocks
considerably larger than merely 40 decimal digits. In sh
available and feasible encryption systems make the lik
hood that Alice’s RSA-system messages could be deciph
via the aforementioned techniques, even after receipt by
would-be decipherer of many openly transmitted messa
of hers, virtually zero. On the other hand, techniques t
depend primarily on language properties are not the o
conceivable means whereby a third party might seek to
cipher Alice’s RSA messages to Bob. Descriptions of alt
native deciphering schemes are beyond the scope of this
per. It is sufficient to state that no known means
deciphering RSA messages is computationally more prac
than decipherment via factorization of the key numberN. In
particular, in 1996 a very thorough examination29 of the se-
curity of the RSA system found that ‘‘While it is widely
believed that breaking the RSA encryption scheme is as
ficult as factoring the key numberN, no such equivalence ha
been proven.’’ I am not aware of any later publications th
contradict this conclusion. The relevance of being able
factor N is that once the primesp and q factoring N are
known, the value off immediately is yielded by the relatio
f5(p21)(q21). Knowingf and Bob’s publicly broadcas
encryption exponente, we can easily determine Bob’s orig
nally secret decryption exponentd ~see Appendix D 4!.
524 Am. J. Phys., Vol. 73, No. 6, June 2005
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D. Modern RSA systems and factoringNÄpq
with classical computers

It follows that Bob can be confident in the security of h
RSA system, provided there is no practical likelihood tha
would-be codebreaker will be able to deduce the prime f
tors p andq of N from the publicly known quantitiesN and
e. The basis for Bob’s confidence is the difficulty of facto
ing, with classical computers, numbersN of the astonish-
ingly large magnitudes typically employed in modern RS
keys. According to recent publications by RSA Security, t
company founded by the inventors of the RSA system, k
numbersN of 1024 binary digits are now the recommend
and popularly employed sizes for corporate use;30 1024 bi-
nary digits correspond to 309 decimal digits.

The most obvious way to factor a large integerN that is
not a prime is to perform the sequence of divisions ofN by
the integers 2,3,...<AN until a factor ofN is found. If N has
only two prime factors, each of the order ofAN, then ap-
proximatelyAN divisions would be required to find the fac
tors of N. Thus, as Ekert31 has pointed out, this straightfor
ward procedure cannot possibly be relied on to yield
prime factors of really large numbersN, numbers of 100
decimal digits say, which, although very large by ordina
standards, are very much smaller than the present R
recommended key numbers of 309 decimal digits. For a
decimal digit numberN, that is, forN of the order of 10100,
approximately 1050 divisions may be required to ensure fa
toring by this straightforward procedure. Even if the avera
time for a single division is as small as 10212s, already a
very small time for today’s fastest computers,32 the total time
required to factorN;10100 in this fashion would be;1038s,
a duration much longer than 4.3231017s513.7 billion years,
the present estimate of the age of the universe.33

Nevertheless, in 1994 the 129 decimal digit public k
numberN known as RSA-129 was factored after only eig
months of number crunching, thereby winning a symbo
$100 prize Martin Gardner had offered in 1977, shortly af
RSA-129 was first made public.34 This accomplishment
was made possible by the ingenuity of mathematicians w
were able to devise factoring procedures far more powe
than the brute force procedure we just described. In part
lar, RSA-129 was factored using thequadratic sieve.35

In 1999 RSA-155 ~corresponding to 512 binary digits!
was factored after no more than seven months
computing time,36 using the even more powerfulnumber
field sieve.37,38This factorization of RSA-155, in response
the Factoring Challenge36 started in 1991 by RSA Security
is the primary reason that RSA Security increased its rec
mended key numberN size from the previous RSA-155 t
the present RSA-309.30 RSA Security now recommends
key number size of 2048 binary digits~RSA-617! for ex-
tremely valuable keys.30 The wisdom of this recommenda
tion is manifested by two recent successful factorizations
response to the Factoring Challenge. Factorization of RS
160~corresponding to 530 binary digits! was announced39 on
1 April, 2003. The announcement stated that RSA-160 w
factored in less time than RSA-155, and made use of fe
computers in parallel. The announcement that RSA-174~cor-
responding to a number of 576 binary digits! had been fac-
tored came on 3 December, 2003, only eight months late40

As of this writing the time and computer facilities needed
factor RSA-174 have not been released.

That RSA-155 was factored with the expenditure of ab
524Edward Gerjuoy
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the same amount of computing time as RSA-129 reflects
only the improved power of the number field sieve over
quadratic sieve, but also the fact that classical computers
greatly improved in speed during the mere five year inter
from 1994 to 1999. This improvement is expected to co
tinue, as the comparison of the factorization times of RS
155 and RSA-160 exemplifies. Thus it is estimated that
2009 a computer costing no more than $10 million will
able to factor RSA-309 in less than one month.30 Corre-
spondingly, it is anticipated that by 2010 the standard R
key number size will be 2048 binary digits,30 and by 2030
will be 3072 binary digits30 ~corresponding to RSA-925!.
Inherent in these anticipations is the well-founded belief t
if classical computing is all that is available, then RSA pub
key systems can be kept secure via increases of key num
size no matter how much classical computers improve,
cause the magnitude of the computing effort needed to fa
a large numberN increases very rapidly with increasingN.

An analysis of the number field sieve~presently the mos
efficient general-purpose factoring technique38 for numbers
N of modern key number size! leads to the conclusion tha
the numbern of bit operations required to factor a large ke
numberN with a classical computer is expected to increa
with N no less rapidly than38,41

n~N!5exp@~1.90!~ ln N!1/3~ ln ln N!2/3#

>exp@~1.32!L1/3~ log2 L !2/3#, ~7!

whereL5 log2 N, and a bit operation42 denotes an elementa
computer operation, e.g., the addition of two bits. T
growth of the right side of Eq.~7! as a function ofL is
termed43 subexponential, that is, more rapidly than an
power of L, but less rapidly than exp(L). For a given com-
puter, that is, for a specified number of processors of sp
fied speeds, the timet(N) to perform the factoring should b
proportional ton(N). Thus Eq.~7! predicts that the afore
mentioned hypothesized $10 million computer, which
2009 will be able to factor RSA-309 in less than a mon
~say two weeks!, still will require about 60 million years to
factor RSA-617. We add that even for very largeN, the com-
puting effort required to find a pair of primesp and q of
magnitude;AN is surprisingly small,44 so that the ability to
keep ahead of classical computer factorization abilities
steadily increasing key numberN sizes is not limited by any
impracticality in finding key numbersN5pq. Similarly, al-
though it may be thought that the increasing encryption
decryption times inevitably associated withN ultimately will
provide a practical upper bound on its size, as of the fo
seeable future any such bound, although it may exis
principle, will be utterly inconsequential.45

In summary, Bob’s confidence in the present and fut
security of the RSA systems appears to be justified if cla
cal computing is all that is available. On the other hand,
confidence in the continued security of RSA systems wo
not be well founded if quantum computers able to emp
Shor’s algorithm could be constructed, as we now dem
strate.

III. FACTORING USING SHOR’S ALGORITHM

Shor’s algorithm, which is designed to take advantage
the inherent potential of quantum~in contrast to classical!
computers, exploits a factorization method that differs fro
the sieves that presently are employed for large key num
525 Am. J. Phys., Vol. 73, No. 6, June 2005
ot
e
ad
l
-
-
y

A

t

er
e-
or

e

i-

a

d

-
in

e
i-
s
d
y
-

f

er

factorization. We will begin with this factorization method
The relevant properties of quantum computers are sum
rized in Sec. III B. Section III C then carefully describes a
illustrates Shor’s algorithm. Some concluding remarks pe
nent to the algorithm are given in Sec. IV. Sections III and
help clarify the claim that factoring increasingly large ke
numbers ultimately should require less computational eff
that is, ultimately should be more feasible with quantu
computers employing Shor’s algorithm than with classi
computers.

A. Factoring NÄpq using the order property
of integers coprime toN

Let n denote a positive integer coprime toN5pq, wherep
and q are two distinct large primes. For any suchn, let f j ,
j 51,2,3,..., be the remainder whennj is divided byN. Then,
as with Eqs.~2! and ~3!, f j is uniquely specified by

nj[ f j ~mod pq! ~8!

together with the condition 0, f j,N. As explained in Ap-
pendix B, for anyn

nf5n~p21!~q21![1 ~mod pq!, ~9!

implying f f51 for all n. For any givenn, however, there
may exist other integers 1< j <f5(p21)(q21) for which
f j51. The smallest suchj, to be denoted byr, is termed46 the
order of n modulopq. Thus, using Eqs.~1! and~5!, Eq. ~8!
for j 5r can be restated as

nr21[0 ~mod pq!. ~10!

Suppose now the orderr of some integern,N and
coprime toN is known~how r actually is determined is dis
cussed in the following!. Suppose further thatr is even, nec-
essary in order thatnr /2 be an integer and thus meaningful
employable in congruences. Then Eq.~10! implies

~nr /221!~nr /211![0 ~mod pq!. ~11!

Because by definitionr is the smallest power ofn for which
Eq. ~10! holds, the factor (nr /221) on the left side of Eq.
~11! cannot be exactly divided bypq, that is,

nr /221Ó0 ~mod pq!. ~12!

The second factor on the left side of Eq.~11! is not subject to
any such restriction, that is, it is possible that

nr /211[0 ~mod pq!. ~13!

It is not necessary that Eq.~13! hold. It is possible that

nr /211Ó0 ~mod pq!. ~14!

If both Eqs.~12! and ~14! hold, we have the case that th
product on the left side of Eq.~11! is exactly divisible bypq,
although neither factor in this product is exactly divisible
pq. It follows that, to avoid contradiction, one of the facto
in the product on the left side of Eq.~11!, such as the factor
(nr /221), must be divisible byp but not by q, while the
other factor, (nr /211), is divisible byq but not byp. When
the orderr of n moduloN is even, therefore, and Eqs.~12!
and~14! both hold, Bob’s proclaimed key numberN5pq is
immediately factored by computing the following two grea
est common divisors~gcds!: N with (nr /211), andN with
(nr /221). Alternatively, one can factorN by first computing
525Edward Gerjuoy
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q, say, as the gcd ofN with (nr /211), and then determining
p via division of N by this q. The convenient Euclidean a
gorithm for finding the gcd of two integers is described
Appendix D 1.

The probability that a randomly selectedn,N5pq and
coprime toN will have an even orderr satisfying Eq.~14! is
approximately1

2.
47 Moreover, as explained in Appendix D 1

calculating the gcd of a pair of large numbers using class
computers is a straightforward procedure requiring ne
gible computing time compared with the factorization tim
given in Sec. II D. Therefore, the feasibility of factoring
large N5pq via the procedure described in the preced
paragraph depends primarily on the feasibility of determ
ing the orderr of n moduloN for arbitrarily selectedn. With
classical computers this determination requires solving
discrete log problem.48 Experience has shown49 that classical
factoring of largeN5pq via solutions to the discrete lo
problem is not more feasible than factoringN using the
sieves discussed in Sec. II D.

On the other hand, with quantum computers determin
r, and thereby factoringN, becomes feasible using the pe
odicity property of the sequencef j , j 51,2,3,..., defined via
Eq. ~8!. Namely, it is proved in Appendix A that for anyn all
the integersf 1 , f 2 ,...,f r 21 , f r51 are different, but that for
eachj in the range 1< j <r and every positive integerk, we
have f j5 f j 1r5 f j 12r5¯5 f j 1kr5 f j 1(k11)r5¯ . In other
words, the sequencef j , j 51,2,3,..., is periodic with periodr.
For example, returning now to our illustrativeN555 key
number, forn516 the orderr 55 and the sequencef j is
~starting with j 51) 16, 36, 26, 31, 1, 16, 36, 26, 31, 1, 1
36,... . Similarly forn512, the orderr 54 and the sequenc
f j is 12, 34, 23, 1, 12, 34, 23, 1, 12, 34,... . Shor’s algorit
employs the quantum computer analog of Fourier trans
mation to extract the orderr from a quantum computer wav
function that has been specially constructed to exhibit thr
periodicity for some randomly selectedn. Moreover, the
computational effort required to determiner using Shor’s
algorithm increases withN no more rapidly than some powe
of N, and increases much more slowly withN than does the
effort required to factorN using a classical computer. Cla
sical computer factoring via the solution of the discrete
problem does not result in a slower increase ofn(N) with N
than Eq.~7!, because with such computers the number of
operations required to calculate a Fourier transform is p
portional toNL5L2L, that is, increases withN even more
rapidly than does the right side of Eq.~7!.50

I emphasize that once a suitabler has been determine
using Shor’s algorithm, the factorization ofN using Eqs.~12!
and~14! can be routinely performed on a classical compu
Referring to our illustrations in the preceding paragraph,
the choicen512 Shor’s algorithm will yieldr 54. Then
from the sequencef j for n512 we need to insertf r /25 f 2

534 ~which is congruent to 122 modulo 55! into Eq. ~11!.
Because Eqs.~12! and~14! both are satisfied for thisf 2 , we
immediately know thatf 211535 must be divisible by one
of the factors of 55~in this case 5, as we would determine b
computing the gcd of 35 and 55!, and thatf 221533 must
be divisible by the other factor of 55~in this case 11!, as we
would determine either by computing the gcd of 33 and 55
~more simply! by direct division of 55 by its already dete
mined factor of 5.
526 Am. J. Phys., Vol. 73, No. 6, June 2005
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B. Quantum computers

Mermin1 and Grover2 explain how quantum computer
differ from classical computers. I will briefly summariz
the background needed about quantum computers to com
hend the functioning of Shor’s algorithm, beginning wi
a quote from Grover:2 ‘‘Just as classical computing system
are synthesized out of two-state systems called bits, quan
computing systems are synthesized out of two-state syst
calledqubits. The difference is that a bit can be in only on
of the two states at a time. On the other hand a qubit can
in both states at the same time.’’ Any measurement of
state of a qubit, like any measurement of the state of a c
sical bit, can yield only one or the other of two and only tw
possible states. Because a qubit is a quantum mecha
system describable by a wave function, however, the
exclusive possible outcome states for a state measure
performed on a qubit typically will depend on measurem
details, which is not the case for a classical bit. Suppose
instance that our qubit is a spin12 particle, one of many con-
ceivable physical realizations of a qubit in a practical qua
tum computer.51 Then a measurement of the component
the particle’s spin along thez direction can yield the results
11

2 and 21
2 only, to which correspond the orthogonal wav

functions commonly denoted byu1z& and u2z&, respec-
tively. Similarly, if a measurement of the component of sp
along they direction is performed on a particle which ha
been found to have spin11

2 along thez direction, the only
possible results again are11

2 and 21
2 only, to which corre-

spond orthogonal wave functionsu1y& and u2y& respec-
tively. But neither of the wave functionsu1y& and u2y& is
identical with the wave functionu1z& or u2z&. Rather each
of the wave functionsu1z& and u2z& is a known linear
combination of the wave functionsu1y& and u2y& and vice
versa.52,53

1. The computational basis: Quantum computer wave
functions

To enable convenient employment of a qubit for comp
tational purposes, namely, in order that the two possible o
comes of state measurements on the qubit be consiste
interpretable as corresponding to the binary integers 0 an
respectively, it is necessary to assume that the qubit s
measurement always will be performed in the same way,
example, with a Stern-Gerlach apparatus always lined
along the positivez direction if the qubit is a spin12 particle.
With this assumption the pair of orthogonal wave functio
describing the two possible qubit state measurement
comes customarily are denoted byu0& and u1&. These wave
functions comprise the so-calledcomputational basis, and
are interpretable respectively as corresponding to the bin
integers 0 and 1. The wave functionC describing any arbi-
trary state of the qubit, which is a linear superposition of a
pair of orthogonal wave functions, typically is expanded
terms ofu0& and u1& only:

C5mu0&1nu1&, ~15!

wherem andn are a pair of complex numbers satisfying

umu21unu251. ~16!

Equation~16!, which expresses thatC is normalized to unity
~as areu0&, u1& and all other wave functions discussed below!,
permits the interpretation thatumu2 is the probability that a
state measurement will yield the outcome corresponding
526Edward Gerjuoy
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0, andunu2 is the probability that the same measurement w
yield the outcome corresponding to 1.

A quantum computer is a collection of qubits, and thus
is a quantum mechanical system whose state must be
scribable by a normalized wave function. Consider, in p
ticular, a computer composed of just two qubits, labeled bA
andB. There now are at most 23254 possible different out-
comes of state measurements on the pair of qubitsA, B
~whether performed simultaneously or successively!. Conse-
quently, the wave functionC of this computer must be a
linear superposition of at most four orthogonal two-qubit b
sis wave functions, which as Mermin1 fully discusses can be
taken to be the computational basis productsu0&Bu0&A

[u00&, u0&Bu1&A[u01&, u1&Bu0&A[u10&, and u1&Bu1&A

[u11&. In other words, the most general two-qubit compu
wave function has the form

C5g00u00&1g01u01&1g10u10&1g11u11&, ~17!

where in the computational basis wave functionsu00&, etc., it
is understood that the two binary digits reading from left
right correspond to the outcomes of state measurement
qubits B and A, respectively, and where the associated a
plitudesg00, etc., are complex numbers satisfying

ug00u21ug01u21ug10u21ug11u251. ~18!

The digit pairs 00, 01, 10, and 11 indexing the computatio
basis wave functions appearing in Eq.~17! are the binary
system representations of the decimal system intege
through 3, with the proviso that each such binary repres
tation is to consist of no fewer than two digits. Thus Eq.~17!
can be rewritten as

C5g0u0&1g1u1&1g2u2&1g3u3&, ~19!

where the basis wave functionsu i & and associated amplitude
g i , i 51 – 3, are merely relabelings, respectively, of the ba
wave functionsu00&, u01&, etc., and of the amplitudesg00,
g01, etc.

2. Wave function collapse and the Born rule

In Eqs. ~17! and ~18! eachugbau2 is the probability that
measurements on the qubit pairA, B in the two-qubit state
described byC will yield state ua&A for qubit A and state
ub&B for qubit B, wherea andb can have the values 0 and
only. It is conceivable, however, that the observer will se
to measure the state of qubitA only, without any attempt to
ascertain the state of qubitB. In this eventug00u21ug10u2 is
the probability of finding A in state u0&A , and ug01u2

1ug11u2 is the probability of findingA in state u1&A . If a
measurement on qubitA is performed, andA actually is
found to be in stateu0&A , then the original wave functionC
of Eq. ~17! is said to have beenreducedor collapsedby the
measurement into the new wave functionC85CBu0&A ,
where the one-qubit wave functionCB for qubit B is

CB5@ ug00u21ug10u2#21/2@g00u0&B1g10u1&B]. ~20!

Equation ~20! is in accordance with theBorn rule, which
Mermin1 discusses. The normalizing factor@ ug00u2

1ug10u2#21/2 in Eq. ~20! is needed to ensure thatC8 andCB

are normalized wave functions, that is, that inC8 and in the
state ofB described by the one-qubit wave functionCB , the
individual probabilities of finding qubitB in stateu0&B and in
527 Am. J. Phys., Vol. 73, No. 6, June 2005
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stateu1&B sum to unity. Note that the square of the coefficie
of ub&B in Eq. ~20!, which represents the probability of find
ing qubitB in the stateub&B knowingthat a measurement o
qubit A in the two-qubit state described byC of Eq. ~17!
already has yieldedu0&A , differs from ugb0u2 representing
the probability,without any such knowledge, that measure-
ments on the qubit pairA, B in the two-qubit state describe
by C will find qubit A in stateu0&A and qubitB in stateub&B .
The modification of Eq.~20! appropriate to the circumstanc
that A actually had been found in stateu1&A rather than in
state u0&A is obvious. Equally obvious@starting again with
the two-qubit system in the state described byC of Eq. ~17!#
is that~i! the probability of finding qubitB in stateub&B ~b is
either 0 or 1! without any attempt to ascertain the state
qubit A is (augbau2, with the sum of these probabilitie
5(b(augbau251; and (i i ) if B actually is found in state
ub&B ~b either 0 or 1!, the originalC collapses into the wave
function CAub&B , where

CA5@ ugb0u21ugb1u2#21/2@gb0u0&A1gb1u1&A]. ~21!

These considerations are immediately extensible to la
quantum computers, composed ofg>2 qubits. Because a
state measurement on any given qubit can have at most
different outcomes, state measurements on the entire co
tion of qubits comprising ag-qubit quantum computer ca
have at most 2g different outcomes. Correspondingly, th
wave functionC describing any state of ag-qubit quantum
computer is a linear superposition of at most 2g orthogonal
g-qubit basis wave functions. If we index theseg qubits byk
running from 1 tog, then the 2g computational basis wave
functions for the computer can be taken to be

u0&gu0&g21¯u0&2u0&1[u00̄ 00&,

u0&gu0&g21¯u0&2u1&1[u00̄ 01&,..., ~22!

u1&gu0&g21¯u0&2u1&1[u10̄ 01&,

etc., and in analogy to Eq.~19! the most generalg-qubit
quantum computer wave function can be expressed as

C5 (
i 50

2g21

g i u i &, ~23!

with

(
i 50

2g21

ug i u251. ~24!

In Eqs.~23! and ~24! the integersi are conveniently written
in the decimal system, as in Eq.~19!; the binary system
representation of eachi consists of no fewer thang digits.
Each computational basis wave functionu i & represents a
g-qubit state, where for everyk, 1<k<g, the outcome~0 or
1! of a state measurement on thekth qubit equals thekth
digit ~reading from right to left! in the binary system repre
sentation ofi; ug i u2 is the probability that when the compute
is in the state described by the wave functionC of Eq. ~23!,
state measurements on the collection ofg qubits will have
the same outcomes as if the computer wave function is s
ply u i &. Moreover, if, while the computer is in the state d
scribed byC of Eq. ~23!, the computer operator were t
measure, for example, the states of qubits 1, 2 andg and
obtain the outcomesu1&1 , u0&2 , andu1&g , respectively, these
527Edward Gerjuoy
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measurements would collapseC into the wave function
CM5Cg23@ u1&1u0&2u1&g], where the (g23)-qubit wave
function,

Cg235F(
j

ug j u2G21/2

(
j

g j u j &, ~25!

describes the state of the remaining qubits 3,4,...,(g21)
knowing that state measurements on qubits 1, 2, andg in the
g-qubit system described byC had yielded the outcome
u1&1 , u0&2 , and u1&g respectively. In addition,j in Eq. ~25!
runs over all integers whoseg-digit binary representation
begin with 1 and end with 01~now reading from left to
right!.

3. Operations on quantum computers: Unitarity

It can be assumed that theg-qubit quantum compute
wave functionC of Eq. ~23!, like the wave function of any
other quantum mechanical system, evolves in accorda
with the nonrelativistic time-dependent Schro¨dinger equa-
tion,

]C

]t
5

ih

2p
ĤC, ~26!

whereh is Planck’s constant and the HamiltonianĤ, which
may be time dependent, is an appropriate Hermitian oper
capable of acting on the various computational basis w
functionsu i & appearing in Eq.~23!. In this circumstance the
wave functionC(t) at any timet>0 is related to the wave
function C~0! at t50 by

C~ t !5ÛC~0!, ~27!

where, becauseĤ is Hermitian, Û[Û(t) is a linear
normalization-conserving operator,54 that is, a unitary
operator.55 Whatever the physical realizations of the ind
vidual qubits comprising the quantum computer may be,
computer’s utility as a computational tool depends on
ability ~of the person performing the computation! to control
the evolution of its wave function. But this desired controll
evolution, which generally requires modifying the enviro
ments of the individual qubits~for example, when the qubit
are spin 1

2 particles, rotating the individual magnetic field
acting on those particles!, is necessarily an evolution ofC
under Eq.~26!. Thus the desired controlled evolution also
described by Eq.~27!, that is, it involves a unitary operatio
on the initial wave functionC~0!.

Accordingly each planned operation in the sequence
operations constituting any proposed quantum computing
gorithm, for example, Shor’s algorithm, must be a unita
operation. Postulated nonunitary operations on a quan
computer, no matter how seemingly attractive, are irrelev
and thus of no interest for the use of the computer a
computational tool, because no nonunitary operation will
attainable with any actual physical realizations of the qub
comprising the computer. Therefore, note that each of
quantum computing operations in Shor’s algorithm is u
tary.

The impossibility of constructing a physical realization
any nonunitary operation does not imply that every conce
able unitary operation on a quantum computer can be ph
cally realized. Furthermore, if the computer is composed o
large number of qubits, for example, thousands of qubits~as
is likely in practical applications of Shor’s algorithm!, the
528 Am. J. Phys., Vol. 73, No. 6, June 2005
ce

or
e

e
e

f
l-

m
nt
a
e
s
e
-

-
i-
a

prospect of actually constructing a physical realization
any nontrivial unitary operationÛ on so large a collection o
qubits seems hopeless at first sight, even if there is reaso
believe that a physical realization ofÛ must exist. Fortu-
nately, however, and absolutely crucial for the practical p
tential of quantum computation, it can be proved that ev
conceivable unitary operation on an arbitrarily largeg-qubit
quantum computer, even an operation involving simul
neous modifications of the environments of allg@2 qubits,
can be reproduced via an appropriate sequence of un
one-qubit and two-qubit operations only.56 Moreover, numer-
ous methods based solely on known physics for achiev
physical realizations of these basic unitary one-qubit a
two-qubit operations~also known asuniversal quantum
gates56! have been proposed,51 although admittedly the ac
tual implementation of many of these potential physical
alizations may prove to be difficult in practice.

For the purposes of this paper it is reasonable to ass
that quantum computers consisting of arbitrarily large ass
blages of qubits, capable of performing any desired com
tational algorithm that can be formulated in terms of unita
operations, will eventually be constructed. Given this
sumption, a measure of the quantum computational ef
required to perform any given algorithm, indeed the on
obvious measure, is the number of universal quantum g
that must be strung together to perform the algorithm o
quantum computer. In essence the universal quantum
operations play the role, for quantum computation, that
bit operations referred to in connection with Eq.~7! play for
classical computation.

We now are able to make precise the meaning of the
repeated assertion that the Shor algorithm enables a qua
computer to factor large key numbersN5pq with far less
computational effort than using a classical computer
quires. In particular, with a quantum computer using Sho
algorithm, the numbernq of universal quantum gates re
quired to determine an orderr that will enable factorization
of a largeN5pq via Eq. ~11! has been estimated3,4 to be

nq~N!5O@~ ln N!2~ ln ln N!~ ln ln ln N!#5O@L2~ log2 L !

3~ log2 log2 L !#, ~28!

whereL5 log2 N as in Eq.~7!. The symbolO, denotingorder
of, implies57 that there exists a constantK such that for suf-
ficiently largeN

nq~N!<K@L2~ log2 L !~ log2 log2 L !#. ~29!

In connection with Eqs.~28! and ~29! it is useful to recog-
nize that for largeN the number of qubits required to repre
sentN is essentiallyL. To be precise, for any real numbe
x>1, let @x# denote the largest integer less than or equal tox.
Then it is easily seen that the number of qubits needed
represent anyN is @ log2 N#11, which for largeN differs neg-
ligibly from L.

Our discussion has overlooked a needed refinement to
~28!, as well as the fact that in practice the actual factori
tion of N using Shor’s algorithm requires computational o
erations~for example, classical computer gcd calculation!
beyond the universal quantum gate operations whose num
is estimated in Eq.~28! ~see Sec. IV!. However, the discus-
sion in Sec. IV implies that for the purposes of this pap
neither the aforementioned refinement nor such negle
computational operations negate the utility of Eq.~29! as a
528Edward Gerjuoy
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measure of the computational effort required to factor a la
N5pq with a quantum computer using Shor’s algorithm
Therefore, a comparison of Eqs.~7! and~29! correctly quan-
tifies the reduction in the computational effort required
factor a largeN that is achievable with a quantum comput
That is, according to Eq.~7! the number of elemental com
puter operations needed to accomplish the factorization oN
with a classical computer increases faster than any powe
L5 log2 N. In contrast, the needed number of elemental co
puter operations using a quantum computer increases on
little more rapidly thanL2 ~indeed surely less rapidly tha
L3) according to Eq.~29!.

To illustrate the practical import of this reduction, let u
repeat the numerical exercise presented immediately be
Eq. ~7!, only this time for a quantum computer. For an
sufficiently large quantum computer, that is, for any quant
computer composed of sufficiently many qubits to handle
Shor algorithm determination ofr for all relevantN, the time
tq(N) needed to complete the factorization of a largeN
should be approximately proportional tonq(N) given by Eq.
~29!, irrespective of the value ofK appropriate for that com
puter. Suppose we were able to construct a quantum c
puter which, like the classical computer we hypothesiz
previously, could factor RSA-309 in two weeks time. Th
this same quantum computer should be able to factor R
617 in no more than about nine weeks, in contrast to the
million years for the classical computer.

Moreover, it is reasonable to believe that a sufficien
large quantum computer will be able to factor RSA-309
about two weeks or'1.23106 s. For RSA-309, that is, for
L51024, the value ofnq from Eq. ~29! is only 3.53109

even assumingK is as large as 100, which seems doubtf
Therefore, to factor RSA-309 in two weeks, the average t
for performing a quantum gate operation need be no fa
than about 300ms, which should be no problem for quantu
computer elements, whether operating on atomic, molecu
or photonic scales. In short, once sufficiently large quant
computers become available, Bob no longer will be just
ably confident that he can maintain the security of Alic
RSA-coded messages to him, merely by increases of his
claimed key number size, in the face of anticipated impro
ments in quantum computer capabilities.

Before finishing this discussion of operations on quant
computers, it is important to note that wave function colla
ing measurements on any part of a quantum compu
though normalization conserving by virtue of the Born rul1

are not—strictly speaking—quantum computing operatio
of the sort discussed earlier. In particular, letCM denote the
wave function defined immediately preceding Eq.~25!.
Then, as Mermin has discussed,1 because bothC of Eq. ~23!
andCM are normalized wave functions expressible as lin
superpositions of the very same set of 2g orthogonal compu-
tational basis wave functions, there must exist a unitary
eratorÛM such that

CM5ÛMC. ~30!

BecauseC can be thought of asC~0!, the computer wave
function at timet50 when the measurement operation b
gan, andCM can be thought of asC(t), the computer wave
function at timet.0 when the measurement has been co
pleted, Eq.~30! appears to have the same form as Eq.~27!.
The subtle difference is that whereas in Eq.~27! we have
529 Am. J. Phys., Vol. 73, No. 6, June 2005
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been considering unitary operators which are predicta
controllable@that is, which during each step of the comput
tional algorithm will cause the computer wave functionC~0!
to evolve into some desiredC(t)], ÛM of Eq. ~30! generally
is not predictably controllable. Rather theÛM we obtain as a
result of the measurement generally is only one of ma
possibleÛM , whose likelihoods of turning up in the actua
measurement operation we have performed depend on
values of the coefficientsg i in Eq. ~23!. Only after we ob-
serve the measurement outcome can we decide which o
many possibleÛM actually has been obtained. Correspon
ingly, there generally is no way before the measurement
eration to introduce a sequence of universal quantum g
that will reproduce the unitary operatorÛM of Eq. ~30! that
actually is attained.

C. The operations constituting Shor’s algorithm

Shor’s original formulation3 of his algorithm has been
given an admirably readable~by nonspecialists! step-by-step
prescription by Williams and Clearwater,58 which my presen-
tation will follow closely, but also will expand on and illus
trate. Each subheading in this section briefly describes on
the eight steps.

1. Determine the minimum computer size required: Divid
the qubits into two registers

Shor’s algorithm seeks to accurately discern the period
ity with period r manifested by the sequencef j , j
51,2,3,..., obtained from Eq.~8! for some chosenn. To do
so, the algorithm must operate on sequences that are m
periods in length, much as in conventional classical Fou
transformation. In practice the orderr may attain its maxi-
mum possible value (p21)(q21)/2, which for largeN is
likely to be only slightly smaller than half ofN5pq ~see
Appendix B!. For our exampleN555, the orderr equals its
maximum allowed value 20 for fully 16 of the 40 intege
n,55 that are coprime to 55, includingn as small as 2 and
as large as 53. Consequently, the accurate determinationr
using Shor’s algorithm generally requires the use of pow
j @N in Eq. ~8!. Shor recommends~in effect! that the maxi-
mum powerj 5 j max employed be no less thanN2, a recom-
mendation this paper accepts.3 Williams and Clearwater58

recommendj max be even greater, namely at least 2N2. Thus,
following Shor, the quantum computer being employed
determine r via Shor’s algorithm must contain at lea
enough qubits to represent powersj up to j max5N2. The
minimum number of qubits needed to represent the inte
N2 is @ log2 N2#11. Thus, the quantum computer should co
tain a set ofy5@ log2 N2#11 qubits, which will comprise
registerY. In addition, the computer must contain a seco
set of qubits, here termed registerZ, capable of storing the
computed values off j , which can be as large asN21. The
size of this register will be taken to be its minimum possib
value z5@ log2(N21)#11 qubits. Note that becauseN is
known to be the product of a pair of odd primes and thus
not a power of 2, it follows that 2y21,N2,2y.

For largeN the difference between@ log2(N
2)#11 and 2L

5 log2(N
2), like the difference between@ log2(N21)# andL or

betweenL andL11, is negligible for the purpose of estima
ing the computational effort required to accomplish the va
ous individual steps in Shor’s algorithm. Thus, in any sub
529Edward Gerjuoy



nt

ti-
ar
e

th

r

he

rin
a

bi
e

n
io

m
s

i
c-

re
rm

o
er

ta

ry
e
-

is

he
q.

ality

.

d-

the
so
p-

Eq.
e

quent estimatesy can be replaced by 2L ~ignoring the fact
that 2L need not be an integer!. This is the same replaceme
for y employed4 to obtain Eq.~28!. For the purpose of such
estimates the difference between@ log2(N

2)#>2L and
@ log2(2N2)#>2L11 also is negligible, meaning that the es
mated computational effort required to accomplish the v
ous individual steps constituting Shor’s algorithm do not d
pend significantly on whether we prefer the Shor or
Williams-Clearwater estimates of the requiredj max. Further-
more, we now can conclude that unless for largeN the actu-
ally required value ofj max is very much smaller than Sho
anticipates, determiningr and thereby factoring a largeN
will require a quantum computer not less than about 3L qu-
bits in size. In other words, factoring a key number of t
presently recommended size RSA-309 corresponding
1024 binary digits~recall Sec. II D! seemingly would require
a quantum computer of at least 3072 qubits in size; facto
RSA-617 would require a quantum computer of more th
6000 qubits in size.

2. Load the first register with the integers less than
or equal to 2yÀ1

After ordering and indexing they qubits in registerY as
discussed in connection with Eqs.~22!–~25!, the complete
set of computational basis wave functions for those qu
can be written asu j &Y , where the subscript indicates that w
are writing wave functions for registerY; j is an integer, 0
< j <2y21, which will be written in decimal notation. Whe
registerY is in the state described by the basis wave funct
u j &Y , the binary digit representation ofj immediately reveals
the one-qubit basis state,u0&k or u1&k , of each of the qubits
in registerY. It is understood that qubitk (1<k<y), whose
basis states are identified by the subscriptk, corresponds to
the kth digit, reading from right to left, in the binary syste
representation ofj. The computational basis wave function
for register Z similarly are denoted byu i &Z , where 0< i
<2z21. It is postulated that initially every one of they1z
qubits constituting the quantum computer can be set into
own one-qubitu0& basis state, that is, the initial wave fun
tion of the entire quantum computer isCC

(0)5u0&Yu0&Z ,
where the subscriptC denotes the wave function of the enti
computer. Proceeding with the algorithm requires transfo
ing the initial registerY wave functionCY

(0)[u0&Y to its
second step form,

CY
2S522y/2 (

j 50

2y21

u j &Y , ~31!

that is, requires replacing the initialu0&Y by the sum on the
right side of Eq.~31!, wherein a measurement of the state
registerY has an equal chance of yielding any of the integ
between 0 and 2y21 inclusive. There are 2y independent
u j &Y on the right side of Eq.~31!. Thus, the factor 22y/2

guaranteesCY
2S is normalized. Because we knowN2<2y

21, the sum in Eq.~31! includes everyj less than or equal to
Shor’s recommendedj max5N2.

The transformation ofu0&Y to CY
2S of Eq. ~31! is accom-

plished by the use of the one-qubit operationÛH known as a
Hadamardtransformation, which is defined59 so that the re-
sults of the Hadamard operation on the one-qubit basis s
wave functionsu0& and u1& are
530 Am. J. Phys., Vol. 73, No. 6, June 2005
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ÛHu0&5
1

A2
~ u0&1u1&), ÛHu1&5

1

A2
~ u0&2u1&).

~32!

ÛH is known to be unitary.59 The factor 1/& in Eq. ~32!

enablesÛH to preserve normalization, as we know a unita
operation must.55 Denote the operation that performs th
Hadamard on qubitk alone, without affecting any other qu
bits, byÛHk . Next consider the result of operating withÛHk

on a computational basis wave functionu j &Y for which the
kth digit ~reading from right to left! in the binary expansion
of j is 0 ~not 1!, meaning that the product of one-qubit bas
wave functions constitutingu j &Y includes the factoru0&k ~not
u1&k). To obtain this desired result, we need only put t
subscriptk on every one of the basis wave functions in E
~32!. Moreover, because our presentu j &Y contains nou1&k
basis state, we are here concerned only with the first equ
in Eq. ~32!. It follows that, except for the factor 1/&, the
operationÛHk on our presentu j &Y merely replacesu0&k in
u j &Y by u0&k1u1&k , while leavingu j &Y otherwise unchanged
In the binary expansion of the integerj, however, changing
the kth digit from 0 to 1~always reading from right to left!
produces the binary expansion of the integerj 12k21. There-
fore, whenu j &Y contains nou1&k basis state,

ÛHku j &Y5
1

A2
@ u j &Y1u j 12k21&Y]. ~33!

Now perform they operationsÛH1 , ÛH2 , ÛH3 ,...,ÛHy

sequentially~first ÛH1) on the initial registerY wave func-
tion u0&Y[CY

(0) . We knowu0&Y contains nou1& i factors for
any i, 1< i<y. Thus we surely can employ Eq.~33! for the
first of these operations to obtain

CY
~1!5ÛH1u0&5

1

A2
@ u0&Y1u0120&Y]

5
1

A2
@ u0&Y1u1&Y]

5
1

A2
(
j 50

1

u j &Y . ~34!

BecauseÛH1 has been defined so that it performs the Ha
amard operation on qubit 1 only, the wave functionCY

(1)

~like CY
(0)) does not contain the factoru1&2 , as is directly

evidenced by the fact that both the integers 0 and 1 on
right side of Eq.~34! are less than 2. Consequently, we al
can employ Eq.~33! for the second of these sequential o
erations, thereby finding forÛH2ÛH1u0&5ÛH2CY

(1)[CY
(2) ,

CY
~2!5

1

A2
ÛH2@ u0&Y1u1&Y] 5

1

2
@@ u0&Y1u012&Y]

1@ u1&Y1u112&Y]]

5
1

2 (
j 50

3

u j &Y . ~35!

Because every one of the integers on the right side of
~35! is less than 4522, CY

(2) surely does not contain th
530Edward Gerjuoy
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factor u1&3 , permitting use of Eq.~33! to evaluateÛH3CY
(2) .

Proceeding in this fashion, it is readily seen that the resul
the full sequence of Hadamard operations onu0&Y is

CY
~y!5ÛHyÛH~y21!¯ÛH2ÛH1u0&522y/2 (

j 50

2y21

u j &Y .

~36!

The right side of Eq.~36! is the desiredCY
2S of Eq. ~31!. It

is generally agreed60 that the above-defined Hadamard on
qubit operations are universal quantum gates. Accordin
accomplishing this second step transformation of the ini
u0&Y to CY

2S requires no more thany52L universal quantum
gates.

3. Select an n and for each j in register Y, place
the remainder fjÆnj (mod N) into register Z

After this just completed second step, the wave function
the entire computer isCC

2S5CY
2Su0&Z , meaning that after

completion of the first stage, a state measurement on reg
Z still is guaranteed to yield the integer 0 only, irrespective
what value ofj came from a simultaneous state measurem
on registerY. For the next step ann coprime toN is required.
As Appendix B explains, such ann can be obtained, with
probability essentially indistinguishable from unity, simp
by choosing an arbitrary integeri, either in the range 1, i
,N or in the range 1, i ,2y21. Whether any selected in
teger i actually is coprime toN readily can be tested b
calculating the gcd ofi andN using a classical computer~as
discussed in Appendix D 1!, but the probability such a ran
domly choseni will not be coprime toN is so small that the
effort of computing this gcd does not seem worthwhile. If t
selectedi is not coprime toN, this fact will become apparen
when it is realized that the value of the supposed order,
inferred as in step 7, does not satisfy Eq.~10!. Appendix B
explains that no integerr can satisfy Eq.~10! when the inte-
gern in Eq. ~10! is not coprime toN. In this event it will be
necessary to repeat steps 2–7 after choosing a differei,
which will almost certainly be coprime toN. Such repetitions
often are required even when the choseni is coprime toN
~see Sec. III C 8!.

Assuming now ani 5n coprime toN actually has been
selected, the next step of the algorithm transformsCC

2S to its
third step form

CC
3S522y/2 (

j 50

2y21

u j &Yu f j&Z , ~37!

where f j is defined by Eq.~8!. With the computer wave
function CC

3S of Eq. ~37!, the result of a state measureme
on the collection of qubits in registerZ must yield one of the
remainder integers 1< f j<N21 prescribed by Eq.~8!.
Moreover, because of the periodicity off j demonstrated in
Appendix A, every one of thef j in Eq. ~37! must equal one
of the ~all necessarily different! f 1 , f 2 ,...,f r5 f 051. No
other integers can result from a state measurement on r
ter Z after completion of the second stage of the algorith
In particular, becausen is coprime toN by definition, such a
measurement now cannot possibly yield the previously~at
completion of the first step! assured result 0.

I shall not detail the operation that transformsCC
2S to CC

3S

of Eq. ~37!. The operation is fully discussed by Shor,3 who
531 Am. J. Phys., Vol. 73, No. 6, June 2005
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showed that it is unitary. The number of universal quant
gates required to perform this unitary operation is3,4

O@L2(log2 L)(log2 log2 L)#. Let us illustrate Eq.~37! when
N555 andn516. In these circumstances, as discussed
Sec. III A, r 55 and the sequencef j ~now starting with j
50) is 1, 16, 36, 26, 31, 1, 16, 36, 26, 31, 1, 16, 36,
Accordingly, in this illustrative case Eq.~37! is

CC
3S522y/2@ u0&Yu1&Z1u1&Yu16&Z1u2&Yu36&Z

1u3&Yu26&Z1u4&Yu31&Z1u5&Yu1&Z1u6&Yu16&Z

1u7&Yu36&Z1u8&Yu26&Z1u9&Yu31&Z1u10&Yu1&Z

1u11&Yu16&Z1u12&Yu36&Z1¯1u2y

21&Yu f 2y21&Z]. ~38!

As Eq.~38! illustrates, the sequence of registerZ basis wave
functions u1&Z , u f 1&Z , u f 2&Z ,...,u f 2y21&Z in Eq. ~37! mani-
fests the same periodicity withr as does its originating se
quencef j , 0< j <2y21.

4. Measure the state of register Z

The entire computer now is in the state represented
CC

3S of Eq. ~37!. The objective of the next three steps in th
algorithm is to extract the value ofr from the just discussed
periodicity ofCC

3S . Note that although we knowCC
3S has the

form given in Eq.~37!, until we begin making measuremen
on registerZ, we can have no idea of what values off j
actually are appearing in Eq.~37!. Moreover, the wave func-
tion collapse discussed in Sec. III B 2 means that any sin
measurement on registerZ, though it surely will reveal one
of the values off j appearing in Eq.~37!, will automatically
destroy all information about the other values off j . Never-
theless, the next step in the algorithm is to measure the s
of registerZ. Suppose this registerZ measurement on the
computer in the state represented by Eq.~37! yields the par-
ticular value f k ~of the r possible valuesf 051, f 1 ,
f 2 ,...,f r 21). Then after the measurement the wave funct
of registerY takes its fourth step form

CY
4S5Q21/2(

b50

Q21

uk1br&Y , ~39!

where Eq.~39! has retained those and only thoseu j &Y in Eq.
~37! that are multiplied byu f k&Z . Q equals the number o
terms in Eq. ~37! containing the factoru f k&Z ; the factor
Q21/2 is necessary to guarantee the wave functionCY

4S of
Eq. ~39! is normalized, consistent with the Born rule.1

To help comprehend the structure of Eq.~39! and to see
how the magnitude ofQ is estimated, let us return to ourN
555, n516, r 55 example. Suppose the result of the reg
ter Z measurement on the computer in the state represe
by Eq. ~38! was f j536. Then after the measurement, t
wave function of registerY in this fourth stage of the opera
tion of the algorithm was

CY
4S5Q21/2@ u2&Y1u7&Y1u12&Y1¯1u215~Q21!&Y].

~40!

Evidently the measurement has shifted the dependencer,
from the periodicity withr of the sequenceu f j&Z in Eq. ~37!,
to the periodicity of an arithmetic progression~with the com-
531Edward Gerjuoy
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mon differencer! of the integersj 5k1br indexing the
computational basis wave functionsu j &Y appearing in Eq.
~39!. It is evident from Eq.~40! that the value ofQ in Eq.
~39! is determined by the condition thatk1r (Q21) cannot
exceed 2y21, the largestj appearing in Eq.~37!. Because
0<k,r and Q is an integer by definition, this conditio
implies

Q5@r 21~2y212k!#11, ~41!

with @x# denoting the largest integer less than or equal tox.
We see that unless 2y/r is an integer,Q in Eq. ~39! either
equals@2y/r # or @2y/r #11, depending on the value ofk; for
the largeN cases of interest here, either of these two poss
values ofQ is well approximated by 2y/r , becauser ,N/2
~see Appendix B! whereas 2y.N2 ~as noted in Sec. III C 1!.
When 2y/r is an integer, however~recall the illustrativef j

sequenceN555, n512 discussed in Sec. III A!, Eq. ~41!
makesQ exactly equal to 2y/r for every allowed value ofk.

5. Perform a quantum Fourier transform operation
on the register Y wave function

The desiredr finally is extracted fromCY
4S of Eq. ~39! via

a quantum Fourier transform operationÛFT . The operation
ÛFT transforms any stateu j &Y in registerY to

ÛFTu j &Y522y/2 (
c50

2y21

e2p i jc /2y
uc&Y . ~42!

After the operationÛFT , therefore, the wave function fo
registerY takes its fifth step form

CY
5S5ÛFTCY

4S5~2yQ!21/2 (
c50

2y21

(
b50

Q21

e2p i ~k1br !c/2y
uc&Y .

~43!

It has been shown4,61 that ÛFT can be written as a product o
universal quantum gates, implying thatÛFT is unitary, as
required. The number of gates required isO(L2).4,61

In Eq. ~43! the coefficient of any givenuc&Y is a geometric
series and can be trivially summed to give

CY
5S5~2yQ!21/2 (

c50

2y21

e2p ikc/2y 12e2p ircQ/2y

12e2p irc /2y uc&Y

5~2yQ!21/2 (
c50

2y21

e2p ikc/2y
ep irc ~Q21!/2y

3
sin~prcQ/2y!

sin~prc/2y!
uc&Y . ~44!

6. Measure the state of the Y register

This measurement will find theY register in a particular
state uc&Y . The probabilityPc of finding the stateuc&Y is
given by the square of the absolute value of the coefficien
uc&Y in Eq. ~44!, namely,

Pc5~2yQ!21
sin2~prcQ/2y!

sin2~prc/2y!
. ~45!
532 Am. J. Phys., Vol. 73, No. 6, June 2005
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It is worth remarking that because in step 5 the operat
ÛFT does not involve theZ register, the same Eq.~45! for the
probability of finding theY register in the stateuc&Y would
hold even if the step 4 measurement of theZ register’s state
had been postponed to the present step, that is, even i
states of both registers had been simultaneously meas
after performance of the quantum Fourier transform ope
tion, as Shor3 and Volovich4 prescribe. For pedagogical pu
poses, however, it is preferable to measure the states o
two registers in two separate steps, as Williams a
Clearwater58 also recognize.

To grasp the implications of Eq.~45!, it is helpful to con-
sider first the exceptional case for which the orderr is a
power of 2. In this circumstance,Q exactly equals 2y/r as
explained in Sec. III C 4. Correspondingly, Eq.~45! becomes

Pc5~2yQ!21
sin2 pc

sin2~prc/2y!
. ~46!

Becausec is an integer 0<c<2y21, Eq. ~46! implies Pc

50 for any c other than values ofc for which rc/2y is an
integerd, as can occur because 2y/r now is an integer. For
such exceptional values ofc, namely, the values ofc for
which

c

2y
2

d

r
50, ~47!

the right side of Eq.~46! becomes 0/0, and we have to retu
to Eq. ~43!, where we see that except for the common fac
e2p ikc/2y

, every term in the sum overb for given c is unity.
The number of terms in the sum isQ. So, whenr is a power
of 2 and theY register is in the state described by the wa
function CY

5S of Eq. ~43!, the probabilityPc that theY reg-
ister will be found in the basis stateuc&Y is zero except when
c satisfies Eq.~47!, in which casePc5(2yQ)21Q251/r .
Moreover, becausec,2y, the only values ofc that can be
observed are those corresponding to the integersd in the
range 0<d,r . Thus the total probability of observing thes
values ofc is rPc51, as it must be.

Consider now the more general circumstance in which
orderr is not purely a power of 2. Then there no longer ex
values ofc that satisfy Eq.~47! for every integerd such that
0<d,r . In fact, if r is odd, we see that there are no valu
of c satisfying Eq.~47!. Also we know from the discussion in
Sec. III C 4 thatQ22y/r now equals a nonintegerj, where
21,j,1. Accordingly, whenr is not a power of 2, the nu-
merator in Eq.~45! is not zero except possibly at a limite
number of very special values ofc. In other words, for most,
perhaps all, values of c,Pc now is not zero. Nevertheless, fo
each integerd in the allowed range, the probability of ob
serving the resultc in a measurement on theY register re-
mains large for, and only for, these exceptional values oc
that—though no longer satisfying Eq.~47!—come close to
doing so. To quantify this assertion, note first that beca
r ,N/2, the maximum allowed value ofd/r @namely 1
21/r )] surely is less than the maximum allowed value
c/2y ~namely 121/2y, which is greater than 121/N2). Thus,
because the spacing between successive values ofc/2y is
22y, every allowed value ofd/r either exactly satisfies Eq
532Edward Gerjuoy
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~47! for some value ofc or else differs from somec/2y by no
more than 22y/2. In other words, whenr is not purely a
power of 2, Eq.~47! is replaced by

U c

2y
2

d

r U<22y/2, ~48!

with the assurance that for each allowed value ofd/r , there
exists a single c5c1 satisfying Eq.~48! ~except when the
equality holds for such ac1 , in which case the equality hold
for a secondc5c25c161, corresponding tod/r lying ex-
actly halfway between two successive values ofc/2y). There-
fore, whenc satisfies Eq.~48!, we have

c

2y
5

d

r
1«22y, ~49!

where21
2<«<1

2.
If we employ Eq.~49! in Eq. ~45!, the probability of find-

ing the Y register in thisuc&Y state~when r is no longer a
power of 2! is seen to be

Pc5~2yQ!21
sin2~pr«Q/2y!

sin2~pr«/2y!
>

Q

2y

sin2~pr«Q/2y!

~pr«Q/2y!2
,

~50!

where we have used the fact that sinx<x. The equality in Eq.
~50! holds only when«50. Because 2y is very large com-
pared to both unity andr ,N/2, the estimation of the righ
side of Eq.~50! by the replacement ofQ by 2y/r ~Q actually
differs from 2y/r by a quantityj, uju,1! can be seen to
introduce an inconsequential error. In other words, the ar
ment of the sine function on the right side of Eq.~50! may be
taken to bep«. Hence Eq.~50! yields

Pc>r 21
sin2 p«

~p«!2
>r 21

1

~p/2!2
5

4

rp2
, ~51!

where the second inequality results from recognizing t
sinx/x is a decreasing function ofx in the range 0<x<p,
and then replacingu«u by its maximum allowed value12. Be-
cause there is such ac and associatedPc for each of ther
allowed values ofd in Eq. ~48!, we conclude that even whe
r is not a power of 2, the total probabilityP5rPc of finding
the Y register in a stateuc&Y for which c satisfies Eq.~48! is
not less than 4/p2>0.4.

This result forP has been obtained by Ekert and Josza;5 it
is larger than the value ofP originally quoted by Shor.3 It is
clear from its derivation, however, that this lower bound
0.4 ~though rigorously derived! considerably underestimate
the magnitude ofP that is likely to be encountered in prac
tice. For example, if in Eq.~51! u«u is replaced not by its
maximum value but rather by its average value1

4, then Eq.
~51! yields Pc>8/rp2, corresponding toP>0.81. The use
of the average value ofu«u to estimateP is reasonable, be
cause in general the value of« depends ond, as can be seen
from Eq.~49!, remembering that 2y/r is not an integer unles
r is a power of 2.

7. Determine dÕr. Attempt to infer the value of r

After a value ofc has been obtained, that is, after the st
measurement on registerY prescribed in step 6, it still is
necessary to infer the value ofr. To help understand how thi
533 Am. J. Phys., Vol. 73, No. 6, June 2005
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inference is accomplished, I observe first that, becausr
,N/2, there can be only one permissible fractiond/r satis-
fying Eq. ~48! for a givenc. Here ‘‘permissible’’ means tha
d is an integer and 0,d,r ,N/2. To prove this assertion
note that if d1 /r 1 and d2 /r 2 are distinct permissible frac
tions, that is, ifd1 /r 1Þd2 /r 2 , then

Ud1

r 1
2

d2

r 2
U5Ud1r 22d2r 1

r 1r 2
U. 1

r 1r 2
.

4

N2
, ~52!

because whend1 /r 1Þd2 /r 2 , the integer (d1r 22d2r 1) can-
not equal 0. On the other hand, ifd1 /r 1 and d2 /r 2 each
satisfy Eq.~48! for the samec,

Ud1

r 1
2

d2

r 2
U5US c

2y
2

d2

r 2
D 2S c

2y
2

d1

r 1
D U

<U c

2y
2

d2

r 2
U1U c

2y
2

d1

r 1
U

<2~22y/2!

522y,
1

N2
. ~53!

Because Eqs.~52! and~53! are inconsistent, the impossibilit
of finding two distinctd/r satisfying Eq.~48! for the samec
is proved.

Suppose now that our state measurement on theY register
has yielded auc&Y state whosec satisfies Eq.~48!. The actual
evaluation of thisd/r ~now known to be unique! from Eq.
~48! is performed by expandingc/2y into a continued frac-
tion, as Shor3 originally proposed. I shall not discuss here t
construction of continued fraction expansions.62 I provide an
illustrative expansion in the following as well as an explan
tion of the relation between continued fraction expansio
and gcd calculations~see Appendix D 2!. Suffice it to say
that the continued fraction expansion of any rational num
x provides a series of fractions~with each fraction in lowest
terms! called convergentsto x, such that each successiv
convergent furnishes an improved approximation tox. A key
theorem is that ifa/b is a fraction satisfying63

Uab2xU, 1

2b2
, ~54!

then a/b is one of the continued fraction convergents tox.
Equation ~48! has the form of Eq.~54!, with x5c/2y and
a/b5d/r . Because 2y.N2, the right side of Eq.~48! is less
than (2N2)21, which in turn is less than (2r 2)21 because
r ,N/2. This theorem implies thatd/r must be one of the
continued fraction convergents toc/2y, that is, expanding
c/2y in its series of continued fraction convergents inevitab
will yield d/r in lowest terms. Note that this result demo
strates the critical importance of choosing the sizey of theY
register to be much greater thanN. Indeed, if 2y,N2/4, the
right side of Eq.~48! would be greater than 2N2, which
would no longer ensure thatd/r is one of the continued
fraction convergents toc/2y. Similarly, if 2y,N2/4, the right
side of Eq.~53! would be greater than 4/N2. Thus, Eq.~53!
would no longer be inconsistent with Eq.~52!, implying that
533Edward Gerjuoy
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it is now no longer guaranteed that there is only one perm
sible d/r satisfying Eq.~48!.

Let me illustrate this beautifully simple continued fractio
method of determiningd/r . To factor our illustrativeN
555 via Shor’s algorithm, aY register ofy512 qubits will
be employed, as shown in Sec. III C 1 (21152048,N2

53025,2y54096). The order ofn537 isr 520, the largest
possible value ofr for this N. For d511, the value ofd/r is
exactly 0.55. We have2252

409650.549 80, 2253
409650.550 05, and

22y/250.000 12, which is less than 0.000 2050.5522252
4096, but

greater than 0.000 0552253
409620.55. If we assume the stat

measurement on theY register has yielded the stateuc&Y

consistent with Eq.~48! for r 520 andd511, the value ofc
must have been 2253. We now expand 2253/4096 in a c
tinued fraction:

2253

4096
5

1

4096/2253
5

1

111843/2253

5
1

111/~2253/1843!

5
1

111/~11410/1843!
~55a!

5
1

111/@111/~1843/410!#

5
1

111/@111/~41 203/410!#

5
1

111/$111/@411/~214/203!#%
, ~55b!

and so on. Dropping the fraction410
1843 in Eq. ~55a! yields the

first convergent, namely12; dropping the fraction203
410 in Eq.

~55b! yields the second convergent, namely5
950.5555. Each

of these two convergents differs from2253
4096 by an amount

whose absolute value exceeds 0.000 12, that is, each of t
convergents fails to satisfy Eq.~48! and so cannot equal th
desired d/r . However, the third convergent, obtained b
dropping the fraction 4

203 in Eq. ~55b!, is 11
20, confirming the

theorem quoted in the preceding paragraph. Moreover,
cause we knowr ,N/2, which in this example is55

2 , the
result thatd/r 5 11

20 immediately implies thatr 520, because
any other fraction equal to11

20, for example,22
40, inevitably has

a denominator greater than55
2 .

I next observe that becauser ,N/2, not merely less than
N, it follows from Eq. ~54! that even if the right side of Eq
~48! had been replaced by 2/N2, the values ofc/2y satisfying
the modified Eq.~48! would have continued fraction conve
gents equal tod/r . But 2y.N2 implies 2/2y,2/N2. In other
words, if a state measurement on theY register yields auc&Y
whosec satisfies

U c

2y
2

d

r U<2~22y!, ~56!

this c/2y also will haved/r as a continued fraction conve
gent ofc/2y, even though the value ofc may not satisfy Eq.
~48!. Therefore, we have another reason~in addition to the
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desirability of using an averageu«u! for asserting that the
quantity 4/p2 discussed following Eq.~51! greatly underes-
timates the probability of measuring statesuc&Y that can yield
d/r .

To more accurately estimate this probability, note tha
c/2y.d/r satisfies Eq.~48!, then c22, c21, c, and c11
will each satisfy Eq.~56!. Similarly, if c/2y,d/r satisfies Eq.
~48!, thenc21, c, c11, andc12 will each satisfy Eq.~56!.
In either case, by adding the appropriate fourPc from Eq.
~45!, using sinx<x as in Eq.~50!, and approximatingQ by
2y/r as was done in deriving Eq.~51!, we find that the prob-
ability Pc8 of measuring a stateuc&Y that will haved/r as a
continued fraction convergent toc/2y is

Pc8>
sin2 p«

p2r
S 1

~11«!2
1

1

«2
1

1

~12«!2
1

1

~22«!2D ,

~57!

where 0<«<1
2, and the prime onPc8 indicates that we have

summed over the appropriate fourPc . For «51
2, we obtain

Pc8580/9p2r 50.90/r ; using the average«51
4 we obtainPc8

50.935/r .
We return to our illustrative continued fraction expansi

and readily verify that each of the continued fraction expa
sions of 2251

4096,
2252
4096, and 2254

4096, as well as the Eq.~55! expansion
of 2253

4096, have 11
20 as a convergent, consistent with our emplo

ment of Eq.~57! to estimate the probability of correctly in
ferring d/r from a state measurementuc&Y .

8. Repeat steps 2–7 until factorization of N is achieved

Inferring the value ofr need not immediately lead to fac
torization ofN, however. In the first place, as was mention
in Sec. III A, the probability thatr will meet the necessary
requirements for being able to factorN, namely thatr is even
and satisfies Eq.~14!, is only about1

2.
47 Thus although the

probability of being able to inferd/r via a single measure
ment of theY register is so high, namely over 90%, neve
theless, it will be necessary to run through the entire
quence of steps 2–7 at least twice on the average befo
d/r whoser can be employed to factorN is obtained. The
entire sequence must be repeated starting from step 2~we
don’t have to make any new decisions about the sizes of
registers! because after step 7 theY register is in whatever
stateuc&Y was measured. The wave function of this state
nothing like the initial loading wave functionCY

2S of Eq.
~31! from which the Shor algorithm operations departed, b
ginning with step 3. Also, unless we already have clea
registerZ to the stateu0&Z , the operations described in step
2 and 3 will not yield the desiredCC

3S of Eq. ~37!. Although
the Y register wave function always will be brought to i
initial loading form, Eq.~31!, in these repetitions, that is
although step 2 always will be the same, the choice ofn in
step 3 had better be different. Otherwise, carrying the al
rithm through to step 7 will again yield anr that cannot be
employed to factorN.

Furthermore, even granting that then selected in step 3
does possess an orderr that is employable to factorN, infer-
ring r from the computedd/r may not be as simple as th
discussion in Sec. III C 7 suggests at first sight. Suppose
for our N555, n537, r 520 example, the registerY state
measurement had yieldedc52048, which forr 520 satisfies
534Edward Gerjuoy
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Eq. ~48! with d510. But the computer operator doesn
know r 520; all the operator knows is that2048

40965
1
2, the sole

convergent~which has to be in lowest terms! to 2048
4096. The

operator immediately will discover 372[49Ó1 (mod 55), so
that 2 surely is not the order of 37, but then what? Each
the fractions2

4,
3
6,

4
8,...,

13
26, equals1

2 and has a denominator les
than 55

2 , that is, each of these denominators could be
desiredr. In principle, the operator could test the powe
372, 374, 376,...(mod 55) until he/she came to 3720

[1 (mod 55). For the largeN of interest, such as in RSA
309, persistently trying to determiner in this crude fashion
after the registerY measurement has yielded a converg
with a denominatorb for which b!N and nbÓ1 (modN)
would be ridiculous and would negate the whole point
using Shor’s algorithm. Shor3 has suggested the operat
should try a few small multiples ofb, for example, 2b and
3b; but after findingn2b andn3bÓ1 (modN), the operator
seemingly would have little choice but to repeat steps 2–
the hope that for the newly selectedn the newly measured
c/2y would have a convergent whose denominator actuall
r, not a factor ofr.

How many times the operator may expect to have to
peat steps 2–7 before reliably inferringr ~still assuming the
operator has selected ann possessing an employabler! is
difficult to say. A seeming overestimate of the expected nu
ber of such repetitions follows from considerations first a
vanced by Shor3 and refined by Ekert and Josza.5 The num-
ber of positive integersd less thanr that are coprime tor is
f(r ), wheref is Euler’s totient function64 ~the subject of
Appendix B!. Then if P8 is the probability~equal to at least
0.9 as we have seen! that a measurement on theY register
will yield a c/2y with a convergent equal to somed/r , 0
<d,r , thenP95P8f(r )/r is the probability that the mea
surement will yield a convergent equal to ad/r whered is
prime to r. For sufficiently larger, Ref. 5 quotes the
theorem65

f~r !

r
>

0.56

ln ln r
>

1.17

log2 log2r
. ~58!

Because the typicalr is expected to increase asN increases,
Eq. ~58! suggests that whatever may be the number of r
etitions of steps 2–7 otherwise required~for example, repeti-
tions becauser is not always employable to factorN!, these
repetitions might need to be increased by about log2 log2 r
because of the just discussed complications associated
fractionsd/r in Eq. ~56! whered is not coprime tor.

This estimated increase in the required number of rep
tions probably is an overestimate because it does not
into account the likelihood that the operator will inferr with-
out recourse to repetitions whenr is only a small multiple of
the denominatorb of the measured convergent, for examp
whenb equalsr /2 or r /3. The operator also may be able
minimize the number of required repetitions by recogniz
~as Shor3 has remarked! that if starting with the samen
yields two measured convergents which have denomina
b1!N/2 andb2!N/2 with b1 coprime tob2 , then the only
way for r to be a multiple ofb1 and b2 is for r to be a
multiple of b1b2 , which now may be sufficiently large to
ensure thatr is either 2b1b2 or 3b1b2 . For instance, for our
N555, n537, r 520 example, if after obtaining the conve
gent 1

2, the operator were to repeat steps 2–7 with the samn,
and if this repeat should yield the convergent3

5, the operator
535 Am. J. Phys., Vol. 73, No. 6, June 2005
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would infer with high probability~greater than 0.9 as we
discussed! that r is a multiple of 10. Once having discovere
that 3710[34 (mod 55), the operator would infer with th
same high probability thatr 520, because 3053310. 55

2

and therefore cannot ber. Indeed, once having verified tha
3720[1 (mod 55), the knowledge that 3710[34 (mod 55)
immediately enables the factors 5 and 11 ofN555 to be
determined.

IV. CONCLUDING REMARKS

We have now completed our presentation of the operati
constituting Shor’s algorithm. The algorithm involves the a
plication of unitary operations at steps 2, 3, and 5. The e
mated numbers of gates required to accomplish each of t
steps are stated in the text under their respective head
Let us denote these estimated numbers bynq2 , nq3 , and
nq5 , respectively. The estimated total number of gates
quired, denoted bynq in Eq. ~28!, equalsnq21nq31nq5 . In
the limit of very largeN, the estimatesnq2 andnq5 become
negligible compared tonq3 . Accordingly, Eq.~28! equates
nq to nq3 .3,4 Equation~28! has not taken into account th
operations, gate or otherwise, required to perform the s
measurements postulated in steps 4 and 6. We have see
the quantum computer can carry out the algorithm with
more than about 3L qubits. It is difficult to see why the
required numbernm of measurement operations, includin
the postmeasurement operations needed to restore the
puter wave function to its starting formCC

(0)5u0&Yu0&Z ,
should be other than proportional to the number of qub
Consequently, the failure to include state measurement
erations in no way invalidates employing Eq.~28!, which
grows somewhat faster thanL2 with increasingN, to esti-
mate the growth withN of the computing effort required to
perform a factorization ofN using Shor’s algorithm.

If repetitions of the algorithm steps are necessary in pr
tice, then these repetitions should be taken into accoun
any estimate, such as in Eq.~28!, of the total number of gates
required to determine a factorization ofN @recall that Eq.
~28! gives only the dependence ofnq5nq3 on N#. If there are
a number of repetitions that do not increase withN, for ex-
ample, the expected number of repetitions associated
the fact that somer will not be employable to factorN, the
inclusion of this number does not require a correction of E
~28!. On the other hand, the number of repetitions sugges
by Eq.~58!, although very likely a considerable overestima
of the actual number of required repetitions associated w
the desirability of measuring ad/r for which d is prime tor,
probably does require some modification of Eq.~28!. If we
assume that the typicalr ,N/2 tends to be some fixed frac
tion of N, then for largeN we can replace log2 log2 r by
log2 log2 N, thereby concluding that our earlier discussion
Eq. ~28! should have been supplemented by an upper bou
nqub(N), on the expected number of universal quantum ga
that will actually have to be employed in a Shor algorith
determination of the orderr needed to factorN. The required
modification is obtained via multiplication ofnq(N) in Eq.
~28! by log2 L, yielding

nqub~N!5O@L2~ log2 L !2~ log2 log2 L !#. ~59!

Equation~59! only very minimally weakens our earlier con
clusions from comparing Eqs.~7! and~28!, or from comput-
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ing the actual magnitude ofnq(N) given by Eq.~29!. For
instance, whereas previously we concluded that a quan
computer that could factor RSA-309 in two weeks tim
should be able to factor RSA-617 in no more than about n
weeks, Eq.~59! leads to the conclusion that a quantum co
puter which can factor RSA-309 in no more than two wee
will factor RSA-617 in at most ten weeks.

After a c has been measured, as described in step 6,
following calculations still must be performed:~i! infer an r
from the measuredc, which generally involves a continue
fraction expansion;~ii ! verify that the inferredr satisfies Eqs.
~10!, ~12!, and~14! ~as it must if thisr is to be used to facto
N!, which involves computingnr andnr /2 (modN); and~iii !
obtain the factorsp and q of N, which involves computing
greatest common divisors. At present it is not contempla
that any of these calculations will be accomplished by
computer other than a purely classical one. The efforts
quired to accomplish these computations have not been
cluded in Eq.~28!, nor could they be, because Eq.~28! esti-
mates the number of universal quantum gates required,
the number of classical computer bit operations as in Eq.~7!.
On the other hand, the efforts to perform these classical
culations are not irrelevant to any realistic estimate of
potential utility of Shor’s algorithm for factoring increas
ingly largeN. For none of these computations do the num
of required bit operations increase withN more rapidly than
the right side of Eq.~59! ~see Appendix D!. Consequently,
Eq. ~59! correctly exhibits the maximum expected grow
with increasingN5pq of the total computational effort
quantum plus classical, required to complete a factoriza
of N using Shor’s algorithm. Correspondingly, the conc
sions we have drawn from comparing Eqs.~7! and ~28! re-
main valid, except for the very minimal weakening discuss
immediately after Eq.~59!, even though the derivation of Eq
~28! ignored the classical computer calculations presently
herent in the use of Shor’s algorithm.

Until Shor produced his algorithm, it was generally b
lieved that the computational effort required to factorN
5pq grew more rapidly withN than any polynomial inL
5 log2 N. Shor’s demonstration that the use of a quant
computer could decrease this growth to slower thanL3 was
astonishing, and has greatly accelerated attempts to cons
a functioning quantum computer. The key Shor algorith
operation, the operation that enables the greatly diminis
growth of the computational effort withN, is the quantum
Fourier transformÛFT operation. The quantum Fourier tran
form is a direct generalization~to quantum mechanical bas
states! of the classical discrete Fourier transform, which
turn is nothing more than a discretized version of the c
ventional Fourier integral transform. Thus it is not surprisi
that application ofÛFT to the wave functionCY

4S of Eq. ~39!
yields a new wave function, namelyCY

5S of Eq. ~44!, where
the probabilityPc ~that a measurement on theY register will
yield the basis stateuc&Y) is large only for those values ofc
from which the periodicity withr inherent in Eq.~40! can be
inferred. What is very remarkable, however, and what ma
possible the comparatively slow increase withN of nq(N) in
Eq. ~28!, is the fact that although the discrete Fourier tra
form calculation requiresO(NL) bit operations,66 the opera-
tion ÛFT can be accomplished with onlyO(L2) universal
quantum gates, as stated following Eq.~43!. It must be re-
membered thatÛFT is a 2y32y matrix, that is, at least an
536 Am. J. Phys., Vol. 73, No. 6, June 2005
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N23N2 unitary matrix. Because an arbitrary unitary matr
of this dimensionality containsN4 free parameters, one ex
pects that reproducing a givenN23N2 unitary matrix will
require a sequence of no fewer thanN4/16 one-qubit and
two-qubit gates. This observation, based on trivial dime
sional considerations, suggests that for most classical c
puter algorithms the growth of computational effort wi
number size will not be diminished merely by recasting t
algorithm into a form usable in a quantum computer.

Finally, we remark that factorization of a numberN5pq
via a quantum computer using Shor’s algorithm actua
has been accomplished.67 Although the number factored
namely 15, is the smallest possible product of odd prim
the accomplishment is notable. It also is notable, howe
that becausef~15!543258, the only possible values ofr
werer 52 andr 54, meaning that in this quantum comput
factoring demonstration, the value ofr could be inferred
from Eq. ~47! for any chosenn coprime to and less than 15
without the complications attendant on the much more us
circumstance in whichr has to be inferred from Eq.~48!.

ACKNOWLEDGMENTS

I thank Paul Reilly for numerous enlightening discussio
especially on the RSA system. I am indebted to Joseph B
dis for carefully checking the manuscript, including its re
erences. I also am indebted to Sam Scheinman for data
RSA enciphering and deciphering.

APPENDIX A: CONGRUENCE MANIPULATIONS,
ILLUSTRATIVE RSA OPERATIONS,
AND PERIODICITY OF REMAINDERS f j

A comparison of Eqs.~1! and ~5! illustrates the proposi-
tion that ~subject to the important proviso that all the co
gruences must have the same modulusm! congruences like
Eqs. ~1!–~5! have the useful property that in many respe
they can be manipulated as if they were equalities, i.e., a
the congruence symbol[ were the equality symbol5. For
example Eq.~1! and

x[y ~mod m! ~A1!

imply

ax[by ~mod m! ~A2!

and

bx[ay ~mod m!. ~A3!

Accordingly Eq.~1! implies

az[bz ~mod m! ~A4!

for any positive integerz. Equations~A2!–~A4! can be trivi-
ally demonstrated28 remembering that Eq.~1! meansa5b
1wm for some positive or negative integerw. There are a
few permissible manipulations of equalities that have
congruence counterparts, but any such manipulations are
relevant here. Unless explanatory comments seem requ
therefore, the remainder of this appendix will manipula
congruences as if they were equalities.

The use of congruence manipulations to convenien
compute Alice’sS521, 14, 51, 1, 13, 27, 10, 1, 9, 8, 49, 5
from her illustrativeC521, 9, 6, 1, 7, 3, 10, 1, 4, 2, 14,
will now be shown. Our illustrative RSA key number an
encryption exponent, to be inserted into Eq.~2! along with
536Edward Gerjuoy
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eachc in C, are N555 ande523, respectively. Conside
Alice’s first c521. Instead of determining the correspondi
s by tediously computingce5(21)23 and then dividing by
55, Alice proceeds as follows:

~21!25441[1 ~mod 55!, ~A5!

~21!22[~1!11[1 ~mod 55!, ~A6!

~21!235~21!~21!22[21~1![21 ~mod 55!. ~A7!

So the firsts in S turns out to equal the firstc521. The
seconds is obtained not quite as simply, but much mo
easily than having to exactly compute 923, namely,

~9!2581[26 ~mod 55!, ~A8!

~9!4[~26!25676[16 ~mod 55!, ~A9!

~9!8[~16!25256[36[219 ~mod 55!, ~A10!

~9!10[~219!~26!52494[254[1 ~mod 55!,
~A11!

~9!20[~1!2[1 ~mod 55!, ~A12!

~9!235~9!20~9!2~9![~26!~9!5234[14 ~mod 55!.
~A13!

Thus the seconds is 14. Similar congruence manipulation
on C readily yield the completeS. Similarly, it is readily
verified that Bob’s secret decryption exponentd57 really
does decipher thisS into C, namely, that in accordance wit
Eq. ~3!, (21)75(21)(21)6[21 (mod 55) using Eq.~A5!;
(14)25196[31, (14)4[961[26, (14)7[(14)(31)(26)
[(14)(36)[9 (mod 55),... .

The permissibility of these congruence manipulations a
immediately implies the periodicity of the remaindersf j de-
fined by Eq. ~8!. Using Eq. ~10!, we see thatf j 1r[nj 1r

5njnr[nj[ f j (mod pq), implying that f j 1r5 f j , because
by definition all the f j are positive numbers less thanN;
similarly f j 12r[nj 1rnr[nj 1r[ f j (mod pq). It also is
readily seen that all thef j , 1< j <r , are different. For sup-
pose f a5 f b , where each ofaÞb lies in the range ofj.
Suppose further thata,b. Thennb[na (mod pq), imply-
ing nb2na5na(nb2a21) is divisible by pq. This means
nb2a21 must be divisible bypq, becausen has been chose
to be coprime topq. On the other hand, it is not possible
have nb2a[1 (mod pq) because by definitionr is the
smallest value ofj for which nj[1 (mod pq).

APPENDIX B: EULER’S TOTIENT FUNCTION
AND THE PROOF rËNÕ2 FOR NÄpq

For any positive integerm, Euler’s totient function64 f(m)
is the number of positive integers less thanm that are
coprime tom, where by definitionf(m) always is less than
m. Euler proved68 that if a is coprime tom, then

af~m![1 ~mod m!. ~B1!

Let us calculatef(N) for N5pq, wherep and q are odd
primes. The only numbers less thanN that are not coprime to
N are multiples ofp and q. There areq21 integersp,
2p,...,(q21)p less thanN; similarly there arep21 mul-
tiples of q that are less thanN. Because none of these num
bers can coincide and be less thanN,
537 Am. J. Phys., Vol. 73, No. 6, June 2005
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f~N!5N212@~p21!1~q21!#5pq2p2q11

5~p21!~q21!. ~B2!

Evidently the RSAf introduced in Sec. II A and employed i
Eqs. ~4! and ~9! is f(pq). The explicit dependence onN
5pq was dropped in those equations because no confu
could result. Equally evident is that Eq.~B1! immediately
implies Eq.~9!. I note that ifn is not coprime topq, that is,
if n and pq have a common factorx.1, then f j in Eq. ~8!
also must be divisible byx, as is immediately seen becau
Eq. ~8! meansnj2 f j5ypq, for y equal to an integer. Con
sequently, Eq.~10! cannot hold for any integerr unlessn
actually is coprime topq.

If n is coprime topq, Eq. ~9! is supplemented by

n~p21!~q21!/2[1 ~mod pq!, ~B3!

wheren is coprime topq. To prove Eq.~B3! it is convenient
to start from the form taken by Eq.~B1! whenm is an odd
prime p. Evidentlyf(p)5p21, so that

ap21[1 ~mod p!, ~B4!

wherea is coprime top. Equation~B4! is known as Fermat’s
Little Theorem stated by Fermat in 1640.69 Becauseq also is
an odd prime, (q21)/2 is an integer, so that Eq.~B4! im-
plies, using Eq.~A4!,

a~p21!~q21!/2[1 ~mod p!. ~B5!

But if a also is coprime toq, then it similarly is true that

a~q21!~p21!/2[1 ~mod q!. ~B6!

If a is coprime to bothp andq, however, thena is coprime to
pq, that is,a is an n as defined at the outset of Sec. III A
Furthermore, for any positive integerz, if z21 is separately
divisible by a primep and by another primeq, thenz21 is
divisible by the productpq. Hence Eqs.~B5! and~B6! imply
Eq. ~B3!. Equation~B3! in turn implies that the orderr of
anyn moduloN5pq is less than or equal tof(N)/2, so that
r ,N/2, an inequality that is crucial to the derivation of th
important Eq.~57!.

The probability that a randomly selected positive integ
less thanN will be coprime toN is

f~N!

N21
512

p211q21

N21
, ~B7!

using Eq.~B2!. For actual RSA key numbers, for exampl
RSA-309, the right side of Eq.~B7! will be indistinguishable
from unity for all practical purposes. For instance, if th
smaller ofp andq is not less thanN1/4, the larger ofp andq
will be no greater thanN3/4, and the right side of Eq.~B7! is
approximately 12N21/4, which, even for a key number a
small as RSA-155, differs from unity by approximate
10239. Correspondingly, for actual RSA key numbers t
magnitude off(N) can be taken equal toN for all practical
purposes. It is worth noting that becausef(N) also equals
the number of integersi coprime toN in the rangesN11
, i ,2N, 2N11, i ,3N, etc., the probability that a ran
domly selected integer less thanN2 ~or less than 2y) will be
coprime toN also can be taken equal to unity for all practic
purposes.
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APPENDIX C: PROOF THAT THE RSA SYSTEM
CORRECTLY DECIPHERS

Equations~2! and ~3!, together with the definition ofN,
imply

u[~ce!d5ced ~mod pq!. ~C1!

Becaused and e are positive integers by definition, Eq.~4!
implies

de511zf511z~p21!~q21!, ~C2!

wherez is a positive integer. Because by definitionu andc
are positive integers less thanN5pq, knowing u
[c (modpq) impliesu5c. Thus to prove that the RSA sys
tem enables Bob to correctly decipher Alice’s messag
need to show that

c11z~p21!~q21![c ~mod pq!. ~C3!

If c is coprime toN, then Eq.~9! implies

cz~p21!~q21![1 ~mod pq!, ~C4!

from which Eq.~C3! immediately follows after multiplying
both sides of Eq.~C3! by c. If c is not coprime topq, c
,N is divisible byp or q but not by both. Suppose thatc is
divisible by q, that is, supposec5bq, with b a positive
integer less thanp. Then Eq.~B4! holds fora5c and implies

cz~p21!~q21![1 ~mod p!. ~C5!

But if x2y is divisible by p, then q(x2y) is divisible by
qp, implying further that bq(x2y) is divisible by qp.
Hence Eq.~C5! implies

bqcz~q21!~p21![bq ~mod qp!. ~C6!

Equation~C6! is Eq. ~C3! for the case thatc5bq. Corre-
spondingly, Eq.~C3! will hold if c is divisible by p. We
conclude that Eq.~C3! holds for everyc in Alice’s crypto-
gram whetherc is coprime toN or not. This completes the
demonstration that the RSA system enables Bob to corre
decipher Alice’s cryptogram.

APPENDIX D: CLASSICAL COMPUTER
CALCULATIONS RELEVANT TO SHOR’S
ALGORITHM FACTORIZATION

This appendix discusses the various classical comp
calculations discussed in this paper. The results 1–3 in
following are the bases for the assertions made in Sec
about the growth withN of the classical computer calcula
tions required to factorN5pq using Shor’s algorithm. How
Bob can determine his decryption exponentd from f
5f(N) and his encryption exponente is described in Ap-
pendix D 4.

1. Greatest common divisors and the Euclidean algorithm

A convenient method for computing the gcd of two po
tive integers was first described by Euclid. My discussion
the Euclidean algorithm closely follows Rosen.70 Suppose
the integerx>1 is the gcd of the two positive integerss0 and
s1 , wheres0.s1.1. The Euclidean algorithm determinesx
as follows. Divides0 by s1 , thereby obtaining the remainde
s2>0. By definitions2,s1 and

s05z0s11s2 , ~D1!
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wherez0 is a non-negative integer and 0<s2,s1 . Becausex
is a divisor ofs0 ands1 , Eq. ~D1! implies x is a divisor of
s2 . If we proceed in this fashion, always dividing the prev
ous divisorsj by the previous remaindersj 11 , we obtain a
sequence of remainderss2 , s3 ,...,sj 11 , sj 12 ,..., each of
which is a multiple ofx. Moreover, because eachsj is greater
than sj 11 , the sequence eventually must terminate w
somesk1250, that is, eventually there will be the simp
equation

sk5zksk11 . ~D2!

It now can be seen thatsk11 is not merely a multiple ofx
~which is the gcd ofs0 ands1), but rathersk115x. Equation
~D2! shows thatsk is a multiple of sk11 . The preceding
equation in the series, namely

sk215zk21sk1sk11 , ~D3!

then impliessk21 also is a multiple ofsk11 . Thus, proceed-
ing back through the series of equations that led from
~D1! to Eq.~D3!, it can be concluded that boths0 ands1 are
multiples of sk11 . Hence,sk11 must be a divisor ofx, the
gcd of s0 and s1 . But we already have shown thatx is a
divisor of sk11 . Consequently,x must be identical tosk11 ,
the last remainder beforesk1250. If sk1151, then s1 is
coprime tos0 .

I will illustrate the use of the Euclidean algorithm to fin
the factor 5 ofN555 when, as explained at the end of Se
III A, it is deduced forn512 that f 211535 must be divis-
ible by one of the factors of 55. We have 5551335120;
3551320115; 205131515; 15533510. Therefore 5 is
the gcd of 55 and 35. Similarly, suppose we had decided
verify that 12 actually is coprime to 55. Now we have 5554
31217; 12513715; 7513512; 5523211; 2523110.
So 1 is the gcd of 12 and 55, that is, 12 really is coprime
55.

How many classical computer bit operations are requi
to obtain the gcd of two large numbersN1 andN2,N1 via
the Euclidean algorithm? DefineL15 log2 N1, and L2

5 log2 N2. As discussed following Eq.~29!, for largeN1 , N2

the quantitiesL1 , L2 differ negligibly from the number of
digits in the binary expansions ofN1 , N2 , respectively. Then
according to a theorem by Lame´,70 the number of divisions
needed to find the gcd ofN1 and N2 using the Euclidean
algorithm is at mostO(L1). The number of bit operations in
any one of these divisions hardly can exceed the numbe
bit operations in the first of those divisions, where the di
dend N1 and divisorN2 are at their respective maximum
values. Although at first sight the number of bit operatio
required to divideN1 by N2 is O(L1L2),71 in actuality, there
exist72 sophisticated classical computer algorithms which
large N1 , N2 reduce the number of bit operations requir
for this division to O@L1(log2 L1)(log2 log2 L1)#. Conse-
quently, the number of computer bit operations required
obtain the gcd of two large numbersN1 and N2 using the
Euclidean algorithm isO@L1

2(log2 L1)(log2 log2 L1)#.
Returning to the discussion in Sec. IV of the classic

computer calculations required for factoring using Shor’s
gorithm, the two numbers whose gcd is required always w
be no larger thanN5pq and 11 f r /2 , where according to
Eq. ~8! every f j is less thanN by definition. Once anr per-
mitting factorization ofN has been inferred, only a singl
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gcd computation will be needed to complete the factorizat
of N. No such gcd calculation is needed until a usabler has
been inferred. It follows that the number of bit operatio
required for the gcd calculations involved in factoringN
5pq using Shor’s algorithm will not grow faster tha
O@L2(log2 L)(log2 log2 L)#, the same growth rate as given b
Eq. ~28!.

2. Continued fraction expansions

Rosen62 has explicitly demonstrated that the divisions p
formed in finding the gcd of the positive integerss0 ands1
via the Euclidean algorithm are the same as the divisi
performed in constructing the continued fraction expans
of the fractions1 /s0 . By way of illustration, suppose we
seek the gcd of the integers 2253 and 4096 whose ratio
expanded in the continued fraction of Eq.~55!. We have
4096513225311843; 225351318431410; 1843543410
1203; 41052320314; and so on. Evidently the division
performed to obtain these relations are identical with th
performed in constructing the right side of Eq.~55!. Thus to
estimate the number of bit operations required to comp
the continued fraction convergents of any onec/2y measured
as described in Sec. III C 6, the result obtained in Appen
D 1 is immediately applicable. It is necessary only to obse
that for sufficiently largeN, the value ofy5 log2 2y differs
negligibly from 2L5 log2 N2. Accordingly, the number of bit
operations required to perform a typical continued fract
expansion of a measuredc/2y should beO@(2L)2(log2 2L)
3(log2 log2 2L)#5O@L2(log2 L)(log2 log2 L)#, the same resul
as obtained in Appendix D 1 for the Shor algorithm gcd c
culation.

Unlike the gcd case, however, a continued fraction exp
sion is required every time ac/2y is measured. The expecte
number of repetitions of such measurements has been
cussed in Sec. III C 8 and in Sec. IV. Those discussions in
cated that a probable overestimate of the required numbe
repetitions is 2 log2 L, implying that the overall number of bi
operations required to perform the continued fraction exp
sions during factoring by Shor’s algorithm may grow wi
increasingN as fast as, but no faster than, the right side
Eq. ~59!.

3. Modular exponentiation

Verifying that nr[1 (modN), and then computingnr /2

[ f r /2 (modN), so as hopefully to factorN5pq via
Eq. ~11!, involves modular exponentiation. Volovich4 has
sketched the proof that the number of bit operations
quired to calculatenj (modN) on a classical computer i
O@L2(log2 L)(log2 log2 L)#, that is, grows withN as does the
right side of Eq.~28!. A few repetitions of these exponentia
tions may be necessary because the probability that a ch
n will yield an r permitting factorization ofN via Eq. ~11! is
only about1

2 . A few more exponentiations may be necess
to rule out as possible values ofr the denominatorsb ~and
small multiples thereof! of convergentsa/b to measuredc/2y

whena/b5d/r with b!r . It does not appear, however, th
as many repeated exponentiations ever will be required
the O(log2 L) repetition factor inferred from Eq.~58!. Con-
sequently, the number of bit operations needed to perf
the classical computer modular exponentiations that a
539 Am. J. Phys., Vol. 73, No. 6, June 2005
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during factorization via Shor’s algorithm may grow with in
creasingN as fast as, but surely no faster than, the right s
of Eq. ~59!.

4. Finding the decryption exponent

We need to solve Eq.~4! for d, knowinge andf. There is
a known closed formula forf~f!, the totient function off,
in terms of the prime factors off.73 Thus if we could factor
f, we immediately could findd. Namely becausee is
coprime tof ~recalling Sec. II A!, using Eq.~B1! implies

ef~f![1 ~mod f!. ~D4!

Consequently Eq.~4! is solved by

d[ef~f!21 ~mod f!. ~D5!

WhenN is of the magnitude of modern RSA key numbe
factoring a f5(p21)(q21)>N can be difficult, though
perhaps not as difficult as factoringN5pq itself. In practice,
therefore,d probably would be determined as follows. Equ
tion ~4! means there is an integerk such that

ed511kf. ~D6!

Equation~D6! is a Diophantine equationin the unknownsk
andd, whose solution can be found74 by working backward
from the set of equations constituting the Euclidean al
rithm for the gcd ofe andf.

I will illustrate this method of solving Eq.~4! for N555.
We havef540, and have chosene523. The Euclidean al-
gorithm equations for obtaining the gcd of 40 and 23 a
4051323117; 235131716; 17523615; 6513511;
5553110, verifying thate is coprime toN. Now, working
backward we have 62551; 55172236, so 62~172236!
533621751; 6523217, so 33~23217!2175332324
31751; 17540223, so 3323243~40223!5732324
34051. This last equation is of the form of Eq.~D6!, and
implies 7323[1 ~mod 40!. Therefore the desiredd equals 7,
as asserted at the end of Sec. II A.

It is apparent that the computing effort required of Bob
determine hisd via this procedure is utterly negligible com
pared to the computing effort he will endure in decrypti
the many messages he expects to receive from Alice.
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