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Abstract

It is argued that underlying the Church-Turing hypothesis there is an implicit
physical assertion. Here, this assertion is presented explicitly as acphgsn-
ciple: ‘every finitely realizable physical system can be perfectlyusated by a
universal model computing machine operating by finite means’. Classical physics
and the universal Turing machine, because the former is continuous and the latter
discrete, do not obey the principle, at least in the strong form above. A class of
model computing machines that is the quantum generalization of the class of Tur-
ing machines is described, and it is shown that quantum theory and the ‘universal
guantum computer’ are compatible with the principle. Computing machines re-
sembling the universal quantum computer could, in principle, be built and would
have many remarkable properties not reproducible by any Turing machine. These
do not include the computation of non-recursive functions, but they do include
‘quantum parallelism’, a method by which certain probabilistic tasks can be pe
formed faster by a universal quantum computer than by any classical tiestric
of it. The intuitive explanation of these properties places an intolerabli& sina
all interpretations of quantum theory other than Everett's. Some of the numerous
connections between the quantum theory of computation and the rest of physics
are explored. Quantum complexity theory allows a physically more reasonable
definition of the ‘complexity’ or ‘knowledge’ in a physical system than does clas-
sical complexity theory.
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1 Computing machines and the Church-Turing principle

The theory of computing machines has been extensively oleedlduring the last few decades. In-
tuitively, a computing machine is any physical system whiggamical evolution takes it from one
of a set of ‘input’ states to one of a set of ‘output’ statese Blates are labelled in some canonical
way, the machine is prepared in a state with a given input ke then, following some motion, the
output state is measured. For a classical deterministieisythe measured output label is a definite
function f of the prepared input label; moreover the value of that lahelin principle be measured
by an outside observer (thaser’) and the machine is said tcompute’the functiony.

Two classical deterministic computing machines‘acenputationally equivalentunder given la-
bellings of their input and output states if they computeséme function under those labellings. But
guantum computing machines, and indeed classical stacltashputing machines, do not ‘compute
functions’ in the above sense: the output state of a stachastchine is random with only the prob-
ability distribution function for the possible outputs @ewling on the input state. The output state
of a quantum machine, although fully determined by the irgtate is not an observable and so the
user cannot in general discover its label. Neverthelegsnttion of computational equivalence can
be generalized to apply to such machines also.

Again we define computational equivalengeder given labellingsbut it is now necessary to
specify more precisely what is to be labelled. As far as tipaifiris concerned, labels must be given
for each of the possible ways of preparing the machine, wtictespond, by definition, to all the pos-
sible input states. This is identical with the classicabd®inistic case. However, there is an asymme-
try between input and output because there is an asymmetinebr preparation and measurement:
whereas a quantum system can be prepared in any desiredtpdrinput state, measurement can-
not in general determine its output state; instead one mesisare the value of some observable.
(Throughout this paper | shall be using the Schrodingeupgc in which the quantum state is a func-
tion of time but observables are constant operators.) Tha must be labelled is the set of ordered
pairs consisting of an output observable and a possibleuredsalue of that observable (in quantum
theory, a Hermitian operator and one of its eigenvaluesgh@un ordered pair contains, in effect, the
specification of a possible experiment that could be madbeoutput, together with a possible result
of that experiment.

Two computing machines are computationally equivalenteagiven labellings if in any possi-
ble experiment or sequence of experiments in which thetspvere prepared equivalently under
the input labellings, and observables corresponding th edter under the output labellings were
measured, the measured values of these observables fardimezchines would be statistically indis-
tinguishable. That is, the probability distribution fuiacts for the outputs of the two machines would
be identical.

In the sense just described, a given computing machiheomputes at most one function. How-
ever, there ought to be no fundamental difference betweenira the input state in whictM is
prepared, and altering systematically the constitutionb$o that it becomes a different maching’
computing a different function. To formalize such openasigit is often useful to consider machines
with two inputs, the preparation of one constituting a ‘preog’ determining which function of the
other is to be computed. To each such machirnehere corresponds a sef.€t) of ‘ M-computable
functions’. A functionf is M-computable itM can computef when prepared with some program.

The set QM) can be enlarged by enlarging the set of changes in the adrtitof M that
are labelled as possibl&1-programs. Given two machinest and M’ it is possible to construct a
composite machine whose set of computable functions eentae union of CM) and GAM').

There is no purely logical reason why one could not gaadrinfinitumbuilding more powerful



computing machines, nor why there should exist any functia is outside the computable set of
every physically possible machine. Yet although logic dustorbid the physical computation of ar-
bitrary functions, it seems that physics does. As is welhkmowhen designing computing machines
one rapidly reaches a point when adding additional harddaes not alter the machine’s set of com-
putable functions (under the idealization that the memapecity is in effect unlimited); moreover,
for functions from the integers to themselves the set @1) is always contained in @), whereT is
Turing’s universal computing machine (Turing 1936).7G itself, also known as the set of recursive
functions, is denumerable and therefore infinitely smahan the set of all functions frof to 7.

Church (1936) and Turing (1936) conjectured that thesetditions on what can be computed
are not imposed by the state-of-the-art in designing com@unachines, nor by our ingenuity in
constructing models for computation, but are universals icalled the ‘Church-Turing hypothesis’;
according to Turing,

Every ‘function which would naturally be regarded as conajplg’ can be

computed by the universal Turing machine. (2.1)

The conventional, non-physical view of (1.1) interpretastthe quasi-mathematical conjecture
that all possible formalizations of the intuitive matheiwait notion of ‘algorithm’ or ‘computation’
are equivalent to each other. But we shall see that it canb&segarded as asserting a new physical
principle, which | shall call the Church-Turingrinciple to distinguish it from other implications and
connotations of the conjecture (1.1).

Hypothesis (1.1) and other formulations that exist in therditure (see Hofstadter (1979) for an
interesting discussion of various versions) are very vdgueomparison with physical principles such
as the laws of thermodynamics or the gravitational equinadeprinciple. But it will be seen below
that my statement of the Church-Turing principle (1.2) isnifestly physical, and unambiguous. |
shall show that it has the same epistemological status as phiysical principles.

| propose to reinterpret Turing’s ‘functions which wouldtuilly be regarded as computable’ as
the functions which may in principle be computed by a realgitgl system. For it would surely
be hard to regard a function ‘naturally’ as computable ifoulel not be computed in Nature, and
conversely. To this end | shall define the notion‘férfect simulation’. A computing machinem
is capable of perfectly simulating a physical syst&munder a given labelling of their inputs and
outputs, if there exists a program{S) for M that rendersm computationally equivalent t§ under
that labelling. In other words;(S) convertsM into a ‘black box’ functionally indistinguishable from
S.

| can now state the physical version of the Church- Turing@ple:

‘Every finitely realizable physical system can be perfesitiyulated by a

universal model computing machine operating by finite means (1.2)

This formulation is both better defined and more physicat tharing’s own way of expressing it (1.1),
because it refers exclusively to objective concepts sudmeasurement’, ‘preparation’ and ‘physical
system’, which are already present in measurement thetayoids terminology like ‘would naturally
be regarded’, which does not fit well into the existing stmuetof physics.

The finitely realizable physical systems’ referred to in2flmust include any physical object
upon which experimentation is possible. The ‘universal poting machine’ on the other hand, need
only be an idealized (but theoretically permitted) finitsjyecifiable model. The labellings implicitly
referred to in (1.2) must also be finitely specifiable.

The reference in (1.1) to a specific universal computing rimeciruring’s) has of necessity been
replaced in (1.2) by the more general requirement that tlsishime operate ‘by finite means’. ‘Finite
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means’ can be defined axiomatically, without restrictiveuasptions about the form of physical laws
(cf. Gandy 1980). If we think of a computing machine as prdagg in a sequence of steps whose
duration has a non-zero lower bound, then it operates byéfimieans’ if (i) only a finite subsystem
(though not always the same one) is in motion during anyos, stnd (ii) the motion depends only
on the state of a finite subsystem, and (iii) the rule thatifipsadhe motion can be given finitely in
the mathematical sense (for example as an integer). Tura@himes satisfy these conditions, and so
does the universal quantum compug(sees?2).

The statement of the Church-Turing principle (1.2) is sgemthan what is strictly necessitated
by (1.1). Indeed it is so strong that itm®t satisfied by Turing’s machine in classical physics. Owing
to the continuity of classical dynamics, the possible statea classical system necessarily form a
continuum. Yet there are only countably many ways of prewga finite input for7. Consequently
T cannot perfectly simulate any classical dynamical systérhe well studied theory of the ‘simu-
lation’ of continuous systems by concerns itself not with perfect simulation in my sense bithw
successive discrete approximation.);8) | shall show that it is consistent with our present knowked
of the interactions present in Nature that every real (dasie) finite physical system can be perfectly
simulated by the universal quantum compugerThus quantum theory is compatible with the strong
form (1.2) of the Church-Turing principle.

I now return to my argument that (1.2) is an empirical assartil he usual criterion for the empiri-
cal status of a theory is that it be experimentally falsigaftopper 1959), i.e. that there exist potential
observations that would contradict it. However, since theper theories we call ‘principles’ make
reference to experiment onlya other theories, the criterion of falsifiability must be apglindirectly
in their case. The principle of conservation of energy, fa@raple, is not in itself contradicted by any
conceivable observation because it contains no spedaificafihow to measure energy. The third law
of thermodynamics whose form

‘No finite process can reduce the entropy or temperature afitely realizable

physical system to zero’ (1.3)

bears a certain resemblance to that of the Church-Turingipie, is likewise not directly refutable:
no temperature measurement of finite accuracy could disshgabsolute zero from an arbitrarily
small positive temperature. Similarly, since the numbegvassible programs for a universal computer
is infinite, no experiment could in general verify that norfetteem can simulate a system that is
thought to be a counter-example to (1.2).

But all this does not place ‘principles’ outside the realmedaipirical science. On the contrary,
they are essential frameworks within which directly tektathneories are formulated. Whether or
not a given physical theory contradicts a principle is firstedimined by logic alone. Then, if the
directly testable theory survives crucial tests but catitita the principle, that principle is deemed
to be refuted, albeit indirectly. If all known experimenyatorroborated theories satisfy a restrictive
principle, then that principle is corroborated and becgrmaghe one hand, a guide in the construction
of new theories, and on the other, a means of understandirrg deeply the content of existing
theories.

It is often claimed that every ‘reasonablaiysical(as opposed to mathematical) model for com-
putation, at least for the deterministic computation ofctions fromZ to 7, is equivalent to Turing’s.
But this is not so; there is na priori reason why physical laws should respect the limitation$hef t
mathematical processes we call ‘algorithms’ (i.e. the fioms Q7). Although | shall not in this
paper find it necessary to do so, there is nothing paradogicadconsistent in postulating physical
systems which compute functions not in C(T). There couldX¥pegmentally testable theories to that



effect: e.g. consider any recursively enumerable nonrsigel set (such as the set of integers rep-
resenting programs for terminating algorithms on a giverintumachine). In principle, a physical
theory might have among its implications that a certain majsleviceF could compute in a spec-
ified time whether or not an arbitrary integer in its inputdreded to that set. This theory would be
experimentally refuted if a more pedestrian Turing-typenpater, programmed to enumerate the set,
ever disagreed withF. (Of course the theory would have to make other predictiensell, otherwise

it could never be non-triviallgorroborated,and its structure would have to be such that its exotic pre-
dictions aboutF could not naturally be severed from its other physical cantdll this is logically
possible.)

Nor, conversely, is it obvioua priori that any of the familiar recursive functions is in physical
reality computable. The reason why we find it possible to trang say, electronic calculators, and
indeed why we can perform mental arithmetic, cannot be fanndathematics or logicThe reason
is that the laws of physics ‘happen to’ permit the existerfgghgsical models for the operations of
arithmetic suchas addition, subtraction and multiplication. If they did,these familiar operations
would be non-computable functions. We might still knofvthem and invoke them in mathematical
proofs (which would presumably be called ‘non-construe)ibut we could not perform them.

If the dynamics of some physical system did depend on a fametot in G7), then that system
could in principle be used to compute the function. Chait®77) has shown how the truth values of
all ‘interesting’ non-Turing decidable propositions of iman formal system might be tabulated very
efficiently in the first few significant digits of a single plgal constant.

But if they were, it might be argued, we could never know beeawne could not check the accu-
racy of the ‘table’ provided by Nature. This is a fallacy. Tieason why we are confident that the
machines we call calculators do indeed compute the arifbrietctions they claim to compute is not
that we can ‘check’ their answers, for this is ultimately &léuprocess of comparing one machine
with another:Quis custodiet ipsos custode3he real reason is that we believe the detailed physical
theory that was used in their design. That theory, includisgssertion that the abstract functions of
arithmetic are realized in Nature, is empirical.

2 Quantum computers

Every existing general model of computation is effectivelgssical. That is, a full specification of its
state at any instant is equivalent to the specification ot afseumbers, all of which are in principle
measurable. Yet according to quantum theory there exishgeipal systems with this property. The
fact that classical physics and the classical universah@unachine do not obey the Church-Turing
principle in the strong physical form (1.2) is one motivatior seeking a truly quantum model. The
more urgent motivation is, of course, that classical ply/Edalse.

Benioff (1982) has constructed a model for computation wittuantum kinematics and dynam-
ics, but it is still effectively classical in the above sen$eis constructed so that at the end of each
elementary computational step, no characteristicallyntijua property of the model —interference,
non-separability, or indeterminism — can be detected.disputations can be perfectly simulated by
a Turing machine.

Feynman (1982) went one step closer to a true quantum comyiitehis ‘universal quantum
simulator’. This consists of a lattice of spin systems witharest-neighbour interactions that are
freely specifiable. Although it can surely simulate any egsivith a finite-dimensional state space (|
do not understand why Feynman doubts that it can simulateidersystems), it is not a computing
machine in the sense of this article. ‘Programming’ the &t consists of endowing it bijat with



the desired dynamical laws, and then placing it in a desiniéhli state. But the mechanism that
allows one to select arbitrary dynamical laws is not modkllEhe dynamics of a true ‘computer’ in
my sense must be given once and for all, and programming it oamsist entirely of preparing it in
a suitablestate(or mixed case).

Albert (1983) has described a quantum mechanical measotéemmg¢omaton’ and has remarked
that its properties on being set to measure itself have nlogma among classical automata. Albert's
automata, though they are not general purpose computinpings; are true quantum computers,
members of the general class that | shall study in this sectio

In this section | present a general, fully quantum model tonputation. | then describe the uni-
versal quantum comput&®, which is capable of perfectly simulating every finite, izable physical
system. It can simulate ideal closed (zero temperaturégsyss including all other instances of quan-
tum computers and quantum simulators, with arbitrarilyhhiigit not perfect accuracy. In computing
strict functions frontZ to 7 it generates precisely the classical recursive functiofis)Ga manifesta-
tion of the correspondence principle). Unlie it can simulate any finite classical discrete stochastic
process perfectly. Furthermore, as we shall seg3int as many remarkable and potentially useful
capabilities that have no classical analogues.

Like a Turing machine, a model quantum compugerconsists of two components, a finite pro-
cessor and an infinite memory, of which only a finite portioever used. The computation proceeds
in steps of fixed duratioff’, and during each step only the processor and a finite pareafnémory
interact, the rest of the memory remaining static.

The processor consists &f 2-state observables

{ii} (i € Zy) (2.1)
whereZ,, is the set of integers froito M — 1. The memory consists of an infinite sequence
{ini} (i €2) (2.2)

Of 2-state observables. This corresponds to the infinitely imegnory ‘tape’ in a Turing machine.

| shall refer to the{n;} collectively asn, and to the{rn;} asrn. Corresponding to Turing’s ‘tape
position’ is another observablg which has the whole df as its spectrum. The observalilas the
‘address’ number of the currently scanned tape locationceSihe ‘tape’ is infinitely long, but will be

in motion during computations, it must not be rigid or it cdwot be made to move ‘by finite means’.
A mechanism that moved the tape according to signals tratesimt finite speed between adjacent
segments only would satisfy the ‘finite means’ requiremeatveould be sufficient to implement what
follows. Having satisfied ourselves that such a mechanigomossible, we shall not need to model it
explicitly. Thus the state af is a unit vector in the spadé spanned by the simultaneous eigenvectors

lzymym) = |zng,ng N1 Mo1, Mg, My ) (2.3)

of z, n andrn, labelled by the corresponding eigenvalugs: andm. | call (2.3) the'‘computational
basis states’ It is convenient to take the spectrum of dstate observables to &, i.e. the set
{0,1}, rather than{—1, +1} as is customary in physics. An observable with spectfoni} has a
natural interpretation as a ‘one-bit' memory element.

The dynamics of@ are summarized by a constant unitary operdoon #. U specifies the
evolution of any staté)(¢)) € H (in the Schrodinger picture at timg during a single computation
step

[ (nT)) = U"14(0)) (n€Z) (2.4)



ufu = uut =1. (2.5)

We shall not need to specify the state at times other thanmegative integer multiples af. The
computation begins d@t= 0. At this timez andn are prepared with the value zero, the state of a
finite number of them is prepared as the ‘program’ and ‘input’ in the sens€lénd the rest are set
to zero. Thus

1%(0)) = >0, Am[0;0;m),

S Aml* =1,

where only a finite number of thg,, are non-zero and,,, vanishes whenever an infinite number of
them are non-zero.

To satisfy the requirement th@ operate ‘by finite means’, the matrix elementslbtake the
following form:

(2.6)

(';n;m/|U|z;n;m) = [(3":,4'1U+(n',m;|n,mm)+5£71U7(n',m;|n,mm)}Hémz (2.7)
y#

The continued product on the right ensures that only one mehip the zth, participates in a single
computational step. The terrﬁ%‘,il ensure that during each step the tape positicannot change by
more than one unit, forwards or backwards, or both. The fanstU*(n', m'|n, m), which represent
a dynamical motion depending only on the ‘local’ observaliieandri,., are arbitrary except for the
requirement (2.5) that) be unitary. Each choice defines a different quantum comp@fer™, U-—].

Turing machines are said thalt’, signalling the end of the computation, when two consecutive
states are identical. A ‘valid’ program is one that causesrtachine to halt after a finite number
of steps. However, (2.4) shows that two consecutive stdtasqoantum compute@ can never be
identical after a non-trivial computation. (This is trueasfy reversible computer.)

Moreover,Q must not be observed before the computation has ended kisagduld, in general,
alter its relative state. Therefore, quantum computersl neesignal actively that they have halted.
One of the processor’s internal bits, Say must be set aside for this purpose. Every va@lighrogram
setsng to 1 when it terminates but does not interact with otherwise. The observabfe, can then
be periodically observed from the outside without affegtihe operation o®. The analogue of the
classical condition for a program to be valid would be tha &xpectation value aofy; must go to
one in a finite time. However, it is physically reasonable ltovaa wider class ofQ-programs. A
Q-program is valid if the expectation value of itsnning timeis finite.

Because of unitarity, the dynamics @, as of any closed quantum system, are necessarily re-
versible. Turing machines, on the other hand, undergoérsile changes during computations, and
indeed it was, until recently, widely held that irrevertitgiis an essential feature of computation.
However, Bennett (1973) proved that this is not the case hgtoacting explicitly a reversible classi-
cal model computing machine equivalent to (i.e. generdtiegsame computable function 88)see
also Toffoli 1979). (Benioff’s machines are equivalent terBett’s but use quantum dynamics.)

Quantum computer® (U™, U~ | equivalent to any reversible Turing machine may be obtained
taking

1 n,m n,m
Ut(n',m'|n.m) = 55;‘}} mgBmm L C(n,m)] (2.8)

m

whereA, B andC are functions with range$.»), Z, and{ -1, 1} respectively. Turing machines, in
other words, are those quantum computers whose dynamigeeghst they remain in a computational
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basis state at the end of each step, given that they stareinTanensure unitarity it is necessary and
sufficient that the mapping

{(n,m)} «— {(A(n,m),B(n,m),C(n,m))} (2.9)

be bijective. Since the constitutive functios, B and C' are otherwise arbitrary there must, in
particular, exist choices that maktequivalent to a universal Turing machifie

To describe the universal quantum compu@adirectly in terms of its constitutive transformations
U* would be possible, but unnecessarily tedious. The prasediQ are better defined by resorting
to a higher level description, leaving the explicit constion of UT as an exercise for the reader. In
the following | repeatedly invoke the ‘universal’ propenf/ 7.

For every recursive functiorf there exists a program(f) for 7 such that when the image of
w(f) is followed by the image of any integeéiin the input of 7, 7 eventually halts withr(f) andi
themselves followed by the image 6fi), with all other bits still (or again) set to zero. That is, for
some positive integes

U™0;0;m(f),i,0) = 0;1,0;7(f), 1, f(i),0). (2.10)

Here0 denotes a sequence of zeros, and the zero eigenvaluies(of< 0) are not shown explicitly.

T loses no generality if it is required that every program edie the memory as an infinite sequence
of ‘slots’, each capable of holding an arbitrary integeorExample, theth slot might consist of the
bits labelled by successive powers of #th prime.) For each recursive functighand integers:, b
there exists a program( f, a, b) which computes the functiofi on the contents of slat and places
the result in slot, leaving slota unchanged. If slob does not initially contain zero, reversibility
requires that its old value be not overwritten but combinedame reversible way with the value of
the function. Thus, omitting explicit mention of everytbinnnecessary, we may represent the effect
of the programr by

slot 1 slot2 slot3
‘ﬂ—(.f’273)7 ? bl .7 > _> ‘7“(7‘172’3),7/7’7 ®.f(l)>7 (2'11)

where® is any associative, commutative operator with the properti

i@i=0,
o0 } (2.12)

(the exclusive-or function, for example, would be satigiag). | denote byr; - 7o the concatenation
of two programsm; and o, which always exists when;, andwy are valid programsir; - w5 is a
program whose effect is that af followed by .

For any bijective recursive functiopthere exists a program(g, a) whose sole effect is to replace
any integeti in slota by ¢(7). The proof is immediate, for if some sldinitially contains zero,

¢(gva‘) = W(gva‘vb) 'ﬂ—(gilabv (L) "/T(I’ bv (L) "/T(I’a’b)' (213)
Herel is the ‘perfect measurement’ function (Deutsch 1985)
[m(1,2,3).1,5) — [7(1,2,3),i,] ®1). (2.14)

The universal quantum computéy has all the properties of just described, as summarized in
(2.10) to (2.14). Bui© admits a further class of programs which evolve computatitvasis states
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into linear superpositions of each other. All programsdbcan be expressed in terms of the ordinary
Turing operations and just eight further operations. Thaseunitary transformations confined to a
single two-dimensional Hilbert spadé, the state space of a single bit. Such transformations form a
four (real) parameter family. Let be any irrational multiple ofr. Then the four transformations

cosa  sina cosa 1sinq
Vo = ) , Vi=| .. ,
—sina  cos o isina  cosa

el 1 0
V2_<0 1>’ V3_<0 ei“>’

and their inverse¥y, Vs, Vg, V7, generate, under composition, a group dense in the groufl of a
unitary transformations of{. It is convenient, though not essential, to add two more gtoes

vg—%(_} }) and vg—%(i i) (2.16)

which corresponds t80° ‘spin rotations’. To each generatdr there correspond computational basis
elements representing programgV;, a), which performV; upon the least significant bit of theth
slot. Thus ifj is zero or one, these basis elements evolve according to

(2.15)

1
6(Vi2).5) = > (kIVild)|6(Vi, 2). k). (2.17)
k=0
Composition of theV; may be effected by concatenation of th¢/;. a). Thus there exist programs
that effect upon the state of anyone bit a unitary transftionarbitrarily close to any desired one.

Analogous conclusions hold for the joint state of any finitener L of specified bits. This is
not a trivial observation since such a state is not necégsaiirect product of states confined to
the Hilbert spaces of the individual bits, but is in generdinaar superposition of such products.
However, | shall now sketch a proof of the existence of a @ogthat effects a unitary transformation
on L bits, arbitrarily close to any desired unitary transforimat In what follows, ‘accurate’ means
‘arbitrarily accurate with respect to the inner productmbrThe casel, = 1 is trivial. The proof for
L bits is by induction.

First note that thg2’)! possible permutations of th computational basis states bfbits are
all invertible recursive functions, and so can be effectggtograms for7, and hence foR.

Next we show that it is possible fa@ to generate2”-dimensional unitary transformations di-
agonal in the computation basis, arbitrarily close to aapdformation diagonal in that basis. The
(L — 1)-bit diagonal transformations, which are accuratélycomputable by the inductive hypoth-
esis, are generated by certéih-dimensional diagonal unitary matrices whose eigenvadiiesave
even degeneracy. The permutations of basis states @laacurately to effect every diagonal unitary
transformation with this degeneracy. The closure of thimdegenerate transformations under mul-
tiplications is a group of diagonal transformations demsthe group of alR”-dimensional diagonal
unitary transformations.

Next we show that for eacli-bit state|)) there exists &-programp(|:)) which accurately
evolves|y) to the basis stat@; ) in which all L bits are zero. Write

[v) = col0)|tho) + e1|1)[eb1), (2.18)

where|yy) and|y,) are states of thé — 1 bits numbere@ to L. By the inductive hypothesis there
exist @-programsp, andp; which accurately evolve),) and|«);), respectively, to th¢L — 1)-fold
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product|0z_1). Therefore there exists @-program with the following effect. If bit nol is a zero,
executepy otherwise executg;. This converts (2.18) accurately to

(col0) + e1[1))|0L—1). (2.19)

Then (2.19) can be evolved accurately(g) by a transformation of bit nal.

Finally, an arbitrany2” -dimensional transformatiod is accurately effected by successively trans-
forming each eigenvectdi)) of U accurately intd0;) (by executing the program—1(|+))), then
performing a diagonal unitary transformation which actelsamultiplies |0 ) by the eigenvalue (a
phase factor) corresponding o), but has arbitrarily little effect on any other computatibibasis
state, and then executing|v) ).

This establishes the sense in whighis a universalquantum computer. It can simulate with
arbitrary precision any other quantum computJ*, U~]. For although a quantum computer has
an infinite-dimensional state space, only a finite-dimeraianitary transformation need be effected
at every step to simulate its evolution.

3 Properties of the universal quantum computer

We have already seen that the universal quantum comgligan perfectly simulate any Turing ma-
chine and can simulate with arbitrary precision any quantomputer or simulator. | shall now show
how @ can simulate various physical systems, real and theoketitéch are beyond the scope of the
universal Turing maching.

Random numbers and discrete stochastic systems

As is to be expected, there exist programs bwhich generate true random numbers. For example,
when the program

?(Vg,2) - m(I,2,a) (3.1)

halts, slota contains with probability% either a zero or a one. lterative programs incorporatind)(3.
can generate other probabilities, including any probghbihat is a recursive real. However, this does
not exhaust the abilities . So far, all our programs have begrer seclassical, though they may
cause the ‘output’ part of the memory to enter non-companali basis states. We now encounter our
first quantum program. The execution of

1
V2

yields in slota, a bit that is zero with probabilityos? #. The whole continuum of states of the form
(3.2) are valid programs fap. In particular, valid programs exist with arbitrary irratial probabilities
cos? § andsin? 6. It follows that every discrete finite stochastic systemethier or not its probability
distribution function is7-computable, can be perfectly simulated ®@yEven if 7 were given access
to a ‘hardware random number generator’ (which cannotyesdist classically) or a ‘random oracle’
(Bennett 1981) it could not match this. However, it could aydsitrarily close to doing so. But neither
T nor any classical system whatever, including stochastisocan even approximately simulate the
next property ofQ.

\m(I,2,a))(cos 0]0) + sinf|1)) (3.2)
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Quantum correlations

The random number generators (3.1) and (3.2) differ sghmtm the other programs | have so far
considered in that they necessarily produce ‘waste’ outdute bit in slota is, strictly speaking,
perfectly random only if the contents of stdtre hidden from the user and never again participate in
computations. The quantum program (3.2) can be used onky mngenerate a single random bit. If
it were re-used the output would contain non-random caioeia.

However, in some applications, such correlations are pedcivhat is required. The state of slots
2 anda after the execution of (3.1) is the ‘non-separable’ (d’Epp 1976) state

1
V2

Consider a pair of programs that swap these slots into arubreggion of the tapegne at a timeThat
is, if the output is at first blank,

(10)]0) + [1)[1)). (3.3)

B
V2

execution of the first program halts with

(10)]0) + [1)[1))10}]0), (3.4)

1
—10)(]0Y[0) 4 [1)[1))]0), 35
ﬂ|>(|>\>|>\>)\> (3.5)
and, execution of the second program halts with
i
V2

An equivalent program is shown explicitly at the endtdf Bell's (1964) theorem tells us that no
classical system can reproduce the statistical resulterefecutive measurements made on the output
slots at times (3.5) and (3.6). (Causing the output to apipeiavo steps with an opportunity for the
user to perform an experiment after each step is sufficiesatisfy the locality requirement in Bell's
theorem.)

The two bits in (3.3) can also be used.as ‘keys’ for perfogriquantum cryptography’ (Bennett
et al. 1983).

10)10)(10)[0) + [1)[1))- (3.6)

Perfect simulation of arbitrary finite physical systems

The dynamics of quantum computers, though by construcfioite’, are still unphysical in one im-
portant respect: the evolution is strictly unitary. Howetke third law of thermodynamics (1.3) im-
plies that no realizable physical system can be preparedsiata uncorrelated with systems outside
itself, because its entropy would then be zero. Therefareryerealizable physical system interacts
with other systems, in certain states. But the effect ofytsagnical coupling to systems outside itself
cannot be reduced to zero by a finite process because thertstorpeof the correlation degrees of
freedom would then have been reduced to zero. Therefore tar be no realizable way of placing
the system in states on which the components of the time twolaperator which mix internal and
external degrees of freedom have no effect

A faithful description of a finitely realizable physical $gm with anZ-dimensional state spaéé
cannot therefore be madé state vectors if{ but must use density matricgs’. Indeed, all density
matrices are in principle allowed except (thanks to ther@my’ half of the third law (1.3)) pure cases.
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The dynamics of such a system are generated not by a unitargitop but by a superscattering matrix
$:

pab(T) = Z $abcd pcd(o)- (37)
c,d

It is worth stressing that | am not advocating non-unitarpatyics for the universe as a whole,
which would be a heresy contrary to quantum theory. EqudBor) is, of course, merely the projec-
tion into H of unitary evolution in a higher state spakex H', whereH' represents as much of the
rest of the universe as necessary. Roughly speaking (thensysare far from equilibrium}{’ plays
the role of a ‘heat bath’.

Thus the general superscattering operator has the form

80 = Y U LU 4y pp?, (3.8)
elhf/’gl
whereU,, s a unitary operator oft{ x H', that is
ST U™ U = a7 (3.9)
c,d’

which does not decompose into a product of operatord @md?'. (Raising and lowering of indices
denotes complex conjugation.) The tepg’’ has an approximate interpretation as the initial density
matrix of the ‘heat bath’, which would be strictly true if tleystem, the heat bath, and the entity
preparing the system in its initial state were all uncotedainitially. Let us rewrite (3.8) in the
H'-basis in whichp is diagonal :

80 = D PplUuw U .

elhfl
> Py o= 1, (3.10)
al

where the probabilitie®,; are the eigenvalues of The setG of all superscattering matrices (3.8) or
(3.10) lies in a subspacg of H x H* x H* x H, namely the subspace whose elements satisfy

> 8 = o (3.11)

Every element ofs satisfies the constraints
0 < 3 W82 < (3.12)

a,b,c,d

for arbitrary density matriceg!’) andp(®.

The inequality on the left in (3.12) can be an equality onlhé states of{ form disjoint subsets
with strictly zero probability so that thermal noise caneeff a transition between them. This is
impossible unless there are superselection rules fortgdsliich transitions, a possibility that we lose
no generality by excluding because only one superseleet#drsat a time can be realized as a physical
system. The inequality on the right becomes an equalityigghcin the unitary case

$(1,bcd = U(LCUbda (313)
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which is unphysical because it represents perfectly nesigttive evolution. Thus the set of phys-
ically realizable elements of is an open set in7. Moreover, for any$!) and$(2) that areQ-
computable the convex linear combination

p181) + po$?), (3.14)

wherep; andp, are arbitrary probabilities, is also computable, thankbérandom number generator
(3.2). By computing unitary transformations as in (3.1@krg element of a certain countable dense
subset of's can be computed. But every point in any open region of a fiiteensional vector space
can be represented as a finite convex linear combinatiorenfesits of any dense subset of that space.
It follows that Q, can perfectly simulate any physical system with a finiteehsional state space.
Therefore quantum theory is compatible with the Churchisigiprinciple (1.2).

The question whether all finite systems in the physical us&e&an likewise be simulated g,
— i.e. whether (1.2) is satisfied in Nature — must remain opetil the state space and dynamics
of the universe are understood better. What little is knoe®nss to bear out the principle. If the
theory of the thermodynamics of black holes is trustwortitysystem enclosed by a surface with an
appropriately defined are4 can have more than a finite number (Bekenstein 1981)

N(A) = exp(Ac®/4hG) (3.15)

of distinguishable accessible statédq the Planck reduced constant,is the gravitational constant
andc is the speed of light). That is, in a suitable basis the sys@mbe perfectly described by using
an N (A)-dimensional state space, and hence perfectly simulate?l by

Parallel processing on a serial computer

Quantum theory is a theory of parallel interfering univets@here are circumstances under which
different computations performed in different universes de combined b giving it a limited
capacity for parallel processing. Consider the quantunynar

- ,
N Z_} I7(f.2,3),4,0), (3.16)

which instructsQ in each of N universes to computgé(:), for i from 1 to N. Linearity and (2.11)
imply that after executing (3.18) halts in the state

N
%ﬁ SO Ir(£.2,3), 0, £(0)). (3.17)
=1

Although this computation requires exactly the same timemory space and hardware as (2.11), the
state (3.17) contains the results of an arbitrarily largenber N of separate computations. Unfortu-
nately, at most one of these results is accessible in eagkrani If (3.16) is executed many times,
the mean time required to compute all valuesf (i), which | shall refer to collectively ag, is at
least that required for (2.11) to compute all of them seyiallshall now show that the expectation
value of the time to compute any non-trivial-fold parallelizable functiorG(f) of all N valuesf
via quantum parallelism such as (3.16) cannot be less thetntie required to compute it serially via
(2.12).

For simplicity assume that, the running time of (2.11), is independenti@nd that the time taken
to combine all thef to form G(f) is negligible compared withh. Now suppose that there exists a
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program¢, which for any functionf extracts the value aoff(f) from (3.17) in a negligible time and
with probability |3|2. That is, has the effect

N
%NZW(“'” = B0.G(F) + VI BRI, (3.18)

where the statep\(f)) contain no information abou®(f). Then the first slot could be measured.
If it contained zero, the second slot would contéifif). Otherwise the information in (3.17) would
have been lost and it would have to be recomputed. Unitariplies

N

Y a(f(0).9(0) = [BPAG(F).Glg)) + (1= [BP)AS)INg)) (3.19)

i=1

1
n

for any functionsy(i) and f (7).
If G(f) is not a constant function then for each functipfi) there exists another functiof(7)
such thailG(g) # G(f), butg(i) = f(i) for all but one value of betweenl andN. For this choice

1

-5 = (1= 183 (AF)IMg)). (3.20)

whence it follows that3|? < 1/N. Thus the mean time to computd f) must be at least/|3|?> =
Nr. This establishes that quantum parallelism cannot be wsgdprove the mean running time of
parallelizable algorithms. As an example of quantum peliath for N = 2, let

G(f) = F0)e (1), (3.21)
(see equations (2.12)). Then the state (3.17) followingytientum parallel computation has

€

V2

as a factor. A suitable prograto ‘decode’ this is one that effects a measurement of any non-
degenerate observable with eigenstates

(10, £(0)) + 1, f(1))) (3.22)

izerg = %(\0,0)—|0,1>+\1,0>—|1,1>),
lone = 5([0,0) —[0,1) — [1,0) +|1,1)),
fail) = 1(10,0) +J0,1) + [1.0) + [1,1)). (3.23)
lerrory = £(]0,0) + [0,1) — [1,0) — |1, 1))

Such an observable exists, since the states (3.23) formthonarmal set. Furthermore, the mea-
surement can be made in a fixed time independent of the egadirtie of the algorithm computing
f. If the outcome of the measurement is ‘zero’ (i.e. the eigkre corresponding to the stateero)
or ‘one’ then it can be inferred that(0) & f(1) is zero or one respectively. Whatever the form of
the functionf, there will be a probabilityl /2 that the outcome will be ‘fail’, in which case nothing
can be inferred about the value pf0) & f(1). The probability of the outcome ‘error’ can be made
arbitrarily small with a computational effort independerfithe nature off.

In this example the bound r for the running time has been attained. However,Nor- 2 | have
been unable to construct examples where the mean runnimgigifess thariN? — 2N + 2)7, and
| conjecture that this is the optimal lower bound. Also, aitgh there exist non-trivial examples of
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guantum parallelizable algorithms for &1, whenN > 2 there are none for which the functia®( f)
has the set of alt"V possible graphs of as its domain.

In practical computing problems, especially in real timplagations, one may not be concerned
with minimizing specifically themeanrunning time of a program: often it is required that the min-
imum or maximum time or some more complicated measure bemmiEed. In such cases quantum
parallelism may come into its own. | shall give two examples.

(1) Suppose that (3.17) is a program to estimate tomorrowdskSExchange movements given
today’s, and7(f) specifies the best investment strategyr ifiere one day and = 2, the classical
version of this program would take two days to run and wouktdfore be useless. If the quantum
version was executed every day, then on one day in two ong&etat! would contain the measured
value ‘1’, indicating a failure. On such days one would make no invesit. But with equal average
frequency a zero would appear, indicating that Slaontained the correct value of the investment
strategyG (f). G(f), which incorporates the result of two classical procesksys of computation,
would on such occasions have been performed by one prodassoe day.

One physical way of describing this effect is that when tHatasks of anV-fold parallel task are
delegated tav? — 2N + 2 universes, at most one of them can acquire the overall result

(2) Now consider the problem of the design of parallel infatibn-processing systems which
are subject to noise. For example, suppose that it is redjuivihin a fixed timer, to compute a
certain N -fold parallelizable functiortz(f). N R processors are available, each of which may fail for
reasons of thermal noise, etc. with probabifityFor simplicity assume that such a hardware error can
be reliably detected. The problem is to minimize the ovdaillire rateq. ‘Classically’ (i.e. without
using quantum parallelism) one minimizedy means of amk-fold redundancy:R processors are
instructed to perform each of th€ parallel subtasks. The machine as a whole will therefoledai
compute the result in time only when &l processors assigned to anyone subtask fail, and this occurs
with probability

Qelassical = 1 — (1 - pR)N- (324)

Using quantum parallelism, however, each of fli& available processors may be given All
tasks. Each is subject to two independent causes of faili)rtne probabilityp that it will fail for
hardware reasons, and (ii) the probability, which as | hadkcated will for certainG(f) be1 —
1/(N? — 2N + 2), that it will end up in a different universe from the answetakes only one of the
N R processors to succeed, so the failure rate is
1—p NR

qdquantum = - N2 _9N +9 9 (3.25)

a number which, for suitable values @f N and R, can be smaller than (3.24).

Faster computers

One day it will become technologically possible to build quen computers, perhaps using flux
quanta (Likharev 1982; Leggett 1985) as the fundamentapoments. It is to be expected that such
computers could operate at effective computational speedgcess of Turing-type machines built
with the same technology . This may seem surprising sincevé lestablished that no recursive
function can be computed b§ on average more rapidly with the help of quantum programa tha
without. However, the idealizations i@ take no account of the purely technological fact that it is
always easier in practice to prepare a very large numberaritical systems in the same state than to
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prepare each in a different state. It will therefore be gaesio use a far higher degree of redundancy
R for parallel quantum programs than for classical ones mmoin the same basic hardware.

Interpretational implications

| have described elsewhere (Deutsch 1985; cf. also Albé8)L1Bow it would be possible to make a
crucial experimental test of the Everett (‘many-univeisigerpretation of quantum theory by using a
quantum computer (thus contradicting the widely held léfiat it is not experimentally distinguish-
able from other interpretations). However, the perforneaotsuch experiments must await both the
construction of quantum computers and the developmenusefdrtificial intelligence programs. In
explaining the operation of quantum computers | have, wheoessary, assumed Everett’s ontology.
Of course the explanations could always be ‘translated ihe conventional interpretation, but not
without entirely losing their explanatory power. Suppof®,example, a quantum computer were
programmed as in the Stock Exchange problem described. @maclht is given different data. The
Everett interpretation explains well how the computer'tsdgour follows from its having delegated
subtasks to copies of itself in other universes. On the ddyswhe computer succeeds in performing
two processor-days of computation, how would the conveatiinterpretations explain the presence
of the correct answer®here was it computed?

4 Further connections between physics and computer science

Quantum complexity theory

Complexity theory has been mainly concerned with condsaipon the computation of functions:
which functions can be computed, how fast, and with use of haweh memory. With quantum
computers, as with classical stochastic computers, on¢ ates ask ‘and with what probability?’.
We have seen that the minimum computation time for certakst@an be lower foP than for7.
Complexity theory forQ deserves further investigation.

The less immediately applicable but potentially more int@atr application of complexity theory
has been in the attempt to understand the spontaneous grbadmplexity in physical systems, for
example the evolution of life, and the growth of knowledgdiman minds. Bennett (1983) reviewed
several different measures of complexity (or ‘depth’, anokledge’) that have been proposed. Most
suffer from the fatal disadvantage that they assign a higimfgexity’ to a purely random state.
Thus they do not distinguish true knowledge from mere infation content. Bennett has overcome
this problem. His ‘logical depth’ is roughly the running &nof the shortes? -program that would
compute a given stat¢ from a blank input. Logical depth is at a minimum for randorates. Its
intuitive physical justification is that the ‘likeliest elgmation’ why a physical system might be found
to be in the state) is thatvy was indeed ‘computed’ from that shorteBtprogram. In biological
terminology, logical depth measures the amount of evalutimt was needed to evolve from the
simplest possible precursors.

At first sight Bennett's construction seems to lose this aygustification when it is extended
beyond the strictly deterministic physics of Turing ma&snIn physical reality most random states
are not generated by ‘long programs’ (i.e. precursors whuageplexity is near to their own), but
by short programs relying on indeterministic hardware. Idoer, there is a quantum analogue of
Bennett’s idea which solves this problem. Let us define tHedzal depth of a quantum state as the
running time of the shortegd-program that would generate the state from a blank inpuip@nhaps,
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as Bennett would have it, the harmonic mean of the runningdiof all such programs). Random
numbers can be rapidly generatedghyrt Q-programs.

Notice that the Q-logical depth is not even in principle asaable, because it contains infor-
mation about all universes at once. But this makes sensecpllys the Q-logical depth is a good
measure of knowledge in that it gives weight only to compieiiat is present in all universes, and
can therefore be assumed to have been put there ‘delibgrateh deep process. Observationally
complex states that are different in different universesraot truly deep but just random. Since the
Q-logical depth is a property of the quantwtate(vector), a quantum subsystem need not necessarily
have a well defined Q-logical depth (though often it will to@od degree of approximation). This is
again to be expected since the knowledge in a system magresiutely in its correlations with other
systems. A spectacular example of this is quantum cryppgra

Connections between the Church-Turing principle and other partsof physics

We have seen that quantum theory obeys the strong form (LtBedChurch-Turing principle only
on the assumption that the third law of thermodynamics (&.8ue. This relation is probably better
understood by considering the Church-Turing principle asenfundamental and deriving the third
law from it and quantum theory.

The fact that classical physics does not obey (1.2) tempg@mgo further. Some of the features
that distinguish quantum theory from classical physics €iample the discreteness of observables?)
can evidently be derived from (1.2) and the laws of thermadiyics alone. The new principle has
therefore given us at least part of the solution to Wheefmdblem ‘Why did quantum theory have to
be?’ (see, for example, Wheeler 1985).

Various ‘arrows of time’ that exist in different areas of [@igs have by now been connected and
shown to be different manifestations of the same effect., Boitrary to what is often asserted, the
‘psychological’ or’ epistemological’ arrow of time is an @ption. Before Bennett (1973) it could
be maintained that computation is intrinsically irrevblsj and since psychological processes such
as the growth of knowledge are computations, the psychcdbgirrow of time is necessarily aligned
with the direction in which entropy increases. This view @wnuntenable, the alleged connection
fallacious.

One way of reincorporating the psychological arrow of timiphysics is to postulate another
new principle of Nature which refers directly to the Q-lagficlepth. It seems reasonable to assert, for
example, that the Q-logical depth of the universe is at ammim initially. More optimistically the
new principle might require the Q-logical depth to be nowrdasing. It is perhaps not unreasonable to
hope that the second law of thermodynamics might be deeviatim a constraint of this sort on the Q-
logical depth. This would establish a valid connection lestwthe psychological (or epistemological,
or evolutionary) and thermodynamic ‘arrows of time’.

Programming physics

To view the Church-Turing hypothesis as a physical prircgides not merely make computer science
a branch of physics. It also makes part of experimental ghyisto a branch of computer science.
The existence of a universal quantum compu@eimplies that there exists a program for each
physical process. In particula@ can perform any physical experiment. In some cases (for pbeam
measurement of coupling constants or the form of interasjighis is not useful because the result
must be known to write the program. But, for example, whetirtgsquantum theory itself, every
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experiment is genuinely just the running of@program. The execution o@ of the following
ALGOL 68 programis a performance of the Einstein-Podolski-Rosen experiment:

begin

int n = 8 x random % random integer fronf) to 7 %

bool z, y; % bools are2-state memory elemeri¥s

z =y := false % an irreversible preparatio?o

V(8,y); % see equation (2.1%)%

z eoraby; % perfect measurement (2.1%)

if V(n,y) # % measurey in random directiorf
Vin,x) % andz in the parallel direction%

then print(("Quantum theory refuted.”))
elseprint(("Quantum theory corroborated.”))
fi
end

Quantum computers raise interesting problems for the desiggrogramming languages, which
| shall not go into here. From what | have said, programs dkist would (in order of increasing
difficulty) test the Bell inequality, test the linearity otigntum dynamics, and test the Everett inter-
pretation. | leave it to the reader to write them.

| wish to thank Dr C. H. Bennett for pointing out to me that theu@h-Turing hypothesis has
physical significance, C. Penrose and K. Wolf for intergstiiscussions about quantum computers,
and Professor R. Penrose, F.R.S., for reading an earliérafrthe article and suggesting many im-
provements.
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