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Continuous quantum measurement of a double dot

Alexander N. Korotkov
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~Received 16 February 1999!

We consider the continuous measurement of a double quantum dot by a weakly coupled detector~tunnel
point contact nearby!. While the conventional approach describes the gradual system decoherence due to the
measurement, we study the situation when the detector output is explicitly recorded that leads to the opposite
effect: gradual purification of the double-dot density matrix. The nonlinear Langevin equation is derived for the
random evolution of the density matrix which is reflected and caused by the stochastic detector output. Gradual
collapse, gradual purification, and the quantum Zeno effect are naturally described by the equation. We also
discuss the possible experiments to confirm the theory.@S0163-1829~99!01032-2#
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The problem of quantum measurements has a long
tory; however, it still attracts considerable attention and e
causes some controversy, mainly concerning the wa
function ‘‘collapse’’ ~see, e.g., Refs. 1 and 2!. Among vari-
ous modern approaches to this problem let us mention
idea of replacing the collapse postulate by the gradual de
herence of the density matrix due to the interaction with
detector3 and the approach of a stochastic evolution of
wave function~see, e.g., Refs. 4–11!. The latter approach
~which is used in the present paper! can describe the selec
tive measurements for which the system evolution is con
tioned on the particular measurement result~other keywords
of the approach are quantum trajectories, quantum state
fusion, quantum jumps, etc.!. The renewed interest in th
measurement problem is justified by the development of
perimental technique, which allows more and more exp
mental studies of quantum measurement in optics and m
scopic structures.12–17 The problem also has a clos
connection to the rapidly growing fields of quantum crypto
raphy and quantum computing.18

In the recent experiment15 with the ‘‘which-path’’ inter-
ferometer the suppression of Aharonov-Bohm interfere
due to the detection of which path an electron chooses,
observed. The weakly coupled quantum point contact w
used as a detector. The interference suppression in this
periment can be quantitatively described by the decohere
due to the measurement process.19–22

We will consider a somewhat different setup: two qua
tum dots occupied by one electron and a weakly coup
detector~point contact nearby! measuring the position of th
electron. The decoherence of the double-dot density ma
due to continuous measurement in this setup has been
lyzed in Refs. 19 and 22. However, the decoherence
proach cannot describe the detector output which is a s
rate problem analyzed in the present paper. We answer
interrelated questions: how the detector current behave
time and what is the proper double-dot density matrix fo
particular detector output. We show that the models of po
contact considered in Refs. 19–21 describe an ideal dete
In this case the density matrix decoherence is just a co
quence of averaging over all possible measurement res
For any particular detector output our equations allow
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evolution of pure wave function to be followed. Moreover,
mixed density matrix can be gradually purified in the cou
of a continuous measurement.

Similar to Ref. 19 we describe the double-dot system a
the measuring point contact by the HamiltonianH5HDD

1HPC1Hint , where HDD5(«/2)(c1
†c12c2

†c2)1H(c1
†c2

1c2
†c1) is the Hamiltonian of the double-dot,HPC

5( lElal
†al1( rErar

†ar1( l ,rT(ar
†al1al

†ar) describes the
tunneling through the point contact (T andH are real!, and
Hint5( l ,rDTc2

†c2(ar
†al1al

†ar), i.e., the tunneling matrix el-
ement for the point contact isT or T1DT, depending on
which dot is occupied. So, the average currentI 1
52pT2r lr re

2V/\ flows through the detector when the ele
tron is in the first dot (V is the sufficiently large voltage
across the tunnel contact,r l and r r are the densities o
states!, while the current is I 25I 11DI 52p(T
1DT)2r lr re

2V/\ when the second dot is occupied.
We make an important assumption of weak coupling

tween the double-dot and the detector~a better term would
be the ‘‘weakly responding’’ detector!,

uDI u!I 05~ I 11I 2!/2, ~1!

so that many electrons,N*(I 0 /DI )2@1, should pass
through the point contact before one can distinguish wh
dot is occupied. This assumption allows the classical desc
tion of the detector, namely, to neglect the coherence
tween the quantum states with different number of electr
passed through the detector.23

The decoherence rateGd5(AI 1 /e2AI 2 /e)2/2 of the
double-dot density matrixs(t) due to the measurement b
tunnel point contact has been calculated in Ref. 19. In
weakly responding limit~1! it can be replaced byGd
5(DI )2/8eI0 or by the expression

Gd5~DI !2/4SI , ~2!

whereSI52eI0 is the usual Schottky formula for the dete
tor shot noise spectral densitySI . Equation~2! has also been
obtained in Refs. 20–22 for the quantum point contact a
detector, the difference in that case isSI52eI0(12T )
whereT is the transparency of the channel24 ~while above we
implicitly assumedT!1).25,26 Notice that the decoherenc
5737 ©1999 The American Physical Society
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5738 PRB 60ALEXANDER N. KOROTKOV
rate ~2! was derived in Refs. 19–22 without any account
the information provided by the detector, implicitly assum
ing that the measurement result is just ignored. Now let
study how this additional information affects the double-d
density matrix.

We start with the completely classical case in which th
is no tunneling between dots (H50) and the initial density
matrix of the system does not have nondiagonal eleme
s12(0)5s12(t)50. We can assume that the electron is a
tually located in one of the dots, but it is not known in whic
one, and that is why we use probabilitiess11(0) and
s22(0)512s11(0). The detector output is the fluctuatin
currentI (t). The fluctuations grow whenI (t) is examined at
smaller time scales, so some averaging in time~‘‘low-pass
filtering’’ ! is necessary, at least in order to neglect the pr
lem of individual electrons passing through the point conta
Let us always work at sufficiently low frequencies,f ;t21

!SI /e2, for which the possible frequency dependence ofSI
can be neglected.

The probabilityP to have a particular value for the curre
averaged over timet, ^I &5t21*0

t I (t)dt, is given by the
distribution

P~^I &,t!5s11~0!P1~^I &,t!1s22~0!P2~^I &,t!, ~3!

Pi~^I &,t!5~2pD !21/2exp@2~^I &2I i !
2/2D#, ~4!

where D5SI /2t. Notice that these equations obviously d
not change if we divide the time intervalt into pieces and
integrate over all possible average currents for each piec~to
consider only positive currents, the typical timescalet
should be sufficiently long,SI /t ! I 2, that is always satisfied
within the assumed low frequency range!.

After the measurement during timet we acquire addi-
tional knowledge about the system and should change
probabilitiess i i according to the standard Bayes formula27

for a posteriori probability ~taking into account particula
detector result̂ I &):

s11~t!5s11~0! exp@2~^I &2I 1!2/2D#$s11~0!exp@2~^I &

2I 1!2/2D#1s22~0!exp@2~^I &2I 2!2/2D#%21,

s22~t!512s11~t!. ~5!

Notice that we have considered so far the purely class
measurement and did not use any ‘‘collapse’’ postulate. N
ertheless, Eq.~5! can be interpreted as a gradual ‘‘localiz
tion’’ of the electron in one of the dots due to acquired
formation.

Now let us assume that the initial state is fully cohere
us12(0)u5As11(0)s22(0), while still H50. Since the detec
tor is sensitive only to the position of an electron, the det
tor current will behaveexactlythe same way as in the cas
above. So, after the measurement during timet we should
assign the same values fors i i (t) as in Eq.~5!, but the ques-
tion is not so trivial for the nondiagonal matrix eleme
s12(t). Nevertheless, we can write the upper bound

us12~t!u<As11~t!s22~t!. ~6!

If the actual measurement result is disregarded, then
upper bound forus12u can be calculated using the probabili
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distribution of different outcomes given by Eq.~3! and the
upper bound~6! for each realization,

u^s12~t!& r u<E As11~t!s22~t!P~^I &,t!d^I &

5As11~0!s22~0! exp@2~DI !2t/4SI # ~7!

~here ^ & r means averaging over realizations!. This upper
bound exactly coincides28 with the result given by the deco
herence approach~2!. This fact forces us to accept the som
what surprising statement that Eq.~6! gives not only the
upper bound, but the true value of the nondiagonal ma
element, i.e., the pure stateremains pure~no decoherence
occurs! during each particular measurement.~Actually, this
is the usual statement for selective measurements,5–11 i.e.,
when the detector output is taken into account.!

Simultaneously, we proved that the point contact detec
considered theoretically in Refs. 19–21~the model is con-
firmed experimentally15! causes the slowest possible dec
herence of the measured system, and hence represen
ideal detector in this sense. In contrast, the result of Ref.
shows that a single-electron transistor30 biased by relatively
large voltage is not an ideal detector~the nonideal detecto
has also been considered in Ref. 22!. Notice, however, that
in the range of elastic cotunneling31 the operation of the
single-electron transistor is almost equivalent29 to the case
considered above, and, hence, it becomes an ideal dete

If the initial state of the double dot is not purely cohere
us12(0)u,As11(0)s22(0), it can betreated as the statistica
combination of purely coherent and purely incoherent sta
with the sames11(0) ands22(0), then

s12~t!5s12~0! expS i«t

\ D F s11~t!s22~t!

s11~0!s22~0!G
1/2

. ~8!

Equations~5! and ~8! are the central result of the prese
paper; they give the density matrix of the measured sys
~in the caseH50) with account of the measurement result32

These equations can be also used to simulate the det
output I (t) and the corresponding evolution of the dens
matrix. For example, in the Monte Carlo method we sho
first choose the timestept, satisfying inequalitiese2/SI!t
!SI /(DI )2, and draw a random number for^I & according to
the distribution~3!. Then we updates11(t) ands22(t) using
this value of^I & and repeat the procedure many times@the
distribution for the current averaged over the intervalDt
5t is new every timestep because of changings i i (t) which
are used in Eq.~3!#. The nondiagonal matrix element can b
calculated at any time with Eq.~8!.

Using Eqs.~3!–~5!, this Monte Carlo procedure can b
easily reduced to the following nonlinear Langevin-ty
equation~equation fors11 is sufficient!:

ṡ115R, R52s11s22

2DI

SI
@ I ~ t !2I 0# ~9!

52s11s22

2DI

SI
Fs222s11

2
DI 1j~ t !G , ~10!

where the random processj(t) has zero average an
‘‘white’’ spectral densitySj5SI . The second expression fo
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PRB 60 5739CONTINUOUS QUANTUM MEASUREMENT OF A DOUBLE DOT
R allows the measurement to be simulated while the first
can be used to calculate the density matrix for givenI (t) @in
caseH50 it can more easily be done using Eq.~5!#.

Figure 1 shows a particular result of the Monte Ca
simulation for the symmetric initial state,s11(0)5s22(0)
51/2. The thick line shows the random evolution ofs11(t).
Equation~10! describes the gradual localization in one of t
dots ~first dot in case of Fig. 1!. Let us define the typica
localization time ast loc52SI /(DI )2 ~we choose the expo
nential factor ats115s2251/2). Then it is exactly equal to
the timetdis52SI /(DI )2 necessary to distinguish betwee
two states~defined as the shift of two Gaussians~4! from I 0

by one standard deviation!, andt loc5td/2 wheretd5Gd
21 .

It is easy to prove that the probability of final localization
the first dot is equal tos11(0), becauses i i (t) averaged over
realizations is conserved@the deterministic flow ofs11 due to
the first term in square brackets of Eq.~10! is exactly can-
celed on average by the dependence of the diffusion co
cient ons11].

The detector currentI (t) basically follows the evolution
of s i i (t) but also contains the noise which depends on
bandwidth. The dashed line in Fig. 1 shows the curr
^I (t,t2Dt)&5Dt21* t2Dt

t I (t)dt averaged over the ‘‘running
window’’ with duration Dt5SI /(DI )2, while the thin solid
line is the current̂ I (t,0)& averaged starting fromt50.

Now let us consider the general case of the double-
with nonzero tunnelingH. If the frequencyV of ‘‘internal’’
oscillations is sufficiently low,V5(4H21«2)1/2/\!SI /e2,
we can use the same formalism just adding the evolution
to finite H ~the productVt loc is arbitrary!. A particular re-
alization can be either simulated by a Monte Carlo proced
similar to that outlined above@now update ofs12(t) using
Eq. ~8! should be necessarily done at each timestep, toge
with the evolution due to finiteH] or equivalently described
by the coupled Langevin equations

ṡ1152ṡ225~22H/\!Im~s12!1R, ~11!

FIG. 1. Thick line: particular Monte Carlo realization ofs11

evolution in time during the measurement of uncoupled dotsH
50. The initial state is symmetric,s11(0)5s22(0)51/2, while the
measurement leads to gradual localization. Initially pure wave fu
tion remains pure at any timet. The thin line shows the correspond
ing detector current̂I & averaged over the whole time interval sta
ing from t50 while the dashed line is the current averaged over
running window with durationSI /(DI )2.
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\
~s112s22!1

s222s11

2s11s22
Rs122gds12,

~12!

wheregd50 for an ideal detector~see below!. The alterna-
tive ‘‘microscopic’’ derivation of these equations can b
done for the particular model of Ref. 19 and will be pr
sented elsewhere.

Notice that in Eqs.~9!–~12! the derivative is defined a
ṡ(t)5 limt˜0@s(t1t/2)2s(t2t/2)#/t ~Stratonovich for-
mulation of the stochastic equations33!. The equations would
be different if the definition@s(t1t)2s(t)#/t was used
~Itô formulation!. We use the former one because it gives t
correct limit when the noise termj(t) is replaced by a se
quence of smooth functions33 and also because the equatio
in Stratonovich formalism are physically more transpar
since they do not contain extra terms arising due toR 2dt
5const @for example, the usual calculus rule (f g)85 f 8g
1 f g8 is still valid#. To translate Eqs.~9!–~12! into Itô for-
malism, one would need to add the terms33

(SI /2)F(dF/ds)/2, whereF is the factor beforej(t). This
would lead to extra terms2(s222s11)DI /2 in square brack-
ets of Eqs.~9!–~10! and extra term2s12(DI )2/4SI in Eq.
~12!. Notice that in Itôformalism the equations become lin
ear @except for the terms proportional toj(t)].

The simplest way to avoid the possible confusion betwe
two formulations of stochastic equations is to use the exp
calculation procedures~for finite t) described above. How
ever, the difference should be taken into account when
sults of other approaches to the stochastic wavefunc
evolution4–11 are compared. For example, this explains t
apparent difference between Eqs.~9!–~12! and the results of
Ref. 9 for a two-level system~with «50 andgd50) derived
in a different way. Among various approaches to select
quantum measurements, our approach is most closely re
to the method of restricted path integral;7 however, in some
sense we consider the classical~not quantum! path integral.
Let us also mention that the quantum nondemoliti
measurements2 are outside the scope of our study, we co
sider only the measurements at the so-called ‘‘standard q
tum limit.’’

Figure 2 shows the particular results of the Monte Ca
simulations for the double-dot with«5H and the different
strength of the interaction with an ideal detector. The el
tron is initially located in the first dot,s11(0)51. The
dashed line shows the evolution ofs11 without detector. No-
tice that because«Þ0, the initial asymmetry of the electro
location remains in this case for infinite time. When the
teraction with detector,C5\(DI )2/SIH, is relatively small
~top solid line!, the evolution ofs11 is close to that without
the detector. However, the electron gradually ‘‘forgets’’ t
initial asymmetry and the evolution can be described as
slow variation of the two-parametric phase of oscillatio
~recall that the wave function remains pure!. In the decoher-
ence approach~averaging over realizations! this corresponds
to s11˜1/2 at t˜`.19

When the coupling with the detector increases, the evo
tion significantly changes~middle and bottom curves in Fig
2!. First, the transition between dots slows down~quantum
Zeno effect34,5,6,8,9,12,19,22,29!. Second, while the frequency o
transitions decreases with increasing interaction with the
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5740 PRB 60ALEXANDER N. KOROTKOV
tector, the time of a transition also decreases, so eventu
we can talk about uncorrelated ‘‘quantum jumps’’ betwe
states.

In a regime of small coupling with a detector,C!1, the
detector output is too noisy to follow the evolution ofs i i
and, correspondingly, only slightly affects the oscillatio
~the presence of quantum oscillations in the double-dot
be noticed only as a relatively small peak in the spec
density of the detector current!. In contrast, whenC@1 the
detector accurately indicates the position of electron and
multaneously destroys the oscillations.

Equations~11! and~12! with the termR given by Eq.~9!
can be used to obtain the evolution of the density matrix
an experiment provided the detector outputI (t) and initial
condition s i j (0) are known. Notice that even if the initia
state is completely random,s115s2251/2, s1250, the non-
diagonal matrix element gradually appears during the m
surement, so that sufficiently long observation with an id
detector leads to almost pure wave function for the dou
dot. Such a purification of the density matrix described
Eqs.~11! and ~12! is analogous to the localization atH50.

Equations~11! and~12! can be generalized for a nonide
detector,Gd.(DI )2/4SI ~as in Refs. 22 and 29!, which gives
less information than possible in principle. Let us model it
two ideal detectors ‘‘in parallel’’ with unaccessible output
the second detector. Then the information loss can be re
sented by the extra decoherence term2gds12 in Eq. ~12!
wheregd5Gd2(DI )2/4SI .35 The limiting case of a nonidea
detector is the detector with no output~just an environment,
DI 50) or with disregarded output. Then Eqs.~11! and~12!
reduce to the standard decoherence approach.

For a nonideal detector it is meaningful to keep our o

FIG. 2. Random evolution ofs11 ~particular Monte Carlo real-
izations! for asymmetric double dot,«5H, with the electron ini-
tially in the first dot,s11(0)51, for different strength of coupling
with detector:C5\(DI )2/SIH50.3, 3, and 30 from top to bottom
The dashed line representsC50 ~unmeasured double dot!. Increas-
ing coupling with detector destroys the quantum oscillations~while
the wave function remains pure at anyt), slows down the transi-
tions between states~quantum Zeno effect!, and forC@1 leads to
uncorrelated jumps between well localized states.
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definition of the localization time,t loc5tdis52SI /(DI )2,
while td,2t loc . So, we consider localization time not as
real physical quantity but as a quantity related to the obse
er’s information. Similarly, the effective decoherence time
defined astd85gd

21 .
Figure 3 shows a particular realization of random evo

tion of s11 and Ims12 for a symmetric double dot measure
by weakly coupled (C50.1) nonideal detector withgd /Gd
50.1. We start from a maximally mixed state,s11(0)
50.5, s12(0)50, and the figure shows the gradual purific
tion of the density matrix in a course of measurement~notice
that Res12(t)50 because«50). The nonideality of the de-
tector does not allow the complete purification: oscillatio
of Ims12(t) do not reach60.5 limit, as it would be in the
case of ideal detector.

Let us mention that following the ‘‘orthodox’’~Copen-
hagen! point of view, we do not attempt to distinguish be
tween the ‘‘real’’ density matrix and the density matr
which can be known by the observer. For example, the e
lution of s11 due to the measurement in case of no tunnel
between dots (H50) can be interpreted both as a real pr
cess or just as a gradual acquiring of information about
electron position. Another example is the case of the n
ideal detector. We can interpret the term2gds12 in Eq. ~12!
as real decoherence; however, it is also possible to argue
it just represents the partial loss of information inside t
imperfect detector, so that perhaps the pure density ma
could be restored if some hidden traces left in the dete
had been analyzed. Developing this example further, le
imagine that two observers have different levels of acces
the detector information, then the density matrix for the
will be different. Actually, this just means that the observ
with less information will not be able to make as many~or as
accurate! predictions as the other one. Nevertheless, he
can treat his density matrix as a real one for all purposes.
limiting case when the observer does not have any inform
tion about the detector output~or this information is ignored
in the experiment! is equivalent to averaging over all pos
sible realizations, i.e., to the standard decoherence appro

So, if different realizations of the detector output are
fectively averaged in an experiment~as in Ref. 15!, the de-
coherence approach is suitable. In contrast, if the single

FIG. 3. Gradual purification of the density matrix@s11(t) and
Ims12(t) are shown# of the symmetric double dot («50) measured
by a slightly nonideal (gd /Gd50.1) weakly coupled (C50.1) de-
tector.
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PRB 60 5741CONTINUOUS QUANTUM MEASUREMENT OF A DOUBLE DOT
alization of the detector current is recorded~and somehow
used! in an experiment, then the proper description is giv
by Eqs.~11! and~12!. The simplest experimental idea is ju
to measureI (t) when C is not too small and check if it is
consistent with these equations. However, it would be m
more interesting to devise an experiment in which the s
sequent system evolution depends on the preceding mea
ment result.

For example, let us first prepare the double dot in
symmetric coherent state,s115s225us12u51/2, make H
50 ~raise the barrier!, and begin measurement with an a
most ideal detector. According to our formalism, after so
time t ~the most interesting case ist;t loc) the wave func-
tion remains pure but becomes asymmetric and can be
culated with Eqs.~5! and ~8!. To prove this, an experimen
talist can use the knowledge of the wave function to mo
the electron into the first dot with probability equal to unit
Namely, he switches off the detector att5t, reduces the
barrier~to create finiteH), and creates the energy differen
«5@(124us12u2)1/221# HRes12/us12u2; then after the time
periodDt5@p2arcsin(Ims12\V/H)#/V the ‘‘whole’’ elec-
tron will be moved to the first dot, which can be checked
the detector switched on again.@Alternatively, using the
knowledge ofs i j (t) an experimentalist can produce exac
the ground state of the double-dot system and check it,
example, by photon absorption.#

Another experimental idea is to demonstrate the grad
purification of the double-dot density matrix. Let us sta
with a completely random state (s115s2251/2, s1250) of
the double dot with finiteH. Then using the detector outpu
3
t
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I (t) and Eqs.~11! and ~12! it is possible to calculate the
evolution of the density matrix. These calculations will sho
the gradual purification~the most interesting case isVt loc
&1), eventually ending up with almost pure wave functi
with precisely knownphaseof quantum oscillations. The
final check of the wave function can be similar to that co
sidered above. However, it can be even simpler, beca
with the knowledge of the phase of oscillations it is easy
stop the evolution by raising the barrier when the electron
with certainty in the first dot. If rapid calculations~by some
analog on-chip circuit! are not available, the barrier contro
can be random, while appropriate cases can be selected

An experiment of this kind could verify the formalism
developed in the present paper. While such an experime
still a challenge for present-day technology, we hope tha
can be realized in the near future.

In conclusion, we have developed a simple formalism
the evolution of the double-dot density matrix with an a
count of the result of the continuous measurement by wea
coupled ~weakly responding! point contact. In contrast to
most previous studies on the selective quantum meas
ments, our equations treat mixed states and allow the con
eration of a nonideal detector. The equations show
gradual purification of initially mixed state of the double-d
due to continuous quantum measurement. This effect ca
studied experimentally in various mesoscopic setups.

The author thanks S. A. Gurvitz, K. K. Likharev, D. V
Averin, and T. V. Filippov for fruitful discussions. The wor
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AFOSR, and Russian RFBR.
pse

a-
n

ed
ble-
ere is
1Quantum Theory of Measurement, edited by J. A. Wheeler and
W. H. Zurek ~Princeton University Press, Princeton, NJ, 198!.

2V. B. Braginsky and F. Ya. Khalili,Quantum Measuremen
~Cambridge University Press, Cambridge, 1992!.

3W. H. Zurek, Phys. Today44 „10…, 36 ~1991!.
4N. Gisin, Phys. Rev. Lett.52, 1657~1984!.
5H. J. Carmichael,An Open System Approach to Quantum Opti,

Lecture notes in Physics, m18~Springer, Berlin, 1993!.
6M. B. Plenio and P. L. Knight, Rev. Mod. Phys.70, 101 ~1998!.
7M. B. Mensky, Phys. Usp.41, 923 ~1998!.
8C. Presilla, R. Onofrio, and U. Tambini, Ann. Phys.~N.Y.! 248,

95 ~1996!.
9 M. J. Gagen, H. M. Wiseman, and G. J. Milburn, Phys. Rev

48, 132 ~1993!.
10G. C. Hegerfeldt, Phys. Rev. A47, 449 ~1993!.
11J. Dalibard, Y. Castin, and K. Molmer, Phys. Rev. Lett.68, 580

~1992!.
12W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Winelan

Phys. Rev. A41, 2295~1990!.
13A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett.49, 1804

~1982!.
14M. Brune, E. Hagley, J. Dreyer, X. Maitre, A. Maali, C. Wunde

lich, J. M. Raimond, and S. Haroche, Phys. Rev. Lett.77, 4887
~1996!.

15E. Buks, R. Schuster, M. Heiblum, D. Mahalu, and V. Umans
Nature~London! 391, 871 ~1998!.

16W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, Phys. Rev. Le
81, 3563~1998!.
,

,

.

17Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, Nature~London!
398, 786 ~1999!.

18C. Bennett, Phys. Today48 „10…, 24 ~1995!.
19S. A. Gurvitz, Phys. Rev. B56, 15 215~1997!; quant-ph/9808058

~unpublished!.
20I. L. Aleiner, N. S. Wingreen, and Y. Meir, Phys. Rev. Lett.79,

3740 ~1997!.
21Y. Levinson, Europhys. Lett.39, 299 ~1997!.
22L. Stodolsky, quant-ph/9805081~unpublished!.
23We implicitly assume that the corresponding detector colla

happens on the time scalee/I 0!tc!(e/I 0)(I 0 /DI )2, much
faster than the typical evolution of the double-dot density m
trix. In the caseDI;I 0 the evolution would strongly depend o
the detector interaction with the next measuring stage.

24G. B. Lesovik, Pis’ma Zh. E´ksp. Teor. Fiz.49, 513~1989! @JETP
Lett. 49, 592 ~1989!#.

25In the case 12T!1, Eq. ~1! should be replaced byuDI u!(1
2T )I 0;SI /e.

26Modification of Eq.~2! in the case when the phase of transmitt
and reflected electrons in the detector is sensitive to the dou
dot state has been discussed in Ref. 22. We assume that th
no such a dependence in our case.

27A posterioriprobability p̃(A) of an eventA given that the eventF

has happened, is equal top̃(A)5p(A)p(FuA)/(B@p(B)
p(FuB)#, wherep(A) is a priori probability andp(FuA) is the
conditional probability of eventF given eventA.



-

ica

d

te

5742 PRB 60ALEXANDER N. KOROTKOV
28If a similar approach is formally applied to the caseDI;I 0,
we obtain u^s12(t)& r u/@s11(0)s22(0)#1/2<@2ASI1SI2/(SI1

1SI2)#1/2exp@2t(DI)2/2(SI11SI2)#. Then the corresponding re
sult of Ref. 19 is smaller than this upper bound for larget, while
it is above the limit fort&Gd

21;e/I 0. The latter unphysical
situation is because the detector cannot be described class
at smallt.

29A. Shnirman and G. Scho¨n, Phys. Rev. B57, 15 400~1998!.
30K. K. Likharev, IEEE Trans. Magn.23, 1142~1987!.
31D. V. Averin and Yu. V. Nazarov, Phys. Rev. Lett.65, 2446

~1990!.
lly

32Notice that Eqs.~5! and ~8! ~for «50) can be readily expresse
using the standard ‘‘reduction’’ procedure,s(t)5A/TrA, A
5P(^I &,t)s(0)P(^I &,t), if the generalized ‘‘projection’’ op-
eratorP(^I &,t) is defined asPi i 5@Pi(^I &,t)#1/2, P125P2150.

33B. O” ksendal,Stochastic Differential Equations~Springer, Berlin,
1992!.

34B. Misra and E. C. G. Sudarshan, J. Math. Phys.18, 756 ~1977!.
35If the level asymetry« is directly influenced by the detector sta

@as in the case of a single-electron transistor~Ref. 29!# then the
corresponding compensating term should be added into Eq.~12!.
See A. N. Korotkov, cond-mat/9906439~unpublished!.


