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A simple and explicit technique for the numerical solution of the two-particle, time-dependent
Schralinger equation is assembled and tested. The technique can handle interparticle potentials that
are arbitrary functions of the coordinates of each particle, arbitrary initial and boundary conditions,
and multidimensional equations. Plots and animations are given here and on the World Wide Web
of the scattering of two wave packet in one dimension. 2600 American Association of Physics Teachers.

[. INTRODUCTION space steps, and, consequently, long running times. A similar
approach for the time-dependent one-particle Sdihiger

Rather than showing the time dependence of two particle§duation in a two-dimensional space has also been stadied.

interacting with each other, quantum mechanics textbooks

often present a time-independent view of a single particlqI TWO-PARTICLE SCHRO DINGER EQUATION

interacting with an external potential. In part, this makes the -

physics clearer, and in part, this reflects t"he difficulty of solv- We solve the two-particle time-dependent Sctinger

ing the time-independent two-particle Sctimger equation  equation

for the motion of wave packets. In the classic quantum me-

chanics text by Schiff,examples of realistic quantum scat- iiw(x Xo,) =Hi(Xq, Xout) (1)

tering, such as that in Fig. 1, are produced by computer  dt’ % "2 Lor2

simulations of wave packets colliding with square potential 1 2 1 2

barriers and wells. Generations of students have carried _ _ o 5+ V(Xy,X0) )
memories of these imagdser of the film loops containing 2my 9x7  2mj dx;
these frame3 as to what realistic quantum scattering looks

where, for simplicity, we assume a one-dimensional space

While Fig. 1 is a good visualization of a quantum scatter-and sett:]i: L Here}—é 'S th.?. Han;ntont{grl;cipzeritor alméi andf
ing process, we wish to extend simulations of realistic quan2<i are the mass and position of particte 1,2. Kknowledge o

tum interactions to include particle—particle scattering wherfn€ two-particle wave functiogi(x,, x,t) permits the cal-
both particles are represented by wave packets. Althouggulation of the probability density for particle 1 being>at
more complicated, this, presumably, is closer to nature an@nd particle 2 being at, at timet:
may illustrate some physics not usually found in quantum _ 2
me)c/hanics textbooks.plnyaddition, oure%ension gogs beyond p(x1, X O)=[x0, XD ®
the treatment found in most computational éohysics texts'he fact that particles 1 and 2 must be located someplace in
which concentrate oane-particlewave packetéT or highly ~ space leads to the normalization constraint on the wave func-
restricted forms otwo-particlewave packet§. tion:

The simulations of the time-dependent Salinger equa- v [ao
tion shown by Schiff were based on the 1967 finite- f f dxg dXo| (Xq, Xp,t)|2=1. (4)
difference algorithms developed by Goldberg, Schey, and —oe J -
SchwartZ Those simulations, while revealing, had problems  The description of a single particle within a multiparticle
with stability and gprobablllty conservation. A decade later,gystem by a single-particle wave function is an approxima-
Cakmak and Askarsolved the stability problem by using @ tjon unless the system is uncorrelatetwhich case the total
better approximation for the time derivative. After yet an-aye function can be written in product foymHowever, it
other decade, Vissctfesolved the probability conservation jg possible to deduce meaningful one-particle densities from

problem by solving for the real and imaginary parts of theihe two-particle density by integrating over the other par-
wave function at slightly different‘staggered”) times. ticle:

In this paper we combine the advances of the last 20 years
and extend them to the numerical solution of ttveo-
particle—in contrast to theone-particle—time-dependent
Schralinger equation. Other than being independent of spin, ) ) . .
no assumptions are made regarding the functional form offere we use a subscript on the single-particle densitto
the interaction or initial conditions, and, in particular, there isdistinguish it from the two-particle densigy. Of course, the
no requirement of separation into relative and center-of-masue solution isy(x;, X,,t), but we find it hard to see the
variable The method is simple, explicit, robust, easy to physics in a three-variable complex function, and so, often
modify, memory preserving, and may have research applicasiew p,(x1,t) and p,(X,,t) as two separate wave packets
tions. However, high precision does require small time anctolliding.

like.

+ oo

pa(X; ,t)=f_w dxjp(Xg, x2,t)  (i#j=1,2). ®)
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H : In discrete notation, the right-hand side of the Sdimger

equation(1l) now becomes
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L T -

Next, we express the time derivative (it) in terms of finite
time differences by taking the formal solution to the time-
dependent Schdinger equation and making a forward-

600 650 700 Hy=

800 1050 1450 difference approximation for the time evolution operator:
Y ="Myl = (1= AtH) gl . (1D
NL M H Although simple, this approximation scheme is unstable
‘ /\ \ - N since the term multiplying/ has eigenvalue (2iEAt) and

modulus 1+ E?At?, and this means the modulus of the
wave function increases with each time stéfhe improve-
ment introduced by Askar and Cakniak a central differ-
ence algorithm also based on the formal soluiibh):

Fig. 1. A time sequence of a Gaussian wave packet scattering from a square n+1 n=1_ , —iAtH  ~iAtH\ /0 . n
barrier as taken from the textbook by Schiff. The mean energy equals the ‘ﬁl,m - ¢I,m =(e —-€ )¢I,m= — 2iAtH ¢I,m1
barrier height. (12

= lpﬂ;]lzlpﬂml—Zi[' —+ 47\+Axv|ym} ' m
If particles 1 and 2 are identical, then their total wave o
function should be symmetric or antisymmetric under inter- N N

change of the particles. We impose this condition on our _)\[m_l(‘ﬂl-f—l,m-’_ 1)

numerical solutiony(x;, X,) by forming the combinations

1
1 +m_(l//|n,m+1+‘r/fr,m—1)H1 (13
VX Xo)= LK, X)E(Xe, Xp)] = (6) 2
where we have assumedk;=Ax, and formed the ratio.
— 2
2p(X1, X2)=[¥(x1, X)P+]¢(x2, X0)|? SAUAXS. N
. Equation(13) is an explicit solution in which the wave
T2 R §P* (Xq, X)h(Xa, Xq)]. (7)  function at only two past time values must be stored simul-

taneously in memory to determine all future times by contin-
ued iteration. In contrast, amplicit solution determines the
wave function for all future times in just one step, yet this
one step requires the solution of simultaneous algebraic
equations involving all space and time values. Accordingly,

The cross term inf7) places an additional correlation into the
wave packets.

ll. NUMERICAL METHOD an implicit solution requires the inversion of exceedingly
large matrices.

finite difference method that converts the partial differentialiS Stable and second-order accurate in time, in practice it
equation into a set of simultaneous, algebraic equation$lo€s not conserve probability well. Visschaas deduced an
First, we evaluate the dependent varialeon a grid of ~ improvement which takes advantage of the extra degree of

discrete values for the independent variaBles: freedom provided by the complexity of the wave function to
preserve probability better. If we separate the wave function
(X1, Xo,0)= (X3 =1AXy, X;=MAXy,t=nAt)=y, into real and imaginary parts,
tS)
Yim' = Ul +i0lm", (14)

wherel, m, andn are integers. The space part of the algo-

rithm is based on Taylor expansions%fx;, X,,t) in both  the algorithm(13) separates into the pair of coupled equa-
the x, andx, variables up tad(Ax*), for example, tions:
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Visscher’'s advance evaluates the real and imaginary parts
the wave function at slightly differer{staggeregtimes,

(U] ol ml = [Reg(x, ), Img(x,t+ 3 At)], (17)

and uses a definition for probability density that differs for
integer and half-integer time steps,

p(x,t)=|Rey(x,t)|>+Im x,t+% Im lﬂ(X,t =/
(18)
At
p x,t+7 =Rey(x,t+At)Rey(x,t)
At [?
+[Im w(x,t+7 (19

Table |. Parameters for the antisymmetrized;m collision with an attrac-
tive square well potential.

Parameter Value

AX 0.001

At 2.5x10°7

ky +157

Ky -157

T 0.05

x? 467 (0.33< 1401 stepp
xJ 934 (0.66 1401 steps
N;=N, 1399

L 1.401(1401 space steps
T 0.005(20 000 time steps
Vo —100 000

@ 0.062

@(ecause of these Gaussian factafss not an eigenstate of

the particle momentum operators id/dx; , but instead con-
tains a spread of momenta about the mean, initial momenta
k, andk,. If the wave packet is made very broag- =),

we would obtain momentum eigenstates. Note that while the
Schralinger equation may separate into one equation in the
relative coordinate and another in the center-of-mass coor-
dinate X, the initial condition(21), or more general ones,
cannot be written as a product of separate functionsasfd

X. Accordingly, a solution of the partial differential equation
in two variables is required.

We start the staggered-time algorithm with the real part of
wave function(21) at t=0 and the imaginary part at
=At/2. The initial imaginary part follows by assuming that
At/2 is small enough, anat large enough, for the initial time

These definitions reduce to the standard one for mﬁmtesma‘i’epe”dence of the wave packet to be that of the plane wave
At, and provide an algebraic cancellation of errors so thaPart

probability is conserved.

V. SIMULATIONS

We assume that the particle—particle potential is central
and depends only on the relative distance between particles 1

and 2(the method can handle arxy andx, functional de-
pendencies We have investigated a “soft” potential with a

Gaussian dependence, and a “hard” one with a square-well

dependence, both with rangeand depthV:

|X1_X2|2 .

Voexg — ———| (Gaussiah

V(xg, X)=1 ° F{ 2a .
Vo 8(a—[x;=%p|)  (square

A. Initial and boundary conditions

We model a scattering experiment in which particle 1,

initially at x‘l’ with momentumk,, collides with particle 2,
initially far away atxg with momentumk,, by assuming a

product of independent wave packets for particles 1 and 2:

(x;—x9)?
4%

_ v 2
x elk2X2 axp — M
4% |
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PY(Xq, Xo,t=0)= eikixg exp{ _
(21

1115

At
Im l//( X1, Xp,t= 7)

:S”’{ k1X1+ k2X2_ (

0 0
(X1 =X3) 2+ (X —X3)?
207

In a scattering experiment, the projectile enters from infin-
ity and the scattered particles are observed at infinity. We
model that by solving our partial differential equation within
a box of sideL (ideally) much larger than both the range of
the potential and the width of the initial wave packet. This
leads to the boundary conditions

l/l(O,XZ !t) = l//(xlao!t) = (v[/(L!X2 vt) = ¢(X1!th) = 0 (23)

The largeness of the box minimizes the effects of the bound-
ary conditions during the collision of the wave packets, al-
though at large times there will be interesting, yet artificial,
collisions with the walls of the box.

Some typical parameters used in our tests are given in
Table | (the code with sample files are available on the
Web’). Our space step sizex=0.001 is 1/1400th of the size
of the boxL, and 1/70th of the size\(20=0.07) of the wave
packet. Our time step\t=2.5x10 ' is 1/20000th of the
total time T, and 1/2000th of a typical time for the wave
packet[27r/(k§/2m1)~—~5>< 10 4]. In all cases, the potential

K
2m,

k3

2

2m,

X exp—

(22
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Fig. 2. Six frames from an animation of the two-particle density Fig. 3. A time sequence of two Gaussian single-particle wave packets scat-
p(Xq, X,t) as a function of the position of particle 1 with massand of tering from each other under the influence of a square barrier. The mean
the position of particle 2 with mass D This same collision is described in  kinetic energy equals twice the barrier height. The dashed curve describes
Fig. 3 by showing separate plots of the more common single-particle denparticle 1 of massnand the solid curve particle 2 of massti0The number
sities p(X;,t) and p(x,,t). In both figures there is a repulsive interaction in the upper left-hand corner of each frame is the time in units oA100
between the particles and the mean kinetic energy equals twice the barri@and the edges of the frames correspond to the walls of the box. Note that at
height. The numbers in the left-hand corners are the times in units ¢ft100 time 55 the wave packet for massis seen to be interacting with the wall,
Note that each plot ends at the walls of the containing box, and that particl@s indicated by the interference ripples between incident and reflected
1 “bounces off” a wall between times 36 and &@ore evident in Fig. B waves, and at time 150 the wave packet for mass iKinteracting with the
wall (by this time massn has already had multiple wall interactions

and wave packet parameters are chosen to be similar to those

used in the one-particle studies by Goldberg, Schey, angkgrating out the dependence on the other particle(Sja
Schwartz. The time and space step sizes were determined lfince the mean energy equals twice the maximum height of
trial and error until values were found which provided sta-the potential barrier, we expect complete penetration of the
bility and precision(too large aAx leads to spurious ripples packets, and indeed, at time 18 we see that the wave packets
during interaction In general, stability is obtained by mak- have large overlap, with the repulsive interaction “squeez-
ing At small enougtf,with simultaneous changes it and  ing” particle 2 (it gets narrower and tallgr During times

Ax made to keep. = At/Ax? constant. Total probability, as 22—40 we see part of wave packet 1 reflecting off wave
determined by a double Simpson’s-rule integratiori4f is ~ Packet 2 and then moving back to smabke(the lefy. From
typically conserved to 13 decimal places, impressively closdimes 26 to 55 we also see that a major part of wave packet
to machine precision. In contrast, the mean energy, for which gets “trapped” inside of wave packet 2 and then leaks out
we do not use a definition optimized to staggered times, i§ather slowly.

conserved only to 3 places. We see that for times 1-26, thxg position of the peak of
p(X1, X,,t) Iin Fig. 2 changes very little with time, which is
B. Barrier-like collisions to be expected since particle 2 is heavy. In contrastxthe

. dependence ip(x;, X,,t) gets broader with time, develops

We .SOIVe our probler_n in the ce_nter-of-momentum SYSteMyio two peaks at time 26, separates into two distinct parts by
by takingk,=—k; (particle 1 moving to largex values and  tjye 36 "and then, at time 86 after reflecting off the walls,
particle 2 to smallerx). Our first simulations and Web oy,mns to particle 2's position. We also notice in both these
animationg!® emulate the one-particle collisions with barri- figures that at time 40 and thereafter, particléofr “bar-
ers and wells studied by Goldberg, Schey, and Schwartz a r") fissions into reflected and transmitted waves.
presented by Schiff. We make particle 2 ten times heavier aq this comparison of Figs. 2 and 3 demonstrates, it seems
than particle 1, so that parFicIe %’s initial wave pa_lcket MOVeSyasier to understand the physics by superimposing two
at 1/10th the speed of particle 1's, and so looks like a barriergingje_narticle densitieghereby discarding information on
Although we shall describe several scattering events, the aNkorrelations than by examining the two-particle density. Ac-
mations available on the Web speak for themselves, and Wgygingly, the figures we show hence, and the majority of the
recommend their viewing. L animations on the Web, are of single-particle densities.

In Fig. 2 we show six frames from an animation of the kg re 3 is similar to the behavior present in Schiff's one-
two-particle densityp(x;, Xz,t) as a simultaneous function particle simulation, Fig. 1, but without ripples during the
of the particle position; andx,. In Fig. 3 we show, for  collision. Those ripples are caused by interference between
this same collision, thesingle-particle densities p;(x  scattered and incident waves, and even though we have a
=x4,t) andp,(Xx=X,,t) extracted fromp(x;, X,,t) by in-  square barrier potential acting between the particles, neither
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Fig. 4. The same as Fig. 3, except now the potential is attractive with the
mean energy equal to half the depth. C. m—m collisions

In Fig. 5 we show nine frames from the movie of a repul-
sive m—m collision in which the mean kinetic energy equals
one-quarter of the barrier height. The initial packets are seen

particle “feels” the discontinuity of the sharp potential edge to slow down as they approach each other, with their mutual
at any one time. However, there are ripples when our wavéepulsion narrowing and raising the packets up until the time
packets hit the walls, as seen at times 55 and 150. (50) when they begin to bounce back. The wave packets at

At early times in Fig. 3, as well as in other animations, westill later times are seen to retain their shape, with a progres-
can see very small wave packets moving in opposite direcSive broadening until they collide with the walls anq bre.ak
tions to the larger wave packets for each particle. These aréP- As shown on the Web, when the mean energy is raised
numerical artifacts. While wave packets with reversed value§here will be both transmitted and reflected waves, already
of k are valid solutions of the Schiinger equation, they seen in Fig. 3 for am—210m collision.
should be eliminated by the initial conditions. For example, In Fig. 6 we show nine frames from the movie of an at-
if exp(ikx) is a valid solution, then so is expikx), yet itis  tractive m—m collision in which the mean energy equals
hard to get rid of it completely* one-quarter of the well depth. The initial pgckets now speed

Something new in Fig. 3, that is not in Schiff, is the de- up as they approach each other, and at time 60 the centers
layed fission of the heavier particle’s wave packet after time
40 into transmitted and reflected wavésoccurred earlier
for the lighter particle In addition, at time 86 we see that m-m, Attractive Vsquare
the reflected and transmitted parts of the wave packet of KE = - V/4
particle 1 have reconstituted themselves into a single but
broadened wave packet, and that at time 150 it is again being '
reflected from the left wall(Although it may be somewhat
confusing to keep looking at the interaction after reflections
from the artificial bounding box, we display it in order to
show some of the interesting physics uncovered.

In Fig. 4 we see anothen— 10m collision. This time there
is an attractive interaction between the particles and again
the mean energy equals half the well depth. Even though the
kinetic energy is low, the interaction is attractive and so par-
ticle 1 passes through particle 2. However, some of wave
packet 1 is reflected back to the left after the collision, and,
as we see at time 55, the wave packet for the heavy patrticl
2 fissions(presumably as a consequence of its attraction to
the two parts of wave packet 1.

Although we do not show them here, on the Web we also R
display movies of collisions corresponding to a Gaussian po- I /\ ,’\\ A
tential acting between the particles. These are much softe A LA a A
collisions and have behaviors similar to classical particles™
bouncing off each other, with squeezing and broadening Ofig. 6. The same as Fig. 4, except now for an attrativen collision in
the wave packets, but little breakup or capture. which the mean energy equals one-quarter of the well's depth.

\ 46 60

66 78

110 150 180
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Antisymmetrized m-m, Attractive Vsquare Symmetrized m-m, Attractive Vsquare
KE=-V/4 KE = -V/4
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Fig. 7. The same as Fig. 4, except now for an attraatizem collision in Fig. 8. The same as Fig. 4, except now for an attraativem collision in
which the mean energy equals one-quarter of the well’'s depth, and for whickvhich the mean energy equals one-quarter of the depth, and for which the
the wave function has been antisymmetrized. wave function has been symmetrized.

have already passed through each other. After that, a transellision between two particles looks like. In doing so with a
mitted and reflected wave for each packet is seen to develogimple square-well potential between the two particles, we
(times 66—78 Although this may be just an artifact of hav- have discovered that fission of the initial single-particle wave
ing two particles of equal mass, from times 110 to 180 wepackets into transmitted and reflected waves occurs quite of-
see that each packet appears to capture or “pick up” a paiten, and that the transmitted packet of one particle often
of the other packet and move off with it. moves off with the reflected packet of the other as if they

In Fig. 7 we repeat the collision of Fig. 6, only now for a were bound. While somewhat of a challenge to understand
wave function that has beesntisymmetrizechccording to  fully, we have also provided animations of the behavior of
(7). The antisymmetrization is seen to introduce an effectivedhe two-particle density during collisions. We have placed
repulsion into what is otherwise an attractiG@ompare the the animations, source codes, and movie-making instructions
two figures for times 60—66 Again, some capture of the on the Web with the hope that future students will also carry
other wave packet is noted from times 94 on, only now thesome of these images of the quantum world with them.
internal captured wave packet retains its Gaussian-like shape,
apparently the result of decreased interference. ACKNOWLEDGMENTS
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SMovies of Wavepacket-Wavepacket Quantum Scatterihgef./
nacphy.physics.orst.edu/ComPhys/PACKETS/

%0ur movies are animategifs that can be viewed with any Web browser,

or viewed and controlled with a movie player such@sick Time To
create them, we have o@ codepackets.mutput files of wave function
data for each time. We plot each data file with the Unix progemwrLoT
to produce one frame, and then convert the plots to gif files. We then use
GIFMERGE (Mark Podlipec and Rene K. Mueller 1996, http://www.the-
labs.com/GIFMerge/to merge the frames into an animation. Further in-
formation and instructions for making movies using different operating
systems and formats can be found on thsualization of Scientific Data
section of the Landau Research Group Web pages, http://
nacphy.physics.orst.edu/DATAVIS/datavis.html.

e thank one of the referees for pointing this out to us.

THE DETRITUS OF RELIGIOUS OBFUSCATION

Theologians, incidentally, have contributed nothing. They have invented a world and language
of their own, like some mathematicians, but unlike many mathematicians have sought to i
its percepts and precepts on this world. In doing so they have contaminated truth, and wasted the
time of those who wish to understand this world. Scientists have had and are continuing ta
to scrape away the detritus of religious obfuscation before they can begin their own elucidation.

P. W. Atkins, “The Limitless Power of Science,” iNature’s Imagination—The Frontiers of Scientific Visiedited by
John Cornwell(Oxford University Press, New York, 1985
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