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A simple and explicit technique for the numerical solution of the two-particle, time-dependent
Schrödinger equation is assembled and tested. The technique can handle interparticle potentials that
are arbitrary functions of the coordinates of each particle, arbitrary initial and boundary conditions,
and multidimensional equations. Plots and animations are given here and on the World Wide Web
of the scattering of two wave packet in one dimension. ©2000 American Association of Physics Teachers.
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I. INTRODUCTION

Rather than showing the time dependence of two parti
interacting with each other, quantum mechanics textbo
often present a time-independent view of a single part
interacting with an external potential. In part, this makes
physics clearer, and in part, this reflects the difficulty of so
ing the time-independent two-particle Schro¨dinger equation
for the motion of wave packets. In the classic quantum m
chanics text by Schiff,1 examples of realistic quantum sca
tering, such as that in Fig. 1, are produced by compu
simulations of wave packets colliding with square poten
barriers and wells. Generations of students have car
memories of these images~or of the film loops containing
these frames2! as to what realistic quantum scattering loo
like.

While Fig. 1 is a good visualization of a quantum scatt
ing process, we wish to extend simulations of realistic qu
tum interactions to include particle–particle scattering wh
both particles are represented by wave packets. Altho
more complicated, this, presumably, is closer to nature
may illustrate some physics not usually found in quant
mechanics textbooks. In addition, our extension goes bey
the treatment found in most computational physics te
which concentrate onone-particlewave packets,3–5 or highly
restricted forms oftwo-particlewave packets.6

The simulations of the time-dependent Schro¨dinger equa-
tion shown by Schiff were based on the 1967 fini
difference algorithms developed by Goldberg, Schey,
Schwartz.2 Those simulations, while revealing, had problem
with stability and probability conservation. A decade lat
Cakmak and Askar7 solved the stability problem by using
better approximation for the time derivative. After yet a
other decade, Visscher8 solved the probability conservatio
problem by solving for the real and imaginary parts of t
wave function at slightly different~‘‘staggered’’! times.

In this paper we combine the advances of the last 20 y
and extend them to the numerical solution of thetwo-
particle—in contrast to theone-particle—time-dependent
Schrödinger equation. Other than being independent of s
no assumptions are made regarding the functional form
the interaction or initial conditions, and, in particular, there
no requirement of separation into relative and center-of-m
variables.6 The method is simple, explicit, robust, easy
modify, memory preserving, and may have research app
tions. However, high precision does require small time a
1113 Am. J. Phys.68 ~12!, December 2000 http://ojps.aip.or
s
s
e
e
-

-

r
l
d

-
-

n
h
d

nd
s

-
d

,

rs

,
of

ss

a-
d

space steps, and, consequently, long running times. A sim
approach for the time-dependent one-particle Schro¨dinger
equation in a two-dimensional space has also been stud5

II. TWO-PARTICLE SCHRO¨ DINGER EQUATION

We solve the two-particle time-dependent Schro¨dinger
equation

i
]

]t
c~x1, x2,t !5Hc~x1, x2,t !, ~1!

H52
1

2m1

]2

]x1
22

1

2m2

]2

]x2
2 1V~x1 ,x2!, ~2!

where, for simplicity, we assume a one-dimensional sp
and set\51. HereH is the Hamiltonian operator andmi and
xi are the mass and position of particlei 51,2. Knowledge of
the two-particle wave functionc(x1 , x2 ,t) permits the cal-
culation of the probability density for particle 1 being atx1

and particle 2 being atx2 at time t:

r~x1, x2,t !5uc~x1, x2,t !u2. ~3!

The fact that particles 1 and 2 must be located someplac
space leads to the normalization constraint on the wave fu
tion:

E
2`

1`E
2`

1`

dx1 dx2uc~x1 , x2 ,t !u251. ~4!

The description of a single particle within a multipartic
system by a single-particle wave function is an approxim
tion unless the system is uncorrelated~in which case the tota
wave function can be written in product form!. However, it
is possible to deduce meaningful one-particle densities fr
the two-particle density by integrating over the other p
ticle:

r1~xi ,t !5E
2`

1`

dxj r~x1 , x2 ,t ! ~ iÞ j 51,2!. ~5!

Here we use a subscript on the single-particle densityr i to
distinguish it from the two-particle densityr. Of course, the
true solution isc(x1 , x2 ,t), but we find it hard to see the
physics in a three-variable complex function, and so, of
view r1(x1 ,t) and r2(x2 ,t) as two separate wave packe
colliding.
1113g/ajp/ © 2000 American Association of Physics Teachers
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If particles 1 and 2 are identical, then their total wav
function should be symmetric or antisymmetric under inte
change of the particles. We impose this condition on o
numerical solutionc(x1 , x2) by forming the combinations

c8~x1 , x2!5
1

&
@c~x1 , x2!6~x2 , x1!# ⇒ ~6!

2r~x1 , x2!5uc~x1 , x2!u21uc~x2 , x1!u2

62 Re@c* ~x1 , x2!c~x2 , x1!#. ~7!

The cross term in~7! places an additional correlation into the
wave packets.

III. NUMERICAL METHOD

We solve the two-particle Schro¨dinger equation~1! via a
finite difference method that converts the partial differentia
equation into a set of simultaneous, algebraic equation
First, we evaluate the dependent variablec on a grid of
discrete values for the independent variables:2

c~x1 , x2 ,t !5c~x15 lDx1 , x25mDx2 ,t5nDt ![c l ,m
n ,

~8!

where l, m, andn are integers. The space part of the algo
rithm is based on Taylor expansions ofc(x1 , x2 ,t) in both
the x1 andx2 variables up toO(Dx4), for example,

Fig. 1. A time sequence of a Gaussian wave packet scattering from a squ
barrier as taken from the textbook by Schiff. The mean energy equals
barrier height.
1114 Am. J. Phys., Vol. 68, No. 12, December 2000
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]2c

]x1
2 .

c~x11Dx1 ,x2!22c~x1 , x2!1c~x12Dx1 , x2!

Dx1
2

1O~Dx1
2!. ~9!

In discrete notation, the right-hand side of the Schro¨dinger
equation~1! now becomes

Hc52
c l 11,m22c l ,m1c l 21,m

2m1Dx1
2

2
c l ,m1122c l ,m1c l ,m21

2m2Dx2
2 1Vlmc l ,m . ~10!

Next, we express the time derivative in~1! in terms of finite
time differences by taking the formal solution to the tim
dependent Schro¨dinger equation and making a forward
difference approximation for the time evolution operator:

c l ,m
n115e2 iDtHc l ,m

n .~12 iDtH !c l ,m
n . ~11!

Although simple, this approximation scheme is unsta
since the term multiplyingc has eigenvalue (12 iEDt) and
modulusA11E2Dt2, and this means the modulus of th
wave function increases with each time step.3 The improve-
ment introduced by Askar and Cakmak7 is a central differ-
ence algorithm also based on the formal solution~11!:

c l ,m
n112c l ,m

n215~e2 iDtH2eiDtH!c l ,m
n >22iDtHc l ,m

n ,
~12!

⇒ c l ,m
n11.c l ,m

n2122i F H S 1

m1
1

1

m2
D4l1DxVl ,mJ c l ,m

n

2lH 1

m1
~c l 11,m

n 1c l 21,m
n !

1
1

m2
~c l ,m11

n 1c l ,m21
n !J G , ~13!

where we have assumedDx15Dx2 and formed the ratiol
5Dt/Dx2.

Equation ~13! is an explicit solution in which the wave
function at only two past time values must be stored sim
taneously in memory to determine all future times by cont
ued iteration. In contrast, animplicit solution determines the
wave function for all future times in just one step, yet th
one step requires the solution of simultaneous algeb
equations involving all space and time values. According
an implicit solution requires the inversion of exceeding
large matrices.

While the explicit method~13! produces a solution which
is stable and second-order accurate in time, in practic
does not conserve probability well. Visscher8 has deduced an
improvement which takes advantage of the extra degre
freedom provided by the complexity of the wave function
preserve probability better. If we separate the wave funct
into real and imaginary parts,

c l ,m
n115ul ,m

n111 iv l ,m
n11, ~14!

the algorithm~13! separates into the pair of coupled equ
tions:

are
he
1114Maestri, Landau, and Pa´ez
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n115ul ,m

n2112F H S 1

m1
1

1

m2
D4l1DtVl ,mJ v l ,m

n

2lH 1

m1
~v l 11,m

n 1v l 21,m
n !

1
1

m2
~v l ,m11

n 1v l ,m21
n !J G , ~15!

v l ,m
n115v l ,m

n2122F H S 1

m1
1

1

m2
D4l1DtVl ,mJ ul ,m

n

2lH 1

m1
~ul 11,m

n 1ul 21,m
n !

3
1

m2
~ul ,m11

n 1ul ,m21
n !J G . ~16!

Visscher’s advance evaluates the real and imaginary par
the wave function at slightly different~staggered! times,

@ul ,m
n ,v l ,m

n #5@Rec~x,t !,Im c~x,t1 1
2 Dt !#, ~17!

and uses a definition for probability density that differs f
integer and half-integer time steps,

r~x,t !5uRec~x,t !u21Im cSx,t1
Dt

2 D Im cSx,t2
Dt

2 D ,

~18!

rSx,t1
Dt

2 D5Rec~x,t1Dt !Rec~x,t !

1UIm cSx,t1
Dt

2 D U2

. ~19!

These definitions reduce to the standard one for infinitesi
Dt, and provide an algebraic cancellation of errors so t
probability is conserved.

IV. SIMULATIONS

We assume that the particle–particle potential is cen
and depends only on the relative distance between partic
and 2~the method can handle anyx1 andx2 functional de-
pendencies!. We have investigated a ‘‘soft’’ potential with
Gaussian dependence, and a ‘‘hard’’ one with a square-
dependence, both with rangea and depthV0 :

V~x1 , x2!5H V0 expF2
ux12x2u2

2a2 G ~Gaussian!

V0 u~a2ux12x2u! ~square!

. ~20!

A. Initial and boundary conditions

We model a scattering experiment in which particle
initially at x1

0 with momentumk1 , collides with particle 2,
initially far away atx2

0 with momentumk2 , by assuming a
product of independent wave packets for particles 1 and

c~x1 , x2 ,t50!5eik1x1 expF2
~x12x1

0!2

4s2 G
3eik2x2 expF2

~x22x2
0!2

4s2 G . ~21!
1115 Am. J. Phys., Vol. 68, No. 12, December 2000
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Because of these Gaussian factors,c is not an eigenstate o
the particlei momentum operators2 i ]/]xi , but instead con-
tains a spread of momenta about the mean, initial mome
k1 andk2 . If the wave packet is made very broad (s→`),
we would obtain momentum eigenstates. Note that while
Schrödinger equation may separate into one equation in
relative coordinatex and another in the center-of-mass coo
dinate X, the initial condition~21!, or more general ones
cannot be written as a product of separate functions ofx and
X. Accordingly, a solution of the partial differential equatio
in two variables is required.6

We start the staggered-time algorithm with the real par
wave function ~21! at t50 and the imaginary part att
5Dt/2. The initial imaginary part follows by assuming th
Dt/2 is small enough, ands large enough, for the initial time
dependence of the wave packet to be that of the plane w
parts:

Im cS x1 , x2 ,t5
Dt

2 D
.sinFk1x11k2x22S k1

2

2m1
1

k2
2

2m2
D Dt

2 G
3exp2F ~x12x1

0!21~x22x2
0!2

2s2 G . ~22!

In a scattering experiment, the projectile enters from infi
ity and the scattered particles are observed at infinity.
model that by solving our partial differential equation with
a box of sideL ~ideally! much larger than both the range o
the potential and the width of the initial wave packet. Th
leads to the boundary conditions

c~0,x2 ,t !5c~x1,0,t !5c~L,x2 ,t !5c~x1 ,L,t !50. ~23!

The largeness of the box minimizes the effects of the bou
ary conditions during the collision of the wave packets,
though at large times there will be interesting, yet artifici
collisions with the walls of the box.

Some typical parameters used in our tests are given
Table I ~the code with sample files are available on t
Web9!. Our space step sizeDx50.001 is 1/1400th of the size
of the boxL, and 1/70th of the size (A2s.0.07) of the wave
packet. Our time stepDt52.531027 is 1/20 000th of the
total time T, and 1/2000th of a typical time for the wav
packet@2p/(k1

2/2m1).531024#. In all cases, the potentia

Table I. Parameters for the antisymmetrized,m–m collision with an attrac-
tive square well potential.

Parameter Value

Dx 0.001
Dt 2.531027

k1 1157
k2 2157
s 0.05
x1

0 467 (0.3331401 steps!
x2

0 934 (0.66731401 steps!
N15N2 1399
L 1.401~1401 space steps!
T 0.005~20 000 time steps!
V0 2100 000
a 0.062
1115Maestri, Landau, and Pa´ez
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and wave packet parameters are chosen to be similar to t
used in the one-particle studies by Goldberg, Schey,
Schwartz. The time and space step sizes were determine
trial and error until values were found which provided s
bility and precision~too large aDx leads to spurious ripple
during interactions!. In general, stability is obtained by mak
ing Dt small enough,8 with simultaneous changes inDt and
Dx made to keepl5Dt/Dx2 constant. Total probability, a
determined by a double Simpson’s-rule integration of~4!, is
typically conserved to 13 decimal places, impressively cl
to machine precision. In contrast, the mean energy, for wh
we do not use a definition optimized to staggered times
conserved only to 3 places.

B. Barrier-like collisions

We solve our problem in the center-of-momentum syst
by takingk252k1 ~particle 1 moving to largerx values and
particle 2 to smallerx!. Our first simulations and Web
animations9,10 emulate the one-particle collisions with barr
ers and wells studied by Goldberg, Schey, and Schwartz
presented by Schiff. We make particle 2 ten times hea
than particle 1, so that particle 2’s initial wave packet mov
at 1/10th the speed of particle 1’s, and so looks like a barr
Although we shall describe several scattering events, the
mations available on the Web speak for themselves, and
recommend their viewing.

In Fig. 2 we show six frames from an animation of th
two-particle densityr(x1 , x2 ,t) as a simultaneous functio
of the particle positionsx1 and x2 . In Fig. 3 we show, for
this same collision, thesingle-particle densities r1(x
5x1 ,t) andr2(x5x2 ,t) extracted fromr(x1 , x2 ,t) by in-

Fig. 2. Six frames from an animation of the two-particle dens
r(x1 , x2 ,t) as a function of the position of particle 1 with massm and of
the position of particle 2 with mass 10m. This same collision is described i
Fig. 3 by showing separate plots of the more common single-particle
sities r(x1 ,t) and r(x2 ,t). In both figures there is a repulsive interactio
between the particles and the mean kinetic energy equals twice the b
height. The numbers in the left-hand corners are the times in units of 10Dt.
Note that each plot ends at the walls of the containing box, and that par
1 ‘‘bounces off’’ a wall between times 36 and 86~more evident in Fig. 3!.
1116 Am. J. Phys., Vol. 68, No. 12, December 2000
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tegrating out the dependence on the other particle via~5!.
Since the mean energy equals twice the maximum heigh
the potential barrier, we expect complete penetration of
packets, and indeed, at time 18 we see that the wave pac
have large overlap, with the repulsive interaction ‘‘squee
ing’’ particle 2 ~it gets narrower and taller!. During times
22–40 we see part of wave packet 1 reflecting off wa
packet 2 and then moving back to smallerx ~the left!. From
times 26 to 55 we also see that a major part of wave pac
1 gets ‘‘trapped’’ inside of wave packet 2 and then leaks
rather slowly.

We see that for times 1–26, thex2 position of the peak of
r(x1 , x2 ,t) in Fig. 2 changes very little with time, which i
to be expected since particle 2 is heavy. In contrast, thex1

dependence inr(x1 , x2 ,t) gets broader with time, develop
into two peaks at time 26, separates into two distinct parts
time 36, and then, at time 86 after reflecting off the wal
returns to particle 2’s position. We also notice in both the
figures that at time 40 and thereafter, particle 2~our ‘‘bar-
rier’’ ! fissions into reflected and transmitted waves.

As this comparison of Figs. 2 and 3 demonstrates, it se
easier to understand the physics by superimposing
single-particle densities~thereby discarding information on
correlations! than by examining the two-particle density. Ac
cordingly, the figures we show hence, and the majority of
animations on the Web, are of single-particle densities.

Figure 3 is similar to the behavior present in Schiff’s on
particle simulation, Fig. 1, but without ripples during th
collision. Those ripples are caused by interference betw
scattered and incident waves, and even though we ha
square barrier potential acting between the particles, nei

n-

ier

le

Fig. 3. A time sequence of two Gaussian single-particle wave packets
tering from each other under the influence of a square barrier. The m
kinetic energy equals twice the barrier height. The dashed curve desc
particle 1 of massm and the solid curve particle 2 of mass 10m. The number
in the upper left-hand corner of each frame is the time in units of 100Dt,
and the edges of the frames correspond to the walls of the box. Note th
time 55 the wave packet for massm is seen to be interacting with the wal
as indicated by the interference ripples between incident and refle
waves, and at time 150 the wave packet for mass 10m is interacting with the
wall ~by this time massm has already had multiple wall interactions!.
1116Maestri, Landau, and Pa´ez



e
av

e
re
a

ue

le

e-
m

t
t
b
ei
t
n
o

a
t

a
av
nd
tic
to

ls
po
ft
le

l-
ls
een
ual
me
s at
res-
ak
ised
ady

t-
ls
ed
ters

th
particle ‘‘feels’’ the discontinuity of the sharp potential edg
at any one time. However, there are ripples when our w
packets hit the walls, as seen at times 55 and 150.

At early times in Fig. 3, as well as in other animations, w
can see very small wave packets moving in opposite di
tions to the larger wave packets for each particle. These
numerical artifacts. While wave packets with reversed val
of k are valid solutions of the Schro¨dinger equation, they
should be eliminated by the initial conditions. For examp
if exp(ikx) is a valid solution, then so is exp(2ikx), yet it is
hard to get rid of it completely.11

Something new in Fig. 3, that is not in Schiff, is the d
layed fission of the heavier particle’s wave packet after ti
40 into transmitted and reflected waves~it occurred earlier
for the lighter particle!. In addition, at time 86 we see tha
the reflected and transmitted parts of the wave packe
particle 1 have reconstituted themselves into a single
broadened wave packet, and that at time 150 it is again b
reflected from the left wall.~Although it may be somewha
confusing to keep looking at the interaction after reflectio
from the artificial bounding box, we display it in order t
show some of the interesting physics uncovered.!

In Fig. 4 we see anotherm– 10m collision. This time there
is an attractive interaction between the particles and ag
the mean energy equals half the well depth. Even though
kinetic energy is low, the interaction is attractive and so p
ticle 1 passes through particle 2. However, some of w
packet 1 is reflected back to the left after the collision, a
as we see at time 55, the wave packet for the heavy par
2 fissions~presumably! as a consequence of its attraction
the two parts of wave packet 1.

Although we do not show them here, on the Web we a
display movies of collisions corresponding to a Gaussian
tential acting between the particles. These are much so
collisions and have behaviors similar to classical partic
bouncing off each other, with squeezing and broadening
the wave packets, but little breakup or capture.

Fig. 4. The same as Fig. 3, except now the potential is attractive with
mean energy equal to half the depth.
1117 Am. J. Phys., Vol. 68, No. 12, December 2000
e

c-
re
s

,

e

of
ut
ng

s

in
he
r-
e
,
le

o
-

er
s
of

C. m– m collisions

In Fig. 5 we show nine frames from the movie of a repu
sivem–m collision in which the mean kinetic energy equa
one-quarter of the barrier height. The initial packets are s
to slow down as they approach each other, with their mut
repulsion narrowing and raising the packets up until the ti
~50! when they begin to bounce back. The wave packet
still later times are seen to retain their shape, with a prog
sive broadening until they collide with the walls and bre
up. As shown on the Web, when the mean energy is ra
there will be both transmitted and reflected waves, alre
seen in Fig. 3 for anm– 10m collision.

In Fig. 6 we show nine frames from the movie of an a
tractive m–m collision in which the mean energy equa
one-quarter of the well depth. The initial packets now spe
up as they approach each other, and at time 60 the cen

e

Fig. 5. The same as Fig. 4, except now for a repulsivem–m collision in
which the mean energy equals one-quarter of the barrier’s height.

Fig. 6. The same as Fig. 4, except now for an attractivem–m collision in
which the mean energy equals one-quarter of the well’s depth.
1117Maestri, Landau, and Pa´ez



an
el
-

w
pa

a

iv

e
th
ap

7

an
e
iz
et
ke
m

r
n
a

al
x
di
u

or
o
t

a
we
ve
of-

ten
ey
and
of
ed
ions
rry

in-
enri
oy
as
ion
ce
t of
L
the

ity

du/

ted
ion

g

hi the
have already passed through each other. After that, a tr
mitted and reflected wave for each packet is seen to dev
~times 66–78!. Although this may be just an artifact of hav
ing two particles of equal mass, from times 110 to 180
see that each packet appears to capture or ‘‘pick up’’ a
of the other packet and move off with it.

In Fig. 7 we repeat the collision of Fig. 6, only now for
wave function that has beenantisymmetrizedaccording to
~7!. The antisymmetrization is seen to introduce an effect
repulsion into what is otherwise an attraction~compare the
two figures for times 60–66!. Again, some capture of th
other wave packet is noted from times 94 on, only now
internal captured wave packet retains its Gaussian-like sh
apparently the result of decreased interference.

Finally, in Fig. 8 we repeat the collisions of Figs. 6 and
only now for a wave function that has beensymmetrized
according to~7!. The symmetrization is seen to introduce
effective added attraction~compare the three figures for tim
60, which shows the greatest penetration for the symmetr
case!. While there is still capture of the other wave pack
the movie gives the clear impression that the wave pac
interchange with each other as a consequence of the sym
trization ~Fig. 8!.

V. SUMMARY AND CONCLUSIONS

We have assembled and tested a general technique fo
numerical solution of the two-particle, time-depende
Schrödinger equation. Because the technique is general,
plication to two or three dimensions and for other potenti
and initial conditions should be straightforward. For e
ample, further studies may want to investigate initial con
tions corresponding to bound particles interacting with a s
face, or the formation of a molecule near a surface.

The Goldberg–Schiff image~Fig. 1! of a wave packet in-
teracting with a potential barrier is still a valuable model f
understanding the physics occurring during a particle’s c
lision. Here we have extended the level of realism to wha

Fig. 7. The same as Fig. 4, except now for an attractivem–m collision in
which the mean energy equals one-quarter of the well’s depth, and for w
the wave function has been antisymmetrized.
1118 Am. J. Phys., Vol. 68, No. 12, December 2000
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collision between two particles looks like. In doing so with
simple square-well potential between the two particles,
have discovered that fission of the initial single-particle wa
packets into transmitted and reflected waves occurs quite
ten, and that the transmitted packet of one particle of
moves off with the reflected packet of the other as if th
were bound. While somewhat of a challenge to underst
fully, we have also provided animations of the behavior
the two-particle density during collisions. We have plac
the animations, source codes, and movie-making instruct
on the Web with the hope that future students will also ca
some of these images of the quantum world with them.
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THE DETRITUS OF RELIGIOUS OBFUSCATION

Theologians, incidentally, have contributed nothing. They have invented a world and language
of their own, like some mathematicians, but unlike many mathematicians have sought to impose
its percepts and precepts on this world. In doing so they have contaminated truth, and wasted the
time of those who wish to understand this world. Scientists have had and are continuing to have
to scrape away the detritus of religious obfuscation before they can begin their own elucidation.
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