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We investigate the gravitational property of the quantum vacuum by treating its large energy density
predicted by quantum field theory seriously and assuming that it does gravitate to obey the equivalence
principle of general relativity. We find that the quantum vacuum would gravitate differently from what
people previously thought. The consequence of this difference is an accelerating universe with a small
Hubble expansion rate H ∝ Λe−β

ffiffiffi
G

p
Λ → 0 instead of the previous prediction H ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8πGρvac=3
p

∝ffiffiffiffi
G

p
Λ2 → ∞ which was unbounded, as the high energy cutoff Λ is taken to infinity. In this sense, at

least the “old” cosmological constant problem would be resolved. Moreover, it gives the observed slow rate
of the accelerating expansion as Λ is taken to be some large value of the order of Planck energy or higher.
This result suggests that there is no necessity to introduce the cosmological constant, which is required to
be fine tuned to an accuracy of 10−120, or other forms of dark energy, which are required to have peculiar
negative pressure, to explain the observed accelerating expansion of the Universe.
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I. INTRODUCTION

The two pillars that much of modern physics is based on
are quantum mechanics (QM) and general relativity (GR).
QM is the most successful scientific theory in history,
which has never been found to fail in repetitive experi-
ments. GR is also a successful theory which has so far
managed to survive every test [1]. In particular, the last
major prediction of GR—the gravitational waves, has
finally been directly detected on Sept 2015 [2].
However, these two theories seem to be incompatible at
a fundamental level (see, e.g., [3]). The unification of both
theories is a big challenge to modern theoretical physicists.
While the test of the combination of QM and GR is still

difficult in lab, our Universe already provides one of the
biggest confrontations between both theories: the cosmo-
logical constant problem [4]. Quantum field theory (QFT)
predicts a huge vacuum energy density from various
sources. Meanwhile, the equivalence principle of GR
requires that every form of energy gravitates in the same
way. When combining these concepts together, it is widely
supposed that the vacuum energy gravitates as a cosmo-
logical constant. However, the observed effective cosmo-
logical constant is so small compared with the QFT’s
prediction that an unknown bare cosmological constant (6)
has to cancel this huge contribution from the vacuum to
better than at least 50 to 120 decimal places. It is an
extremely difficult fine-tune problem that gets even worse
when the higher loop corrections are included [5].
In 1998, the discovery of the accelerating expansion of

the Universe [6,7] has further strengthened the importance
of this problem. Before this, one only needs to worry about
the “old” cosmological constant problem of explaining why

the effective cosmological constant is not large. Now, one
also has to face the challenge of the “new” cosmological
constant problem of explaining why it has such a specific
small value from the observation, which is the same order
of magnitude as the present mass density of the universe
(coincidence problem).
This problem is widely regarded as one of the major

obstacles to further progress in fundamental physics (for
example, see Witten 2001 [8]). Its importance has been
emphasized by various authors from different aspects. For
example, it has been described as a “veritable crisis”
(Weinberg 1989, [4] p.1), an “unexplained puzzle” (Kolb
and Turner 1993, [9] p.198), “the most striking problem in
contemporary physics” (Dolgov 1997 [10] p.1) and even
“the mother of all physics problems,” “the worst prediction
ever”(Susskind 2015 [11] chapter two). While it might be
possible that people working on a particular problem tend
to emphasize or even exaggerate its importance, those
authors all agree that this is a problem that needs to be
solved, although there is little agreement on what is the
right direction to find the solution [12].
In this paper, we make a proposal for addressing the

cosmological constant problem. We treat the divergent
vacuum energy density predicted by QFT seriously without
trying renormalization and assume that it does gravitate to
obey the equivalence principle of GR. We notice that the
magnitude of the vacuum fluctuation itself also fluctuates,
which leads to a constantly fluctuating and extremely
inhomogeneous vacuum energy density. As a result, the
quantum vacuum gravitates differently from a cosmologi-
cal constant. Instead, at each spatial point, the spacetime
sourced by the vacuum oscillates alternatively between
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expansion and contraction, and the phases of the oscil-
lations at neighboring points are different. In this manner of
vacuum gravitation, although the gravitational effect pro-
duced by the vacuum energy is still huge at sufficiently
small scales (Planck scale), its effect at macroscopic scales
is largely canceled. Moreover, due to the weak parametric
resonance of those oscillations, the expansion outweighs
contraction a little bit during each oscillation. This effect
accumulates at sufficiently large scales (cosmological
scale), resulting in an observable effect—the slow accel-
erating expansion of the universe.
Our proposal harkens back to Wheeler’s spacetime foam

[13,14] and suggests that it is this foamy structure which
leads to the cosmological constant we see today.
The paper is organized as follows: in Sec. II, we first

review several key steps in formulating the cosmological
constant problem; in Sec. III, we point out that the vacuum
energy density is not a constant but is constantly fluctuating
and extremely inhomogeneous; in Sec. IV, we investigate
the differences made by the extreme inhomogeneity of the
quantum vacuum by introducing a simple model; in Sec. V,
we give the solutions to this model by solving the Einstein
field equations and show how metric fluctuations leads to
the slow accelerating expansion of the universe; in Sec. VI,
we explain the meaning of our results; in Sec. VII, we
investigate the backreaction effect of the resulting space-
time on the matter fields propagating on it; in Sec. VIII,
we generalize our results to more general metrics; in
Sec. IX, we discuss some questions raised and a couple
of new concepts suggested by the different way of vacuum
gravitation.
The units and metric signature are set to be c ¼ ℏ ¼ 1

and ð−;þ;þ;þÞ throughout except otherwise specified.

II. THE FORMULATION OF THE
COSMOLOGICAL CONSTANT PROBLEM

The cosmological constant problem arises when trying
to combine GR and QFT to investigate the gravitational
property of the vacuum:

Gμν þ λbgμν ¼ 8πGTvac
μν ; ð1Þ

where Gμν ≡ Rμν − 1
2
Rgμν is the Einstein tensor and the

parameter λb is the bare cosmological constant.
One crucial step in formulating the cosmological con-

stant problem is assuming that the vacuum energy density is
equivalent to a cosmological constant. First, it is argued that
the vacuum is Lorentz invariant and thus every observer
would see the same vacuum. In Minkowski spacetime, ημν
is the only Lorentz invariant (0,2) tensor up to a constant.
Thus the vacuum stress-energy tensor must be proportional
to ημν (see, e.g., [12,15])

Tvac
μν ðt;xÞ ¼ −ρvacημν: ð2Þ

This relation is then straightforwardly generalized to
curved spacetime:

Tvac
μν ðt;xÞ ¼ −ρvacgμνðt;xÞ: ð3Þ

If Tvac
μν does take the above form (3), the vacuum energy

density ρvac has to be a constant, which is the requirement
of the conservation of the stress-energy tensor

∇μTvac
μν ¼ 0: ð4Þ

The effect of a stress-energy tensor of the form (3) is
equivalent to that of a cosmological constant, as can be seen
by moving the term 8πGTvac

μν in (1) to the left-hand side

Gμν þ λeffgμν ¼ 0; ð5Þ
where,

λeff ¼ λb þ 8πGρvac; ð6Þ

Or equivalently by moving the term λbgμν in (1) to the right-
hand side

Gμν ¼ −8πGρvaceff gμν; ð7Þ
where,

ρvaceff ¼ ρvac þ λb
8πG

: ð8Þ

So anything that contributes to the energy density of the
vacuum acts like a cosmological constant and thus con-
tributes to the effective cosmological constant. Or equiv-
alently we can say that the bare cosmological constant acts
like a source of vacuum energy and thus contributes to the
total effective vacuum energy density. This equivalence is
the origin of the identification of the cosmological constant
with the vacuum energy density.
Following the above formulations, the effective cosmo-

logical constant λeff or the total effective vacuum energy
density ρvaceff are the quantities that can be constrained and
measured through experiments. While solar system and
galactic observations have placed a small upper bound on
λeff , large scale cosmological observations provide the most
accurate measurement. It is interpreted as a form of “dark
energy,” which drives the observed accelerating expansion
of the Universe [6,7].
Based on the assumption of homogeneity and isotropy

of the Universe, the metric has the cosmology’s standard
Friedmann-Lemaître-Robertson-Walker (FLRW) form,
which is, for the spatially flat case,

ds2 ¼ −dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ: ð9Þ

Then by applying the Eqs. (5) or (7) for the above special
metric (9), one obtains the contributions to the Hubble
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expansion rate H ¼ _a=a and the acceleration of the scale
factor ä from λeff and/or ρvaceff are

3H2 ¼ λeff ¼ 8πGρvaceff ; ð10Þ

ä ¼ λeff
3

avac ¼
8πGρvaceff

3
a: ð11Þ

The solution to the dynamic Eq. (11) is

aðtÞ ¼ að0ÞeHt; ð12Þ

where H is determined by the initial value constraint
Eq. (10).
According to the Lambda-CDM model of the big bang

cosmology, the effective cosmological constant is respon-
sible for the accelerating expansion of the Universe as
shown in (11) and contributes about 69% to the current
Hubble expansion rate [16]:

λeff ¼ 3ΩλH2
0 ≈ 4.32 × 10−84ðGeVÞ2; ð13Þ

or

ρvaceff ¼ Ωλρcrit ≈ 2.57 × 10−47ðGeVÞ4; ð14Þ

where Ωλ ¼ 0.69 is the dark energy density parameter, H0

is the current observed Hubble constant and ρcrit ¼ 3H2
0

8πG is
the critical density.
Unfortunately the predicted energy density of the vac-

uum from QFT is much larger than this. It receives
contributions from various sources, including the zero
point energies [∼1072ðGeVÞ4] of all fundamental quantum
fields due to vacuum fluctuations, the phase transitions due
to the spontaneous symmetry breaking of electroweak
theory [∼109ðGeVÞ4] and any other known and unknown
phase transitions in the early universe [e.g., from chiral
symmetry breaking in QCD (∼10−2ðGeVÞ4], grand uni-
fication [∼1064ðGeVÞ4) etc.] [12,17]. Each contribution is
larger than the observed value (14) by 50 to 120 orders of
magnitude. There is no mechanism in the standard model
which suggests any relations between the individual con-
tributions, so it is customary to assume that the total
vacuum energy density is at least as large as any of the
individual contributions [12]. One thus has to fine tune the
unknown bare cosmological constant λb to a precision of at
least 50 decimal places to cancel the excess vacuum energy
density.

III. THE FLUCTUATING QUANTUM
VACUUM ENERGY DENSITY

The vacuum energy density is treated as a constant in the
usual formulation of the cosmological constant problem.

While this is true for the expectation value, it is not true for
the actual energy density.
That is because thevacuum is not an eigenstate of the local

energy density operator T00, although it is an eigenstate of
the global Hamiltonian operatorH ¼ R

d3xT00. This implies
that the total vacuumenergy all over the space is constant but
its density fluctuates at individual points.
To see this more clearly, consider a quantized real

massless scalar field ϕ in Minkowski spacetime as an
example:

ϕðt;xÞ ¼
Z

d3k

ð2πÞ3=2
1ffiffiffiffiffiffi
2ω

p ðake−iðωt−k·xÞ þ a†ke
þiðωt−k·xÞÞ;

ð15Þ

where the temporal frequencyω and the spatial frequency k
in (15) are related to each other by ω ¼ jkj.
The vacuum state j0i, which is defined as

akj0i ¼ 0; for all k; ð16Þ

is an eigenstate of the Hamiltonian operator

H ¼
Z

d3xT00 ¼
1

2

Z
d3kωðaka†k þ a†kakÞ; ð17Þ

where T00 is defined as

T00 ¼
1

2
ð _ϕ2 þ ð∇ϕÞ2Þ: ð18Þ

But, j0i is not an eigenstate of the energy density
operator

T00ðt;xÞ ¼
1

2

Z
d3kd3k0

ð2πÞ3
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
jkjjk0j

p
þ k · k0ffiffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jp �

× ðaka†k0e−i½ðjkj−jk
0jÞt−ðk−k0Þ·x�

þ a†kak0eþi½ðjkj−jk0jÞt−ðk−k0Þ·x�

− akak0e−i½ðjkjþjk0jÞt−ðkþk0Þ·x�

− a†ka
†
k0eþi½ðjkjþjk0jÞt−ðkþk0Þ·x�Þ; ð19Þ

because of the terms of the form akak0 and a†ka
†
k0 .

Direct calculation shows the magnitude of the fluctuation
of the vacuum energy density diverges as the same order as
the energy density itself,

hðT00 − hT00iÞ2i ¼
2

3
hT00i2; ð20Þ

where

hT00i ¼
Λ4

16π2
; ð21Þ
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where Λ is the effective QFT’s high energy cutoff.
[For more details on this calculation, see Eq. (A6) in
Appendix A.] Thus the energy density fluctuates as
violently as its own magnitude. With such huge fluctua-
tions, the vacuum energy density ρvac is not a constant in
space or time.
Furthermore, the energy density of the vacuum is not

only not a constant in time at a fixed spatial point, it also
varies from place to place. In other words, the energy
density of vacuum is varying wildly at every spatial point
and the variation is not in phase for different spatial points.
This results in an extremely inhomogeneous vacuum. The
extreme inhomogeneity can be illustrated by directly
calculating the expectation value of the square of difference
between energy density at different spatial points,

Δρ2ðΔxÞ ¼ hfðT00ðt;xÞ − T00ðt;x0ÞÞ2gi
4
3
hT00ðt;xÞi2

; ð22Þ

where Δx ¼ jx − x0j and we have normalized Δρ2 by
dividing its asymptotic value 4

3
hT00i2 [the curly bracket

fg is the symmetrization operator which is defined by
(A2)]. The behavior of Δρ2 for the scalar field (15) in
Minkowski vacuum is plotted in Fig. 1, which shows that
the magnitude of the energy density difference between two
spacial points quickly goes up to the order of hT00i itself as
their distance increases by only the order of 1=Λ. (For more
details on the calculations and how the energy density
fluctuates all over the spacetime, see Appendix A.)
As the vacuum is clearly not homogeneous, Eq. (10) is

not valid as it depends on a homogeneous and isotropic
matter field and metric. Therefore a new method of relating
vacuum energy density to the observed Hubble expansion
rate is required.

IV. DIFFERENCES MADE BY THE
INHOMOGENEOUS VACUUM—A

SIMPLE MODEL

The extreme inhomogeneity of the vacuum means its
gravitational effect cannot be treated perturbatively, so

another method is required. As solutions to the fully
general Einstein equations are difficult to obtain, we will
first look at a highly simplified model.

A. Beyond the FLRW metric

To describe the gravitational property of the inhomo-
geneous quantum vacuum, we must allow inhomogeneity in
the metric. This is accomplished by allowing the scale factor
aðtÞ in the FLRW metric (9) to have spatial dependence,

ds2 ¼ −dt2 þ a2ðt;xÞðdx2 þ dy2 þ dz2Þ: ð23Þ

The full Einstein field equations for the coordinate (23)
are

G00¼ 3

�
_a
a

�
2

þ 1

a2

�∇a
a

�
2

−
2

a2

�∇2a
a

�
¼ 8πGT00; ð24Þ

Gii ¼ −2aä − _a2 −
�∇a

a

�
2

þ∇2a
a

þ 2

�∂ia
a

�
2

−
∂2
i a
a

¼ 8πGTii; ð25Þ

G0i ¼ 2
_a
a
∂ia
a

− 2
∂i _a
a

¼ 8πGT0i; ð26Þ

Gij ¼ 2
∂ia
a

∂ja

a
−
∂i∂ja

a
¼ 8πGTij; i; j ¼ 1; 2; 3; i ≠ j;

ð27Þ

where ∇ ¼ ð∂1; ∂2; ∂3Þ is the ordinary gradient operator
with respect to the spatial coordinates x, y, z.
By choosing the above simplest inhomogeneous metric

(23), we are assuming a mini-superspace type model, and
will choose which of these equations do apply later. This
treatment might result in inconsistencies as general vacuum
fluctuations of the matter fields posses rich structures that
they may not produce spacetime described by the metric
(23). To fully describe the resulting inhomogeneous space-
time, one needs a more general metric. However, as a first
approximation, using (23) is relatively easy to calculate
and leads to interesting results. We are also going to do the
calculations for a more general metric in Sec. VIII.

B. The fluctuating spacetime

The role played by the value of vacuum energy density in
the above Eqs. (24), (25), (26) and (27) is different from
(10). The value of vacuum energy density is no longer
directly related to the Hubble rate H through the Eq. (10).
This is evident from the 00 component of the Einstein
Eq. (24). The Eq. (10) is only the special case of (24) when
the spatial derivatives ∇a and ∇2a are zero, which requires
that the matter distribution is strictly homogeneous and
isotropic. However, as shown in the last section, the
quantum vacuum is extremely inhomogeneous and
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FIG. 1. Plot of the expectation value of the square of the energy
density difference as a function of spacial separation ΛΔx.
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necessarily anisotropic, which requires ∇a and ∇2a be
huge. This can be seen through the ij component of the
Einstein Eq. (27). In fact, due to symmetry properties of the
quantum vacuum, we have the expectation value of shear
stress Tij on the right side of (27)

hTiji ¼ 0; i; j ¼ 1; 2; 3; i ≠ j: ð28Þ

Meanwhile, Tij must fluctuate since the quantum vacuum
is not its eigenstate either, and themagnitudeof the fluctuation
is on the same order of the vacuum energy density

hT2
iji ∼ hT00i2: ð29Þ

This means that the Tij is constantly fluctuating around zero
with a hugemagnitude of the order of vacuum energy density.
As a result, in (27), the spatial derivatives of aðt;xÞmust also
constantly fluctuate with huge magnitudes.
More importantly, since the scale factor aðt;xÞ is

spatially dependent, the physical distance L between two
spatial points with comoving coordinates x1 and x2 is no
longer related to their comoving distance Δx ¼ jx1 − x2j
by the simple equation LðtÞ ¼ aðtÞΔx and the observed
global Hubble rateH is no longer equal to the local Hubble
rate _a=a. Instead, the physical distance and the global
Hubble rate are defined as

LðtÞ ¼
Z

x2

x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðt;xÞ

q
dl ð30Þ

and

HðtÞ ¼
_L
L
¼

R
x2
x1

_a
a ðt;xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðt;xÞ

p
dlR

x2
x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðt;xÞ

p
dl

; ð31Þ

where the line element dl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dy2 þ dz2

p
.

Equation (31) shows the key difference between the
gravitational behavior of quantum vacuum predicted by the
homogeneous FLRWmetric (9) and by the inhomogeneous
metric (23).
For the homogeneous metric (9), the scale factor a is

spatially independent and (31) just reduces to

HðtÞ ¼ _a
a
ðtÞ: ð32Þ

In this case, there are only two distinct choices for Hubble
rates on a spatial slice t ¼ Const under the initial value
constraint Eq. (10)

_a
a
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGρvac

3

r
; ð33Þ

which implies that all points in space have to be simulta-
neously expanding or contracting at the same constant rate
(Here we do not include the cosmological constant λ).
But for the inhomogeneous metric (23), the scale factor a

is spatially dependent and there is much more freedom in
choosing different local Hubble rates at different spatial
points of the slice t ¼ Const under the corresponding initial
value constraint Eq. (24).
In fact, the local Hubble rates must be constantly

changing over spatial directions within very small length
scales. This can be seen from the initial value constraint
Eq. (26), which can be rewritten as

∇
�
_a
a

�
¼ −4πGJ; ð34Þ

where J ¼ ðT01; T02; T03Þ is vacuum energy flux.1

The solution to (34) or (26) is

_a
a
ðt;xÞ ¼ _a

a
ðt;x0Þ − 4πG

Z
x

x0

Jðt;x0Þ · dl0; ð35Þ

where dl0 ¼ ðdx0; dy0; dz0Þ and x0 is an arbitrary spatial
point. The above solution (35) shows that the difference in
the local Hubble rates _a=a between x0 and x1 is determined
by the spatial accumulations (integral) of the vacuum
energy flux J. Similar to the shear stress, J has zero
expectation value

hJi ¼ 0 ð36Þ

but huge fluctuations

J ¼
ffiffiffiffiffiffiffiffiffi
hJ2i

q
∼ hT00i ∼ Λ4 → þ∞; ð37Þ

which implies that the local Hubble rates differ from point
to point due to the fluctuations. The average of the absolute
value of _a=a can be estimated with the constraint Eq. (24)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��
_a
a

�
2
�s
∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GhT00i

p
∼

ffiffiffiffi
G

p
Λ2: ð38Þ

By using (35), we find that the difference in local Hubble
rates becomes comparable with itself for points separated
by only a distance of the order Δx ∼ 1ffiffiffi

G
p

Λ2 as Λ → þ∞:

1One might notice that (34) requires ∇ × J ¼ 0, which means
that to produce the metric of the form (23), the energy flux of the
matter field needs to be curl free. As mentioned in the last
paragraph of Sec. IVA, this is not true for general matter fields,
but here as a first approximation we will use (34) to estimate the
magnitude of change in _a=a.
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Δ
�
_a
a

�
∼ 4πGJΔx ∼

ffiffiffiffi
G

p
Λ2 ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��
_a
a

�
2
�s
: ð39Þ

Up to this point, we have used the Eqs. (24), (26), and
(27). These equations are all initial value constraint
equations which do not contain the scale factor’s second
order time derivative ä. To get the information about the
time evolution of aðt;xÞ, we also need to use (25). A linear
combination of Eqs. (24) and (25) gives,

G00 þ
1

a2
ðG11 þ G22 þG33Þ ¼ −

6ä
a
; ð40Þ

where all the spatial derivatives of a cancel and only the
second order time derivative left. Therefore we reach the
following dynamic evolution equation for aðt;xÞ:

äþΩ2ðt;xÞa ¼ 0; ð41Þ

where

Ω2 ¼ 4πG
3

�
ρþ

X3
i¼1

Pi

�
; ρ¼T00; Pi¼

1

a2
Tii: ð42Þ

IfΩ2 > 0, which is true if the matter fields satisfy normal
energy conditions, (41) describes a harmonic oscillator
with time dependent frequency. The most basic behavior of
a harmonic oscillator is that it oscillates back and forth
around its equilibrium point, which implies that the local
Hubble rates _a=a are periodically changing signs over time.
By using Eq. (39) you can find that _a=amust also have this
periodic sign change in a given spatial direction.
Physically, these fluctuating features of _a=a imply that,

at any instant of time, if the space is expanding in a small
region, it has to be contracting in neighboring regions; and
at any spatial point, if the space is expanding now, it has to
be contracting later.
These features result in huge cancellations when calcu-

lating the averaged H through (31). The observable overall
net Hubble rate can be small although the absolute value of
the local Hubble rate j _a=aj at each individual point has to
be huge to satisfy the constraint Eq. (24). In other words,
while the instantaneous rates of expansion or contraction at
a fixed spatial point can be large, their effects can be
canceled in a way that the physical distance (30) would not
grow 10120 times larger than what is observed.
This picture of fluctuating spacetime is not completely

new. It is similar to the concept of spacetime foam devised
by John Wheeler [13,14] that in a quantum theory of
gravity spacetime would have a foamy, jittery nature and
would consist of many small, ever-changing, regions in
which spacetime are not definite, but fluctuates. His reason
for this “foamy” picture is the same as ours—at sufficiently
small scales the energy of vacuum fluctuations would be

large enough to cause significant departures from the
smooth spacetime we see at macroscopic scales.
The solution for aðt;xÞ will be given by Eqs. (51), (58)

and (59) in the next Sec. V to describe this foamy structure
more precisely.

C. Methods and assumptions in solving the system

In principle, we need a full quantum theory of gravity to
solve the evolution details of this quantum gravitational
system. Unfortunately, no satisfactory theory of quantum
gravity exists yet.
In this paper, we are not trying to quantize gravity.

Instead, we are still keeping the spacetime metric aðt;xÞ as
classical, but quantizing the fields propagating on it. The
key difference from the usual semiclassical gravity is that
we go one more step—instead of assuming the semi-
classical Einstein equation, where the curvature of the
spacetime is sourced by the expectation value of the
quantum field stress energy tensor, we also take the huge
fluctuations of the stress energy tensor into account. In our
method, the sources of gravity are stochastic classical fields
whose stochastic properties are determined by their quan-
tum fluctuations.
The evolution details of the scale factor aðt;xÞ described

by Eq. (41) depends on the property of the time dependent
frequency Ωðt;xÞ given by (42). For both simplicity and
clarity, in the following sections we investigate the proper-
ties of Ω by considering the contribution from a real
massless scalar field ϕ. In this case, the stress energy
tensor for a general spacetime metric gμν is

Tμν ¼ ∇μϕ∇νϕ −
1

2
gμν∇λϕ∇λϕ: ð43Þ

Direct calculation using the inhomogeneous metric (23)
gives that

ρþ
X3
i¼1

Pi ¼ 2 _ϕ2; ð44Þ

where all the spatial derivatives and explicit dependence on
the metric a are canceled. Thus we obtain

Ω2 ¼ 8πG _ϕ2

3
> 0; ð45Þ

which is not explicitly dependent on the metric aðt;xÞ.
However, the resulting spacetime sourced by this mass-

less scalar field ϕ does have backreaction effect on ϕ itself.
This is because ϕ obeys the equation of motion in curved
spacetime

∇μ∇μϕ ¼ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νϕÞ ¼ 0; ð46Þ
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which reduces to

∂tða3∂tϕÞ −∇ · ða∇ϕÞ ¼ 0 ð47Þ

for the special metric (23).
Incorporating the backreaction effect by solving both the

Einstein Eqs. (24), (25), (26), (27) for the metric a and the
equation of motion (47) for the field ϕ at the same time is
difficult. Fortunately, solving the system in this way is
unnecessary. Physically, the quantum vacuum locally
behaves as a huge energy reservoir, so that the backreaction
effect on it should be small and can be neglected. In our
method, we will first assume that the quantized field ϕ is
still taking the flat spacetime form of (15) for field modes
below the effective QFT’s high frequency cutoff Λ. We use
(15) to calculate the stochastic property of the time
dependent frequency Ω and then solve (41) to get the
resulting curved spacetime described by the metric aðt;xÞ.
This will be done in Sec. V.
We then investigate the backreaction effect in Sec. VII by

quantizing the field ϕ in the resulting curved spacetime. It
turns out that, while the resulting spacetime is fluctuating,
the fluctuation happens at scales which are much smaller
than the length scale 1=Λ. Therefore the corrections to the
field modes with frequencies below the cutoff Λ is quite
small and thus the flat spacetime quantization (15) is
valid to high precision. [See Eqs. (126) [or (158)], (127)
and (129) for quantitatively how high this precision is.] In
this way we justify neglecting the aforementioned back
reaction.
Empirically, this must be true since ordinary QFT has

achieved great successes by assuming flat Minkowski
background and using the expansion (15). So if our method
is correct, (15) has to be still valid even the background
spacetime is no longer flat but wildly fluctuating at small
scales. In other words, the resulting spacetime should still
look like Minkowskian for low frequency field modes.
Long wavelength fields ride over the Wheeler’s foam as if it
is not there. This is similar to the behavior of very long
wavelength water waves which do not notice the rapidly
fluctuating atomic soup over which they ride.

V. THE SOLUTION FOR aðt;xÞ
In this section we give the solution for the local scale

factor aðt;xÞ.

A. Parametric resonance

One important feature of a harmonic oscillator with time
dependent frequency is that it may exhibit parametric
resonance behavior.
If the Ωðt;xÞ is strictly periodic in time with a period T,

the property of the solutions of (41) has been thoroughly
studied by Floquet theory [18]. Under certain conditions
[for example, the condition (78)], the parametric resonance

phenomenon occurs and the general solution of (41) is (see
e.g., Eq. (27.6) in Chapter V of [19])

aðt;xÞ ¼ c1eHxtP1ðt;xÞ þ c2e−HxtP2ðt;xÞ; ð48Þ
where Hx > 0, c1 and c2 are constants. The P1 and P2 are
purely periodic functions of time with period T. They are in
general functions oscillating around zero. The amplitude of
the first term in (48) increases exponentially with time
while the second term decreases exponentially. Therefore
the first term will become dominant and the solution will
approach a pure exponential evolution

aðt;xÞ≃ eHxtPðt;xÞ; ð49Þ
where we have absorbed the constant c1 into Pðt;xÞ by
letting Pðt;xÞ ¼ c1P1ðt;xÞ.
Physically, the exponential evolution of the amplitude of

aðt;xÞ is easy to understand. If Ω is strictly periodic, the
system will finally reach a steady pattern of evolution
[when the second term in (48) has been highly suppressed].
In this pattern, after each period of evolution of the system,
a increases by a fixed ratio, i.e., aðtþ T;xÞ ¼ μxaðt;xÞ,
which results in the exponential increase since after n
cycles, aðtþ nT;xÞ ¼ μnxaðt;xÞ. Here the μx is related to
the Hx by Hx ¼ ln μx

T .
Due to the stochastic nature of quantum fluctuations,

the Ωðt;xÞ in (41) is not strictly periodic. However, its
behavior is still similar to a periodic function. In fact, Ω
exhibits quasiperiodic behavior in the sense that it is always
varying around its mean value back and forth on an
approximately fixed time scale. To see this, we calculate
the following normalized covariance:

χðΔtÞ ¼ CovðΩ2ðt1;xÞ;Ω2ðt2;xÞÞ

¼ hfðΩ2ðt1Þ − hΩ2ðt1ÞiÞðΩ2ðt2Þ − hΩ2ðt2ÞiÞgi
hðΩ2 − hΩ2iÞ2i ;

ð50Þ
where Δt ¼ t1 − t2 and we have dropped the label x in the
second line of the above definition (50) since the final result
is independent with x.

2 4 6 8 10
1.0

0.5

0.0

0.5

1.0

t

FIG. 2. Plot of the normalized covariance χ as a function of
temporal separation ΛΔt.
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Explicit expression for χ as a function of Δt is given by
(A12), which is plotted in Fig. 2. It describes how Ω2 at
different times change around their mean values together.
We say that two Ω2 separated by time difference Δt are
positively (negatively) correlated if χðΔtÞ > 0ð<0Þ, since it
means that they are most likely to be at the same (opposite)
side of their mean value hΩ2i.
Figure 2 and (A12) show that Ω2 at different times are

strongly correlated at close range. Especially, the negative
correlation is strongest when Δt ∼ 2=Λ, which implies that
if at t ¼ 0 the Ω2 is above its mean value hΩ2i, then at
t ∼ 2=Λ, it is most likely below hΩ2i. So basically, Ω2

varies around its mean value quasiperiodically on the time
scale T ∼ 1=Λ.
This quasiperiodic behavior of Ω should also lead to

parametric resonance behavior seen in (49), instead with a
difference in that Hx would become time dependent, i.e.,
the solution would take the following form

aðt;xÞ≃ e
R

t

0
Hxðt0Þdt0Pðt;xÞ; ð51Þ

where Pðt;xÞ here is no longer a strictly periodic function
as in (49) but a quasiperiodic function with the same
quasiperiod of the order 1=Λ as the time dependent
frequency Ωðt;xÞ. [The solution (58) for Pðt;xÞ in the
next subsection V B reveals this property.]
The physical mechanism is similar. The system will also

reach a final steady evolution pattern. In this pattern, after
each quasiperiod of evolution of the system, a will increase
by an approximately fixed ratio. Suppose that during the ith
cycle of quasiperiod Ti, a increases by a factor μix, i.e.,
aðtþ Ti;xÞ ¼ μixaðt;xÞ. Then after the n cycles, we have
aðtþP

n
i¼1 Ti;xÞ ¼ ðQn

i¼1 μixÞaðt;xÞ. Because the quasi-
periods Ti and the factors μix are generally different from
each other, the exponent in (51) would need to take the
form of integration.
The detailed oscillating behavior of Pðt;xÞ is not

observable at macroscopic scales. However, the factor of

the exponential increase e
R

t

0
Hxðt0Þdt0 can be observed. In

fact, inserting (51) into (30), the observable physical
distance would become

LðtÞ ¼ Lð0ÞeHt; ð52Þ

where

Lð0Þ ¼
Z

x2

x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2ðt;xÞ

q
dl ð53Þ

and the global Hubble expansion rate H is

H ¼ 1

t

Z
t

0

Hxðt0Þdt0: ð54Þ

In the next two subsections, we are going to give the
solution for Pðt;xÞ and the global Hubble expansion rateH.

B. The solution for Pðt;xÞ
The magnitude of the time dependent frequency Ω is of

the order ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GhT00i

p
∼

ffiffiffiffi
G

p
Λ2, while Ω itself varies

roughly with a characteristic frequency Λ (this has been
shown by Fig. 2). Then according to (41), the scale factor a
would oscillate with a period that roughly goes as
T ¼ 2π=Ω ∼ 1=

ffiffiffiffi
G

p
Λ2 ≪ 1=Λ, as Λ → ∞, where 1=Λ is

the time scale on which the Ω itself would change
significantly.
So comparing to the oscillating period T of the scale

factor a, the variation of Ω itself is very slow, although the
time 1=Λ is already very short for large Λ. Therefore,
during one period of the oscillation of a, Ω is almost
constant since it has not have a chance to change signifi-
cantly during such a short time scale. In this sense the time
dependent frequency Ω is slowly varying and the evolution
of the scale factor a is an adiabatic process.
The slow variation of Ω can be verified in a more formal

way by calculating the expectation values of Ω2 ¼ 8πG
3

_ϕ2

and ðdΩdt Þ2 ¼ 8πG
3
ϕ̈2. Using (15), we have

hΩ2i ¼ 8πG
3

1

ð2πÞ3
Z

d3k
1

2
ω

¼ 8πG
3

1

4π2

Z
Λ

0

k3dk ¼ 1

6π
GΛ4; ð55Þ

��
dΩ
dt

�
2
�

¼ 8πG
3

1

ð2πÞ3
Z

d3k
1

2
ω3

¼ 8πG
3

1

4π2

Z
Λ

0

k5dk ¼ 1

9π
GΛ6: ð56Þ

(55) just gives Ω ∼
ffiffiffiffi
G

p
Λ2 as expected, (56) gives

dΩ=dt ∼
ffiffiffiffi
G

p
Λ3. Therefore, during one period of oscilla-

tion T ∼ 2π=Ω ∼ 1ffiffiffi
G

p
Λ2, we have, as Λ → þ∞, the slow

varying condition (see Eq. (49.1) in Chapter VII of [20])

TdΩ=dt ≪ Ω; ð57Þ

is satisfied. Thus the system varies adiabatically since Ω
varies only slightly during the one period of oscillation
time T.
The leading order solution of the Eq. (41) for a harmonic

oscillator with the slowly varying frequency Ω can be
obtained by a first order WKB approximation. This
adiabatic approximation neglects the small exponential
factor in (51). It gives the solution Pðt;xÞ which is
describing the oscillating behavior of aðt;xÞ. The result is,

Pðt;xÞ ¼ A0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωðt;xÞp cos

�Z
t

0

Ωðt0;xÞdt0 þ θx

�
: ð58Þ

The Pðt;xÞ above is a quasiperiodic function with the same
quasiperiod of the order 1=Λ as the time dependent
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frequency Ωðt;xÞ just as expected. The two constants of
integration A0 and θx in (58) can be determined by the
initial values að0;xÞ and _að0;xÞ.
The quantum vacuum is fluctuating everywhere, but its

statistical property must be still the same everywhere.
Correspondingly, the statistical property of Pðt;xÞ must
also be the same everywhere, which requires that the
constant A0 to be independent with respect to the spatial
coordinate x. In addition, the constant A0 can be chosen as
any nonzero value since the scale factor a multiplying by
any nonzero constant describes physically equivalent
spacetimes.
The initial phase θx at different places must be dependent

on x. In applying the initial value constraint equation (35),
neglecting the small exponential factor in (51) and neglect-
ing the relatively small time derivative terms of the slowly
varying frequency Ω, we obtain the result,

tanθx ¼
Ωð0;x0Þ
Ωð0;xÞ tanθx0 þ

4πG
Ωð0;xÞ

Z
x

x0

Jð0;x0Þ · dl0; ð59Þ

where θx0 is the initial phase of the scale factor a at an
arbitrary spatial point x0.
In solutions (58) and (59) we see the fluctuating nature of

spacetime at very small scales as described in the previous
Sec. IV B. In particular, (59) shows that the phases of
aðt;xÞ vary on a given initial Cauchy slice; some locations
contract while others expand. In this new physical picture
the catastrophic vacuum energy density is confined to very
small scales.

C. The global Hubble expansion rate H

As the system is adiabatic, the parametric resonance
effect is weak. The adiabatic solution (58) in the last
subsection does not include the parametric resonance and
thus misses the small exponential factor expected in (51). In
this subsection we go beyond the adiabatic approximation
and investigate the exact strength of the weak parametric
resonance.
When considering the weak parametric resonance effect,

the constant A0 in (58) would become time and space
dependent and take the following form

Aðt;xÞ ¼ A0e
R

t

0
Hxðt0Þdt0 ð60Þ

in order to satisfy (51).
To determine how the HxðtÞ depends on the spacetime

dependent frequency Ωðt;xÞ, we consider the adiabatic
invariant of a harmonic oscillator with time dependent
frequency, which is defined as

Iðt;xÞ ¼ E
Ω
; ð61Þ

where

E ¼ 1

2
ð _a2 þΩ2a2Þ=Ω: ð62Þ

Replace the constant A0 in (58) by Aðt;xÞ and then plug
it into the above expression (61) we get that

Iðt;xÞ ¼ 1

2
A2ðt;xÞ; ð63Þ

where we have neglected the time derivatives of A and Ω in
the above Eq. (63), which are higher order infinitesimals.
I is invariant in the first order adiabatic approximation.
When going to higher orders, I will slowly change with
time. Through the relation (63) between I and A we can
obtain how the Aðt;xÞ changes by investigating how
accurately the adiabatic invariant is preserved and how it
changes with time.
It has been proved by Robnik and Romanovski [21,22]

that, in full generality [no restrictions on the function
Ωðt;xÞ], the final value of the adiabatic invariant for the
average energy Ī ¼ Ē=Ω is always greater or equal to the
initial value I0 ¼ E0=Ω0 (see the Refs. [21,22] for precise
definition about the average energy). In other words, the
average value of the adiabatic invariant Ī ¼ Ē=Ω for the
mean value of the energy never decreases, which is a kind
of irreversibility statement. It is conserved only for infi-
nitely slow process, i.e., an ideal adiabatic process.
Therefore, in the case of our quasiperiodic frequency

Ωðt;xÞ in (41), Ī will also always increase. Moreover, it
will increase by a fixed factor after each quasiperiod of
evolution, which results in an exponentially increasing Ī.
This is in fact evident because of the weak parametric
resonance effect. In the following we investigate this
exponential behavior in detail.
First we construct the evolution equation for the adia-

batic invariant I. Do the canonical transformation

a ¼
ffiffiffiffiffiffiffiffiffiffiffi
2I=Ω

p
sinφ; ð64Þ

_a ¼
ffiffiffiffiffiffiffiffi
2IΩ

p
cosφ: ð65Þ

Then the evolution equations for a and its conjugate
momentum _a transfer to the evolution equation for the
new action variable I and the angle variable φ,

dI
dt

¼ −I
_Ω
Ω
cos 2φ; ð66Þ

dφ
dt

¼ Ωþ
_Ω
2Ω

sin 2φ: ð67Þ

Integrating (66) yields

IðtÞ ¼ Ið0Þ exp
�
2

Z
t

0

Hxðt0Þdt0
�
; ð68Þ
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where

Hxðt0Þ ¼ −
_Ω
2Ω

cos 2φ: ð69Þ

The Hxðt0Þ in the above Eq. (69) is just the same with the
Hxðt0Þ defined in (51) and (60), which can be seen by
applying Eq. (63). Thus Eq. (69) constructed the depend-
ence of Hxðt0Þ on the time dependent frequency Ωðt0;xÞ.
The observable global Hubble expansion rate H is the

average ofHxðt0Þ over time, which was defined by Eq. (54).
Plugging (69) into (54) gives,

H ¼ Re

�
−
1

t

Z
t

0

_Ω
2Ω

e2iφdt0
�
: ð70Þ

When the slow varying condition (57) holds, from Eq. (67)
we know that dφ=dt is positive, i.e., φ is a monotonic
function in time. Thus we can change the integral in (70)
from the integration over t0 to integration over φ0:

H ¼ Re

�
−
1

t

Z
φ

φ0

_Ω
2Ω

e2iφ
dt0

dφ0 dφ
0
�
; ð71Þ

where φ0 ¼ φð0Þ and φ ¼ φðtÞ.
To evaluateH, we formally treat φ as a complex variable

and close the contour integral in the upper half plane. The
integrand in (71) has no singularities for real φ if the slow
varying condition (57) holds. Equation (67) implies that
φ ∼Ωt ∼

ffiffiffiffi
G

p
Λ2t, so the length of the interval φ − φ0 ∼ffiffiffiffi

G
p

Λ2t goes to infinity as Λ → þ∞. Hence the principle
contribution to the integral in (71) comes from the residue
values at singularities φðkÞ inside the contour:

H ¼ 1

t
Re

�
2πi

X
k

Res

�
−

_Ω
2Ω

e2iφ
dt
dφ

;φðkÞ

��
: ð72Þ

Each term in (72) gives a contribution containing a factor
exp ð−2ImφðkÞÞ. So the dominant contribution in (72)
comes from the singularities near the real axis, i.e., those
with the smallest positive imaginary part. To keep the
calculation simple, we retain only those terms. Since ΩðtÞ
varies quasiperiodically with a characteristic time τ ∼ 1=Λ,
the number of singularities near the real axis would roughly
be on the order t=τ ∼ Λt. Therefore theH in (72) is roughly

H ∼ Λ exp ð−2ImφðkÞÞ: ð73Þ

Let tðkÞ be the (complex) “instant” corresponding to the
singularity φðkÞ: φðkÞ ¼ φðtðkÞÞ ∼ΩtðkÞ. In general, jtðkÞj has
the same order of magnitude as the characteristic time
τ ∼ 1=Λ of variation of the Ω. Remember that Ω ∼

ffiffiffiffi
G

p
Λ2,

thus the order of magnitude of the exponent in (73) is

ImφðkÞ ∼ Ωτ ∼
ffiffiffiffi
G

p
Λ: ð74Þ

Therefore, inserting (74) into (73) gives

H ¼ αΛe−β
ffiffiffi
G

p
Λ; ð75Þ

where α and β are two dimensionless constants which
depend on the variation details of the time dependent
frequency Ωðt;xÞ. Therefore H becomes exponentially
small in the limit of taking Λ to infinity. This is a
manifestation of the well-established result that the error
in adiabatic invariant is exponentially small for analytic Ω
[20,22]. In fact, the technique we used in deriving (75) is
very similar to the one used in deriving the error in
adiabatic invariant in the pages “160–161” of [20].

D. A more intuitive explanation

So far we have obtained our key result (75) for the global
Hubble expansion rate H. To understand the mechanism of
weak parametric resonance better, we give a more intuitive
explanation in this subsection.
Consider the following simplest parametric oscillator:

ẍþ ω2ðtÞx ¼ 0; ð76Þ
where

ω2ðtÞ ¼ ω2
0ð1þ h cos γtÞ: ð77Þ

The behavior of the above harmonic oscillator with time
dependent frequency has been thoroughly studied (see e.g.,
Eq. (27.7) in Chapter Vof [19]). The parametric resonance
occurs when the frequency γ with which ωðtÞ varies is close
to any value 2ω0=n, i.e.,

γ ∼
2ω0

n
; ð78Þ

where n is an integer. The strength of the parametric
resonance is strongest if γ is nearly twice ω0, i.e., if n ¼ 1.
As n increases to infinity, the strength of the parametric
resonance decreases to zero. This is easy to understand
since as n increases, the varying frequency γ of ωðtÞ
becomes slower compared to the oscillator’s natural fre-
quency ω0 and as n → ∞, (76) reduces to an ordinary
harmonic oscillator with constant frequency which has no
parametric resonance behavior.
Now let us go back to Eq. (41) for aðt;xÞ. The time

dependent frequency Ωðt;xÞ in (41) is more complicated
than the ωðtÞ given in our example (77). However, it can be
written in a similar form:

Ω2ðt; 0Þ ¼ Ω2
0

�
1þ

Z
2Λ

0

dγðfðγÞ cos γtþ gðγÞ sin γtÞ
�
;

ð79Þ
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where

Ω2
0 ¼ hΩ2i ¼ GΛ4

6π
; ð80Þ

and fðγÞ, gðγÞ are operator coefficients, whose exact form
are given by (A15) and (A16) in Appendix A. The behavior
of Ω2ðt;xÞ for an arbitrary x is the same with Ω2ðt; 0Þ
except phase differences. The power spectrum density of
the varying part ofΩ2ðt; 0Þ (except for the constantΩ2

0 part)
given by (A18) is plotted in Fig. 3.
Unlike the case (77) where the ωðtÞ varies with a single

frequency γ, the Ωðt; 0Þ in (79) varies with frequencies
continuously distributed in the range ð0; 2ΛÞ with a peak
around 1.7Λ (see Fig. 3). From (80) we have that, as taking
the cutoff frequency Λ to infinity, Ω0 ∼

ffiffiffiffi
G

p
Λ2 ≫ 2Λ.

Because of the continuity of the spectrum of Ω, we can
always find integers n such that if

n ≥
ffiffiffiffiffiffi
G
6π

r
Λ; Λ → þ∞; ð81Þ

then

2Ω0

n
∈ ð0; 2ΛÞ: ð82Þ

So Ωðt;xÞ always contains frequencies 2Ω0=n that may
excite resonances. From (81) we see that n → ∞ as taking
the cutoff Λ to infinity. While as n increases, the relative
magnitude of the resonance frequency 2Ω0=n decreases
comparing to the aðt;xÞ’s natural frequency Ω0. Then for
reasons similar to the simplest parametric oscillator (76),
the strength of the parametric resonance of (41) would also
decrease to zero. This weak parametric resonance effect
leads to the global Hubble expansion rate

H → 0; as Λ → þ∞: ð83Þ

E. Numerical verification

In this subsection, we do a numerical calculation for the
evolution equation (41) to verify our result (75), which
describes the dependence of H on cutoff Λ.
In this subsection, Planck units will be used, so all

instances of Newton’s constant are set to unity, G ¼ 1.
The main idea is to rewrite the time dependent frequency

ΩðtÞ in phase space. (To see more details about this
numeric method, please check Appendix B. Here we only
list the most crucial results.) For a real massless scalar field,
we have

Ω2ðfxkg; fpkg; tÞ ¼
8π

3

Z
d3kd3k0

ð2πÞ3 xkxk0ωω0 sinωt sinω0t

þ pkpk0 cosωt cosω0t

− 2xkpk0ω sinωt cosω0t: ð84Þ

This is the Weyl transformation of the operator Ω̂2ðtÞ. Here
fxk; pkg are phase space points of a particular field mode
with momentum k. Approximately, for a particular choice
of fxkg, fpkg, we can get an classic equation for a:

äðfxkg;fpkg; tÞ þΩ2ðfxkg;fpkg; tÞaðfxkg;fpkg; tÞ ¼ 0:

ð85Þ

The observed value aoðtÞ is the average of aðfxkg; fpkg; tÞ
over the Wigner pseudo distribution function Wðfxkg;
fpkg; tÞ, which is based on the wave function of the
quantum field:

aoðtÞ¼
Z �Y

k

dxkdpk

�
aðfxkg;fpkg;tÞWðfxkg;fpkg;tÞ:

ð86Þ

If the quantum field is in its ground state, we have

Wðfxkg; fpkg; tÞ ¼
Y
k

1

π
e−

p2
k
ω −x2kω ð87Þ

which means fxkg, fpkg are all Gaussian variables. Based
on this observation, our method to simulate this equation is
as following: (i) at first we generate a set of random
Gaussian numbers for fxkg, fpkg; (ii) we solve the
equation (85) for this particular set of numbers; (iii) then
we repeat the process for another set of random numbers
until a certain amount of repetitions; (iv) The result aoðtÞ is
the average over all samples we have generated. We choose
the repetition amount to be big enough for the results to
converge. The result of a single scalar field case is
illustrated in Fig. 4.
We can find that the slope of log jaoðtÞj ∼ t is decreasing

as we increase the cutoff Λ as we expect. For the single
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FIG. 3. Plot of the power spectrum density of the varying part of
Ω2ðt; 0Þ (except for the constant Ω2

0 part).
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field, Ω2ðtÞ ¼ 8π
3
_ϕ2 repeatedly reaches zero since classi-

cally _ϕ is continuous and oscillates from positive to
negative. Around these zero points the slow varying
condition for Ω2 is not satisfied. But because the time
duration of reaching zero is very short, this would not cause
the adiabatic expanding scheme to breaks down. This point
reveals in the numerical calculation.
The real universe contains many different quantum

fields. In Fig. 5, we show the result when we include
two independent massless scalar fields in which
Ω2ðtÞ ¼ 8π

3
ð _ϕ2

1 þ _ϕ2
2Þ. In this case Ω2 would not reach

zero at almost all times since this can happen only when
both _ϕ1 and _ϕ2 pass zero, which is unlikely to happen
frequently.
In the two field case, we plot the logðH=ΛÞ ∼ Λ graph to

verify the quantitative relation (75). The result is illustrated
in Fig. 6. We can see that for Λ ≥ 10, the result shows
decent linearity, which is what we expected since the
derivation of (75) is only valid for large Λ. In this case,
the two constants α ¼ e4.6 ≈ 100 and β ¼ 0.12 according
to the numeric calculation.

VI. MEANING OF OUR RESULTS

It is interesting to notice that both (12) and (52) give the
exponential evolution and predict an accelerated expanding
universe. However, the underlying mechanisms are com-
pletely different, which leads to opposite results on the
predicted magnitude of the observable Hubble expansion
rate H.
The solution (12) is based on the assumption that

quantum vacuum energy density is constant all over the
spacetime, which is a necessary requirement if one
suppose that vacuum acts as a cosmological constant.
This assumption leads to a huge Hubble expansion rate

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGρvac

3

r
∝

ffiffiffiffi
G

p
Λ2 → þ∞ ð88Þ

as taking the high energy cutoff Λ to infinity.
Our proposal (52) is based on the fact that quantum

vacuum energy density is constantly fluctuating and
extremely inhomogeneous all over the whole spacetime.
This fact leads to a small Hubble expansion rate given by
(75) which goes to zero as taking the high energy cutoff Λ
to infinity.
If we can literally take the cutoff Λ in (75) to infinity,

then H ¼ 0. In this sense, at least the “old” cosmological
constant problem would be resolved.
In principle, this effective theory is valid only up

to a large but finite cutoff Λ, which leads to a tiny but
nonzero H. Since H → 0 as Λ → þ∞, there always exists
a very large cutoff value of Λ such that H¼ ffiffiffiffiffiffi

Ωλ

p
H0≈

1.2×10−42 GeV to match the observation, where H0 is
current observed Hubble constant.
So our result suggests that there is no necessity to

introduce the cosmological constant, which is required to
be fine tuned to an accuracy of 10−120, or other forms of
dark energy, which are required to have peculiar negative
pressure, to explain the observed accelerating expansion of
the universe.
The exact value of Λ cannot be determined since we do

not know the values of the two dimensionless parameters α

0 100 200 300
Time

0

50
lo

g(
|a

|)

FIG. 4. Numeric result for log jaoðtÞj for a single real massless
scalar field. It shows that as Λ increases, the slope of log jaoðtÞj
decreases.
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FIG. 5. Numeric result for log jaoðtÞj when two scalar fields are
present and it shows that as Λ increases, the slope of log jaoðtÞj
decreases.
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H
/ y=-0.12x+4.6

FIG. 6. The plot of logðH=ΛÞ over Λ. The fitting result shows
that α ¼ e4.6 ≈ 100 and β ¼ 0.12 in this two-field case.

QINGDI WANG, ZHEN ZHU, and WILLIAM G. UNRUH PHYSICAL REVIEW D 95, 103504 (2017)

103504-12



and β in (75). In principle, we need the knowledge of all
fundamental fields in the universe to determine α and β, this
deserves further investigations in the future and might
provide some hint on elementary particle physics.
The value of Λ should be on the order of Planck energy

or higher. According to the numerical calculation in the last
subsection, Λ ∼ 1000EP if we consider contributions to Ω2

from only two scalar fields. If more fundamental fields are
included, we expect the value of β would increase and thus
decrease the value of Λ needed. This is because that it
increases the mean value of Ω and, as a consequence,
reduces the ratio between the variation of Ω over its mean
value hΩi that Ω varies slower. A slower Ω leads to smaller
H since the parametric resonance is weaker.

VII. THE BACK REACTION

In this section, we investigate the backreaction effect by
quantizing the field ϕ in the resulting curved spacetime to
justify our method of using the quantized field expansion
(15) in Minkowski spacetime as an approximation.
The standard way to quantize the scalar field ϕ in a

generic curved spacetime gμν is by first defining the
following inner product on a spacelike hypersurface Σ
with induced metric hij and unit normal vector nμ (see,
e.g., [15,23]):

ðϕ1;ϕ2Þ ¼ −i
Z
Σ
ðϕ1∂μϕ

�
2 − ϕ�

2∂μϕ1Þnμ
ffiffiffi
h

p
d3x; ð89Þ

where h ¼ det hij and ϕ1, ϕ2 are solutions to the Eq. (46).
The above inner product is independent of the choice of Σ.
One then choose a complete set of mode solutions uk of

(46) which are orthonormal in the product (89):

ðuk; uk0 Þ ¼ δðk − k0Þ; ð90Þ

ðu�k; u�k0 Þ ¼ −δðk − k0Þ; ð91Þ

ðuk; u�k0 Þ ¼ 0: ð92Þ

Then the field ϕ may be expanded as

ϕ ¼
X
k

ðakuk þ a†ku
�
kÞ: ð93Þ

For the flat Minkowski spacetime, i.e., gμν ¼ ημν, (46)
reduces to the usual wave equation

ϕ̈ −∇2ϕ ¼ 0: ð94Þ

In this case, the mode solutions are usually chosen as

ukðt;xÞ ¼
1

ð2πÞ3=2
1ffiffiffiffiffiffi
2ω

p e−iðωt−k·xÞ; ð95Þ

where ω ¼ jkj. Plugging (95) into (93) just gives the usual
quantum field expansion (15).
For our specific metric (23), (46) reduces to (47). In this

case, since the rate of accelerating expansion is extremely
small, the backreaction effect due to the macroscopic
expansion of the universe is only important on large
cosmological time scales. For this reason, we only worry
about the backreaction due to the wildly fluctuating
spacetime at small scales. I.e., we neglect the small
exponential factor in (51) and use the form of the a based
on the solution (58):

aðt;xÞ ¼ A0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωðt;xÞp cos ðΘðt;xÞÞ; ð96Þ

where

Θðt;xÞ ¼
Z

t

0

Ωðt0;xÞdt0 þ θx: ð97Þ

Then (47) becomes

A2
0

Ω
cos2Θϕ̈ −∇2ϕ −

3A2
0

2

�
_Ω
Ω2

cos2Θþ sin 2Θ
�
_ϕ

þ
�∇Ω
2Ω

þ tanΘ∇Θ
�
·∇ϕ ¼ 0: ð98Þ

In order to understand the effect from backreaction, we
need to find out how the mode solutions of the above
Eq. (98) in the resulting curved spacetime change from the
mode solutions (95) of the Eq. (94) in the flat Minkowski
spacetime.
Physically, the correction to (95) should be small for

wave modes with frequencies lower than the cutoff fre-
quency Λ. That is because the wave length of those field
modes is larger than 2π=Λ, while our spacetime fluctuates
on the length scale 2π=Ω ∼ 1=ð ffiffiffiffi

G
p

Λ2Þ ≪ 2π=Λ. The
relatively long wave length modes should not be sensitive
to what is happening on small scales. This is analogous
to the situation of sound waves traveling in the medium
such as air or water or solids. The medium is constantly
fluctuating at atomic scales, but this fluctuation does not
affect the propagation of the sound wave whose wavelength
is much larger than the atomic scale. Similarly, the
propagation of the field modes in the “medium”—the
spacetime, which is constantly fluctuating on scales much
smaller than the wavelength of the field modes, should also
not be affected.
Mathematical demonstration will be given in the follow-

ing subsections.

A. A simplified toy model

It is complicated to obtain the mode solutions of (98) for
a generic stochastic function Θðt;xÞ whose stochastic
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property is determined by the quantum nature of the field ϕ.
To illustrate the underlying physical mechanism more
clearly, we start with a simplified toy model by restricting
the phase angle Θðt;xÞ defined by (97) to take the
following form:

Θðt;xÞ ¼ ΩtþK · x; ð99Þ

where both Ω and K are constants and they have the same
order of magnitude Ω ∼ jKj ∼ ffiffiffiffi

G
p

Λ2.
Of course this toy model does not describe the real

spacetime sourced by the quantum vacuum since the Ω is
by no means a constant but always varying, although the
varying is slow compared to it own magnitude. However,
this toy model possesses the key property needed—the
spacetime is constantly fluctuating. It will be convenient for
visualizing the backreaction effect from a fluctuating
spacetime.
After setting the Ω≡ Constant and the phase angle

Θðt;xÞ to be the form of (99), the equation of motion
(98) for ϕ becomes

ð1þ cos 2ðΩtþK · xÞÞϕ̈ −∇2ϕ − 3Ω sin 2ðΩtþK · xÞ _ϕ
þ tanðΩtþK · xÞK ·∇ϕ ¼ 0; ð100Þ

where we have set A0 ¼
ffiffiffiffiffiffi
2Ω

p
such that the average of the

coefficient
A2
0

Ω cos2Θ before ϕ̈ is 1 for convenience.
In the flat spacetime case (94), each mode solution uk in

(95) contains only one single frequency. However, for the
above fluctuating spacetime case (100), high frequencies
mixes with low frequencies and each mode solution must
contain multiple frequencies. In fact, since (100) describes
a strictly periodic system with time period π=Ω and spatial
period π=jKj, each mode solution uk must change from
(95) to the following form:

ukðt;xÞ ¼ e−iðωt−k·xÞ
�
c0 þ

Xþ∞

m¼−∞
m≠0

cmei2mðΩtþK·xÞ
�
; ð101Þ

where cm are constants.
Inserting (101) into (100) and using the orthogonality of

e2imðΩtþK·xÞ, we obtain the following infinite system of
linear equations:

mth equation :
Xm−2

n¼−∞
ð−1ÞmþnK · ðkþ 2nKÞcn

þ
�
1

2
ðω − 2ðm − 1ÞΩÞ2 − 3

2
Ωðω − 2ðm − 1ÞΩÞ −K · ðkþ 2ðm − 1ÞKÞ

�
cm−1

þ ½ðω − 2mΩÞ2 − ðkþ 2mKÞ2�cm
þ
�
1

2
ðω − 2ðmþ 1ÞΩÞ2 þ 3

2
Ωðω − 2ðmþ 1ÞΩÞ þK · ðkþ 2ðmþ 1ÞKÞ

�
cmþ1

þ
Xþ∞

n¼mþ2

ð−1Þmþnþ1K · ðkþ 2nKÞcn ¼ 0; m ¼ 0;�1;�2;�3;… ð102Þ

In the above calculations, we have used the Fourier series
expansion

tan x ¼ −2
Xþ∞

n¼1

ð−1Þn sin 2nx ð103Þ

to expand the term tanðΩtþK · xÞ in (100).

For the equations of m ≤ −1, we successively add the
(mþ 1)th equation to the mth equation by the order from
m ¼ −∞ to m ¼ −1; and for the equations of m ≥ 1, we
successively add the (m − 1)th equation to themth equation
by the order from m ¼ þ∞ to m ¼ 1. Most terms can be
eliminated by these elementary row operations and the
above infinite system of linear equations (102) becomes

if m ≤ −1;
1

2
ðω − 2ðm − 1ÞΩÞðω − ð2mþ 1ÞΩÞcm−1

þ
�
3

2
ðω − 2mΩÞðω − ð2mþ 1ÞΩÞ − ðkþ 2mKÞ · ðkþ ð2mþ 1ÞKÞ

�
cm

þ
�
3

2
ðω − 2ðmþ 1ÞΩÞðω − ð2mþ 1ÞΩÞ − ðkþ 2ðmþ 1ÞKÞ · ðkþ ð2mþ 1ÞKÞ

�
cmþ1

þ 1

2
ðω − 2ðmþ 2ÞΩÞðω − ð2mþ 1ÞΩÞcmþ2 ¼ 0;
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if m ¼ 0;
X−2
n¼−∞

ð−1ÞnK · ðkþ 2nKÞcn þ
�
1

2
ðωþ 2ΩÞðω −ΩÞ −K · ðk − 2KÞ

�
c−1 þ ðω2 − k2Þc0

þ
�
1

2
ðω − 2ΩÞðωþΩÞ þK · ðkþ 2KÞ

�
c1 þ

Xþ∞

n¼2

ð−1Þnþ1K · ðkþ 2nKÞcn ¼ 0;

if m ≥ 1;
1

2
ðω − 2ðm − 2ÞΩÞðω − ð2m − 1ÞΩÞcm−2

þ
�
3

2
ðω − 2ðm − 1ÞΩÞðω − ð2m − 1ÞΩÞ − ðkþ 2ðm − 1ÞKÞ · ðkþ ð2m − 1ÞKÞ

�
cm−1

þ
�
3

2
ðω − 2mΩÞðω − ð2m − 1ÞΩÞ − ðkþ 2mKÞ · ðkþ ð2m − 1ÞKÞ

�
cm

þ 1

2
ðω − 2ðmþ 1ÞΩÞðω − ð2m − 1ÞΩÞcmþ1 ¼ 0: ð104Þ

To characterize the property of the solutions of this system more clearly, we define the following parameters for
convenience:

ϵ ¼ ω

Ω
; υ ¼ jkj

Ω
; δ ¼ jKj

Ω
; cos γ ¼ K · k

jKjjkj : ð105Þ

As mentioned before that our effective theory has a cutoff Λ such that only modes with ω, jkj ≤ Λ are relevant, which are
much smaller than Ω ∼ jKj ∼ ffiffiffiffi

G
p

Λ2 as Λ grows large. Therefore, we are only interested in the solutions of (102) or 104
when ω, jkj ≪ Ω, i.e., when ϵ, υ → 0.
Dividing both sides of 104 by Ω2 and doing some necessary algebraic manipulations, 104 can be rewritten as

if m≤−1;
�
ðm− 1Þ− ϵ

2

�
cm−1

þ
�
ð3− 2δ2Þm−

3ϵ

2
− 2mδ2

Xþ∞

n¼1

�
ϵ

2mþ 1

�
n
−

υ

2mþ 1
ðð4mþ 1Þδcosγþ υÞ

Xþ∞

n¼0

�
ϵ

2mþ 1

�
n
�
cm

þ
�
ð3− 2δ2Þðmþ 1Þ− 3ϵ

2
− 2ðmþ 1Þδ2

Xþ∞

n¼1

�
ϵ

2mþ 1

�
n
−

υ

2mþ 1
ðð4mþ 3Þδcosγþ υÞ

Xþ∞

n¼0

�
ϵ

2mþ 1

�
n
�
cmþ1

þ
�
ðmþ 2Þ− ϵ

2

�
cmþ2 ¼ 0;

if m¼ 0;
X−2
n¼−∞

ð−1Þnð2nδ2þ δυcosγÞcnþ
�
−1þ 2δ2þ ϵ

2
− δυcosγþ ϵ2

2

�
c−1þðϵ2− υ2Þc0

þ
�
−1þ 2δ2−

ϵ

2
þ δυcosγþ ϵ2

2

�
c1þ

Xþ∞

n¼2

ð−1Þnþ1ð2nδ2þ δυcosγÞcn ¼ 0;

if m≥ 1;

�
ðm− 2Þ− ϵ

2

�
cm−2

þ
�
ð3− 2δ2Þðm− 1Þ− 3ϵ

2
−2ðm− 1Þδ2

Xþ∞

n¼1

�
ϵ

2m− 1

�
n
−

υ

2m− 1
ðð4m− 3Þδcosγþ υÞ

Xþ∞

n¼0

�
ϵ

2m− 1

�
n
�
cm−1

þ
�
ð3− 2δ2Þm−

3ϵ

2
− 2mδ2

Xþ∞

n¼1

�
ϵ

2m− 1

�
n
−

υ

2m−1
ðð4m− 1Þδcosγþ υÞ

Xþ∞

n¼0

�
ϵ

2m−1

�
n
�
cm

þ
�
ðmþ 1Þ− ϵ

2

�
cmþ1 ¼ 0: ð106Þ
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As ϵ, υ → 0, the leading order asymptotic solution for fcng of the above system of linear equations (106) depends only on
the leading order of the coefficients before fcng. By keeping only the leading term for each coefficient, we obtain that the
leading order solution of (106) for fcng satisfies the following infinite system of linear equations:

0
BBBBBBBBBBBBBBBBBBB@

. .
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.
··
··

� � � −3ð3− 2δ2Þ −2ð3− 2δ2Þ −1 0 0 0 0 � � �
� � � −3 −2ð3− 2δ2Þ −ð3− 2δ2Þ − ϵ

2
0 0 0 � � �

� � � 0 −2 −ð3− 2δ2Þ − 3ϵ
2
− δυcosγ 1 0 0 � � �

� � � 6δ2 −4δ2 −1þ 2δ2 ϵ2 − υ2 −1þ 2δ2 −4δ2 6δ2 � � �
� � � 0 0 −1 − 3ϵ

2
− δυcosγ 3− 2δ2 2 0 � � �

� � � 0 0 0 − ϵ
2

3− 2δ2 2ð3− 2δ2Þ 3 � � �
� � � 0 0 0 0 1 2ð3− 2δ2Þ 3ð3− 2δ2Þ � � �

··
·· ..

. ..
. ..

. ..
. ..

. ..
. ..

. . .
.

1
CCCCCCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBBBBBB@

..

.

c−3
c−2
c−1
c0
c1
c2
c3

..

.

1
CCCCCCCCCCCCCCCCCCCA

¼

0
BBBBBBBBBBBBBBBBBBB@

..

.

0

0

0

0

0

0

0

..

.

1
CCCCCCCCCCCCCCCCCCCA

:

ð107Þ

We will denote the infinite matrix in the above Eq. (107)
by B and its elements by bmn with −∞ < m, n < þ∞. In
order to have a nonzero solution, the determinant of Bmust
be zero. This gives us the dispersion relation that ϵ and υ
must satisfy in the asymptotic regime ϵ, υ → 0.
The determinant can be calculated by Laplace

expansion:

detðBÞ ¼ b00M00 þ
Xþ∞

n¼−∞
n≠0

ð−1Þnb0nM0n; ð108Þ

where M0n is the 0, n minor of B, i.e., the infinite
determinant that results from deleting the 0th row and
the nth column of B. Due to the symmetry property of B,
we have that, for each n ≠ 0,

b0n ¼ b0;−n; M0n ¼ −M0;−n; ð109Þ

which implies that all the terms inside the summation
symbol

P
of (108) exactly cancel. Therefore, only the first

term in (108) survive and thus we have that

detðBÞ ¼ M00ðδ2Þðϵ2 − υ2Þ ¼ 0; ð110Þ

which leads to

ϵ2 ¼ υ2; ð111Þ

or equivalently

ω2 ¼ k2: ð112Þ

This proves that the usual dispersion relation still holds for
low frequency field modes.

After setting ϵ2 ¼ υ2, we start solving the infinite
system (107).
First, we rewrite (107) as the following form:

Xþ∞

n¼−∞
n≠0

bmncn ¼ −bm0c0; m ¼ 0;�1;�2;�3;… ð113Þ

Notice that the matrix elements of B has the following
symmetry properties:

bmn ¼ −b−m;−n; if m; n ≠ 0 ð114Þ

bm0 ¼ b−m;0; b0n ¼ b0;−n: ð115Þ

The above symmetry properties leads to the following
relation

cn ¼ −c−n; n ≠ 0; ð116Þ

which implies that we only need to solve cn for n > 0 to
solve the whole system.
For convenience, we define the following new variables

xn by

cn ¼ ϵc0xn; n ≠ 0: ð117Þ

Then using the relation (116), the infinite system of linear
equations (113) simplifies to the following infinite recur-
rence equations:

ð4 − 2δ2Þx1 þ 2x2 ¼
3

2
þ δ cos γ; ð118Þ

ð3 − 2δ2Þx1 þ ð3 − 2δ2Þ2x2 þ 3x3 ¼
1

2
; ð119Þ
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ðm − 2Þxm−2 þ ð3 − 2δ2Þðm − 1Þxm−1 þ ð3 − 2δ2Þmxm

þ ðmþ 1Þxmþ1 ¼ 0; if m ≥ 3; ð120Þ

where the dependence on ϵ in the Eq. (107) or (113) has
been eliminated by introducing the new variables xn, n ≠ 0
through (117) and the solution for xn depends only on δ.
In order to find the general formula for the sequence

fxmg, we define the following new variables:

ym ¼ ðm − 1Þxm−1 þmxm; m ≥ 3: ð121Þ

Then the recurrence equations (120) become

ym−1 þ 2ð1 − δ2Þym þ ymþ1 ¼ 0; m ≥ 3: ð122Þ

Sequences satisfying (122) must take the following form:

ym ¼ D cos ðmϑþ ψÞ; m ≥ 3; ð123Þ

where D and ψ are two constants and ϑ is determined by

cos ϑ ¼ −1þ δ2; sin ϑ ¼ δ
ffiffiffiffiffiffiffiffiffiffiffiffi
2 − δ2

p
: ð124Þ

Combining (123) and (121), the general formula for xm
can be obtained by iteration

xm ¼ 1

m

�
D
Xm
n¼3

ð−1Þm−n cosðnϑþ ψÞ þ ð−1Þm2x2
�

¼ ð−1Þm
m

�
−D sec

�
ϑ

2

�
sin

�ðm − 2Þϑ
2

þmπ

2

�
sin

�ðmþ 3Þϑ
2

þ ψ þmπ

2

�
þ 2x2

�
; m ≥ 3: ð125Þ

Replacing the cm in (101) by xm through (117) we obtain
that, as ϵ → 0, the mode solution ukðt;xÞ is asymptotic to

ukðt;xÞ¼c0e−iðωt−k·xÞ
�
1þϵ

Xþ∞

m¼−∞
m≠0

xmei2mðΩtþK·xÞ
�
; ð126Þ

where xm is determined by (116), (117), (118), (119), (120),
and (125).
Using the orthogonality of ei2mðΩtþK·xÞ, the relative

magnitude of the correction to uk from the usual plane
wave mode e−iðωt−k·xÞ in Minkowski spacetime can be
characterized by applying Parseval’s identity:

jΔukðt;xÞj ¼ ϵ

�Xþ∞

m¼−∞
m≠0

x2m

�1
2

: ð127Þ

From the solution (125) we know that as m → ∞,

x2m ∼
1

m2
: ð128Þ

Thus the summation inside the bracket of (127) converges
and the correction

jΔukðt;xÞj ∼ ϵ → 0; as ϵ → 0: ð129Þ

Thus we have demonstrated that the low frequency wave
modes (ω ≤ Λ) are almost not affected by the fluctuating
spacetime with much higher frequency (Ω ∼

ffiffiffiffi
G

p
Λ2).

B. General case

The methods used and results obtained in the last
subsection for the particular simplified toy model (100)
can be generalized to the generic case (98). To start, we
rewrite (98) to the following form:

ð1þ f1Þϕ̈ −∇2ϕ −Ω0f2 _ϕþ K0f3 · ∇ϕ ¼ 0; ð130Þ

where

f1 ¼
A2
0

Ω
cos2Θ − 1; ð131Þ

f2 ¼
3A2

0

2

�
_Ω
Ω2

cos2Θþ sin 2Θ
�	

Ω0; ð132Þ

f3 ¼
�∇Ω
2Ω

þ tanΘ∇Θ
�	

K0; ð133Þ

Ω0 ¼ hΩi; K0 ¼ hj∇Θji: ð134Þ

For convenience, we choose the constant A0 such that the
average of f1

hf1ðt;xÞi ¼ 0: ð135Þ

Unlike the toy model (100) we used in the last sub-
section, (130) is not strictly periodic. However, (130) is
quasiperiodic and its quasiperiod is the same as the period
of (100). This property is reflected in the Fourier transforms
f1ðω;kÞ, f2ðω;kÞ and f3ðω;kÞ of the functions f1ðt;xÞ,
f2ðt;xÞ and f3ðt;xÞ respectively which are defined by
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f1ðt;xÞ ¼
Z

dωd3kf1ðω;kÞeiðωtþk·xÞ; ð136Þ

f2ðt;xÞ ¼
Z

dωd3kf2ðω;kÞeiðωtþk·xÞ; ð137Þ

f3ðt;xÞ ¼
Z

dωd3kf3ðω;kÞeiðωtþk·xÞ: ð138Þ

For the function f1ðt;xÞ defined by (131), after setting
the constant A0 by (135) and considering the slow varying
property of Ωðt;xÞ and Θðt;xÞ in both temporal and spatial
directions, its leading order goes as

f1ðt;xÞ ∼ cos 2Θ; ð139Þ

which implies that the Fourier transform f1ðω;kÞ would
have two peaks centered at

ω ¼ �2Ω0; jkj ¼ 2K0: ð140Þ

For the function f2ðt;xÞ defined by (132), the second
term which includes the factor sin 2Θ is dominant since
the first term which includes the factor _Ω=Ω2 goes as
∼1=Λ → 0 due to the slow varying condition described by
(55) and (56). Thus, its leading order goes as

f2ðt;xÞ ∼ 3 sin 2Θ; ð141Þ

which implies that the Fourier transform f2ðω;kÞ would
also have two peaks centered at

ω ¼ �2Ω0; jkj ¼ 2K0: ð142Þ

Similarly, for the function f3ðt;xÞ defined by (133), the
second term which includes the factor tanΘ is dominant
since the absolute value of the first term which includes the
factor ∇Ω=ðΩK0Þ also goes as ∼1=Λ → 0 due to the slow
varying property ofΩ in spatial directions. Thus, its leading
order goes as

f3ðt;xÞ ∼ tanΘ
∇Θ
K0

: ð143Þ

Then using the Fourier series expansion (103) for tanΘ,
we know that the Fourier transform f3ðω;kÞ would have
infinitely many peaks centered at

ω¼�2nΩ0; jkj ¼ 2nK0; n¼ 1;2;3;…: ð144Þ

(For a rough calculation of the above Fourier transforms,
see Appendix C).
In addition, we have the zero frequency component [see

(C6) in Appendix C]

fiðω ¼ 0;k ¼ 0Þ ∼ 0; i ¼ 1; 2; 3: ð145Þ

In summary, the system described by (130) is very
similar to the system described by the simplified toy model
(100). The only difference is that the Fourier transforms of
the coefficients f1, f2, and f3 in (130) spread around center
points given by (140), (142), and (144) while the Fourier
transforms of the corresponding coefficients in (100) are
ideal delta functions exactly located at same points given
by (140), (142), and (144).
Therefore, the mode solution of (130) would take the

form similar to (101):

ukðt;xÞ

¼ e−iðωt−k·xÞ
�
c0 þ

Z
ω0≠0
k0≠0

dω0d3k0ukðω0;k0Þeiðω0tþk0·xÞ
�
;

ð146Þ

where ukðω0;k0Þ is non-negligible only when ω0, k0 are
taking values around the centers given by (140), (142),
and (144).
Inserting (146) into (130) and replacing the coefficients

f1ðt;xÞ, f2ðt;xÞ, and f3ðt;xÞ in (130) by the Eqs. (136),
(137), and (138) and then using the orthogonality of
eiðω0tþk0·xÞ, we obtain the following uncountably infinite
system of linear equations which are similar to (102):

ðω0;k0Þth equation∶ ½ðω − ω0Þ2 − ðkþ k0Þ2�ukðω0;k0Þ

þ
Z

dω00d3k00½ðω − ðω0 − ω00ÞÞ2f1ðω00;k00Þ − iΩ0ðω − ðω0 − ω00ÞÞf2ðω00;k00Þ

− iK0ðkþ ðk0 − k00ÞÞ · f3ðω00;k00Þ�ukðω0 − ω00;k0 − k00Þ ¼ 0; ð147Þ

where we have defined the notation ukð0; 0Þ ¼ c0δð0; 0Þ for convenience.
To characterize the property of the solutions of this system more clearly, we define the following parameters similar to

(105) for convenience:
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ϵ¼ ω

Ω0

; υ¼ jkj
Ω0

; δ¼K0

Ω0

; cosγ¼ k ·k0

jkjjk0j ; cosμ¼ k · f3
jkjjf3j

; cosμ0 ¼ k0 · f3
jk0jjf3j

; cosμ00 ¼ k00 · f3
jk00jjf3j

: ð148Þ

Dividing both sides of (147) by Ω2
0 gives

ðω0;k0Þth equation∶
��

ϵ −
ω0

Ω0

�
2

−
�
υ2 þ k02

Ω2
0

þ 2υ
jk0j
Ω0

cos γ

��
ukðω0;k0Þ

þ
Z

dω00d3k00
��

ϵ −
�
ω0

Ω0

−
ω00

Ω0

��
2

f1ðω00;k00Þ − i

�
ϵ −

�
ω0

Ω0

−
ω00

Ω0

��
f2ðω00;k00Þ

− iδ

�
υ cos μþ

�jk0j
Ω0

cos μ0 −
jk00j
Ω0

cos μ00
��

jf3ðω00;k00Þj
�
ukðω0 − ω00;k0 − k00Þ ¼ 0: ð149Þ

Similar to the toy model case, as ϵ, υ → 0, the leading order solution of (149) for ukðω0;k0Þ satisfies the following
uncountably infinite system of linear equations:

ifðω0;k0Þ ¼ ð0; 0Þ∶ ðϵ2 − υ2Þδð0; 0Þc0
þ
Z

dω00d3k00
��

ω00

Ω0

�
2

f1ðω00;k00Þ − i

�
ω00

Ω0

�
f2ðω00;k00Þ

þ iδ

�jk00j
Ω0

cos μ00
�
jf3ðω00;k00Þj

�
ukð−ω00;−k00Þ ¼ 0;

ifðω0;k0Þ ≠ ð0; 0Þ∶ ð−iϵf2ðω0;k0Þ − iδυ cos μjf3ðω0;k0ÞjÞc0
þ
��

ω0

Ω0

�
2

−
�
k0

Ω0

�
2
�
ukðω0;k0Þ

þ
Z

ω00≠ω0
k00≠k0

dω00d3k00
��

ω0

Ω0

−
ω00

Ω0

�
2

f1ðω00;k00Þ þ i
�
ω0

Ω0

−
ω00

Ω0

�
f2ðω00;k00Þ

− iδ

�jk0j
Ω0

cos μ0 −
jk00j
Ω0

cos μ00
�
jf3ðω00;k00Þj

�
ukðω0 − ω00;k0 − k00Þ ¼ 0; ð150Þ

where we have used the property (145) in obtaining (150) from (149).

The above uncountably infinite system of linear equa-
tions (150) can also be written formally in matrix form
similar to (107). We use similar notations that denoting
the matrix here by B and its elements by bðω0;k0Þ;ðω00;k00Þ for
convenience.
In order to have nonzero solutions, the determinant of the

uncountably infinite matrix B has to be zero, which gives
the dispersion relations that ϵ and υ must be satisfied in the
asymptotic region ϵ, υ → 0.
The “determinant” of B can be formally calculated

through Laplace expansion similar to (108):

detB ¼ bð0;0Þ;ð0;0ÞMð0;0Þ;ð0;0Þ

þ
Z

ω00≠0
k00≠0

dω00d3k00ð−1Þðω00;k00Þbð0;0Þ;ðω00;k00ÞMð0;0Þ;ðω00;k00Þ;

ð151Þ

where Mð0;0Þ;ðω00;k00Þ is the ð0; 0Þ; ðω00;k00Þ minor of B, i.e.,
the determinant resulting from deleting the (0,0)th row and
ðω00;k00Þth column of B.
Notice that since f1ðt;xÞ, f2ðt;xÞ, and f3ðt;xÞ are

all real, their Fourier transforms f1ðω;kÞ, f2ðω;kÞ, and
f3ðω;kÞ defined by (136), (137), and (138) must satisfy the
following relations:

f1ðω;kÞ ¼ f1ð−ω;−kÞ�; f2ðω;kÞ ¼ f2ð−ω;−kÞ�;
f3ðω;kÞ ¼ f3ð−ω;−kÞ�; ð152Þ

where the � means complex conjugate.
The above symmetry property (152) leads to

bð0;0Þ;ðω00;k00Þ ¼ bð0;0Þ;ð−ω00;−k00Þ;

Mð0;0Þ;ðω00;k00Þ ¼ −Mð0;0Þ;ð−ω00;−k00Þ; if ð−ω00;−k00Þ ≠ ð0; 0Þ;
ð153Þ
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which implies that all the terms inside the integral symbol
R

of (151) exactly cancel. Therefore, only the first term in
(151) survives and thus we have

detB ¼ Mð0;0Þ;ð0;0Þðϵ2 − υ2Þ ¼ 0; ð154Þ
which gives again the usual dispersion relation

ϵ2 ¼ υ2 or ω2 ¼ k2: ð155Þ
After setting the dispersion relation (155), we only need

to solve the ðω0;k0Þ ≠ ð0; 0Þth equations in (150) since

detB ¼ 0 implies that the ðω0;k0Þ ¼ ð0; 0Þth equation is
redundant.
For convenience, we define new variables xkðω0;k0Þ

similar to the xn defined in (117):

ukðω0;k0Þ ¼ ϵc0xkðω0;k0Þ; ðω0;k0Þ ≠ ð0; 0Þ: ð156Þ

Then (150) can be rewritten as

if ðω0;k0Þ ≠ ð0; 0Þ∶
��

ω0

Ω0

�
2

−
�
k0

Ω0

�
2
�
xkðω0;k0Þ

þ
Z

ω00≠ω0
k00≠k0

dω00d3k00
��

ω0

Ω0

−
ω00

Ω0

�
2

f1ðω00;k00Þ þ i

�
ω0

Ω0

−
ω00

Ω0

�
f2ðω00;k00Þ

− iδ

�jk0j
Ω0

cos μ0 −
jk00j
Ω0

cos μ00
�
jf3ðω00;k00Þj

�
xkðω0 − ω00;k0 − k00Þ

¼ if2ðω0;k0Þ þ iδ cos μjf3ðω0;k0Þj: ð157Þ

Replacing the ukðω0;k0Þ in (146) by xkðω0;k0Þ through
(156) we obtain that, as ϵ → 0, the mode solution ukðt;xÞ
is asymptotic to

ukðt;xÞ

¼ c0e−iðωt−k·xÞ
�
1þ ϵ

Z
ω0≠0
k0≠0

dω0d3k0xkðω0;k0Þeiðω0tþk0·xÞ
�
;

ð158Þ

where xkðω0;k0Þ is determined by (157).
Analogous to (125) in the simplified toy model,

xkðω0;k0Þ would also go as

xkðω0;k0Þ ∼ 1

m
; ð159Þ

when ω0, k0 taking values around the centers

ω0 ∼�2mΩ0; jk0j∼ 2mK0; m¼ 1;2;3;… ð160Þ

[xkðω0;k0Þ is negligible if ω0, k0 is far away from these
centers].
Due to Parseval’s theorem, (159) implies that the integral

inside the bracket of (158) converges which is similar to
(127) and thus the correction to ukðt;xÞ also goes as ϵ.
Therefore, when we quantize the scalar field ϕ in our

wildly fluctuating spacetime by expanding it in terms of the
annihilation and creation operators according to (93), the
leading order would still be the form of the Minkowski
quantum field expansion (15). The correction to the
dispersion relation ω2 ¼ k2 and the plane wave mode

e−iðωt−k·xÞ are on the order ∼ϵ. In addition, the extra wave
modes which mixing in (126) or (158) are all modes with
frequencies higher than Ω0 ∼

ffiffiffiffi
G

p
Λ2, which is much larger

than our effective QFT’s cutoff Λ. These extremely high
frequency modes beyond the cutoff are irrelevant to our
low energy physics. This also explains why the ordinary
QFT works by assuming fixed Minkowski spacetime. The
small scale structure averages out in its effect on the long
wavelength low energy fields.
In summary, we have argued that although our spacetime

sourced by the quantum vacuum is highly curved and
wildly fluctuating, the backreaction of the resulting space-
time on the quantum field sitting on it is small. This justifies
our method of neglecting backreaction and using the
quantum field expansion (15) in Minkowski spacetime at
the beginning.

VIII. THE MORE GENERAL
INHOMOGENEOUS METRICS

In previous sections we assume the simplest inhomo-
geneous metric (23) to describe the spacetime resulting from
the inhomogeneous vacuum. In this section, we try to
generalize the result tomoregeneral inhomogeneousmetrics.
The quantum fluctuations of the vacuum is not com-

pletely arbitrary, the magnitude of the fluctuations must be
the same everywhere and in every direction, i.e., the
spacetime is still stochastically homogeneous and isotropic.
Thus we can always choose a special gauge and construct
the following general synchronous coordinate:

ds2 ¼ −dt2 þ habðt;xÞdxadxb; a; b ¼ 1; 2; 3: ð161Þ
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For the above metric (161), we employ the initial value
formulation of general relativity. In this formulation, the
Einstein equation is equivalent to six equations for the
evolution of the second fundamental form

_kab ¼ −Rð3Þ
ab − ðtrkÞkab þ 2kackcb

þ 4πGρhab þ 8πG
�
Tab −

1

2
habtrT

�
; ð162Þ

plus the usual four constraint equations,

Rð3Þ þ ðtrkÞ2 − kabkab ¼ 16πGρ; ð163Þ

Dakab −DbðtrkÞ ¼ 8πGjb; ð164Þ

where kab ¼ 1
2
_hab, kab ¼ hachbdkcd, trk¼ habkab, ρ ¼ T00,

jb ¼ habT0a, trT ¼ habTab, Rð3Þ is the 3-dimensional spa-
tial curvature and Da is the derivative operator associated
with hab.
Taking trace on both sides of (162) and then combining

with (163) gives:

hab _kab − kabkab ¼ −4πGðρþ trTÞ: ð165Þ

It is interesting to notice that there are no spatial derivatives
included on the left hand of the above Eq. (165). The key
evolution equation (41) for aðt;xÞ we used in previous
sections is just the special case of the above Eq. (165).
Direct calculation using the expression (43) shows that,

the contribution from a real massless scalar field to the
right-hand side of (165) is

ρþ trT ¼ 2 _ϕ2; ð166Þ

where all the spatial derivatives of ϕ and all the explicit
dependence on the metric gμν in the definition of stress
energy tensor (43) are canceled. It is also interesting to
notice that the above exact expression (166) is exactly the
same with the corresponding expression (44) for the
simplest inhomogeneous metric (23) case.
We first consider the following special case:

habðt;xÞ ¼

0
B@

a2ðt;xÞ 0 0

0 b2ðt;xÞ 0

0 0 c2ðt;xÞ

1
CA: ð167Þ

The spacetime described by the above coordinate (167)
possesses more freedoms than (23) and thus would exhibit
richer structures. In this case, the expansion rate at the same
point becomes directionally dependent. Along the three
principle axes x̂, ŷ, and ẑ, which are eigenvectors of the
symmetric matrix hab in (167), the expansion rates _a=a,
_b=b, and _c=c can be different. This means that, at one same

point, the space can be expanding in one or two directions
and contracting on the other two or one directions.
Under the coordinate system (167), Eq. (165) becomes

ä
a
þ b̈
b
þ c̈
c
¼ −4πGðρþ trTÞ; ð168Þ

which is a generalization of the key evolution equation (41)
we used in previous sections.
Let

ä
a
¼−Ω2

1ðt;xÞ;
b̈
b
¼−Ω2

2ðt;xÞ;
c̈
c
¼−Ω2

3ðt;xÞ; ð169Þ

then (168) immediately leads to

Ω2
1ðt;xÞ þ Ω2

2ðt;xÞ þΩ2
3ðt;xÞ ¼ 4πGðρþ trTÞ: ð170Þ

As the functions a, b, and c are alternately symmetric, their
expectation values must be equal

hΩ2
i ðt;xÞi ¼

4πG
3

hρþ trTi; i ¼ 1; 2; 3: ð171Þ

Unlike equation (41), here Ω2
i ðt;xÞ does not necessarily

go exactly the same as 4πG
3
ðρþ trTÞ. Since 4πGðρþ trTÞ

is slowly varying, Ω2
i must also be slowly varying func-

tions. Otherwise we would have two or three fast varying
functions sum together and precisely cancel each other to
give a slowly varying function, which is almost impossible
in the system with such huge quantum fluctuations. Thus
the evolution of a, b, and c are still adiabatic processes and
the conclusion we obtained in previous sections still holds.
We can obtain solutions similar to (51) that

aðt;xÞ≃ e
R

t

0
H1xðt0Þdt0P1ðt;xÞ; ð172Þ

bðt;xÞ≃ e
R

t

0
H2xðt0Þdt0P2ðt;xÞ; ð173Þ

cðt;xÞ≃ e
R

t

0
H3xðt0Þdt0P3ðt;xÞ; ð174Þ

and on average

Hi ¼ αΛe−β
ffiffiffi
G

p
Λ; i ¼ 1; 2; 3; ð175Þ

where

Hi ¼
1

t

Z
t

0

Hixðt0Þdt0: ð176Þ

Therefore, the observable physical volume is,
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VðtÞ ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffi

hðt;xÞ
p

d3x ¼ Vð0Þe3Ht; ð177Þ

where h ¼ det hab ¼ a2b2c2.
Next we investigate the most general case

habðt;xÞ ¼

0
B@

a2ðt;xÞ dðt;xÞ eðt;xÞ
dðt;xÞ b2ðt;xÞ fðt;xÞ
eðt;xÞ fðt;xÞ c2ðt;xÞ

1
CA: ð178Þ

In this case, the three orthogonal eigenvectors of the
symmetric matrix hab can rotate in space. This gives more
freedom and structure to the spacetime evolution than in the
case described by the coordinate system (167). For exam-
ple, an initial sphere will distort toward an ellipsoid with
principle axes given by eigenvectors of hab, with rates
given by time derivatives _λi=λi of the corresponding
eigenvalues λ2i ðt;xÞ, i ¼ 1, 2, 3.
Expanding the dynamic equation (165) using the metric

(178) gives

a2h�11
h

ä
a
þ b2h�22

h
b̈
b
þ c2h�11

h
c̈
c
þ dh�12

h
d̈
d
þ eh�13

h
ë
e

þ fh�23
h

f̈
f
þ Fðhab; _habÞ ¼ −4πGðρþ trTÞ; ð179Þ

where h ¼ detðhabÞ is the determinant of the matrix (178),
h�ab is the matrix’s ða; bÞ cofactor and F is a nonlinear
function of the metric components hab and their first time
derivatives _hab. (179) is difficult to handle. Further inves-
tigations are needed in the future.
However, the results we obtained for the coordinate

(167) suggest that, for the most general case (178), the
eigenvalues λ2i ðt;xÞ should also evolve adiabatically sim-
ilar to a2, b2, and c2. In other words, we expect that the
results (172), (173), (174), and (175) can be generalized to
λi in the most general case and the physical volume of space
would expand as

VðtÞ ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffi

hðt;xÞ
p

d3x

¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffi

λ21λ
2
2λ

2
3

q
d3x

¼ Vð0Þe3Ht; ð180Þ

where H is determined by (75).

IX. DISCUSSION

So far, we have presented a new mechanism of vacuum
gravitation and showed that it leads to a slow accelerating
expansion instead of a catastrophic explosion of the
universe. In this section, we discuss some questions raised

and a couple of new concepts suggested by this different
way of vacuum gravitating.

A. Lorentz invariant cutoffs

A potential concern is that the cutoff Λ we are using is
not Lorentz invariant. However, the results would not
change if using Lorentz invariant cutoffs instead. This is
because the Λ is just used for comparing the magnitude
of different infinities, whose leading order dependencies
on Λ can also be obtained just by dimensional analysis. In
previous sections, we have taken this simple non-Lorentz
invariant cutoff Λ for convenience. In this subsection, we
use more complicated but Lorentz invariant Pauli-Villars
type cutoffs to show directly that the results do not change.
First, we calculate the two point function

hϕðt1;xÞϕðt2;xÞi ¼
Z

dωd3k
ð2πÞ4

i
ω2−k2þ iϵ

e−iωΔt; ð181Þ

where Δt ¼ t1 − t2. We then replace the photon propagator

1

ω2 − k2 þ iϵ
ð182Þ

in (181) by

1

ω2 − k2 þ iϵ
−

1

ω2 − k2 − Λ2
1 þ iϵ

; ð183Þ

where Λ1 can be thought of as a fictitious heavy photon,
which can serve as a Lorentz invariant cutoff.
Then (181) becomes

−iΛ2
1

Z
dωd3k
ð2πÞ4 e−iωΔt

Z
1

0

dα1

�
1

ω2 − k2 − α1Λ2
1 þ iϵ

�
2

;

ð184Þ

where we have used the identity

1

AB
¼

Z
1

0

dα
ðAþ ðB − AÞαÞ2 : ð185Þ

Equation (184) is still logarithmically divergent when
setting Δt ¼ 0. To make it converge, we employ another
Pauli-Villars type cutoff Λ2 by replacing the

1

ω2 − k2 − α1Λ2
1 þ iϵ

ð186Þ

in (184) with
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1

ω2 −k2 − α1Λ2
1 þ iϵ

−
1

ω2 −k2 − α1Λ2
1 −Λ2

2 þ iϵ
: ð187Þ

Then (184) becomes

−iΛ2
1Λ4

2

Z
dωd3k
ð2πÞ4 e−iωΔt

Z
1

0

dα1

Z
1

0

dα2

Z
1

0

dα02
1

ðω2 −k2 − α1Λ2
1 − α2Λ2

2 þ iϵÞ2ðω2 −k2 − α1Λ2
1 − α02Λ2

2 þ iϵÞ2 ; ð188Þ

where we have used the identity (185) again in obtaining (188).
Performing the integration

R
d3k first, (188) becomes

Λ2
1Λ4

2

16π2

Z
1

0

dα1

Z
1

0

dα2

Z
1

0

dα02

Z
dωe−iωΔt

·
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 − ~Λ2ðα1; α2Þ þ iϵ
q ·

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − ~Λ02ðα1; α02Þ þ iϵ

q ·
1
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 − ~Λ2ðα1; α2Þ þ iϵ
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − ~Λ02ðα1; α02Þ þ iϵ

q �3
; ð189Þ

where

~Λ2ðα1; α2Þ ¼ α1Λ2
1 þ α2Λ2

2; ~Λ02ðα1; α02Þ ¼ α1Λ2
1 þ α02Λ2

2: ð190Þ
Then let ω ¼ ~Λðα1; α2Þu, (189) becomes

Λ2
1Λ4

2

16π2

Z
1

0

dα1

Z
1

0

dα2

Z
1

0

dα02
1

~Λ4ðα1; α2Þ

Z
due−i ~Λðα1;α2ÞΔtuI0ðu; α1; α2; α02Þ; ð191Þ

where the integrand is,

I0ðu; α1; α2; α20Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − 1þ iϵ

~Λ2ðα1;α2Þ
q ·

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 −

~Λ02ðα1;α2 0Þ
~Λ2ðα1;α2Þ þ

iϵ
~Λ2ðα1;α2Þ

r ·
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 − 1þ iϵ
~Λ2ðα1;α2Þ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 −

~Λ02ðα1;α2 0Þ
~Λ2ðα1;α2Þ þ

iϵ
~Λ2ðα1;α2Þ

r �
3
: ð192Þ

If α2 ≠ α02, the integrand is multivalued in complex plane and has four branch points

u1;2;3;4 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

iϵ
~Λ2

r
; �

~Λ0

~Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

iϵ
~Λ02

r
: ð193Þ

Assuming Δt > 0, the integral contour goes around the lower half plane. Without loss of generality assuming α2 > α02,

we can choose the branch cut being the line connecting u1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − iϵ

~Λ2

q
and u3 ¼ ~Λ0

~Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − iϵ

~Λ02

q
. The integral I0 is determined

by the integral along this branch cut. Since I0 →
1ffiffiffiffiffiffiffiffiffiffi

u−u1;3
p when u → u1;3, we can easily see that the integral along the branch

cut converges to a finite number.
If α2 ¼ α02, I0 becomes ðu2 − 1þ iϵ

~Λ2ðα1;α2ÞÞ
−5=2=8. The integral can be solved easily in this case, i.e.,

R
∞
0 duI0 ¼ 1

12
when

ϵ → 0, which is also finite.
Therefore, after setting Δt ¼ 0, we have

hϕ2i ¼ Λ2
1Λ4

2

16π2

Z
1

0

dα1

Z
1

0

dα2

Z
1

0

dα02
1

~Λ4ðα1;α2Þ

Z
duI0ðu;α1;α2;α02Þ∼Λ2; as Λ∼Λ1 ∼Λ2 →þ∞: ð194Þ

Similarly, we have

h _ϕ2i ¼ lim
Δt→0

d
dt1

d
dt2

hϕðt1;xÞϕðt2;xÞi

¼ Λ2
1Λ4

2

16π2

Z
1

0

dα1

Z
1

0

dα2

Z
1

0

dα02
1

~Λ2ðα1; α2Þ

Z
duu2I0ðu; α1; α2; α02Þ ∼ Λ4; as Λ ∼ Λ1 ∼ Λ2 → þ∞; ð195Þ

which gives the same result as (55).
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When calculating the quantity hϕ̈2i from (191) using the
same technique as in (195), we would get the integralR
duu4I0, which is logarithmically divergent. To make it

converge, we can employ another two Pauli-Villars type
cutoffs Λ3 and Λ4 just as what we did from (186) to (187).
The exact dependence of hϕ̈2i on Λ1, Λ2, Λ3, and Λ4 is
complicated, but the result for its leading order goes as

hϕ̈2i ∼ Λ6; ð196Þ

which gives the same result as (56).
So far, we have obtained that the leading order depend-

encies of h _ϕ2i and hϕ̈2i on the non-Lorentz invariant sharp
cutoff Λ and on the Lorentz invariant Pauli-Villars type
cutoffs Λ1, Λ2, (Λ3, Λ4) are the same. As we mentioned in
the beginning of this subsection, these results are natural
since they could have been guessed by dimensional
analysis. Therefore, the slow varying condition (57) is still
satisfied by using Lorentz invariant cutoffs that our results
would not change.

B. The singularities at aðt;xÞ= 0
In our way of vacuum gravitating, the space is alter-

natively expanding and contracting at each spatial point,
and, during each such cycle, the expansion outweighs the
contraction a little bit due to the weak parametric resonance
effect. This process gives a slowly increasing amplitude
Aðt;xÞ of the scale factor aðt;xÞ, whose observable effect is
just the accelerating expansion of our universe.
Probably one of the biggest concerns about this physical

picture is the appearance of singularities at points
aðt;xÞ ¼ 0—according to the solution (58), the scale factor
aðt;xÞ must go through zero whenever the space at x
switches from contraction phase to expansion phase.
Singularities are a generic feature of the solution of

Einstein field equations under rather general energy con-
ditions (e.g., strong, weak, dominant etc.), which is
guaranteed by Penrose-Hawking singularity theorems
[24–29]. In this paper, since we investigate the gravitational
property of quantum vacuum without modifying either
QFT or GR, the appearance of singularities is inevitable—
QFT predicts a huge vacuum energy, and according to GR,
huge energy must collapse to form singularity.
It is usually thought that the Einstein field equations

break down at singularities and thus the spacetime evolu-
tion will stop once the singularity is formed. However, it is
not the case for our solution to the key dynamic evolution
equation (41). Equation (41) describes the oscillating
motion a harmonic oscillator. It is natural for a harmonic
oscillator to pass its equilibrium point aðt;xÞ ¼ 0 at
maximum speed without stopping. So in our solution,
the singularity immediately disappears after it forms and
the spacetime continues to evolve without stopping.
Singularities just serve as the turning points at which the
space switches from contraction phase to expansion phase.

1. Resolving singularity by multiplying a

In order to understand why in our solution the singularity
is not the end of spacetime evolution, it is helpful to
review one crucial step in deriving (41) from (40).
Rigorously speaking, we can only obtain the following
equation from (40):

−
ä
a
¼ Ω2ðt;xÞ; ð197Þ

which is not equivalent to (41). To get (41), we need one
more step—multiply both sides of (197) by a.
Mathematically, a is not allowed to be zero in (197) since

it is in the denominator. In fact, when writing down the
Einstein field equations (24), (25), (26), and (27), it has
been presumed that a ≠ 0 since if a ¼ 0, the metric would
become degenerate (g ¼ detðgμνÞ ¼ −a6 ¼ 0), the curva-
ture would become infinite and the Einstein tensor are
simply not defined there.
But, after the inequivalent algebraic manipulation of

multiplying both sides of (197) by a, a is allowed to evolve
to zero in the resulting Eq. (41) since there is nothing wrong
for a harmonic oscillator to go through its equilibrium
point. In this sense, we have smoothly extended the
solution beyond the singularity by the mathematical oper-
ation of multiplying both sides of (197) by a (or more
generally by some power of the metric determinant).
The idea of resolving a singularity by mulptiplying

Einstein equations with some power of the determinant of
themetric is not new. Einstein himself had proposed this idea
with his collaborator Rosen in 1935 (for which they credited
this idea to Mayer) [30]. Ashtekar used a similar trick in
his method of “new variables” to develop an equivalent
Hamiltonian formulation of GR [31]. It is also proposed by
Stoica that the equations obtained aftermultiplying the usual
Einstein equations by some power of the metric determinant
are actually more fundamental than the usual Einstein
equations [32–40]. In this sense,we argue that our spacetime
with singularities due to the metric becoming degenerate
(a ¼ 0) is a legitimate solution of GR.

2. Singularities do not cause problems

While singularities are natural and inevitable in solutions
to Einstein’s equations, we must discuss the consequences
they bring to this calculation.
Will the singularities cause serious problems? At least in

our case we do not feel they cause problems. To see this, we
investigate how the singularities affect the propagation of
the field modes in our toy model (100).
In this toy model, the spacetime have singularities at the

hypersurfaces

ΩtþK ·x¼
�
nþ 1

2

�
π; n¼ 0;�1;�2;�3;… ð198Þ
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Using the relation xm ¼ −x−m, which is evident from (116)
and (117), the asymptotic mode solution (126) becomes

ukðt;xÞ¼c0e−iðωt−k·xÞ
�
1þ2iϵ

Xþ∞

m¼1

xm sin2mðΩtþK ·xÞ
�
:

ð199Þ

At the singularities (198), the terms sin 2mðΩtþK · xÞ
of (199) are all zero and thus we have

ukðt;xÞ ¼ c0e−iðωt−k·xÞ: ð200Þ

So uk is normal at singularities which shows that the field
can naturally pass the singularities without problems.
One might still worry about the divergences of the time

or spatial derivatives of uk at the singularities (198).
However, these divergences arise from those small high
frequency corrections [terms inside the summation symbol
Σ of (199)] with frequencies 2mΩ which are much higher
than our effective QFT’s cutoff Λ. When looking at low
energy scales (≤Λ), uk behaves the same as the mode
solution (95) when the background spacetime is flat; only
when looking at high energy scales (≥

ffiffiffiffi
G

p
Λ2) which are

much higher than the cutoff scale Λ, those small high
frequency corrections are noticeable.
In this sense, the singularities do not cause problems at

the observable low energy regime—after all, the singular-
ities only appear (and immediately disappear) above Planck
energy scales, which should not affect the low energy
physics whose energy scale is far below Planck.

C. Similarity of effects of vacuum energy in
nongravitational system and gravitational system

Vacuum fluctuations and their associated vacuum ener-
gies are direct consequences of the Heisenberg’s uncer-
tainty principle of quantum mechanics. Although it is still
controversial [41], various observable effects are often
ascribed to the existence of vacuum energies and have
been experimentally verified, which strongly suggests the
reality of vacuum fluctuations. These vacuum fluctuation
effects include the spontaneous emission [42], the Lamb
shift [43], the anomalous magnetic moment of the electron
[44,45] and the Casimir effect [46–49]. The reality of the
vacuum energy associated to the spontaneous symmetry
breaking of electroweak theory has also been confirmed by
the discovery of the Higgs boson at the LHC [50,51].
If we assume that the vacuum fluctuations do exist as

evidenced by the above listed observable effects, then
according to the equivalence principle, the associated
vacuum energies would gravitate as well as all other forms
of energy. This has been experimentally demonstrated by,
for example, the gravitational test of Lamb shift energy
[52–54]. The gravitational property of Casimir energy has
not been tested experimentally, but has been demonstrated

theoretically with the conclusion that it does gravitate
according to equivalence principle [55–58].
However, in the literature, the value of vacuum energy

density is usually thought to play a different role in
nongravitational systems and in gravitational systems.
The actual value of the vacuum energy density is generally
regarded as irrelevant in nongravitational contexts based on
the argument that only energy differences from the vacuum
are measurable; while when gravity is present, the actual
value of the energy matters, not just the differences, since
the source for the gravitational field is the entire energy
momentum tensor that its large value may be potentially
disastrous.
We argue differently in this section with the following

points: (i) the value of vacuum energy density can also be
relevant in nongravitational contexts; (ii) the huge value of
vacuum energy density is not a direct observable and that it
is not disastrous in a theory of gravity. Moreover, there is
essentially no difference between the roles played by
vacuum energy in nongravitational systems and in gravi-
tational systems. In other words, although technically more
complicated when gravity is included, the gravitational
effect of the vacuum energy on spacetime metric is
intrinsically the same as its effect on material bodies when
gravity is excluded.

1. Value of vacuum energy is relevant
in Casimir effect

Let us first consider the Casimir effect. The Casimir
force is usually derived by calculating the change in
vacuum energy due to the presence of the conducting
plates, which acts as mirrors to reflect electromagnetic
waves (We will call them mirrors in the following). This
derivation is straightforward, but loses some important
physical details about what is going on in the system
[59,60]. Due to quantum fluctuations, the zero point fields
constantly impinge on both sides of the mirror and then
reflect back, which transmit momentum to the mirror and
thus result in forces on both sides of the mirror. The Casimir
stress (force per unit area) is just the difference between the
pressure exerted by the electromagnetic field vacuum from
inside and outside

Sðt; x; yÞ ¼ T inside
zz − Toutside

zz ; ð201Þ

where we have set that the two parallel mirrors are normal
to the z axis. Since the vacuum fluctuations between the
two mirrors are different from the vacuum fluctuations
outside, the expectation values of T inside

zz and Toutside
zz would

be different and thus gives a net average force. Although
both T inside

zz and Toutside
zz are divergent, this average force is

finite since the quartic divergent Minkowski zero point
fluctuations are canceled after the subtraction in (201) and
one obtains the well known Casimir stress [60]
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hSi ¼ −
π2

240d4
: ð202Þ

Thus the effect of the value of zero point energy disappears
in the calculations. It is for this reason that although the
Casimir effect is usually regarded as evidence of the reality
of zero point energy, the actual value of its energy density is
thought to be irrelevant in this effect.
However, the value of zero point energy density does

have an effect. Note that (202) only gives the expectation
value of the Casimir stress S, but S is never a constant, it
fluctuates. That is because the amount of momentum
carried by the zero point fields which impinge on both
sides of the mirror is constantly fluctuating due to the fact
that the vacuum is not an eigenstate of the zz component of
the stress energy tensor Tzz. The magnitude of the fluc-
tuation of each Tzz is large and diverges as the same order
of the vacuum energy density hT00i. For a perfect mirror,
since the fields on the two sides fluctuate independently of
each other, the mean-squared stresses on the two sides
simply add, resulting in the magnitude of the fluctuation of
the net stress also diverges as

hΔS2i ¼ hðS − hSiÞ2i ∼ hT00i2 → ∞: ð203Þ

For more realistic imperfect mirrors which become trans-
parent for frequencies higher than its plasma frequency Λ,
the hT00i in (203) contains contributions only from field
modes of frequencies lower than Λ and the mean squared
value of the net stress S goes as

hΔS2i ∼ hT00i2 ∼ Λ8: ð204Þ

The plasma frequency Λ in (204) acts as an effective cutoff
which depends on the microstructure of the mirror. It is
similar but distinct from the effective QFT’s cutoff Λ in
(75), which depends on the microstructure of spacetime.
Therefore, the value of zero point energy density is still

physically significant even in nongravitational system. Its
value appears in (203) and (204) to characterize the strength
of Casimir stress fluctuation, which implies that the net
Casimir stress is constantly fluctuating with huge magni-
tudes around its small mean value (202). Due to this huge
fluctuation, at almost any instant, the magnitude of the
stress at each single point of the mirror is as large as the
value of the zero point energy density.
However, this effect is strong only at small scales. Its

measurable effect becomes small at larger scales. In
practice, the measurements must be taken over some finite
time interval T and some finite surface area of order l2.
More precisely, what the force detector measures is the time
and surface average

S̄ ¼
Z

dtdxdyfðt; x; yÞSðt; x; yÞ; ð205Þ

where the averaging function f satisfiesZ
dtdxdyfðt; x; yÞ ¼ 1: ð206Þ

The exact shape of the averaging function depends on the
measuring apparatus. On physical grounds one can choose
f to be a single peak over a time interval T comparable to
the experimental resolving time and over a spatial region
of area l2 comparable to the resolution of the measuring
device. Although the magnitude of the fluctuations of the
net stress S is formally infinite as shown in (203), the
magnitude of the measurable fluctuations of its average S̄ is
finite. This is because the effect of the vacuum fluctuations
at small scales is significantly weakened when averaging
over larger scales. The calculations have been done by G
Barton in [61] with the conclusion that, for the realistic case
where l ≪ cT, the mean squared deviation

hΔS̄2i ¼ hðS̄ − hS̄iÞ2i ¼ constant
T8

; ð207Þ

where the “constant” here is a pure number as could have
been foreseen on dimensional grounds. The above equa-
tion (207) shows that hΔS̄2i increases as T decreases,
which means that the better the measuring device, the
stronger fluctuation due to the effect of the value of the zero
point energy density can be measured. And in principle,
using a perfect instantaneous measuring device (T → 0),
one can measure the infinite fluctuations of the Casimir
stress on a perfect mirror due to the infinite value of zero
point energy density. In practice, however, hΔS̄2i is too
small to be measured for a real force detector whose
resolving time T is too large [61].

2. Effect of vacuum energy on the motion of mirrors

The value of zero point energy density also has effects on
the dynamic motion of small material bodies. Imagine that
we place a single mirror of very small size in the vacuum
and then release it. The mirror would experience a
fluctuating force exerted by the quantum field vacuum
and starts to move. The equation of motion of the mirror,
which is called quantum Langevin equation, can be
generally described by

Ẍ ¼ Fðt; X; _X;ϕ; _ϕ;…Þ; ð208Þ

where X is the mirror’s position, ϕ represents the field
interacting with the mirror which is usually taken to be a
scalar field for simplicity and we have set the mirror’s mass
M ¼ 1 for convenience. The average force in this case
would be zero because of symmetry

hFi ¼ 0; ð209Þ
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and similar to the Casimir stress fluctuation (203), the force
here also undergoes wild fluctuations with a magnitude

hF2i ∝ hT00i2 → ∞: ð210Þ

The mathematically infinite fluctuating force F gives
infinite instantaneous accelerations of the mirror through
(208). Similar to the case of infinite Casimir stress fluctuation
(203), this infinite fluctuating force and infinite instantaneous
accelerationmake sense since they are also only significant at
very small scales and will not result in infinite fluctuation of
the mirror’s position at observable larger scales. In fact, the
mirror would oscillate back and forth with very high speeds,
but its range of motion is still small [62–66].
More precisely, suppose that the mirror is initially located

at Xð0Þ ¼ 0 with velocity _Xð0Þ ¼ 0 and is then released at
t ¼ 0. The magnitude of its acceleration ẌðtÞ and velocity
_XðtÞ, which can be characterized by the quantity hẌ2ðtÞi and
h _X2ðtÞi, is large. But, the magnitude of the range of the
mirror’s fluctuatingmotion,which canbecharacterizedby the
observable mean squared displacement hX2ðtÞi, is still small.
In this sense, the value of vacuum energy density is still

relevant even in nongravitational physics. This value
appears in Eq. (210) to characterize the strength of the
force fluctuations acting on the mirror at small scales and it
may have small observable effects at larger scales such as
diffusions predicted in [64–66].

3. Analogies between the motion of mirror
and the motion of aðt;xÞ

Although technically more complicated in gravity, the
basic dynamic equation of motion (41) satisfied by the
scale factor aðt;xÞ is in fact very similar to the equation of
motion (208) satisfied by the mirror’s position XðtÞ.
Consider only the contribution from the massless scalar
field ϕ, (41) is just the following same form as Eq. (208)

ä ¼ Fða; _ϕÞ; ð211Þ

where

Fða; _ϕÞ ¼ −
8πG
3

_ϕ2a: ð212Þ

Also, the average of the fluctuating force Fða; _ϕÞ is zero
due to symmetry

hFða; _ϕÞi ¼ 0; ð213Þ

and its magnitude of fluctuation

hF2ða; _ϕÞi ∝ hT00i2 → ∞: ð214Þ

The above two statistical properties (213) and (214)
satisfied by the “force” driving the “motion” of the scale

factor a are the same with the statistical properties (209)
and (210) satisfied by the force driving the motion of the
mirror. In this sense, the role played by the value of the
vacuum energy density in gravitational system is similar to
its role in the nongravitational system.
Concretely speaking, the vacuum energy density results

in large instantaneous acceleration Ẍ and velocity _X of the
mirror, but the observable position fluctuations of the
mirror, which can be characterized by the quantity hX2i,
is not large. Analogously, the vacuum energy density
results in the large instantaneous “acceleration” ä and
“velocity” _a of the scale factor, but the observable physical
distance defined by (30), whose value is determined by the
quantity ha2i, is also not large. These properties about
aðt;xÞ are evident from the solutions (51), (58), and (75),
from which we can see that the quantities hä2i and h _a2i are
as large as hT00i2 and hT00i respectively, while the
magnitude of the quantity ha2i is on the order 1.
In this sense, the role played by vacuum energy in

gravitational system is similar to its role in the nongravita-
tional mirror systems—it appears both at (210) and (214) to
show the strongness of vacuum fluctuations at microscopic
scales (for mirrors, “microscopic” means atomic scale; for
gravity, microscopic means Planck scale) and their observ-
able effects are both small at macroscopic scales.
By this same kind of mechanism, the violent gravita-

tional effect produced by the vacuum energy density is
confined to Planck scales, and its effect at macroscopic
scales—the accelerating expansion of the universe, due to
the weak parametric resonance is so small that, it is only
observable after accumulations on the largest scale—the
cosmological scale.
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APPENDIX A: REAL MASSLESS
SCALAR FIELD

In this appendix we give the calculation details about
how the quantum vacuum fluctuates all over the space-
time by using the massless scalar field (15) as an
example.
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We first define the covariance of the energy density
operator at two spacetime points x ¼ ðt;xÞ and x0 ¼ ðt0;x0Þ

CovðT00ðxÞ;T00ðx0ÞÞ
¼ hfðT00ðxÞ− hT00ðxÞiÞðT00ðx0Þ− hT00ðx0ÞiÞgi; ðA1Þ

where the curly bracket fg in (A1) is the symmetrization
operator which is defined as, for any two operators A and B,

fABg ¼ 1

2
ðABþ BAÞ: ðA2Þ

Inserting (15) and (18) into (A1) gives the following
result

CovðT00ðxÞ; T00ðx0ÞÞ

¼ 1

2

Z
d3kd3k0

ð2πÞ6
ðωω0 þ k · k0Þ2

2ω2ω0

· cosððωþ ω0ÞΔt − ðkþ k0Þ · ΔxÞ; ðA3Þ

where Δt ¼ t − t0 and Δx ¼ x − x0 are time and
space separation of the two spacetime points x
and x0.
If x and x0 are timelikely separated, we can find a

reference frame to set Δx ¼ jΔxj ¼ 0. In this case, evalu-
ation of the integral in (A3) for a high frequency cutoff
jkj ¼ Λ gives

CovðT00ðxÞ;T00ðx0ÞÞ¼
1

24π4Δt8
ð½−ðΛΔtÞ6þ21ðΛΔtÞ4−72ðΛΔtÞ2þ36�cosð2ΛΔtÞ

þ6½ðΛΔtÞ5−8ðΛΔtÞ3þ12ΛΔt�sinð2ΛΔtÞþ12½ðΛΔtÞ3−6ΛΔt�sinðΛΔtÞ
þ36½ðΛΔtÞ2−2�cosðΛΔtÞþ36Þ: ðA4Þ

If x and x0 are spacelikely separated, we can find a reference frame to set Δt ¼ 0. In this case, evaluation of the integral
in (A11) for a high frequency cutoff jkj ¼ Λ gives

CovðT00ðxÞ; T00ðx0ÞÞ ¼
1

32π4Δx8
ð½2ðΛΔxÞ4 − 34ðΛΔxÞ2 þ 33� cosð2ΛΔxÞ − ½12ðΛΔxÞ3 − 50ΛΔx� sinð2ΛΔxÞ

þ 16½ðΛΔxÞ2 − 6� cosðΛΔxÞ − 64ΛΔx sinðΛΔxÞ þ 63Þ ðA5Þ

As Δt and Δx goes to 0, both (A4) and (A5) reduces to
the variance of the energy density,

hðT00 − hT00iÞ2i ¼
2

3

�
Λ4

16π2

�
2

¼ 2

3
hT00i2: ðA6Þ

We then investigate the Pearson product-moment corre-
lation coefficient

ρx;x0 ¼
CovðT00ðxÞ; T00ðx0ÞÞ

σxσx0
; ðA7Þ

where

σx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðT00ðxÞ − hT00ðxÞiÞ2i

q
: ðA8Þ

The correlation coefficient ρx;x0 shows by its magnitude
the strength of correlation between two random variables.
ρx;x0 is positive if the energy density T00 at x and x0 are most
possibly lying on the same side of the vacuum expectation
value hT00i ¼ Λ4=ð16π2Þ. Thus a positive correlation
coefficient ρx;x0 implies the energy density at x and x0 tend
to be simultaneously greater than, or simultaneously less
than the expectation value. Similarly, a negative ρx;x0

implies the energy density tend to lie on opposite sides
of the expectation value. We will call the energy density T00

at x and x0 are positively correlated if ρx;x0 > 0 or negatively
correlated (anticorrelation) if ρx;x0 < 0.
Because of transnational invariance, ρx;x0 is only depen-

dent on the temporal and spatial separation Δt ¼ t − t0,
Δx ¼ x − x0. For the real massless scalar field (15), the
behavior of the correlation coefficient ρx;x0 as a function of
temporal separation ΛΔt for the case of Δx ¼ 0 and as a
function of spatial separation ΛΔx for the case of Δt ¼ 0

are plotted in Figs. 7 and 8, respectively.
In the temporal direction, i.e., the case of Δx ¼ 0

(Fig. 7), the correlation coefficient goes quickly from 1
down to around −0.9 in a time scale around Δt ¼ 1.9=Λ
and then goes up to 0.7 in a time scale around Δt ¼ 3.8=Λ
and then goes down and up alternatively from positive
values to negative values with decreasing amplitudes. It
roughly oscillates as − cosð2ΛΔtÞ=ðΛΔtÞ2 with a period
π=Λ as Δt is large. Thus at the extremely small time scales
Δt ∼ 1.9=Λ, (Λ → þ∞), the energy density are strongly
anticorrelated. In other words, if at some time the value of
the energy density is larger than its expectation value, for
example, by an amount of 0.82hT00i, after a short time
Δt ¼ 1.9=Λ, its value is most likely to be smaller than the
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expectation value, for example, by an amount of 0.74hT00i.
The difference is 1.56hT00i only after such a short time.
In the spatial direction, i.e., the case ofΔt ¼ 0 (Fig. 8), the

correlation coefficient goes quickly from 1 down to around

−0.14 in a length scale around Δx ¼ 3.24=Λ and then goes
up to 0.03 in a length scale around Δx ¼ 5.4=Λ and then
goes down and up alternatively from positive values to
negative values with decreasing amplitudes. Compared to
the temporal direction, the decay in the oscillation amplitude
of the correlation coefficient is faster in spatial direction. It
roughly oscillates as 2 cosð2ΛΔxÞ=ðΛΔxÞ4 with a period
π=Λ as Δx is large. These properties show that the strength
of the correlation between energy densities at close range in
spatial direction is not as strong as in the temporal direction.
For larger spatial separations, ρx;x0 approaches zero and the
vacuum energy density T00 at different x and x0 fluctuate
independently. These properties result in extreme spatial
inhomogeneities of the quantum vacuum which can be
characterized by the quantityΔρ2 defined by (22) in Sec. III.
The quantity Δρ2 is related to ρx;x0 by

Δρ2 ¼ 1 − ρx;x0 : ðA9Þ

The behavior of Δρ2 has been plotted in Fig. 1.
Next we calculate the χðΔtÞ defined by (50) in Sec. VA.

Wick expansion of (50) gives

χðΔtÞ ¼ h _ϕðt1;xÞ _ϕðt2;xÞi2 þ h _ϕðt2;xÞ _ϕðt1;xÞi2
2h _ϕ2ðt;xÞi2 ; ðA10Þ

where the correlation function can be calculated directly by
inserting (15)

h _ϕðt1;xÞ _ϕðt2;xÞi ¼
1

4π2

Z
Λ

0

k3e−ikΔtdk: ðA11Þ

Plugging (A11) into (A10) gives the following result

χðΔtÞ ¼ 16

Λ8Δt8
ð36ð−2þ Λ2Δt2Þ cosðΛΔtÞ þ ð36 − 72Λ2Δt2 þ 21Λ4Δt4 − Λ6Δt6Þ cosð2ΛΔtÞ

þ 6ð6þ 2ΛΔtð−6þ Λ2Δt2Þ sinðΛΔtÞ þ ΛΔtð12 − 8Λ2Δt2 þ Λ4Δt4Þ sinð2ΛΔtÞÞÞ: ðA12Þ

The behavior of χðΔtÞ has been plotted in Fig. 2. It is closely related to the correlation coefficient ρx;x0 as a function of time
difference Δt in the case Δx ¼ 0 (Fig. 7).
Next we derive Eq. (79) in Sec. VA. First, Ω2ðt; 0Þ can be expanded as

Ω2ðt; 0Þ ¼ 8πG
3

Z
ω;ω0≤Λ

d3kd3k0

ð2πÞ3
ffiffiffiffiffiffiffiffi
ωω0p

2
½ðaka†k0 þ a†kak0 Þ cos ðω − ω0Þtþ ið−aka†k0 þ a†kak0 Þ sin ðω − ω0Þt

þ ð−akak0 − a†ka
†
k0 Þ cos ðωþ ω0Þtþ iðakak0 − a†ka

†
k0 Þ sin ðωþ ω0Þt�: ðA13Þ

Specially, the vacuum state j0i is an eigenstate of the
operator coefficients of the first two terms in the above
expression (A13). If k ≠ k0, the eigenvalues of the operator
coefficients of the first two terms are zero. Thus in this case,

the first two terms have to both take zero values. If k ¼ k0,
the second term is zero since in this case ω ¼ ω0 and thus
the factor sinðω − ω0Þt ¼ 0. So only the first term survives
and gives the expectation value of Ω2ðt; 0Þ:

2 4 6 8 10
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FIG. 7. Plot of correlation coefficient ρx;x0 as a function of time
separation ΛΔt in the case Δx ¼ 0.
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FIG. 8. Plot of correlation coefficient ρx;x0 as a function of
spatial separation ΛΔx in the case Δt ¼ 0.
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Ω2
0 ¼ hΩ2i ¼ 8πG

3

Z
ω≤Λ

d3k
ð2πÞ3

ω

2
¼ GΛ4

6π
: ðA14Þ

For the operator coefficients of the last two terms in the
expression (A13), the vacuum state j0i is not an eigenstate.
So the last two terms are constantly fluctuating, and the
time varying of Ω2 comes from these two terms.
After some algebraic manipulations, (A13) can be

rewritten as the form of (79) for the vacuum state j0i, where

fðγÞdγ¼16π2

Λ4

Z
γ≤ωþω0≤γþdγ

d3kd3k0

ð2πÞ3
ffiffiffiffiffiffiffiffi
ωω0p

2
ð−akak0−a†ka

†
k0 Þ;

ðA15Þ

gðγÞdγ¼16π2

Λ4

Z
γ≤ωþω0≤γþdγ

d3kd3k0

ð2πÞ3
ffiffiffiffiffiffiffiffi
ωω0p

2
iðakak0 −a†ka

†
k0 Þ:

ðA16Þ

Evaluating the above integrals gives the expectation
values

hfðγÞdγi ¼ hgðγÞdγi ¼ 0; ðA17Þ

and their fluctuations

hðfðγÞdγÞ2i ¼ hðgðγÞdγÞ2i ¼
(

4
35
ðγΛÞ7 dγ

2Λ ; if 0 ≤ γ ≥ Λ;

− 4
35
ð40 − 140 γ

Λ þ 168ðγΛÞ2 − 70ð γΛÞ3 þ ð γΛÞ7Þ dγ
2Λ ; if Λ ≤ γ ≥ 2Λ:

ðA18Þ

The above expression (A18) gives the power spectrum
density of the varying part of Ω2ðt; 0Þ (except the constant
Ω2

0 part), which has been plotted in Fig. 3.

APPENDIX B: WIGNER-WEYL DESCRIPTION
OF QUANTUM MECHANICS

AND NUMERIC SIMULATIONS

This chapter explains the principle of the numeric
calculations in the main text. Same as the numeric part
in the main text, we set G ¼ 1 in this section. Wigner
functions and Weyl transforms of operators offer a formu-
lation of quantum mechanics that is equivalent to the
standard approach given by the Schrödinger equation.
The Wigner distribution function is a quasi distribution
function in the phase space. For a particular quantum wave
function ψðxÞ, its Wigner function is defined as

Wðx; pÞ ¼
Z

dye−ipyψ
�
xþ y

2

�
ψ�

�
x −

y
2

�
: ðB1Þ

The Weyl transform of an quantum operator Â is defined as

Aðx; pÞ ¼
Z

dye−ipyhxþ y
2
jÂjx − y

2
i: ðB2Þ

Then the expectation value of the operator Â under the state
ψðxÞ can be written as

hÂi ¼
Z Z

dxdpWðx; pÞAðx; pÞ: ðB3Þ

These two transformations give the Wigner-Weyl discrip-
tion for quantum mechanics. The expectation values of

physical quantities are obtained by averaging their Weyl
transforms over phase space.
For a harmonic oscillator with frequency ω and m ¼ 1,

the ground state Wigner function is a Gaussian distribution
function for both x and p

W0ðx; pÞ ¼
1

π
e−

p2

ω−x
2ω: ðB4Þ

We can easily check that the Weyl transform of an operator
Hðx̂Þ [orHðp̂Þ] is simply replaced the operator x̂ by x (or p̂
by p). Other than that, another particular transform we are
going to use in this write-up is

x̂ p̂ → xpþ i
2
; p̂ x̂ → xp −

i
2
: ðB5Þ

We can see that the transform of the product does not
necessarily equal to the product of transforms. In the
following part we are going to get the general expression
for the transform of the product.
Before that we notice that Weyl transform can be used to

construct the original operator, i.e.,

hxjÂjyi ¼ 1

2π

Z
dpA

�
xþ y
2

; p

�
eipðx−yÞ: ðB6Þ

Using this formula we can construct the transform of
product of two states:
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Z
dyhxþ y

2
jÂ B̂ jx − y

2
ie−ipy

¼
Z

dzdyhxþ y
2
jÂjzihzjB̂jx − y

2
ie−ipy

¼ 1

4π2

Z
dzdydp1dp2eip1ðxþy

2
−zÞe−ip2ðx−y

2
−zÞe−ipy

· A

�
xþ y=2þ z

2
; p1

�
B

�
x − y=2þ z

2
; p2

�

¼ 1

4π2

Z
dz1dz2dp1dp2eiz1ðp2−pÞeiz2ðp−p1Þ

· A

�
xþ z1

2
; p1

�
B

�
xþ z2

2
; p2

�
: ðB7Þ

Here we define

z1 ¼
y
2
þ z − x; ðB8Þ

z2 ¼ −
y
2
þ z − x: ðB9Þ

We Taylor-expand Aðxþ z1
2
; p1Þ and Bðxþ z2

2
; p2Þ around

x and have

A

�
xþ z1

2
; p1

�
¼

X∞
n¼0

1

n!
AðnÞðx; p1Þðz1=2Þn; ðB10Þ

B

�
xþ z2

2
; p2

�
¼

X∞
n¼0

1

n!
BðnÞðx; p2Þðz2=2Þn ðB11Þ

and use the facts

1

2π

Z
dxxneixy ¼ ð−iÞnδðnÞðyÞ ðB12Þ

and Z
dyδðnÞðyÞfðyÞ ¼ ð−1ÞnfðnÞð0Þ: ðB13Þ

Therefore, we can write the Weyl transform of operator
Â B̂ as

X
n;m

inð−iÞm
2nþmn!m!

Aðn;mÞðx; pÞBðm;nÞðx; pÞ: ðB14Þ

The generalized FRW scale factor a satisfies the equation

äþ Ω2ðtÞa ¼ 0 ðB15Þ

in which

Ω2ðtÞ ¼ 8π

3
_ϕ2ðtÞ: ðB16Þ

Now we replace all the quantities by operators, assuming
that operators still satisfy the previous equation

̈âþ Ω̂ðtÞ2â ¼ 0 ðB17Þ

with

Ω̂2ðtÞ ¼ 8π

3
_̂ϕ
2ðtÞ: ðB18Þ

For a massless real scalar field, we can write it as

ϕ̂ ¼
Z

d3k

ð2πÞ3=2
�
x̂k cosðωktÞ þ

1

ωk
p̂k sinðωktÞ

�
ðB19Þ

in which

x̂k ¼
ffiffiffiffiffiffiffiffi
1

2ωk

s
ðb†k þ bkÞ ðB20Þ

p̂k ¼ i

ffiffiffiffiffiffi
ωk

2

r
ðb†k − bkÞ ðB21Þ

are the generalized x̂ p̂ operators for each field modes.
We can write the Weyl transformation of the Ω̂ðtÞ

Ωðfxkg; fpkg; tÞ2

¼ 8π

3

ZZ
d3kd3k0

ð2πÞ3 xkxk0ωkωk0 sinωkt sinωk0t

þ pkpk0 cosωkt cosωk0t − 2xkpk0ωk sinωkt cosωk0 t:

ðB22Þ

This expression is quadratic in xk and pk, so if we apply it
to (B14), only mþ n ≤ 2 terms survive. Assuming
aðfxkg; fpkg; tÞ is the Weyl transform of operator â, we
have the equation for a as

äþΩ2aþ i
2

X
k

�∂Ω2

∂xk
∂a
∂pk

−
∂Ω2

∂pk

∂a
∂xk

�
−
1

8

X
k;k0

� ∂2Ω2

∂xk∂xk0
∂2a

∂pk∂pk0
þ ∂2Ω2

∂pk∂pk0

∂2a
∂xk∂xk0 − 2

∂2Ω2

∂xk∂pk0

∂2a
∂pk∂xk0

�
¼ 0: ðB23Þ
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The observed value a is the average over Wigner
function Wðfxkg; fpkg; tÞ

aoðtÞ ¼
Z �Y

k

dxkdpk

�
aðfxkg;fpkg; tÞWðfxkg;fpkg; tÞ:

ðB24Þ

If the quantum field is in the ground state, then
by (B6)

Wðfxkg; fpkg; tÞ ¼
Y
k

1

π
e−

p2
k

ωk
−x2kωk : ðB25Þ

Local approximation Generally Eq. (B23) depends on
not only the value of Ω and a on a particular phase space
point ðx; pÞ, but also on the neighboring values (i.e.,
derivatives). If our solution a is “smooth" enough in the
phase space then we can neglect the last two derivative
terms in the (B23). It can be simplified to

äþ Ω2a ¼ 0: ðB26Þ

Assuming the length of the universe is L. We can
replace the integral by summations. For simplicity, we
define

~t →
2πt
L

ðB27Þ

~xn →
ffiffiffiffiffiffiffiffiffiffi
2ω2πn

L

q
x2πn

L
ðB28Þ

~pn →

ffiffiffiffiffiffiffiffi
2

ω2πn
L

s
p2πn

L
: ðB29Þ

The equation can be written as

äþ 4

3L2
Ωð~tÞ2a ¼ 0 ðB30Þ

with

Ωð~tÞ2 ¼
X
n⃗;n⃗0

ffiffiffiffiffiffiffi
nn0

p
ð~xn⃗ ~xn⃗0 sin n~t sin n0~t

þ ~pn⃗ ~pn⃗0 cos n~t cos n
0~t − ~xn⃗ ~pn⃗0 sin n~t cos n

0~tÞÞ

¼
�X

n⃗

ffiffiffi
n

p ð~xn⃗ sin n~t − ~pn⃗ cos n~tÞ
�
2

: ðB31Þ

Here n⃗ ¼ ðn1; n2; n3Þ; n1;2;3 ∈ Z, and n ¼ jn⃗j. f~xn⃗g f ~pn⃗g
are randomGaussian variables with unit standard deviation.
We can solve the equation for a randomly generated
set of f~xn⃗g and f ~pn⃗g, and repeat. The result aoðtÞ is the

average over all solutions as long as our sample size is big
enough.

APPENDIX C: FOURIER TRANSFORMS
OF THE COEFFICIENTS IN (130)

In this appendix, we demonstrate the property of
the spectrum of the coefficients in (130) given by (140),
(142), and (144). Observing that the cos 2Θ, sin 2Θ, and
tanΘ in (139), (141), and (143) respectively can all be
decomposed as Fourier series sum of the form ei2nΘ, where
n ¼ �1;�2;…, we only need to analyze the spectrum
of ei2nΘ.
For simplicity, we only analyze the time component

Fourier transform of ei2nΘ. The spatial part has similar
property. The phase angle Θ is determined by Ω through
(97) while Ω is determined by (79). The power spectrum of
Ω2 is given by (A18) (illustrated in Fig. 3).
Calculation of the Fourier transform of ei2nΘ exactly

based on (79) is complicated. For simplicity, we assume
that Ω taking the following simple form which is similar
to (77)

Ω ¼ Ω0ð1þ h cos γtÞ; ðC1Þ

where γ take the peak value of the power spectrum (A18)
which is around ∼1.7Λ (see Fig. 3) and h < 1 to make sure
that Ω > 0.
Then we have

Θ ¼ Ω0tþ
hΩ0

γ
sin γt: ðC2Þ

Using the Jacobi-Anger expansion we have

ei2nΘ ¼
Xþ∞

m¼−∞
Jm

�
2nhΩ0

γ

�
eið2nΩ0þmγÞt; ðC3Þ

where Jm is the mth Bessel function of the first kind.
As jmj → ∞, we have

����Jm
�
2nhΩ0

γ

����� ∼ 1

m!

�
nhΩ0

γ

�jmj
; ðC4Þ

which drops faster than the exponential. Therefore,
the Fourier transform of ei2nΘ is centered around
2nΩ0.
To estimate the magnitude of the Fourier coefficients of

ei2nΘ around zero frequency, we evaluate the Bessel
function for

m ∼ −2nΩ0=γ ∼
ffiffiffiffi
G

p
Λ → ∞: ðC5Þ
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In this case, the zero component Fourier coefficient is
asymptotic to (see [67])

jJmð−hmÞj ∼ e−ðν−tanh νÞjmjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πjmj tanh νp → 0; ðC6Þ

since ν is determined by h ¼ sechν < 1 that we always
have ν − tanh ν > 0.
When calculating the Fourier transform of ei2nΘ exactly

based on (79), the spectrum becomes continuous instead of
discrete. But the distribution of the spectrum should be
similar.
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