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Abstract
Quantummechanics is an incredibly successful theory and yet the statistical nature of its predictions is
hard to accept and has been the subject of numerous debates. The notion of inherent randomness,
something that happenswithout any cause, goes against our rational understanding of reality. To add
to the puzzle, randomness that appears in non-relativistic quantum theory tacitly respects relativity,
for example, itmakes instantaneous signaling impossible. Here, we argue that this is because the
special theory of relativity can itself account for such a randombehavior.We show that the full
mathematical structure of the Lorentz transformation, the onewhich includes the superluminal part,
implies the emergence of non-deterministic dynamics, together with complex probability amplitudes
andmultiple trajectories. This indicates that the connections between the two seemingly different
theories are deeper andmore subtle than previously thought.

1. All inertial observers

The fullmathematical structure of the Lorentz transformations contains both subluminal and superluminal
terms. The superluminal part is usually discarded, on the premise that itmakes no physical sense, and, as a
consequence, a familiar classical picture of a particlemoving along awell defined path is obtained.Herewe show
that if we retain the superluminal terms, and take the resultingmathematics of the Lorentz transformation
seriously, then the notion of a particlemoving along a single pathmust be abandoned and replaced by a
propagation alongmany paths, exactly like in quantum theory.

The generalised Lorentz transformation can be derived in few simple steps [1]. Consider a classical 1+1
dimensional case (the 1+ 3 casewill be discussed later)with an inertial frame (t′, x′)movingwith the velocityV
relative to the frame (t, x).We seek themost general formof the coordinate transformation between these frames
that is consistent with theGalilean principle of relativity. It has to be a linear transformation, so that no point in
spacetime is singled out, and its coefficientmust depend only on the relative velocityV. The inverse
transformation involves a signflip in the velocityV:
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whereA(V ) andB(V ) are unknown functionswewish to determine. The origin of the primed frame x′=0, is
moving according to the equation x=Vt. Putting that into (1)we obtain = -VB V
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At this stage all we can say aboutA(V ) is that it is either a symmetric or antisymmetric function of its argument.
This is because a discrete change of sign of any spacetime coordinate in the unprimed frame should result in a
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discrete sign change in the transformation formulas (2). But since such a signflip also affects the sign of velocity
V, the quantityA(V ) has to be either symmetric or antisymmetric.

In order to determineA(V ) uniquely, consider three inertial frames (t, x), (t′, x′), and (t″, x″) and let the
primed framemovewith the velocityV1 relative to the unprimed frame, and let the double-primed framemove
with the velocityV2 relative to the primed one. By iterating (2)we obtain the velocity of the double-primed
observer relative to the unprimed one:
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Looking at thefirst equation in (2)we see that we can computeV by calculating the ratio between the coefficient
at t and the coefficient at x (and reversing the sign). Applying this rule to (3)we obtain:
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Notice that interchanging « -V V1 2 in (4) should result in a velocity of the unprimed observer relative to the
double-primed observer, which is-V :
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Equating (5)with (4) brings us to
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for anyV1 andV2. This can be satisfied only if both sides of the equation are equal to some constantK:
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which sets a constraint on possible functionsA(V ) appearing in (2).
For the symmetric case,A(−V)=A(V ), the condition (7) gives = 

-
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that forV→0we get x′→x, we retrieve:
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The new constantK remains unknown. The case ofK= 0 corresponds to theGalilean universe, the case ofK> 0
leads to relativistic spacetime aswe know it. The last case ofK< 0 corresponds to an Euclidean spacetimewith
one of the dimensions stretched by an extra factor of K∣ ∣ and the derived transformation being just a regular

rotation. Fromnowon, we pick =K
c

1
2 , which brings us to the Lorentz transformation, well-behaved for

velocitiesV<c.
For the anti-symmetric caseA(−V)=−A(V ) the constraint (7) gives = 

-
A V V V

V c 12 2
( ) ∣ ∣ , which is well-

behaved forV> c and leads to the following transformation [2, 5]:
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So far, we have only used theGalilean principle of relativity, which puts no restrictions on possible velocities of
the observer. Both the solutions (8) and (9) preserve the constancy of the speed of light. In order to get rid of the
second branch of solutions (9), we have to introduce additional physical assumptions that rule themout.We
choose not to do so. Instead, wewill investigate the physical consequences of these extra solutions.

Two comments are in order. First, the sign in front of the equations (9) cannot be uniquely determined,
because noV→0 limit exists. The choice of the signmust remain amatter of convention, and fromnowonwe
will pick the negative sign. Second, both branches of solutions form a symmetry group only in the considered
1+1 dimensional scenario. This is not the case in the 1+3 dimensional case [3], therefore wewill carefully
discuss this case separately in section 5. For nowwe stick to the 1+1 scenario, inwhich equations (9)describe a
hyperbolic rotation by the angleÎ p p,

4

3

4( ).
2

New J. Phys. 22 (2020) 033038 ADragan andAEkert



2. Indeterministic behavior

So farwe have shown that theGalilean principle of relativity alone leads to two branches of coordinate
transformations corresponding to subluminal and superluminal families of observers. In the 1+1 dimensional
scenario these branches are indistinguishable, whichmeans that a particle at rest with respect to an observer
belonging to one of the branches will be considered superluminal by the observer belonging to the other branch
—being superluminal is relative. Let us now show that relativistic, local, and deterministic description of
fundamental processes is no longer possible.

Suppose that a superluminal particle observed by some inertial observer was emitted from a source particle
at the eventA and then absorbed at some later time by the identical target particle at the eventB—see figure 1(a).
The same process observed froma reference framemovingwith a relative subluminal velocity is depicted in
figure 1(b), whereB becomes the emission of the superluminal particle, andA the absorption.

Let us focus on thefirst frame shown infigure 1(a) and assume that themoment of emission atA could be
predicted using a local and deterministicmode of description. In otherwords, let us assume that the past world-
line of the source particle prior to the eventA contains locally all the information necessary to predict the exact
moment of emission of a superluminal particle atA. Or using the Einsteinian language, there is an element
reality to it. On the other hand someone holding the target particleB cannot predict themoment of the
absorption atB based only on localmeasurements of the particleB prior to the event. Now, let us change the
reference frame and study the same scenario from the perspective of the observermovingwith some subluminal
speed, as depicted infigure 1(b). Let us ask the question: what caused the emission of the superluminal particle at
the eventB?

We could say that the cause of the eventB takes place in the distant world line of the particleA. Possibly at a
later time than the eventB itself. However, if we seek a deterministic and localmode of description, i.e. trying to
determine themoment of emission atB only by a localmeasurement on the particleB, it is clearly impossible.
We have already assumed that the past world-line of the particleB carries no information about the time of the
eventB. In practice, the observer having only access to the local properties of the particleB can only conclude
that the emission atBwas be completely spontaneous and fundamentally unpredictable.

We have previously assumed that the cause of the emission of the superluminal particle atA (in thefirst
reference frame)was determined by the past world-line ofA. This assumption leads, however to a preferred
reference frame, inwhich a local deterministicmode of description is possible, while it remains impossible in
other frames. It becomes especially clear if both particlesA andB are identical. To preserve theGalilean principle
of relativity, we have to abandon our assumption that the emission atA in thefirst frame could be determined by
a local process. As a result we conclude that no relativistic, local and deterministic description of the emission of
a superluminal particle is possible in any inertial frame. If such an emissionwas to take place, it would have to
appear completely random to any inertial observer. If we had a source of superluminal particles at our disposal,
wewould not be able to use it to send any information because wewould not be able to control the emission rate
using any local operations.

Non-deterministic behavior is not only a property of superluminal particles for the same applies to
subluminal particles. Consider a decay of such a particle into a pair of other subluminal particles, as depicted in
figure 2(a). Let us picture the same process as seen by the infinitely fastmoving inertial observer, for which the
transformation (9) reduces to:

Figure 1. Spacetime diagrams of a process of sending a superluminal particle as seen by two inertial observers (time is vertical, space is
horizontal): (a) particle emitted from A and absorbed in B, (b) the same process observed in a different inertial frame.
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For such a frame, the considered decay process is depicted infigure 2(b), where all particles are superluminal and
henceforth, the decay cannot be described using any local and deterministic theory, as we have shown earlier. By
invoking theGalilean principle of relativity we conclude that the samemust be the case for any subluminal
reference frame.

3.Multiple paths

Another property of the quantum theory, besides it being non-deterministic, is the fact that a particle that is not
observed behaves as if it wasmoving alongmultiple trajectories at once, which is best shown in interference
experiments. But once the particle is observed it can only be detected at one of the locations. Now, let us show
how this follows from theGalilean principle of relativity involving both families of inertial observers (8) and (9).

Consider a photon emitted from a source atA, reflected from amirrorM and then received atB, as shown in
figure 3(a). Suppose that wewant to detect the photon by placing detectors at its path. If a detector placed at the
pathA-M absorbs the photon, then a similar detector placed at the pathM-Bwill not register anything, because
the photon has been absorbed earlier. Similarly, if a detector atM-B absorbed the photon, then certainly, the
photon could not have been detected at the pathA-M. Now let us analyze the same scenario from an infinitely
fastmoving reference frame by applying equations (10). In this reference frame the photon is traveling fromM

towardsA andB along twopaths, but if we try to detect it using a pair of detectors placed atM-A andM-B then
only one of them can absorb the photon.However as long aswe do notmake any observation, themotion of the
photon is characterized by two simultaneous paths, not one.

Aswe can see, even if we start with an idea of a classical particlemoving along a single path, it is only amatter
of a change of the reference frame to arrive at a scenario involvingmore than one path.

Consider a process depicted infigure 4(a) inwhich a particle emitted inA is scattered inα, where it starts to
follow two paths at once towardsB andB.́ The same process viewed from the infinitely fastmoving framewill
involve the particle following three paths at once. This concept can be iterated leading to scenarios involving

Figure 2.A spacetime diagramof a decay of a subluminal particle into a pair of subluminal particles (time is vertical, space is
horizontal): (a) in a subluminal reference frame, (b) in a superluminal reference frame.

Figure 3.A spacetime diagramof a luminal particle (dotted line) reflected from amirror (time is vertical, space is horizontal): (a) in a
subluminal reference frame, (b) in a superluminal reference frame.
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multiple paths at once.Once both branches of transformations (8) and (9) are involved, a classical description of
a particle alwaysmoving along a single trajectory becomes inconsistent with theGalilean principle of relativity.

4. Probability amplitudes

Let us go back to the orthodox setting of subluminal particles being observed by subluminal observers.
Relativistic theories operate on notions that do not change under Lorentz transformations.Wewill therefore
investigate, what are relativistically invariant quantities that describe a particlemotion between two points,A
andB that have properties of probability. The simplest relativistic invariant characterizing a single path is its
relativistic length, i.e. the proper time:

ò òf ~ - ~ -v c t E t p x1 d d d , 112 2

A

B

A

B
( ) ( )

where ~
-

E
v c
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1 2 2
is the energy of the particle and ~

-
p v

v c1 2 2
is itsmomentum.Wewill choose the

proportionality constant such that the relativistic invariantf is dimensionless andwill be referred to as the phase
along the path.Whenmultiple paths are involved, as shown infigure 4(b), a relativistic invariant characterizing
such a diagrammust be a function of phases along all individual paths, f f f¼ , , ,n

n1 2( )( ) , where  is a smooth
function and n is the number of possible paths.Wewill be interested in the question, what are reasonable
functions  to consider. It turns out that the family of such functions is not too vast.

First of all, our choice of thewaywe label individual paths has no physical significance, therefore a reasonable
function  should be a symmetric function of its arguments:
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whereπ is an any permutation of an n-element set. Second of all, we choose our description to be completely
time-symmetric, which boils down to:
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Consider a special type ofmotion, inwhich all trajectories intersect at a single pointα, as shown infigure 4(c).
Suppose that the eventsA andα are linked by n different paths characterized by phasesf1,K,fn, whileα andB
are interlinked bym paths characterized by phases ξ1,K, ξm. The total number of paths connectingA andB is
equal to nm and since the phases are additive, suchmotion involves sums of phasesfi+ ξj. Therefore the
invariant function for such amotion is f x f x f x f x+ + + ¼ + , , , ,nm

n m1 1 1 2 1 3( )( ) .
Our third andfinal condition captures the fact that the invariant quantity we are trying to establish should

have properties of probability. Since the probability for the particle to travel fromA toB should be a product of
probabilities for the particle to travel fromA toα and then fromα toB, we impose the third condition:

f x f x f x f x f f f x x x+ + + ¼ + = ¼ ¼  , , , , , , , , , , . 14nm
n m

n
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A special case that satisfies all the conditions (12)–(14) has the form:
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whereα,β and γ are arbitrary constants.We show elsewhere [5] that a general formof the function  is amulti
product of special solutions (15)with any constantsα,β and γ.

For the infinite number of trajectories all these invariants tend to diverge or go to zero if γ≠0. The invariant
can remain finite for the infinite number of paths only if the constantα takes a purely imaginary value. As a
consequence, a relativistically invariant description of the scenario, inwhich a particle ismoving along

Figure 4. (a)Particle emitted in A is scattered atα into amotion along two paths towards B and B′ at once. (b) and (c)multiple paths
connecting two spacetime points, A and B, in two possible settings.
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(infinitely)many possible paths involves the quantity: á ñ ~ å a fek
i kB A∣ ∣ ∣ , known as the (complex) probability

amplitude, for which the proportionality constant can be established based on the normalization condition.
This result shows that relativistic invariance and symmetry requirements lead to the characterization of the

probability-like quantities that are based on a sumof complex exponential functions that we call probability
amplitudes.

Let usmention in passing that the proportionality constantmissing from equation (11) is the inverse of the
Planck’s constant, ÿ−1 and its value cannot be determined a priori by any knownmethods, just like the constant

=K
c

1
2 appearing in equation (7). Let us also add that herewe have only considered a freelymoving point-like

particle propagating alongmultiple paths and found that its dynamics can be characterised by probability
amplitudes in the formof plainwaves. If wewere to look for a dynamical equation governing the evolution of
these amplitudes, wewould have a choice of either a Schrödinger, a Klein–Gordon, or aDirac equation, because
all of themhave plainwaves as the elementary solutions.

5. 1+3 dimensional case

Situation becomesmore interesting for the 1+3 dimensional case. It was shown that the smallest group
involving both subluminal and superluminal four-dimensional transformations is SL 4,( ) [3]. This cannot be
a symmetry group, because it involves transformations such as direction-dependent time dilation, which are not
observed [3]. Therefore superluminal transformations in 1+3 dimensional spacetime should not be
symmetries. According to one interpretation [4], in contrast to the 1+1 dimensional case, the family of
superluminal observers can be distinguished from the subluminal observers and therefore being superluminal is
not a relative notion anymore. The spacetime interval in themoving frame ¢ ¢ ¢ ¢t x y z, , ,( ):

- - - = - ¢ + ¢ - ¢ - ¢c t x y z c t x y zd d d d d d d d 162 2 2 2 2 2 2 2 2 2 ( )

has a non-Euclidean spatial component ¢ - ¢ - ¢x y zd d d2 2 2, which can be physically discriminated from the
Euclidean space of the subluminal observers. This creates a physical difference between subluminal and
superluminal observers.

Since theGalilean principle of relativity stating that all inertial frames are equivalent does not hold in the
1+3 dimensional spacetime, we propose a quantum version of the principle of relativity.We postulate that the
existence or non-existence of a local and deterministicmode of description of any process should not depend on
the choice of the inertial reference frame. For example, if there is no local deterministicmechanism (or ‘element
of reality’) behind the particle decay infigure 1(b) in the past world-line ofB in one frame, there should be no
suchmechanism in any other frame. This way all the conclusions of the previous sections are still valid, while we
allow for the two families of observers to be physically distinguishable.

Lastly, wewould like to propose a different interpretation of the relation between spacetime intervals in
subluminal and superluminal reference frames, given by (16). Let us notice, that the common signs of individual
terms on the right-hand side of the equation (16) suggest that the temporal coordinate dt′ should have the same
properties as dy′ and dz′. The quantity dt′ can be identified as a temporal coordinate, because its axis t′must
coincidewith theworld line of the superluminal observer. This suggests, that the remaining coordinates, y′ and
z′ are also temporal, and there is only a single spatial dimension in a superluminal frame of reference, x′.Within
such an interpretation, the interval in the n+m dimensional spacetime, defined as:

º å - å= =s c t rd d di
n

i i
m

i
2 2

1
2

1
2 changes its sign for the superluminal coordinate transformation, and the two

perpendicular spatial coordinates change their character transforming the n+m dimensional spacetime into
them+n dimensional one.

Such a disturbing property of superluminal observers, not only explains a physical difference between them
and subluminal reference frames, but also offers an interesting insight into the origin of thewave properties of
matter with a novel interpretation of theHuygens principle. According to that principle, any point, at which a
particle wave arrives becomes the origin of a new spherical ‘mater wave’. Since all knownmatter (and light)
follows this principle, it appears as if all physical objects were compelled to propagate in all directions of space
fromany point they visit. But this peculiar behavior observed froma superluminal reference frame appears to be
as if all object were forced tomove symmetrically in all ‘directions of time’, which, in a someway, soundsmore
appropriate.

The 1+3 dimensional Lorentz transformation between two subluminal observers is obtained from (8) by
replacingVxwithV r· , where V is an arbitrary subluminal velocity and =r x y z, ,( ). It can bewritten in the
coordinate-independent form as:
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The inverse transformation is obtained by substituting  -V V , as well as « ¢r r and « ¢t t .
Similar generalization can be carried out for the superluminal transformations (9). By replacingVx in (9)

withV r· , we obtain the coordinate-independent transformation between a subluminal reference frame rt ,( )
and a superluminal one ¢ ¢t x,( )movingwith a superluminal velocityV :
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The inverse transformation is obtained by reversing the above set of linear equations. It is equivalent to
substituting  -V V , as well as « ¢r t and « ¢t x . For the infinite speed limit  ¥V , the above formulas
reduce to:

¢ =
¢ =t r

x ct
c

,
, 19( )

regardless of the direction of the velocity V .

6. Summary

Weargue that ruling out a superluminal family of observers from special relativity, regardless whether such
observers exist or not, is not necessary; it leads to a classical description of a particlemoving along awell-defined
single trajectory. In contrast, if one keeps both subluminal and superluminal solutions then non-deterministic
behavior and non-classicalmotion of particles arise as a natural consequence.

The superluminal solutions appear quite naturally in general relativity. For instance a Schwarzschild
solution to Einstein equations written in Schwarzschild coordinates has a peculiar property that time and radial
coordinates change theirmetric signs at the event horizon. This is normally dismissed by arbitrarily stating that
the Schwarzschild solutions onlymake sense above the event horizon, althoughwritten in (freely falling)Kruskal
coordinates, they are smooth at the horizon. In order to resolve this puzzle we point out that Schwarzschild
coordinates correspond to stationary observers placed atfixed distances from the horizon. Such observers can be
subluminal only above the horizon, and under the horizon theywould require superluminalmotions. The sign
flip in themetric therefore signifies the transition from a subluminal to a superluminal family of stationary
observers residing under the event horizon in afixed distance from the singularity.

We believe that our approach ismore than amathematical exercise and, if taken seriously, itmay offer new
valuable insights into deep connections between quantum theory and special relativity.
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