
Postulates of Quantum Theory 
Quantum Theory can be formulated according to a few postulates (i.e., theoretical principles based on 
experimental observations). The goal of this section is to introduce such principles, together with 
some mathematical concepts that are necessary for that purpose.R1(190) To keep the notation as 
simple as possible, expressions are written for a 1-dimensional system. The generalization to many 
dimensions is usually straightforward. 

: Any system can be described by a wave function , where  is a parameter 

representing the time and  represents the coordinates of the system. Function  must be 

continuous, single valued and square integrable.R1(57) 

Note 1: As a consequence of Postulate 4, we will see that 

represents the probability of finding the system between  and  at time . 

: Any observable (i.e., any measurable property of the system) can be described by 

an operator. The operator must be linear and hermitian.

What is an operator ? What is a linear operator ? What is a hermitian operator? 

Definition 1: An operator  is a mathematical entity that transforms a function  into another 

function  as follows,R4(96)

where  and  are functions of . 

Definition 2: R1(190) An operator  that represents an observable  is obtained by first writing 

the classical expression of such observable in Cartesian coordinates (e.g., ) and then 

substituting the coordinate  in such expression by the coordinate operator  as well as the 

momentum  by the momentum operator . 

Definition 3: An operator  is linear if and only if (iff), 



where a and b are constants. 

Definition 4: An operator  is hermitian iff,         R1(164)

where the asterisk represents the complex conjugate of the expression embraced by brackets. 

Definition 5: A function  is an eigenfunction of  iff, 

where  is a number called eigenvalue. 

Property 1: The eigenvalues of a hermitian operator are real.R1(166)(167) 

Proof: Using Definition 4, we obtain 

therefore, 

Since  are square integrable functions, then, 

Property 2: Different eigenfunctions of a hermitian operator (i.e., eigenfunctions with different 
eigenvalues) are orthogonal (i.e., the scalar product of two different eigenfunctions is equal to zero). 

Mathematically, if , and , with , then 

. 

Proof: 



and 

Since , then . 

:The only possible experimental results of a measurement of an observable are the 

eigenvalues of the operator that corresponds to such observable.

: The average value of many measurements of an observable , when the system is 

described by function , is equal to the expectation value , which is defined as follows, 

: R1(191), R5(15)), R4(97) here

The eigenfunctions of a linear and hermitian operator form a complete basis set. Therefore, any 

function  that is continuous, single valued, and square integrable can be expanded as a linear 

combination of eigenfunctions  of a linear and hermitian operator  as follows, 

where  are numbers (e.g., complex numbers) called expansion coefficients. 

Exercise 1: Show that , when 



   and

Note that (according to Postulate 3) eigenvalues  are the only possible experimental results of 

measurements of , and that (according to Postulate 4) the expectation value  is the average value 
of many measurements of  when the system is described by the expansion 

. Therefore, the product  can be interpreted as the probability weight 

associated with eigenvalue  (i.e., the probability that the outcome of an observation of  will be 

). 

Hilbert-Space

According to the Expansion Postulate (together with Postulate 1), the state of a system described by 

the function  can be expanded as a linear combination of eigenfunctions  of a linear and 

hermitian operator (e.g., ). Usually, the space defined by 

these eigenfunctions (i.e., functions that are continuous, single valued and square integrable) has an 
infinite number of dimensions. Such space is called Hilbert-Space in honor to the mathematician 
Hilbert who did pioneer work in spaces of infinite dimensionality.R4(94)

A representation of  in such space of functions corresponds to a vector-function, 

where  and  are the projections of  along  and , respectively. All other 

components are omitted from the representation because they are orthogonal to the ``plane'' defined 

by  and . 

Continuous Representation



Certain operators have a continuous spectrum of eigenvalues. For example, the coordinate operator is 

one such operator since it satisfies the equation  = , where the 

eigenvalues  define a continuum. Delta functions  define a continuum representation 

and, therefore, an expansion of  in such representation becomes, 

where , since 

According to postulates 3 and 4 (see Exercise 1), the probability of observing the system with 

coordinate eigenvalues between  and  is 

 (see Note 1). 

In general, when the basis functions  are not necessarily delta functions but nonetheless 

define a continuum representation, 

with . 

Note 2: According to the Expansion Postulate, a function  is uniquely and completely defined 

by the coefficients , associated with its expansion in a complete set of eigenfunctions . 

However, the coefficients of such expansion would be different if the same basis functions 

depended on different coordinates (e.g.,  with ). In order to eliminate such ambiguity 

in the description it is necessary to introduce the concept of vector-ket space.R4(108)

Vector-Ket Space 



The vector-ket space is introduced to represent states in a convenient space of vectors , instead 

of working in the space of functions . The main difference is that the coordinate dependence 

does not need to be specified when working in the vector-ket space. According to such representation, 

function  is the component of vector  associated with index  (vide infra) . Therefore, 

for any function  we can define a ket-vector  such that, 

The representation of  in space  is, 

Note that the expansion coefficients  depend only on the kets  and not on any specific 

vector component. Therefore, the ambiguity mentioned above is removed. 

In order to learn how to operate with kets we need to introduce the bra space and the concept of 
linear functional. After doing so, this section will be concluded with the description of Postulate 5, 
and the Continuity Equation. 

Linear functionals

A functional  is a mathematical operation that transforms a function  into a number. This 

concept is extended to the vector-ket space , as an operation that transforms a vector-ket into a 
number as follows, 

, or 

where  is a number. A linear functional satisfies the following equation, 



, 

where  and  are constants. 

Example: The scalar product,R4(110)

is an example of a linear functional, since such an operation transforms a function  into a 

number . In order to introduce the scalar product of kets, we need to introduce the bra-space. 

Bra Space 

For every ket  we define a linear functional , called bra-vector, as follows: 

Note that functional  is linear because the scalar product is a linear functional. Therefore, 

Note: For convenience, we will omit parenthesis so that the notation  will be equivalent 

to . Furthermore, whenever we find two bars next to each other we can merge them into a 

single one without changing the meaning of the expression. Therefore, 

The space of bra-vectors is called dual space  simply because given a ket , 

the corresponding bra-vector is . In analogy to the ket-space, a bra-vector 

 is represented in space  according to the following diagram: 



where  is the projection of  along . 

Projection Operator and Closure Relation 

Given a ket  in a certain basis set , 

(1)

where , 

(2)

Substituting Eq. (2) into Eq.(1), we obtain 

(3)

From Eq.(3), it is obvious that 

where  is the identity operator that transforms any ket, or function, into itself. 



Note that  is an operator that transforms any vector  into a vector pointing 

in the direction of  with magnitude . The operator  is called the Projection 

Operator. It projects  according to, 

Note that , where . This is true simply because . 

: The evolution of  in time is described by the time dependent Schrodinger 

equation:

where , is the operator associated with the total energy of the system, 

. 

Continuity Equation

Exercise 2: Prove that 

where 

In general, for higher dimensional problems, the change in time of probability density, 

, is equal to minus the divergence of the probability flux , 



This is the so-called Continuity Equation.

Note: Remember that given a vector field , e.g., 

, the divergence of  is defined as the 

dot product of the ``del'' operator  and vector  as follows: 


