Postulates of Quantum Theory

Quantum Theory can be formulated according to a few *postulates* (i.e., theoretical principles based on experimental observations). The goal of this section is to introduce such principles, together with some mathematical concepts that are necessary for that purpose.**R1(190)** To keep the notation as simple as possible, expressions are written for a 1-dimensional system. The generalization to many dimensions is usually straightforward.

Postulate 1: Any system can be described by a <u>wave function</u> $\psi(t, x)$, where t is a parameter

representing the time and x represents the coordinates of the system. Function $\psi(t, x)$ must be continuous, single valued and square integrable. **R1(57)**

Note 1: As a consequence of Postulate 4, we will see that $P(t,x) = \psi^*(t,x)\psi(t,x)dx$

represents the probability of finding the system between x and x + dx at time t.

Postulate 2: Any observable (i.e., any measurable property of the system) can be described by an operator. The operator must be linear and hermitian.

What is an operator ? What is a linear operator ? What is a hermitian operator?

Definition 1: An operator \hat{O} is a mathematical entity that transforms a function f(x) into another function g(x) as follows, R4(96)

$$\hat{O}f(x) = g(x),$$

where f and g are functions of x.

Definition 2: R1(190) An operator \hat{O} that represents an observable O is obtained by first writing the classical expression of such observable in Cartesian coordinates (e.g., O = O(x, p)) and then substituting the coordinate x in such expression by the *coordinate operator* \hat{x} as well as the momentum p by the momentum operator $\hat{p} = -i\hbar\partial/\partial x$.

Definition 3: An operator \hat{O} is *linear* if and only if (iff),

$$\hat{O}(af(x) + bg(x)) = a\hat{O}f(x) + b\hat{O}g(x),$$

where a and b are constants.

Definition 4: An operator \hat{O} is *hermitian* iff, **R1(164)**

$$\int dx \phi_n^*(x) \hat{O} \psi_m(x) = \left[\int dx \psi_m^*(x) \hat{O} \phi_n(x) \right]^*,$$

where the asterisk represents the complex conjugate of the expression embraced by brackets. **Definition 5:** A function $\phi_n(x)$ is an *eigenfunction* of \hat{O} iff,

$$\hat{O}\phi_n(x) = O_n\phi_n(x),$$

where O_n is a number called *eigenvalue*.

Property 1: The eigenvalues of a hermitian operator are real.R1(166)(167)

Proof: Using Definition 4, we obtain

$$\int dx \phi_n^*(x) \hat{O} \phi_n(x) - \left[\int dx \phi_n^*(x) \hat{O} \phi_n(x) \right]^* = 0,$$

therefore,

$$[O_n - O_n^*] \int dx \phi_n(x)^* \phi_n(x) = 0.$$

Since $\phi_n(x)$ are square integrable functions, then,

$$O_n = O_n^*$$

Property 2: Different eigenfunctions of a hermitian operator (i.e., eigenfunctions with different eigenvalues) are orthogonal (i.e., the *scalar product* of two different eigenfunctions is equal to zero). Mathematically, if $\hat{O}\phi_n = O_n\phi_n$, and $\hat{O}\phi_m = O_m\phi_m$, with $O_n \neq O_m$, then

$$\int dx \phi_n^* \phi_m = 0.$$

Proof:

$$\int dx \phi_m^* \hat{O} \phi_n - \left[\int dx \phi_n^* \hat{O} \phi_m \right]^* = 0,$$

and

$$[O_n - O_m] \int dx \phi_m^* \phi_n = 0$$

Since $O_n \neq O_m$, then $\int dx \phi_m^* \phi_n = 0$.

Postulate 3: The only possible experimental results of a measurement of an observable are the eigenvalues of the operator that corresponds to such observable.

Postulate 4: The average value of many measurements of an observable O, when the system is described by function $\psi(x)$, is equal to the expectation value \overline{O} , which is defined as follows,

$$\bar{O} = \frac{\int dx \psi(x)^* \hat{O} \psi(x)}{\int dx \psi(x)^* \psi(x)}.$$

Expansion Postulate : R1(191), R5(15)), R4(97) here

The eigenfunctions of a linear and hermitian operator form a complete basis set. Therefore, any function $\psi(x)$ that is continuous, single valued, and square integrable can be expanded as a linear combination of eigenfunctions $\phi_n(x)$ of a linear and hermitian operator \hat{A} as follows,

$$\psi(x) = \sum_{j} C_{j} \phi_{j}(x),$$

where C_j are numbers (e.g., <u>complex numbers</u>) called *expansion coefficients*.

Exercise 1: Show that $\bar{A} = \sum_j C_j C_j^* a_j$, when $\psi(x) = \sum_j C_j \phi_j(x)$,

$$\hat{A}\phi_j(x) = a_j\phi_j(x), \text{ and } \int dx\phi_j(x)^*\phi_k(x) = \delta_{jk}$$

Note that (according to Postulate 3) eigenvalues a_j are the only possible experimental results of measurements of \hat{A} , and that (according to Postulate 4) the expectation value \bar{A} is the average value of many measurements of \hat{A} when the system is described by the expansion $\psi(x) = \sum_j C_j \phi_j(x)$. Therefore, the product $C_j C_j^*$ can be interpreted as the probability weight associated with eigenvalue a_j (i.e., the probability that the outcome of an observation of \hat{A} will be a_j).

Hilbert-Space

According to the Expansion Postulate (together with Postulate 1), the state of a system described by the *function* $\Psi(x)$ can be expanded as a linear combination of eigenfunctions $\phi_j(x)$ of a linear and hermitian operator (e.g., $\Psi(x) = C_1\phi_1(x) + C_2\phi_2(x) + \cdots$). Usually, the space defined by these eigenfunctions (i.e., functions that are continuous, single valued and square integrable) has an infinite number of dimensions. Such space is called *Hilbert-Space* in honor to the mathematician Hilbert who did pioneer work in spaces of infinite dimensionality.**R4(94)**

A representation of $\Psi(x)$ in such space of functions corresponds to a vector-function,

where C_1 and C_2 are the projections of $\Psi(x)$ along $\phi_1(x)$ and $\phi_2(x)$, respectively. All other components are omitted from the representation because they are orthogonal to the ``plane" defined by $\phi_1(x)$ and $\phi_2(x)$.

Continuous Representation

Certain operators have a continuous spectrum of eigenvalues. For example, the coordinate operator is one such operator since it satisfies the equation $\hat{x} \ \delta(x_0 - x) = x_0 \ \delta(x_0 - x)$, where the eigenvalues x_0 define a *continuum*. Delta functions $\delta(x_0 - x)$ define a continuum representation and, therefore, an expansion of $\psi(x)$ in such representation becomes,

$$\psi(x) = \int dx_0 C_{x_0} \delta(x_0 - x),$$

where $C_{x_0} = \psi(x_0)$, since

$$\int dx \delta(x-\beta)\psi(x) = \int dx \int d\alpha C_{\alpha} \delta(x-\beta)\delta(\alpha-x) = \psi(\beta).$$

According to postulates 3 and 4 (see Exercise 1), the probability of observing the system with coordinate eigenvalues between x_0 and $x_0 + dx_0$ is

$$P(x_0) = C_{x_0} C_{x_0}^* dx_0 = \psi(x_0) \psi(x_0)^* dx_0 \text{ (see Note 1)}.$$

In general, when the basis functions $\phi(\alpha, x)$ are *not* necessarily delta functions but nonetheless define a continuum representation,

$$\psi(x) = \int d\alpha C_{\alpha} \phi(\alpha, x),$$

with $C_{\alpha} = \int dx \phi(\alpha, x)^* \psi(x)$.

Note 2: According to the Expansion Postulate, a function $\psi(x)$ is uniquely and completely defined by the coefficients C_j , associated with its expansion in a complete set of eigenfunctions $\phi_j(x)$. However, the coefficients of such expansion would be different if the same basis functions ϕ_j depended on different coordinates (e.g., $\phi_j(x')$ with $x' \neq x$). In order to eliminate such ambiguity in the description it is necessary to introduce the concept of *vector-ket* space.**R4(108)**

Vector-Ket Space E

The vector-ket space is introduced to represent states in a convenient space of vectors $|\phi_j\rangle$, instead of working in the space of *functions* $\phi_j(x)$. The main difference is that the coordinate dependence does not need to be specified when working in the vector-ket space. According to such representation, function $\psi(x)$ is the *component* of vector $|\psi\rangle$ associated with index x (vide infra). Therefore, for any function $\psi(x) = \sum_j C_j \phi_j(x)$, we can define a ket-vector $|\psi\rangle$ such that,

$$|\psi\rangle = \sum_{j} C_{j} |\phi_{j}\rangle.$$

The representation of $|\psi\rangle$ in space ε is,

Note that the expansion coefficients C_j depend only on the kets $|\psi_j\rangle$ and not on any specific vector component. Therefore, the ambiguity mentioned above is removed.

In order to learn how to operate with kets we need to introduce the *bra space* and the concept of *linear functional*. After doing so, this section will be concluded with the description of *Postulate 5*, and the *Continuity Equation*.

Linear functionals

A functional χ is a mathematical operation that transforms a function $\psi(x)$ into a number. This concept is extended to the vector-ket space ε , as an operation that transforms a vector-ket into a number as follows,

$$\chi(\psi(x)) = n$$
, or $\chi(|\psi\rangle) = n$,

where n is a number. A *linear* functional satisfies the following equation,

$$\chi(a\psi(x) + bf(x)) = a\chi(\psi(x)) + b\chi(f(x)),$$

where a and b are constants.

Example: The scalar product, R4(110)

$$n = \int dx \psi^*(x) \phi(x),$$

is an example of a linear functional, since such an operation transforms a function $\phi(x)$ into a number n. In order to introduce the scalar product of kets, we need to introduce the *bra-space*. Bra Space ε^*

For every ket $|\psi\rangle$ we define a linear functional $\langle \psi|$, called *bra-vector*, as follows:

$$\langle \psi | (|\phi \rangle) = \int dx \psi^*(x) \phi(x).$$

Note that functional $|\langle \psi||$ is linear because the scalar product is a linear functional. Therefore,

$$<\psi|(a|\phi>+b|f>)=a<\psi|(|\phi>)+b<\psi|(|f>).$$

Note: For convenience, we will omit parenthesis so that the notation $\langle \psi | (|\phi \rangle)$ will be equivalent to $\langle \psi | | \phi \rangle$. Furthermore, whenever we find two bars next to each other we can merge them into a single one without changing the meaning of the expression. Therefore,

$$\langle \psi | | \phi \rangle = \langle \psi | \phi \rangle$$

The space of bra-vectors is called dual space ε^* simply because given a ket $|\psi\rangle = \sum_j C_j |\phi_j\rangle$, the corresponding bra-vector is $\langle \psi | = \sum_j C_j^* \langle \phi_j |$. In analogy to the ket-space, a bra-vector $\langle \psi |$ is represented in space ε^* according to the following diagram:

where C_j^* is the projection of $\langle \psi \mid a \log \langle \phi_j \mid$.

Projection Operator and Closure Relation

Given a ket $| \psi >$ in a certain basis set $|\phi_j >$,

$$\psi >= \sum_{j} C_{j} |\phi_{j}\rangle, \tag{1}$$

where $\langle \phi_k | \phi_j \rangle = \delta_{kj}$,

$$C_j = \langle \phi_j | \psi \rangle \,. \tag{2}$$

Substituting Eq. (2) into Eq.(1), we obtain

$$|\psi\rangle = \sum_{j} |\phi_{j}\rangle \langle \phi_{j}|\psi\rangle.$$
(3)

From Eq.(3), it is obvious that

$$\sum_{j} |\phi_{j}\rangle < \phi_{j}| = \hat{1}, \qquad Closure \ Relation$$

where $\hat{1}$ is the identity operator that transforms any ket, or function, into itself.

Note that $\hat{P}_j = |\phi_j\rangle \langle \phi_j|$ is an operator that transforms any vector $|\psi\rangle$ into a vector pointing in the direction of $|\phi_j\rangle$ with magnitude $\langle \phi_j|\psi\rangle$. The operator \hat{P}_j is called the *Projection Operator*. It projects $|\phi_j\rangle$ according to,

$$\hat{P}_j|\psi\rangle = <\phi_j|\psi\rangle |\phi_j\rangle.$$

Note that $\hat{P}_j^2 = \hat{P}_j$, where $\hat{P}_j^2 = \hat{P}_j \hat{P}_j$. This is true simply because $\langle \phi_j | \phi_j \rangle = 1$.

Postulate 5: The evolution of $\psi(x,t)$ in time is described by the <u>time dependent Schrodinger</u> <u>equation</u>:

$$i\hbar \frac{\partial \psi(x,t)}{\partial t} = \hat{H}\psi(x,t),$$

where $\hat{H} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + \hat{V}(x)$, is the operator associated with the total energy of the system, $E = \frac{p^2}{2m} + V(x)$.

Continuity Equation

Exercise 2: Prove that

$$\frac{\partial(\psi^*(x,t)\psi(x,t))}{\partial t} + \frac{\partial}{\partial x}j(x,t) = 0,$$

where

$$j(x,t) = \frac{\hbar}{2mi} \left(\psi^*(x,t) \frac{\partial \psi(x,t)}{\partial x} - \psi(x,t) \frac{\partial \psi^*(x,t)}{\partial x} \right).$$

In general, for higher dimensional problems, the change in time of probability density, $\rho(\mathbf{x}, t) = \psi^*(\mathbf{x}, t)\psi(\mathbf{x}, t)$, is equal to minus the divergence of the probability flux \mathbf{j} ,

$$\frac{\partial \rho(\mathbf{x},t)}{\partial t} = -\nabla \cdot \mathbf{j}.$$

This is the so-called <u>Continuity Equation</u>.

Note: Remember that given a vector field **j**, *e.g.*,

 $\mathbf{j}(x, y, z) = j_1(x, y, z)\hat{i} + j_2(x, y, z)\hat{j} + j_3(x, y, z)\hat{k}$, the divergence of \mathbf{j} is defined as the dot product of the ``del" operator $\nabla = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})$ and vector \mathbf{j} as follows:

$$\nabla \cdot \mathbf{j} = \frac{\partial j_1}{\partial x} + \frac{\partial j_2}{\partial y} + \frac{\partial j_3}{\partial z}$$