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In recent years, a number of authors have studied pre- and post-

selected quantum systems and associated time symmetry con-

siderations. In this context, numerous paradoxes have arisen

which raise questions about what can be inferred about such a

system based on theoretically calculated quantities such as the

Aharonov–Bergmann–Lebowitz (ABL) probabilities; and, more

recently, ‘‘weak values’’—time-symmetric quantities applicable

to pre- and post-selected systems. This paper applies to some of

these problems a time-symmetric interpretation of quantum

theory: the ‘‘transactional interpretation’’ (TI) of Cramer, first

proposed in 1980. The TI picture supports the conclusion that

weak values are properly interpreted as multiple-time amplitudes

rather than as generalized expectation values. It also prompts a

stricter constraint on the counterfactual usage of the ABL rule

than the consistency of the associated family of histories, which

has previously been regarded as sufficient.
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1. Introduction and background

Cramer (1980, 1986, 1988) presented his transactional interpretation (TI) in the 1980s. TI proposes
that the usual quantum-mechanical state jci characterizes an ‘‘offer wave’’ (OW) emitted in the usual
. All rights reserved.
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forward time direction from a source, and adds to this picture the idea that absorbers in the future
light cone of such a source emit advanced or backward time-directed ‘‘confirmation waves’’ (CW)
back to the source, upon receiving all or part of such an OW. The overlap of such offer and CW
may set up a four-vector standing wave whose amplitude at the source point reflects the Born
probability. While many ‘‘incipient transactions’’ consisting of an overlap of offer and CW may
occur, only one will result in an actual transaction—giving rise to an observable event—with the
probability corresponding to the ‘‘final’’ amplitude at the source point. (For further details, see
Cramer, 1986.)

It should be noted that TI has historically received little notice or acceptance. This is because its
solutions to various puzzles come at a price: one must admit the counterintuitive notion of time-
reversed ‘‘advanced waves’’ and the causal perplexities such notions inevitably raise. Thus, it
undoubtedly struck many thinkers as creating at least as many conceptual problems as it solved. But
this was before the onslaught of new conceptual puzzles recently raised in the context of pre- and
post-selection, counterfactuals, and ‘‘strange’’ weak values (cf. Aharonov, Botero, Popescu, Reznik, &
Tollaksen, 2002; Kastner, 2003, 2004; Vaidman, 1996). It is proposed here that the conceptual price
to be paid for the solutions offered by the TI may now be seen as more equitable—and moreover, as
an opportunity to break out of a constraining paradigm to a more fruitful way of understanding
quantum puzzles. In addition, the growing acceptance of time-symmetric postulates in interpreta-
tional studies is evidenced by the work of Price (1996) as well as Aharonov and Vaidman (1990,
1991), Vaidman (1996, 1997, 1998a, b, 1999a, b), Miller (1997), Chiatti (1995). In particular, Price’s
advocacy of ‘‘advanced action’’ is very much along the lines of Cramer’s TI. Cramer has continued to
promote TI, in Cramer (1997, 2001).

Now to some further details of the ‘‘transaction’’ in the TI picture (for a detailed description, see
Cramer, 1986). In what follows, a ‘‘pseudotime sequence’’ of events is described,1 but it must be
remembered that the process is an atemporal one and that the various component events do not
precede or follow each other in any particular time sequence. To an observer who could discern the
individual steps, they would all appear to happen ‘‘at once’’.

In the TI, a quantum system is produced by a source S which plays the role of an ‘‘emitter’’ in the
Wheeler–Feynman theory. However, what the source emits is both a quantum mechanical wave C
and its time-reversed counterpart, C� (or, in Dirac notation, jCi and hCj, respectively). These waves
are considered to be physically real. (However, as Cramer is using the term, ‘‘real’’ means something
significantly less substantial than what most of us would consider physically real. For example, an
electron’s C-wave would merely carry the possibility for an electron to be detected; the electron is
not identified with its C-wave.)

Cramer refers to the future-directed jCi-wave as an ‘‘OW’’, as mentioned above (see Fig. 1). This
wave continues on (possibly being attenuated by the medium through which it passes or through
spatial divergence) until it interacts with an absorber (D), which absorbs the wave and in response
emits a ‘‘CW’’, also having two components, both advanced and retarded. What we are interested in
is the worldline connecting the source S and the absorber D, where a retarded OW jCi and an
advanced CW hCj ‘‘overlap.’’2 At the point where the advanced CW reaches S, there is a possibility for
a transaction to occur, which consists in S reinforcing the CW and giving rise to an actual, observable
event (such as the detection of a particle).

2. A specific example of the TI

To the above rough sketch we now fill in some details using a specific example, the famous
(or perhaps infamous) three-state or three-box experiment.
1 This ‘‘pseudotime’’ account of how a transaction occurs is subject to a serious challenge by Maudlin (2002). In Kastner

(2006) I argue that TI can survive the consistency part of the Maudlin challenge but that the pseudotime account cannot be

taken too seriously as describing the real ontology of transactions. It is included here only as a pedagogical/heuristic aid.
2 According to the Wheeler–Feynman theory, the advanced wave emitted by the source and the retarded wave emitted by

the absorber are exactly out of phase with the CW and OW extending beyond the source and the absorber, respectively, and

thus the only nonzero field is a four-vector standing wave between source and absorber (cf. Cramer, 1986, pp. 660–661).
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Fig. 1. Schematic diagram of the transaction process.
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Fig. 2 shows the basic setup for the three-state experiment. It usually involves three boxes or
shutters labeled A;B and C (essentially three possible locations at which a particle could be found). In
this version, we use a ‘‘three-slit’’ arrangement, in which detectors might be placed at one or more of
the slits. Particles are pre-selected in the state

jci ¼
1ffiffiffi
3
p ðjai þ jbi þ jciÞ (1)

and post-selected in the state

jfi ¼
1ffiffiffi
3
p ðjai þ jbi � jciÞ (2)

with obvious notation. In the ‘‘pseudo time sequence’’ referred to earlier, what takes place under TI is
as follows: particles are created by a source S and then preselected at time t0 in the state jci (thus any
particle not originally in that state will not proceed to the experiment). After t0, an OW jci propagates
in the usual time direction through the apparatus until at time t1 it encounters the three possible
locations, each equipped with detectors A, B, and C, respectively, in the experiment illustrated
in Fig. 3.

Let us label this nondegenerate observable (which unambiguously detects which of the three
locations the particle passed through) Q. We now consider the OW component propagating through
location A; analogous features hold for the other two paths. Detector A can be considered as an
attenuating filter which admits only components in the state jai. Thus the OW continuing on for t4t1

will have its amplitude reduced by the factor hajci and will now be in the state jai, as shown on the
path segment just to the right of A. When the OW reaches the final (post-selection) detector at t2, it is
again filtered so that its new amplitude is hfjaihajci and its state is jfi. This OW reaches absorber D
and is absorbed.

Now, according to TI the absorber must emit an ‘‘advanced’’ (complex conjugate) CW of the same
amplitude; thus the new CW is characterized by hcjaihajfihfj, as shown on the upper (A) path
segment to the left of D. This CW continues in the negative time direction (to the left on the figure)
toward detector A, where it is filtered as before, acquiring a factor of hfjai for a new state of
hcjaijhajfij2haj. ‘‘Finally’’ (in the pseudotime sequence), the CW reaches the pre-selection filter where
its amplitude is further reduced by a factor of hajci, resulting in the final CW state jhcjaij2jhajfij2hcj.
According to TI, the source S may be stimulated to reinforce this CW with a probability proportional
to its amplitude (which is now identical with the square of the amplitude of the final OW, and which
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Fig. 3. No confirmation wave can be returned along the path corresponding to not-A.

Fig. 2. Three-state experiment with detectors at all three locations.
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therefore provides an ontological understanding of the origin of the Born probability rule). Such a
reinforcement constitutes a ‘‘transaction,’’ with the consequent realization of an actual particle
transmitted between S and D and having been localized at A at the time t1.

Similar processes occur for the other possible paths B and C, with analogous final amplitudes
jhcjbij2jhbjfij2 and jhcjcij2jhcjfij2. In this case, all these final amplitudes are equal to 1

3 and the
particle’s probability of being found at each of the three locations is therefore 1

3.
A different situation occurs when a degenerate observable is measured, which only detects

whether a particle went through a single particular location. Fig. 3 depicts such a measurement, of
observable A corresponding to a detector A only at location A. In this situation, the analysis of the OW
component along the path corresponding to A is the same as in the measurement of nondegenerate
observable Q (as shown in Fig. 2—in Fig. 3 the amplitudes are omitted and only the bra/kets are
shown); however, the remainder of the pre-selection state OW looks quite different as it proceeds
through the apparatus. This component now corresponds to a state orthogonal to jai, namely the
state ja0i ¼ ð1=

ffiffiffi
2
p
Þðjbi þ jciÞ. This state is also orthogonal to the post-selection state jfi and will

therefore not be passed through the final filter jFi; thus it cannot be absorbed by D, and no CW can
be returned. Thus no transaction is possible for components of the initial OW not detected by A. The
only transaction possible for the experiment measuring observable A occurs for the OW component
which passes filter A. An analogous situation holds for measurement of the degenerate observable B

with a detector B placed only at location B.
Yet a different situation occurs when a detector C is placed only at location C; this is pictured in

Fig. 4. In this case, both components of the OW—the component hcjcijci detected by C as well as the
component hc0jcijc0i (where jc0i ¼ ð1=

ffiffiffi
2
p
Þðjai þ jbiÞ) not detected by C—are able to reach the absorber

D, since neither is orthogonal to the final state jfi. Therefore two transactions are possible: (1) a
transaction corresponding to the component of the OW detected by C, which has final amplitude
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Fig. 4. Transactions are possible on either path, not-C or C.
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jhcjcij2jhcjfij2 ¼ 1
9 and (2) a transaction corresponding to the component of the OW not detected by C,

with final amplitude jhcjc0ij2jhc0jfij2 ¼ 4
9.

We will return to this example when discussing weak values, which are introduced in the next
section.
3. Weak values in the TI picture

‘‘Weak values’’ are quantities introduced by Aharonov and Vaidman (1990) in the context of pre-
and post-selection experiments (such as the three-state example discussed above).

The weak value of the operator O with respect to states jai and jbi is defined as

hOiw ¼
hbjOjai

hbjai
(3)

Several authors have used weak values as indicators of properties in pre- and post-selected
systems, and as answers to counterfactual questions about the properties of such systems between
measurements. For example, in the three-box case introduced above, the degenerate operator C

(represented in Fig. 4) has a weak value of �1 for the given pre- and post-selection states. Vaidman
(1996) has claimed that this should be interpreted as an ‘‘element of reality’’ indicating that there is
‘‘�1’’ particle in box C in this experiment, and that this prediction could be confirmed by measuring
the pressure in that box and finding it to be negative.3

In this section we look at the weak values of projection operators in particular (since these are the
ones used to make the above sorts of inferences about the properties of pre- and post-selected
systems), and consider what might be the ontology underlying weak values in the TI picture.

First, we note that the weak value of an operator A when the pre- and post-selection states are the
same (say jci) is identical to the usual expectation value ExpcðAÞ ¼ hcjAjci. It is of course well known
that if A is a projection operator corresponding to some outcome a then

ExpcðAÞ ¼ PrcðaÞ (4)

that is, the expectation value of a projection operator gives the Born probability of the associated
outcome. Should we then think of weak values as analogous to some kind of generalized probability,
or expectation value, for the pre- and post-selection case?
3 It is not clear how this could be done, since one must throw out runs not fulfilling the post-selection criterion. Thus the

qualifying particles can only be collected in one place after post-selection; whereas measuring pressure would seem to require

the existence of a collection of appropriately pre- and post-selected particles in box C at the same time.
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The TI provides an interesting account of the similarity in form between weak and expectation
values of projection operators which shows that these two quantities have very different ontological
interpretations and that the answer to the above question should be negative. First, Fig. 5 shows how
the Born Rule arises under TI (one can think of the states in this figure as the ones with the same
labels in the three-state example).

An OW is emitted by a source S and passes through a filter (such as a polarizing filter) preparing
the system in state jci. It then passes through another filter which allows only the component jai
corresponding to the projection operator A. Finally it is absorbed at detector D. The detector,
according to TI, emits an advanced CW whose amplitude is the complex conjugate of the OW as it
arrives as D. The CW undergoes an analogous filtering process—essentially the time reverse of that
described above—and arrives back at S. Its amplitude at S reflects the Born Rule corresponding to the
probability of the system’s being found in state jai given that it was prepared in state jci.

Next, Fig. 6a shows the situation corresponding to the weak value hAiw ¼ hfjAjci=hfjci.
The experiment begins in the same manner as in Fig. 5, but an additional f (post-selection) filter

is added after the A filter. The quantity hfjAjci, which is just the unnormalized weak value, now
describes the amplitude of the OW only just before it reaches the detector D. A CW will of course be
returned as before, but the point is that the (unnormalized) weak value of A characterizes only the
Fig. 5. The TI picture of the Born probability.

Fig. 6. The TI picture of the weak value.
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OW portion of the experiment. (Note that, with the states identified with those in the three-box
example, the weak value of A is unity.)

Now, if we replace the final f filter with a c filter (Fig. 6b), we see that the weak value looks
formally identical to the expectation value ExpcðAÞ, equivalently the Born probability, PrcðaÞ, shown
in Fig. 5. Yet the weak value of the projection operator A and its expectation value (understood as the
Born probability) correspond to two very different physical situations under TI: one characterizes
only an OW component, and the other characterizes an incipient transaction in which offer and CW
have overlapped. The Born probably is the amplitude of a comfirmation wave while the weak value of
A in the pre- and post-selection state c is the amplitude of an offer wave.

Therefore the TI picture reinforces the conclusion in Kastner (2004) that weak values should be
thought of as corresponding to amplitudes in pre- and post-selection experiments rather than as
generalized expectation values. (The above conclusion was arrived at in that paper in part by noting
that standard quantum mechanics admits the kind of analysis accompanying Fig. 6—that the
amplitude of the state vector of the system just prior to detection is equal to the unnormalized weak
value.) Under TI, weak values characterize the amplitudes of OW (or CW) having passed through
several measurement events (such as the filters in the above discussion). They do not correspond to
the amplitudes of incipient transactions in which offer and CW have overlapped.

While some authors, such as Vaidman (1996) and Aharonov et al. (2002) have made weak values
the basis of ontological claims,4 according to the TI picture this would be unwarranted since weak
values correspond only to amplitudes, rather than to expectation values understood as sums of
eigenvalues weighted by Born probabilities. In connection with the three-box example discussed in
the previous section, this means that the weak value of unity for A (or B) should not be interpreted as
indicating the possession of a property such as being located in box A (or B); nor should the weak
value of �1 for C be taken as indicating ‘‘�1 particle in box C.’’

However, we can now see that the ‘‘multiple time probability’’ naturally applicable in the context
of an experiment like that in Fig. 6 would be obtained by following the resulting CW back through
the apparatus until it reaches the source—as in the discussion accompanying Fig. 2 of Section 2. The
final amplitude would be the absolute square of the OW amplitude; that is,

Prða&fjcÞ ¼ jhfjAjcij2 (5)

This is also, of course, a standard result in quantum theory for the probability of a sequence of
events (cf. Bub, 1997, p. 232). We can obtain from this what looks like the conditional probability of
outcome a given the pre- and post-selection by using the usual rules of probability (that is, dividing
the right-hand side of (5) by the probability of state f given c); the result is

Prðajc&fÞ ¼
jhfjAjcij2

jhfjcij2
¼ jhAiwj

2 (6)

The above result (i.e., the right-hand side) was obtained in Kastner (2004) but, as was pointed out
there, (6) is not a well-behaved probability5 unless certain additional ‘‘consistency’’ conditions apply.
We will therefore call it a ‘‘pseudoprobability.’’ In the following sections we consider what
significance the pseudoprobability has when it is rendered well behaved through appropriate
additional constraints.
4. TI and the possession of properties

In the TI, the possession of properties corresponding to values of observables is underdetermined
by such theoretical quantities as probabilities or weak values. Instead, the precise nature of the
particular experiment must be specified, as the latter will determine what types of transactions are
4 Aharonov et al. (2002) also find a weak value of �1 arising in the Hardy (1992) experiment and also interpret it as

indicating ‘‘�1 particles’’ present at a certain location.
5 For example, it yields values larger than 1.
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Fig. 7. Cramer’s example of a photon/polarizer experiment.
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possible; and under the TI, property possession corresponds to a special type of transaction (to be
described below).

For example, under TI it may the case that a system seems to be characterised by a weak
value of unity (which means, according to Eq. (6), that it also has a pseudoprobability and possibly
even a ‘‘proper probability’’ of unity) but at no time will the system actually possess the
property corresponding to that weak value. A simple illustration is the example presented in Cramer
(1986, p. 690), Fig. 14, (reproduced here as Fig. 7) which schematically presents a pre- and post-
selection setup for a polarized photon (isomorphic to a spin-1

2 particle). The photon is pre-selected in
a horizontal state of polarization (H) (which we can think of as analogous to a state of ‘‘spin up along
z’’ for a spin-1

2 particle; the state of vertical polarization (V) would be orthogonal and would
correspond to ‘‘spin down along z’’) and post-selected in a right-circular state of polarization (R)
(which we can think of as analogous to a state of ‘‘spin up along x’’; the orthogonal state is left-
circular polarization (L)).

It is well known that the time-symmetric probabilities (and therefore the weak values6)
associated with either H or R in the intervening time between pre- and post-selection are both unity.
Explicitly, for the weak values we have

hHiw ¼
hRjHjHi

hRjHi
¼ 1; hRiw ¼

hRjRjHi

hRjHi
¼ 1 (7)

However, according to TI what actually happens to the system is underdetermined by these values.
In fact, several different experiments are possible in this situation, and only one experiment is
applicable to each ontological claim about a particular observable. This is because under TI, a system
only has a determinate property corresponding to an eigenvalue x when both the retarded OW and
the advanced CW ‘‘overlap’’ and reinforce each other in states jxi and hxj, respectively.

As shown in the figure, despite the fact that the theoretical weak value of H is unity, when
experiment (a) is performed, the system never achieves a determinate value for H throughout the
time interval between pre- and post-selection. Only under experiment (b) can the system be said to
6 As shown in Aharonov & Vaidman (1990), a probability of unity or zero for an observable under pre- and post-selection

corresponds to a weak value of unity or zero, respectively; the converse is also true for two-valued observables.
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possess H with certainty, and then only in the time interval prior to the H measurement. Similarly,
under experiment (c) the system can be said to possess the property (R) with certainty, but only in
the interval after the R measurement.

Thus, under TI, the value hHiw ¼ 1 cannot be interpreted as indicating a possessed property of a
given system unless H is actually measured (and, even then, only in the appropriate time interval
where OW and CW overlap in the same state). This addresses the ‘‘paradox’’ in which a system seems
to be characterized by determinate values for noncommuting observables. But according to TI, such
values do not apply together if both observables cannot be simultaneously measured.

What can TI say about the controversial problem of the counterfactual usage of the time-
symmetric Aharonov–Bergmann–Lebowitz ‘‘ABL Rule’’ for the probability of outcomes of measure-
ments performed between pre- and post-selection7—that is, the question of whether the rule yields
valid probabilities for outcomes corresponding to observables that have not actually been measured
at time t1? It has been argued by some authors (Cohen, 1995; Griffiths, 2002; Kastner, 1999a, b) that
the ABL rule can be counterfactually applied only in cases in which the relevant histories form a
consistent family. Though Vaidman (1998a) has objected that this restricts the counterfactual usage
of the ABL rule to uninteresting cases, under TI some of these cases have more ontological content
than has previously been supposed. On the other hand, under TI we find reason to think that
consistency is not always enough to support the counterfactual usage of the ABL rule. Before dealing
with this issue, we briefly review the consistent histories formulation.
5. TI and consistent histories

In the consistent histories formulation pioneered by Griffiths (cf. 1996, 1999, 2002), one can assign
standard ‘‘classical’’ or Kolmogorov-type probabilities for different sequences of events, called
‘histories,’’ provided that the set of such histories fulfills a consistency criterion (see below) which
ensures that probabilities for distinct histories are additive. A history F is a projector on the multiple-
time Hilbert space �H of the system corresponding to the number n of events/times considered, i.e.:

�H ¼ H0 � H1 � H2 � � � � � Hn

In Griffiths’ terms, such a set of histories corresponds to a particular decomposition of the
multiple-time identity �I, into a set of ‘‘minimal elements’’ fFig:

�I ¼
X

i

Fi (8)

We can consider Fi as the ‘‘atomic’’ or most specific histories belonging to the particular
decomposition.8 The consistency condition is (for zero Hamiltonian; this is easily generalized to
cases of nonzero Hamilton; cf. Griffiths, 1996, pp. 2761–2762).

Tr½Fyi Fj� ¼ 0 (9)

for all fi; jg in the given decomposition of �I.
In the three-state experiment illustrated in Figs. 2, 3 and 4, it has been noted that each of

the setups for measuring observables A and B (both of which have a weak value of unity) corresponds
to a consistent family of histories (cf. Cohen, 1995; Kastner, 1999b). The experiment in which
A is measured (call this ‘‘Experiment A’’) corresponds to a decomposition of the multiple-time
identity �I as

�I ¼ fC0 þ ~C0gfA1 þ
~A1gfF2 þ ~F2g (10)
7 The ‘‘ABL’’ rule was formulated in ABL (1964). It is a time-symmetric expression giving the conditional probability for

the outcome of a measurement performed between pre- and post-selection measurements. As shown in Cohen (1995) and

further discussed in Kastner (1999b), the ABL rule, which is a well-behaved probability, is a special case of the

‘‘pseudoprobability’’ (6) which obtains when the associated family of histories is consistent.
8 More general histories Y can be constructed from the minimal elements according to Y ¼

P
iniFi , where n is either zero or

one.
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where capital letters denote the projector corresponding to the state with the same lower-case label,
a subscript denotes the time index of the event, and ~C ¼ 1�C. This family of histories is consistent
according to (9). The decomposition corresponding to the experiment in which B is measured
(obtained by replacing A with B in the above expression—call this ‘‘Experiment B’’) is similarly
consistent.

Note that neither the experiment in which detectors are placed at all three locations, nor the
experiment in which a detector is placed only at location C, satisfy the consistency criterion. The
feature these experiments have in common is that there is more than one OW component that can
reach the final detector. In contrast, the consistent families obtaining in the Experiments A and B are
characterised by the availability of only a single path for the OW from the source to the detector.
Trivially, then, any detected particle had to have gone through location A (or B, if Experiment B is
being performed).

As noted above, the issue of consistency in pre- and post-selected systems was initially raised in
Cohen (1995) in the context of his critique of the counterfactual usage of the Aharnov–Bergmann–-
Lebowitz (ABL) rule. Cohen argued that the counterfactual usage was generally not valid, but that it
was valid when the sequence of events, including the counterfactual measurement, satisfied the
Griffiths consistency condition.

As an illustration of how such counterfactuals fare under TI, consider again the example of a
polarized photon discussed by Cramer (our Fig. 7). Suppose that in the actual world no measurement
was made at time t1 (no polarizing filter was inserted between the initial and final filters, as depicted
in process (a) in the figure). Then, according to TI, the photon had no determinate value for either its
linear or circular polarization throughout the time interval [t0; t2]. But the set of histories
corresponding to the partition of the multiple-time identity including a measurement of, say, the
linear polarization at time t1 is consistent (as is well known; cf. Griffiths, 1996, p. 2769) for the
(isomorphic case of a spin-1

2 particle). Specifically, the relevant decomposition is

�I ¼ fH0 þ V0gfH1 þ V1gfR2 þ L2g (11)

Suppose we can indeed use the ABL rule counterfactually for such consistent families. Then the
ABL rule can be used to obtain the counterfactual probability of outcome H at the time t1, which in
this case is unity. Assuming that perfect certainty of an outcome at a particular time corresponds to
property possession at that time, this result tells us that, had an H-type filter been in place at time t1,
the particle would definitely have been horizontally polarized at that time. Under TI, this means that
its OW and CW would have overlapped in states jhi and hhj, respectively. This conclusion now differs
ontologically from what was the actual case when no such measurement occurred at t1. For in the
actual case, the particle had no determinate value for its polarization: that is, it would be correct
neither to say that the particle possessed property h, nor that it possessed property r, throughout the
time interval in question (between the H and R measurements).

On the other hand (as noted at the end of Section 4), TI provides reason to think that consistency,
while a necessary condition for validity of the counterfactual usage of the ABL rule, is not sufficient.
To see why, look at the three-box example and consider the counterfactual claim (based on the given
pre- and post-selection):

CFA: ‘‘Given that I actually made no measurement of position A, B, or C at time t1, if I had opened
box A in the intervening time, the particle would definitely (with ABL probably 1) have been
there.’’

Were consistency sufficient, CFA would be valid, since adding the measurement of A to the family of
histories defined by the given pre- and post-selection results in a consistent family. (Griffiths refers
to this procedure as a ‘‘refinement’’; cf. Griffiths, 1996, pp. 2763–2764.)

But now consider also

CFB: ‘‘Given that I actually made no measurement of position A, B, or C at time t1, if I had opened
box B in the intervening time, the particle would definitely (with ABL probably 1) have been
there.’’
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Since we can alternatively make a consistent ‘‘refinement’’ of the pre- and post-selection event set
through the addition of B and its complement at t1 to the partition of �I, CFB has to be just as valid as
A. Though the consistency of the event sets underlying each of these claims separately assures that
they are based on a well-behaved probability expression, we are nevertheless faced with contrary9

dispositional conclusions10 regarding the same particle, and which have no ontological support from
either the pre- or post-selection state (in contrast to the example of Fig. 7).

Griffiths deals with the above difficulty by saying that one cannot ‘‘combine’’ the two contrary
inferences (as does Vaidman). Yet the problem that remains is that each statement, ‘‘separately,’’ is
claimed to be true, and each applies to the same particle. It is important to keep in mind that each
counterfactual above is a claim about what the result of an intermediate A or B measurement would
definitely have been when no such measurement was actually performed, so the fact that they both
apply to the same particle (whether or not we explicitly ‘‘combine’’ them in a linguistic sense)
constitutes a strong contrary dispositional claim. Such a claim is substantively different from the
well-known fact that quantum particles can be in superpositions of classically distinct states
independent of specific measurement claims. To argue that a particle subject to CFA and CFB is not in
a contradictory property state11 because of a linguistic maneuver (i.e., applying Bell’s ‘‘unspeakable’’
rule to one or the other of a set of statements about a given particle, each of which is claimed to be
true) is not, it seems to this author, to solve the fundamental difficulty raised by the two contrary
counterfactuals CFA and CFB.

TI provides a solution to the above condundrum on the ontological rather than the semantic level.
It is based on a distinction between these two cases that only appears under the TI picture and which
shows why consistency assures a valid counterfactual interpretation for the first (polarization) case
but not the second (three-box) case.

The insight offered into this situation by TI is that, in the three-box experiment, the offer and CW
never overlap in the same state even when the A (or B) filter is present (see Fig. 3). Thus the particle
never has a determinate value of the property corresponding either to location A or B in this experiment.
This certainly seems counterintuitive—one might say, ‘‘if I observed the particle to be in the box, how
can it not be determinately ‘‘in the box’’? Yet it must be remembered that if we actually did open a
particular box and find the particle there, it would be detected and a CW would be generated. Then
an overlap of offer and CW in the same box state would result, and we could say that the particle
possessed that property. But in the absence of such an actual detection in a particular box, and in the

context of the impending post-selection measurement, which does not commute with the box location
observable, ‘‘measuring’’ the box location state does not result in unambiguous possession of that
property in the sense of an overlap of offer and CW in the same state. (This is because the kind of
‘‘measurement’’ assumed in the three-box experiment just corresponds to placing a filter which only
allows the jai or jbi component to pass—the particle has not actually been detected at the
intermediate time unless it is stopped by the filter, in which case it will never be post-selected.)

An alternative argument is based on the following intuition: for a counterfactual claim like CFA
(or CFB) to be true, it must be the case that the counterfactual measurement being contemplated
does not ‘‘disturb’’ the post-selection of the particle; it ‘‘would have been post-selected anyway’’
regardless of the measurement.12 In the Cramer polarization example, the intervening H or R

measurement is benign in that it either (i) simply verifies the preselection or (ii) moves the post-
selection up to an earlier time.13 Since an ontological trace of the post-selection result (R) ‘‘already’’
exists in the form of the CW traveling backward in time from the post-selection, the particle in
9 We use ‘‘contrary’’ in the same sense as Kent, who raises a similar objection in Kent (1997).
10 Assuming that dispositions can be represented by counterfactuals in the usual way.
11 Here, ‘‘contradictory property state’’ is taken to mean that the particle in question is predicted to be found with

certainty upon measurement in two different boxes depending on which measurement happens to be performed.
12 This consideration addresses the requirement that background conditions used to evaluate counterfactuals must be

cotenable with the antecedent; i.e., invoking the antecedent does not affect the truth the background conditions. For a detailed

discussion, cf. Kastner (1999a) or (2003).
13 For sticklers for time symmetry, the same argument can be made in the reverse time direction, changing the roles of the

pre- and post-selection measurements.
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question is ‘‘fated’’ to be found in the state R—so it doesn’t matter when that measurement takes
place.

In contrast, a contemplated measurement of A envisions the pre-selected particle having to
‘‘decide’’ between states jai and states ja0i (the latter corresponding to ‘‘not-a.’’). This decision
was never actually made, however, in the performed experiment; so there is therefore no
basis for assuming that counterfactually, the particle would choose jai. (The same observation of
course applies to a contemplated measurement of B.) The only ‘‘choice’’ the particle actually
made was in going from the pre-selection state jci to the post-selection state jfi as opposed to some
other eigenstate of the post-selection observable. The fact that the particle could be considered
as having been ‘‘fated’’ to finally choose jfi from its initial preparation in state jci provides no
basis for a preference either for jai over ja0i or jbi over jb0i at an intermediate time. This feature is
reflected in the lack of determinateness of the property a (or b) under TI, when we look at the nature
of the offer and CW arising in the experiment (see Fig. 3 and note that overlapping bras and kets
differ).

In terms of cotenability, what this means is that one cannot claim either of the following
statements about background conditions necessary for validity of the counterfactuals CFA and CFB
(see footnote 11):
(a)
disc
if I had measured A, the particle would still have been post-selected or

(b)
 if I had measured B, the particle would still have been post-selected.
This is because the conditions of the actual world (i.e., the actual offer and CW), in which neither A
nor B was measured, contain no information about a transition between A (or B) eigenstates to the
post-selection state, in contrast to the polarization example of Fig. 7.14

The underlying ontology of the two cases is very different, even though the ABL proba-
bility of unity applies in both cases and they each satisfy the consistency criterion. The difference is
evident only when one examines the nature of the offer and CW arising in each experiment.
In one, there is an ontological basis for applying the ABL rule counterfactually; in the other, there
is not.

Thus, provided one is willing to entertain the nonstandard ontology of TI, it has told us something
new about the attribution of properties in the context of pre- and post-selection experiments. A
consistent family, it turns out, is a necessary but not sufficient condition for a valid counterfactual
usage of the ABL rule. What is also required is that offer and CW would ‘‘concur’’ as to the system’s
state in the time interval immediately prior to, or subsequent to, the time index of the counterfactual
measurement.
6. Conclusion

Cramer’s transactional interpretation has been applied to several commonly discussed pre- and
post-selection experiments. It has been argued that TI provides insight into the nature of time-
symmetric weak values: namely, that they should be interpreted as multiple-time amplitudes, rather
than as generalized expectation values. Weak values of projection operators—even when the pre-
and post-selection states are the same—do not reflect Born probabilities, which under TI arise from
the overlap of offer and confirmation waves, but instead characterize the amplitude of an offer wave
component only.

It has also been argued that TI provides reason to think that property inferences based on a
counterfactual usage of the ABL rule require more than satisfaction of the Griffiths consistency
criterion; it is also required that the system’s offer and confirmation waves overlap in the same state
corresponding to the claimed possessed property, in the time interval directly adjacent (either before
or after) the counterfactual measurement.
14 Once again, in keeping with time symmetry one may interchange the roles of the pre- and post-selection state in this

ussion.
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