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The Zitterbewegung Interpretation of

Quantum Mechanics

David Hestenes

Abstract. The zitterbewegung is a local circulatory motion of the elec-
tron presumed to be the basis of the electron spin and magnetic moment. A
reformulation of the Dirac theory shows that the zitterbewegung need not
be attributed to interference between positive and negative energy states as
originally proposed by Schroedinger. Rather, it provides a physical inter-
pretation for the complex phase factor in the Dirac wave function generally.
Moreover, it extends to a coherent physical interpretation of the entire Dirac
theory, and it implies a zitterbewegung interpretation for the Schroedinger
theory as well.

1. INTRODUCTION

The idea that the electron spin and magnetic moment are generated by a localized cir-
culatory motion of the electron has been proposed independently by many physicists.
Schroedinger’s zitterbewegung (zbw) model for such motion is especially noteworthy, be-
cause it is grounded in an analysis of solutions to the Dirac equation.(1,2,3) Surely, if the
zbw is a real physical phenomena, then it tells us something fundamental about the nature
of the electron. However, the role ascribed to the zbw in standard formulations of quantum
mechanics has been metaphorical at best.

My purpose in this paper is to argue that the zbw is not an esoteric or adventitious rela-
tivistic feature of the Dirac theory as commonly believed. Rather, the zbw is a ubiquitous
phenomena with manifestations in every application of quantum mechanics, even in the
nonrelativistic domain.

A wholesale reinterpretation of quantum mechanics is necessary to recognize this. But
the reinterpretation is not arbitrarily imposed on the mathematical formalism. Rather,
like Schroedinger’s original ideal about the zbw, it arises from analyzing solutions of the
Dirac equation to see what they tell us about the structure of the electron and its motion.
In analyzing free-particle wave packet solutions of the Dirac equation, Schroedinger noted
the existence of “interference” between positive and negative energy states oscillating with
circular frequency

ω0 = 2mc2/h̄ = 1.6 × 1021s−1 (1)

He interpreted this as a fluctuation in the position of the electron with radius

λ̄0 = c/ω0 = h̄/2mc = 1.9 × 10−13m (2)

For an electron moving at the speed of light about a mean position this entails an angular
momentum

λ̄0(mc) = h̄/2 (3)
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which is naturally interpreted as the spin angular momentum of the electron.
Interpreting the oscillation between positive and negative energy states quite literally, the

zbw is sometimes supposed to originate in electron-positron pair creation and annihilation.(4)

That would seem to make the zbw a purely relativistic phenomena. But then how could
the zbw be the origin of spin, which is surely significant in the nonrelativistic domain? We
resolve this paradox by interpreting the mathematics differently.

I shall show that the complex phase factor in the electron wave function can be associated
directly with the zbw. I call this the zbw interpretation of quantum mechanics. Obviously,
it has far-reaching implications, since complex phase factors play a critical role in every
application of quantum mechanics. In the first place, it implies that Schroedinger’s original
wave packet oscillation is merely an epiphenomenon revealing the zbw periodicity which
was already inherent in the complex phase factors of both electron and positron plane wave
states. The essential feature of the zbw idea is the association of the spin with a local
circulatory motion characterized by the phase factor. Since the complex phase factor is the
main feature which the Dirac wave function shares with its nonrelativistic limit, it follows
that the Schroedinger equation for an electron inherits a zbw interpretation from the Dirac
theory. It follows that such familiar consequences of the Schroedinger theory as barrier
penetration can be interpreted as manifestations of the zbw.

To show how natural it is to impose the zbw interpretation on the Dirac theory, I employ
a reformulation of the theory in terms of the real spacetime algebra which has been devel-
oped and discussed at length in several previous publications.(5,11) A brief review of this
reformulation is given below to establish a foundation for reinterpretation. The main point
of the reformulation is to reveal geometric structure in the Dirac theory which is hidden
in the conventional formulation. This makes it possible to see clearly how the Dirac wave
function describes the kinematics of electron motion and how this depends on definitions
(i.e., interpretations) of observables in the theory.

Finally, in a study of plane wave solutions of the Dirac equation we come to the essential
new idea proposed in this article: A simple change in the definition (i.e., interpretation) of
the electron velocity implies that all components of the electron wave function (including its
phase) directly describe kinematical features of electron motion. The uniquely compelling
feature of this new interpretation is that it ascribes maximal geometric content to the Dirac
wave function. Moreover, it entails the essential features of the zbw described above, and
it generalizes automatically to the electron with arbitrary electromagnetic interactions.

2. THE GEOMETRIC CONTENT OF THE DIRAC ALGEBRA

My first contention is that the Dirac algebra contains irrelevant features which must be
eliminated to reveal its true geometric content. The simplest way to carry out the elimina-
tion is to define the “geometrically purified” version of the Dirac algebra, which I call the
spacetime algebra (STA), and then compare it with the conventional matrix version.

We begin with the usual Minkowski model of spacetime as a four-dimensional vector
space M4. In mathematical parlance, STA is the real Clifford algebra of the Minkowski
metric on M4. More specifically, STA is a real associative algebra generated from M4

by defining an associative product on M4 with the special property that the square of
every vector is scalar-valued. I call this product the geometric product to emphasize the
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fact that it has a definite geometric interpretation which fully characterizes the geometrical
properties of spacetime. The geometric product uv of vectors u and v can be interpreted
by decomposing it into symmetric and skew-symmetric parts; thus,

uv = u · v + u ∧ v (4)

where two new products have been introduced and defined by

u · v = 1
2 (uv + vu) (5)

u ∧ v = 1
2 (uv − vu) = −v ∧ u (6)

It follows from the definition of the geometric product that u · v is a scalar; indeed, it is the
usual inner product defined on Minkowski space. The quantity u∧v is called a bivector, and
it represents a directed plane segment in the same way that a vector represents a directed
line segment.

Note that for orthogonal vectors (as defined by u · v = 0), Eq. (4) gives uv = u ∧
v = −vu. Thus, the geometric relation of orthogonality is expressed algebraically by an
anticommutative geometric product. Similarly, collinearity is expressed by a commutative
geometric product. For in that case u ∧ v = 0 and (4) gives uv = u · v = vu. In general,
(4) shows that the geometric product represents the relative direction of any two vectors
by a combination of commutative and anticommutative parts.

To facilitate comparison with the Dirac matrix algebra, it is convenient to characterize the
structure of STA in terms of a basis. Let {γµ;µ = 0, 1, 2, 3} be a right-handed orthonormal
basis for M4 with timelike vector γ0 in the forward (future) light cone. In terms of this
basis the spacetime metric is expressed by the equations

γ2
0 = 1 = −γ2

k for k = 1, 2, 3 (7)

and
γµ · γν = 0 for µ �= ν (8)

Other basis elements of STA, each with a definite geometric interpretation, can be generated
from the γµ by multiplication. For example, γ2γ1 = γ2∧γ1 is a bivector of unit magnitude,
as expressed by

(γ2γ1)2 = −1 (9)

Geometrically, γ2γ1 can be interpreted as the unit (directed) area element for the plane
containing γ1, and γ2. It is also the generator of rotations in that plane, for it is easily
proved that multiplication by γ2γ1 rotates any vector in that plane through a quarter turn.
Of great importance to us later on will be the fact that all Lorentz rotations are generated
by the bivectors of STA.

The unit pseudoscalar for spacetime is so important that the special symbol i will be
reserved to represent it. lts generation by the vector basis is expressed by

i = γ0γ1γ2γ3 (10)

Geometrically, it represents the unit oriented 4-volume element for spacetime. Its algebraic
properties

i2 = −1 (11)
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iγµ = −γµi (12)

make it easy to manipulate. Multiplication of (10) by γ0 yields the pseudovector

γ1γ2γ3 = γ0i (13)

Geometrically, this is the (directed) unit 3-volume element for a hyperplane with normal
γ0.

By forming all distinct products of the γµ, we obtain a complete basis for STA consisting
of the 24 = 16 linearly independent elements

1, γµ, γµ ∧ γν , γµi, i (14)

It follows that a generic element M in STA, called a multivector, can be written in the
expanded form

M = α + a + B + bi + βi , (15)

where α and β are scalars, a and b are vectors, and (with summation over repeated indices)

B = 1
2Bµνγµ ∧ γν (16)

is a bivector.
To facilitate decompositions relative to the basis {γµ}, it is convenient to introduce a

reciprocal basis {γµ} defined by the conditions

γµ · γν = δµ
ν (17)

This implies that γ0 = γ0 and γk = −γk. The components of the vector a in (15) are then
given by aµ = a · γµ so a = aµγµ. Similarly, the bivector components Bµν in (16) are given
by

Bµν = γµ · (γν · B) = (γµ ∧ γν) · B (18)

The multivector M in (15) can be decomposed into an even part M+ and an odd part
M−, as expressed by

M = M+ + M− (19a)

M+ = α + B + βi (19b)

M− = a + bi (19c)

A multivector is said to be even (odd) if its odd (even) part vanishes.
For M in the expanded form (15), the operation of reversion in STA is defined by

M̃ = α + a − B − bi + βi (20)

It follows that for any multivectors M and N ,

(MN)˜ = ÑM̃ (21)

Essentially, reversion amounts to reversing the order of geometric products.
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The relation of STA to the Dirac algebra is now easy to state. The Dirac matrices,
commonly denoted by the symbols γµ, can be put into one-to-one correspondence with
the basis vectors denoted by the same symbols above. Then the algebra generated by the
Dirac matrices over the real is isomorphic to STA. It follows that the geometric meaning
attributed to the vectors γµ and their products above is inherent in the Dirac algebra,
though it is scarcely recognized in the literature. This isomorphism completely defines the
geometric content of the Dirac algebra with respect to spacetime. It suggests also that the
representation of the γµ by matrices is irrelevant to their function in physical theory. This
suggestion is confirmed in the next section by casting the Dirac theory in terms of STA
with no reference at all to matrices.

The full Dirac algebra is generated by the γµ, over a complex instead of a real number
field. The fact that the real field suffices to express the full geometric content of the algebra
suggests that the 16 additional degrees of freedom introduced by employing a complex field
instead are physically irrelevant. This suggestion is also confirmed in the next section
by formulating the Dirac theory without them. Elimination of the irrelevant

√−1 in the
complex number field opens up the possibility of discovering a geometric meaning for the√−1 which occurs so prominently in the equations of quantum mechanics. Indeed, Eqs.
(7), (9), and (11) show that STA contains many different roots of minus one, including
three geometrically different types. Each type plays a different role in the Dirac theory.

3. THE GEOMETRIC STRUCTURE OF THE DIRAC THEORY

A review of the reformulation of the Dirac theory in terms of STA is given in Ref. 11, and
many more details are supplied in Refs. 8 and 9. These references also contain proofs of
mathematical equivalence to the conventional matrix formulation. Proofs will be omitted
in presenting the results of interest here in order to concentrate on their geometrical and
physical interpretations.

The Dirac wave function at a spacetime point x is represented in STA as an even multi-
vector ψ = ψ(x). It has the Lorentz invariant factorization

ψ = (ρeiβ)
1
2 R (22)

where i is the unit pseudoscalar, ρ and β are scalars, and R satisfies

RR̃ = R̃R = 1 (23)

At each point x, the function R = R(x) determines a Lorentz rotation (i.e., a proper,
orthochronous Lorentz transformation) of a given fixed frame of vectors {γµ} into a frame
{eµ = eµ(x)} given by

eµ = RγµR̃ (24)

In other words, R determines a unique frame field on spacetime. This frame field has a
physical interpretation. First, the vector field

ψγ0ψ̃ = ρe0 = ρv (25)

is the Dirac current, which according to the Born interpretation is to be interpreted as a
probabililty current. Accordingly, at each point x, the timelike vector v = v(x) = e0(x) is
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interpreted as the probable (proper) velocity of the electron, and ρ = ρ(x) is the relative
probability (i.e., proper probability density) that the electron actually is at x. Second, the
vector field

h̄

2
ψγ3ψ̃ = ρ

h̄

2
e3 = ρs . (26)

is the spin (or polarization) vector density. The spin angular momentum S = S(x) is
actually a bivector quantity, related to the spin vector s by

S = isv =
h̄

2
ie3e0 =

h̄

2
e2e1 =

h̄

2
Rγ2γ1R̃ (27)

Multiplying this on the right by (22) and using (23), one easily obtains

Sψ = 1
2ψγ2γ1h̄ (28)

which relates the spin S to the bivector γ2γ1h̄.
In general, six parameters are needed to specify an arbitrary Lorentz rotation. Five of the

parameters in the Lorentz rotation (24) are needed to specify the direction of the electron
velocity v and spin s. This also determines the plane containing e1 and e2, as shown
in (27). The remainlng parameter determines the orientation of e1 and e2 in the e2e1-
plane. This parameter is the phase of the wave function, and here we have a geometrical
interpretation of the phase. The vectors e1 and e2 are not given a physical interpretation in
the conventional formulation of the Dirac theory, because the matrix formalism suppresses
them completely. They will be given a kinematical interpretation in the next section when
the zbw interpretation is introduced.

The factorization (22) of the wave function ψ can now be seen as a decomposition into
a six-parameter kinematical factor R and a two-parameter statistical factor (ρeiβ)

1
2 . The

parameter ρ is clearly a probability density, but the interpretation of β is problematical.
In the next section it will be seen that the value of β distinguishes electron and positron
solutions of the free-particle Dirac equation, which suggests that cosβ can be interpreted
as the relative probability of observing an electron or a positron. The significance of β is
discussed further in the references.(7,10)

For analytical purposes, coordinates xµ of a spacetime point x can be defined by

xµ = γµ · x (29)

x = xµ · γµ. The derivative with respect to x can be defined by

= γµ∂µ (30)

where
∂µ =

∂

∂xµ
= γµ · . (31)

Since is a vector differential operator, the derivative of a vector field J = J(x) can be
decomposed into scalar and bivector parts by using (4); thus

J = · J + ∧ J (32)
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where · J = ∂µJµ is the usual divergence and ∧ J is the curl of J .
For the above representation ψ = ψ(x) of the Dirac wave function, the Dirac equation

takes the form
ψih̄ − e

c
Aψ = mcψγ0 (33)

where A = Aµγµ is the usual electromagnetic vector potential, and i is the unit bivector

i = γ2γ1 = iγ3γ0 (34)

It has been proved that (33) is completely equivalent (isomorphic) to the conventional
matrix version of the Dirac equation.(2,7,8,12) Equation (33) is Lorentz invariant, despite the
explicit appearance of the constants γ0 and i = γ2γ1 in it. These constants are arbitrarily
specified by writing (33). They need not be identified with the vectors of a particular
coordinate system, though it is often convenient to do so. The only requirement is that γ0

be a fixed timelike unit vector, while i is a spacelike unit bivector which commutes with
γ0. Of course, the γ0 and i = γ2γ1, in (33) are the same constants that appear in the
expressions (25) and (27) for the Dirac current and the spin.

The most striking thing about (33) is that the role of the unit imaginary in the matrix
version of the Dirac equation has been taken over by the unit bivector i, and this reveals
that it has a geometric meaning. Indeed, Eqs. (27) and (28) show that ih̄ is to be identified
with the spin. It enables us also to recognize that the spin was “smuggled” into the Dirac
theory by the (kinetic) energy-momentum operators pµ, defined in STA by

pµψ = ∂µψih̄ − e

c
Aµψ (35)

These operators are given a physical meaning by using them to define the components Tµν

of the electron energy-momentum tensor:

Tµν = 〈 γ0ψ̃γν(pµψ) 〉 (36)

where 〈M 〉 means “scalar part” of M . At each spacetime point x, the vector

T (n) = nµTµνγν (37)

is the energy-momentum flux through a hypersurface with unit normal n = nµγµ = n(x).
The predicted proper momentum p for an electron at x is defined by

T (v) = ρp (38)

This is the energy-momentum flux in the direction v of electron motion; in other words, it is
the energy-momentum density in the instantaneous rest system of the electron. In general,
the momentum p is not collinear with the velocity v, because it includes a contribution
from the spin.

From the Dirac equation it follows that(7)

∂µTµ = F × J (39)
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where Tµ = T (γµ), F = ∧ A is the electromagnetic field,

J = eρv = eψγ0ψ̃ (40)

is the electron charge current (density), and F × J is the commutator product defined by

F × J = 1
2 (FJ − JF ) (41)

The conventional tensor component form of (39) is

∂µTµν = FµνJµ (42)

Note that the right side of (39) is exactly the classical Lorentz force and does not include
the “Stern-Gerlach type” force that one might expect from a medium with an intrinsic
magnetic moment density. This is one clue that the electron magnetic moment arises from
a circulation of electron charge.

It follows by combining the Dirac equation with (36) and (35) that(7)

Tµ ∧ γµ = Tµνγν ∧ γµ = i( ∧ (ρs)) (43)

where ρs is the vector spin density by (26). With the help of this result and ∂µx = γµ, it
follows easily from (39) that

∂µ[Tµ ∧ x + iρ(s ∧ γµ)] = (F × J) ∧ x (44)

This leads to the identification of the bivector-valued tensor

J(n) = T (n) ∧ x + iρ(s ∧ n) (45)

as the total angular momentum tensor, describing the angular momentum flux in the di-
rection n at x. In particular, by virtue of (38) and (27),

J(v) = ρ(p ∧ x + S) (46)

This expresses the total angular momentum of the electron as the sum of an orbital angular
momentum p ∧ x and a spin angular momentum S. It justifies the interpretation of the
bivector S = isv as spin and establishes its origin in the ih̄ included in the definition (35)
of the energy-momentum operators.

Insight into the kinematic significance of the momentum vector can be gained by fur-
ther consideration of the kinematic factor R in wave function decomposition (22). The
normalization condition (23) implies that the derivative of R can be written in the form

∂µR = 1
2ΩµR (47)

here the Ωµ are bivectors. Differentiation of (24) then gives

∂µeν = Ωµ × eν (48)
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Clearly Ωµ is the rotation rate of the frame {eν} as it is displaced in the direction γν .
As mentioned before, the Dirac equation implies the probability concervation law

· (ρv) = 0 (49)

It follows that through each point x where ρ(x) is nonvanishing there passes a unique
timelike curve (here called a streamline) with tangent v at every point. Thus, the Dirac
equation, by determining the conserved vector field ρv, also determines a bundle of nonin-
tersecting streamlines in spacetime. In accordance with the statistical interpretation, each
streamline can be regarded as a possible spacetime history of the electron. The theory
predicts that the electron follows one of these streamlines, though it predicts which one
only with a relative probability. The fact that attributing a continuous trajectory to the
electron is fully consistent with such quantum phenomena as diffraction has been explained
by Bohm and others.(13,14)

Along any streamline x = x(τ) parametrized by its proper time τ , Eq. (47) gives

Ṙ = 1
2ΩR (50)

where Ω = cvµΩµ and the overdot indicates the proper time derivative

ėµ = Ω × eµ (51)

The derivative of the frame {eµ = eµ(x(τ))} along the streamline is therefore given by

1
c

d

dτ
= v · = vµ∂µ (52)

This is a purely kinematical equation. The dynamics is in specifying the functional form
of the bivector Ω, and that comes from the Dirac equation.

Applying the energy-momentum operator (35) to R and using (47) with (27), one obtains

(pµR)R̃ +
e

c
Aµ = ΩµS = Ωµ · S + Ωµ ∧ S + ∂µS (53)

where, in accord with (48),
∂µS = Ωµ × S (54)

When (53) is used in (36) to evaluate Tµν one finds for the proper momentum in (38) the
expression

pµ = Ωµ · S − e

c
Aµ (55)

Hence, the energy in the local rest frame of the electron is given by

p · v = Ω · S − e

c
A · v (56)

These equations show that the momentum p arises from the kinematics of the frame {eµ}.
Indeed, Ω · S has the familiar form of rotational kinetic energy for a body with angular
momentum S and rotational velocity Ω. This raises a fundamental question of physical
interpretation: Exactly what is rotating? How can the entire frame {eµ} and its kinematics
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be related to a sensible model of the electron? A general answer is proposed in the next
section based on the study of a specific solution to the Dirac equation.

4. PLANE WAVES AND ZITTERBEWEGUNG

For a free particle, the plane-wave solution of the Dirac equation has the general form

ψ = (ρeiβ)
1
2 R0 e−ip·x/h̄ (57)

where all the x-dependence is explicitly shown in the phase factor. Inserting this in the
Dirac equation (33) with A = 0 and using p · x = p, one obtains

pψ = mcψλ0

Multiplication on the right by ψ̃ yields

peiβ = mcv (58)

which can be satisfied only for eiβ = ±1; whence p = ±mcv. The unphysical minus sign in
this relation between p and v can be eliminated by reversing the sign in the phase of (57).
Thus, the Dirac equation has two distinct types of plane wave solutions with p = mcv, and
electron solution

ψ = ρ
1
2 R0e

ip·x/h̄ (59)

and a positron solution
ψC = ρ

1
2 iR0e

−ip·x/h̄ (60)

Let us examine the geometry of the electron solution (59) in detail.
For constant v, the equation

v · x = cτ (61)

describes a one-parameter family of hyperplanes with unit normal v. The streamlines of ψ
are straight lines with tangent v. The kinematical factor in (59) can be written in the form

R = e
1
2ΩτR0 (62)

where Ω is the constant bivector

Ω = mc2S−1 =
2mc2

h̄
e1e2 (63)

with e1e2 = Rγ1γ2R̃ = −R0iR̃0. This R satisfies Eq. (50). Accordingly, Ω is the angular
velocity of the frame {eµ = eµ(x(τ))} as it moves along a streamline. Both e0 = v and
es = ŝ are constants of the motion, but

e1(τ) = eΩτe1(0) = e1(0) cos ω0τ + e2(0) sinω0τ

e2(τ) = eΩτe2(0) = e2(0) cos ω0τ − e1(0) sinω0τ
(64)
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where ω0 = |Ω | is the zbw frequency with the value given by (1). Thus e1 and e2 rotate
with the zbw frequency in the plane of the spin S. Moreover, (63) in (56) associates an
energy with this rotation:

p · v = Ω · S = mc2 (65)

This strongly suggests that the “rest mass” of the electron has a kinetic origin, but that
can be so only if the electron has a velocity component in the spin plane. Thus, the
interpretation of v as electron velocity should be modified. Fortunately, there is a simple
and elegant way to do this which actually increases the intelligibility of the Dirac theory.

Suppose that the velocity of the electron can be identified with the null vector

u = e0 − e2 (66)

Of course, this means that the electron moves with the speed of light, as in Schroedinger’s
original zbw model. However, for a free particle with momentum p, this motion is com-
pletely described by the “positive energy” wave function (59) or more simply by its kine-
matical factor (62). The Dirac current describes the average velocity u over a zbw period,
that is,

u = e0 = v (67)

since ė2 = 0. With the time dependence of e2 given by (64) and u = c−1ż, Eq. (66) is easily
integrated to get the history z = z(τ) of the electron; thus,

z(τ) = vcτ = (eΩτ − 1)r0 + z0 (68)

This is a parametric equation for a lightlike helix z(τ) = x(τ) + r(τ) centered on the
streamline x(τ) = vcτ + z0 − r0 with radius vector

r(τ) = eΩτr0 = − c

ω0
e1 = − c

ω2
0

u̇ (69)

The diameter of the helix is the electron Compton wavelength 2λ0 = 2c/ω0 = h̄/mc, as
suggested by Eq. (2).

By (63) and (69), which implies ṙ = Ωr,

S = mc2Ω−1 = mr2Ω = mṙr (70)

Thus, the spin angular momentum can be regarded as the angular momentum of zbw
fluctuations. This conclusion from the free-particle solution can be generalized.

Suppose that the zbw average u = v applies generally even with interacting fields. Sim-
ilarly, the momentum defined by (39) should be regarded as a zbw average momentum
defined by

p = m(v · u)u (71)

This must be related to the “actual” momentum p by

p = p + ∆p (72)

where ∆p = 0 by definition. The corresponding angular momentum can then be written

p ∧ z = (p + ∆p) ∧ (x + r) (73)
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where x = z and r = 0. When p and x vary slowly over a zbw period, the values of p ∧ r
and (∆p) ∧ x must be relatively small, so the average angular momentum is

p ∧ z = p ∧ x + S (74)

where
S = (∆p) ∧ r (75)

is identified as the spin angular momentum. This agrees with the expression (46) for
the total angular momentum and suggests that observables in the Dirac theory represent
averages over a zbw substructure. It thereby also points to a domain where deviations from
the Dirac theory may be expected, though pair production may confound efforts to probe
this domain.

With cτ = v · z = v · x, Eq. (68) describes a spacetime-filling congruence of lightlike
helixes with exactly one helix through each spacetime point. According to the statistical
interpretation, the electron is a point particle which may traverse any of these helixes with
equal probability. Alternatively, it may be suggested that the electron is an extended body
and the helixes are world lines of its component parts. This suggestion faces difficulties
which seem to rule it out. First, there is an absence of evidence for any interaction among
the parts which would be needed to make the body cohere. Second, the dimensions of the
body would have to be on the order of a Compton wavelength (∼ 10−13m). But this is
much too big! Scattering experiments limit the size of the electron (i.e., the size of the
domain in which momentum transfer takes place) to less than 10−18 m.(15)

The zbw interpretation of the Dirac Theory, founded on the identification of the null
vector u = e0 − e2 as electron velocity, provides an explanation for the electron spin and
magnetic moment in the circulation of momentum and charge. It also explains the mass
as the energy of this circulation. It is natural to attribute the origin of the zbw to the self-
interaction of the electron with its own electromagnetic field. The relation (65) suggests
that the self-interaction is of magnetic origin, since it has the form of a Larmor precession
energy if Ω is proportional to a self-generated magnetic field. The so-called “rest mass” of
the electron is therefore a kinetic energy of magnetic self-interaction. It is this that gives
the electron its inertial properties. And the flywheel-like nature of this inertia may be the
ultimate origin of spin dependence in electron scattering.

It has also been suggested that the electron zbw is the source of an electromagnetic field
which fluctuates with the zbw frequency.(11) This frequency is too high to detect directly,
but it provides a mechanism for explaining such strange features of quantum mechanics as
the Pauli principle.(11)

The formulation of the zbw given here implies that the most common features of quan-
tum mechanics are manifestations of the zbw, so we may speak of a zbw interpretation
of quantum mechanics generally. The key ingredients of this interpretation are the energy
momentum operators pµ defined by (35) and the complex phase factor in the wave function.
The imaginary unit i in both is a bivector for a plane in space, the “spin plane” in which the
zbw circulation takes place. The phase factor literally represents a physical rotation, a zbw
rotation. Operating on the phase factor, the pµ, computes the rotation rates of the phase
in time and space directions, identifying them with the energy and momentum. Thus, the
zbw interpretation explains why the mysterious operators pµ are so significant in quantum
mechanics.
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The key ingredients of the zbw interpretation are preserved in the approximations leading
from the Dirac theory through the Pauli theory to the Schroedinger theory. The nonrel-
ativistic approximation to the STA version of the Dirac theory has been treated in detail
elsewhere.(8,9) But the main point can be seen by expressing the general Dirac wave function
(22) in the form

ψ = ρ
1
2 eiβ/2LUe−i(mc2/h̄)t (76)

where the kinematical factor R has been broken into three parts, the L factor describing
a boost of the vector γ0 into the velocity v. In the nonrelativistic approximation, three of
the factors in (76) are neglected or eliminated and ψ is reduced to the Pauli wave function

ψP = ρ
1
2 U = ρ

1
2 U0e

−iϕ/h̄ (77)

where the kinematical factor U has been broken into a phase factor describing the zbw
rotation and a spatial rotation factor U0 which rotates i into the direction of the spin.
Many aspects of spin and the zbw in the Pauli theory have been discussed in Ref. 10,
though the present article brings some improvements. In the Schroedinger approximation
the factor U0 is neglected, so ψP reduces to the Schroedinger wave function

ψSh = ρ
1
2 e−iϕ/h̄ (78)

It follows from this derivation of the Schroedinger wave function that the phase ϕ/h̄ de-
scribes the zbw, just as in the Dirac theory, and ∂µϕ describes the zbw energy and momen-
tum.

This being so, there should be a zbw interpretation for every feature of the Schroedinger
theory. Indeed, the Heisenberg uncertainty relations can be attributed to the “zbw fact”
that an electron cannot be confined to a region smaller than a Compton wavelength.(10,12)

Also, the stationary states of a bound electron exhibit a resonance of the orbital frequency
with harmonics of the zbw frequency, which is imposed formally in the theory by requiring
single-valuedness of the wave function. Evidently such resonances, so prominent in quantum
mechanics, can be interpreted as zbw resonances. And should we not be able to explain
barrier penetration as due to zbw fluctuations in momentum? Or the Aharonhov-Bohm
effect as a shift in zbw phase? These are among the new challenges raised by the zbw
interpretation. But the greatest challenge will be to prove that the zbw is a real physical
phenomena and not just a metaphorical trick. That will probably require physical detection
of some zbw effect which is not already characterized by the Dirac theory or even quantum
electrodynamics.

5. THE GEOMETRY OF LIGHTLIKE HISTORIES

From a theoretical perspective, the most convincing feature of the zbw interpretation is,
perhaps, the fact that it maximizes the geometric meaning of the Dirac wave function by
giving the complex phase factor a kinematical interpretation. To emphasize that geometri-
cal fact, the general Frenet equations for an arbitrary lightlike history are developed below,
and from these the precise geometrical specifications for the zbw history of a free electron
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are readily seen. The compact STA formulation of the Frenet equations for timelike his-
tories was given in Ref. 16, but a comparable treatment of lightlike histories has not been
published before.

A Frenet frame {eµ = eµ(x(τ))} for a particle history x = x(τ) is an orthonormal
comoving frame which characterizes the shape of the curve at every point. The parameter
τ is naturally taken to be the proper time for a timelike curve, but proper time cannot be
defined on a lightlike curve. However, the parameter can be defined indirectly by specifying
the curvature, and this will be taken for granted in the following.

The velocity u = dx/dτ of a lightlike history is a null vector related to the Frenet frame
by

u = x
. = e− (79)

where e± = e0±e2. As noted before, the motion of the frame can be regarded as a variable
Lorentz rotation

eµ = R γµR̃ (80)

determined by the equation
Ṙ = 1

2ΩR (81)

so that
ėµ = Ω × eµ (82)

The eµ can be related to derivatives of u by the following definition of the “Darboux”
bivector:

Ω = 1
2 (κ1e1e+ + κ2e−e1 + κ3e3e−)

= 1
2 (κ1 − κ2)e1e0 + 1

2 (κ1 + κ2)e1e2 + 1
2κ3e3(e0 − e2) (83)

The scalar coefficient κi is called the ith curvature of the curve. The curvatures κ1 and
κ2 are defined to be positive and the sign of κ3 is determined by the assumption that
{e1, e2, e3} is a right-handed set of vectors. Note that

e+e− = 2 + 2e2e0 (84)

so e+ · e− = 2 and e+ ∧ e− = 2e2e0.
Insertion of (83) into (82) yields

ė− = u̇ = κ · e1

ė1 = 1
2 (κ1e− − κ2e−) = 1

2 (κ1 − κ2)e0 + 1
2 (κ1 + κ2)e2

ė+ = −κ2e1 + κ3e3

ė3 = 1
2κ3e−

(85)

and a combination of Eqs. (85) gives

ė0 = 1
2 (κ1 − κ2)e1 + 1

2κ3e3

ė2 = −1
2 (κ1 − κ2)e1 + 1

2κ3e3

(86)
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The curvatures are therefore related to the eµ and ėµ by

κ1 = −e1 · ė− = e− · ė1

κ2 = −e+ · ė1 = e1 · ė+

κ3 = −e3 · ė+ = e+ · ė3 = −2e3 · ė0

(87)

The four equations (82) can be solved for(16)

Ω = 1
2 ėµeµ (88)

and this can be used to regain (83) from (85) and (86).
Several general properties of Ω are worth noting. Equations (80) can be used to put (83)

in the form
Ω = R Ω0R̃ (89)

where
Ω0 = 1

2 (κ1γ1γ+ + κ2γ−γ1 + κ3γ3γ−) (90)

and γ± = γ0 ± γ2, of course. Differentiation of (89) yields

Ω̇ = 1
2 (κ̇1e1e+ + κ̇2e−e1 + κ̇3e3e−) (91)

Another property of Ω is the invariant

Ω2 = −κ1(κ2 + iκ3) (92)

Also, in general,

Ω̇ × Ω = 1
2κ2

1e1

[
e0

d

dτ

(
κ2

κ1

)
+ e3

d

dτ

(
κ3

κ1

)]
(93)

which vanishes when κ2/κ1, and κ3/κ1 are constant.
According to (91), when the curvatures are constant, Ω̇ = 0, so (81) integrates immedi-

ately to
R = e

1
2ΩτR0 (94)

where R0 is a constant specifying the initial conditions. With this result in u = Rγ−R̃ ,
Eq. (79) can be integrated to get a parametric equation for the history. The most efficient
general method for evaluating this integral involves an important “trick” given in Ref. 17.

Comparison of (83) with (63) shows at once that the zitterbewegung plane wave solutions
of the Dirac equation are curves of constant curvature, with κ3 = 0 and

κ1 = κ2 = ω0 = 2mc2/h̄ (95)

The most significant point to be made here is that the physical variables are hereby
given a completely geometrical interpretation, so prospects are opened up for a geometrical
extension of electron theory.

The identification of the free electron solution with a particular class of paths with
constant curvature suggests the possibility of classifying elementary particles according
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to curvature. The simplest possibility is identification of the free neutrino with the case
κ1 = κ2 = 0, so (83) becomes

Ω = 1
2κ1e1e+ (96)

Since Ω2 = 0, Ω is the generator of lightlike Lorentz transformations, and this can be sharply
distinguished from the electron case where Ω2 < 0, The corresponding wave function ψν

for a free neutrino with momentum p = 1
2 h̄κ1e+ is obtained by inserting (96) into (94) and

using τ = x · e+; thus,

ψν = ρ
1
2 e

1
2Ωx·e−R0 = ρ

1
2 R0e

−γ+γ1p·x/h̄ (97)

This satisfies the usual neutrino equation

ψν = 0 (98)

though it is not the conventional neutrino solution. However, the similarity between the
two solutions is much greater if the first curvature in (96) is a function of, say, cos(p ·
x/h̄). It remains to be seen whether there is a significant physical difference between them.
Supposing that the present solution is physically viable, the speculation can proceed further.
Presumably κ1, would have the same value for the electron and its neutrino and a different
value for the muon and its neutrino, the values of κ1 being quantized by some unknown
mechanism of self-interaction. The values κ1 = κ2 and κ2 = 0 evidently distinguish charged
from uncharged particles. Perhaps κ3 = 0 similarly distinguishes leptons from quarks with
κ3 �= 0. That’s enough speculation for one paper!
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