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The Transactional Interpretation
of Quantum Mechanics and
Quantum Nonlocality

John G. Cramer

Abstract Quantum nonlocality is discussed as an aspect of the quantumformal-
ism that is seriously in need of interpretation. The Transactional Interpretation of
quantum mechanics, which describes quantum processes as transactional “hand-
shakes” between retardedψ waves and advancedψ∗ waves, is discussed. Examples
of the use of the Transactional Interpretation in resolvingquantum paradoxes and in
understanding the counter-intuitive aspects of the formalism, particularly quantum
nonlocality, are provided.

1 What is an Interpretation of Quantum Mechanics?

Interpretations of quantum mechanics provide accounts of the meaning of the quan-
tum formalism, guidance as to how to use the formalism to connect with nature
and to make predictions on the outcome of experiments, and understanding of the
counterintuitive aspects of the formalism. The first interpretation of quantum me-
chanics was the Copenhagen Interpretation, developed by Werner Heisenberg and
Niels Bohr in the late 1920s. (See reference [1] for a complete description of and
references for the Copenhagen Interpretation.) It quicklybecame the orthodox view
of the meaning of the quantum formalism, and it is currently used in most quantum
mechanics textbooks. However, its ambiguities have generated a large number of
interpretational paradoxes associated with relativity conflicts, wave-particle duality,
observer-dependent behavior, wave function collapse, andquantum nonlocality.

These problems generated by the Copenhagen Interpretationhave led to a plethora
of alternative “interpretations”, many of which are outlined in this book. The reader
is cautioned, however, to examine each of these interpretations carefully to deter-
mine if it really qualifies for the status of afull interpretation, in that it deals with
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all of the many interpretational problems inherent in the standard quantum formal-
ism or raised by aspects of the Copenhagen Interpretation.

One would think that clever experimentalists could go into the quantum optics
laboratory and determine which of these interpretations iscorrect by testing their
experimental predictions. However, this is not the case. Itis theformalism of quan-
tum mechanics that makes the testable experimental predictions, and all of the many
interpretations are attempting to give meaning to that sameformalism. Thus, an in-
terpretation could only be falsified if it was found to be inconsistent with the for-
malism of quantum mechanics, and otherwise the choice between interpretations
becomes a matter of individual preference and philosophical aesthetics.

The interpretational problems of quantum nonlocality, which many would-be
interpretations completely ignore, is a particularly difficult philosophical hurdle..
Many interpretational attempts instead focus on some particular problem, e.g., wave
function collapse, to the exclusion of other interpretational problems including non-
locality. As we will see, the Transactional Interpretationis unique in providing a
graphic picture of the mechanisms behind quantum nonlocality while dealing with
all of the other interpretational problems as well.

2 Quantum Nonlocality

Quantum mechanics, our standard theoretical model of the physical world at the
smallest scales of energy and size, differs from the classical mechanics of Newton
that preceded it in one very important way. Newtonian systems are alwayslocal.
If a Newtonian system breaks up, each of its parts has a definite and well-defined
energy, momentum, and angular momentum, parceled out at breakup by the system
while respecting conservation laws. After the component subsystems are separated,
the properties of any subsystem are completely independentand do not depend on
those of the other subsystems.

On the other hand, quantum mechanics isnonlocal, meaning that the component
parts of a quantum system may continue to influence each other, even when they
are well separated in space and out of speed-of-light contact. This characteristic of
standard quantum theory was first pointed out by Albert Einstein and his colleagues
Boris Podolsky and Nathan Rosen (EPR) in 1935, in a critical paper[2] in which
they held up the discovered nonlocality as a devastating flawthat, it was claimed,
demonstrated that the standard quantum formalism must be incomplete or wrong.
Einstein called nonlocality “spooky actions at a distance”. Schrödinger followed on
the discovery of quantum nonlocality by showing in detail how the components of
a multi-part quantum system must depend on each other, even when they are well
separated[3].

Beginning in 1972 with the pioneering experimental work of Stuart Freedman
and John Clauser[4], a series of quantum-optics EPR experiments testing Bell-
inequality violations[5] and other aspects of entangled quantum systems were per-
formed. This body of experimental results can be taken as a demonstration that, like
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it or not, both quantum mechanics and the underlying realityit describes are intrin-
sically nonlocal. Einstein’s spooky actions-at-a-distance are really out there in the
physical world, whether we understand and accept them or not.

How and why is quantum mechanics nonlocal? Nonlocality comes from two
seemingly conflicting aspects of the quantum formalism: (1)energy, momentum,
and angular momentum, important properties of light and matter, are conserved
in all quantum systems, in the sense that, in the absence of external forces and
torques, their net values must remain unchanged as the system evolves, while (2)
in the wave functions describing quantum systems, as required by Heisenberg’s un-
certainty principle[6], the conserved quantities may be indefinite and unspecified
and typically can span a large range of possible values. Thisnon-specifity persists
until a measurement is made that “collapses” the wave function and fixes the mea-
sured quantities with specific values. These seemingly inconsistent requirements of
(1) and (2) raise an important question: how can the wave functions describing the
separated members of a system of particles, which may be light-years apart, have
arbitrary and unspecified values for the conserved quantities and yet respect the
conservation laws when the wave functions are collapsed?

This paradox is accommodated in the formalism of quantum mechanics be-
cause the quantum wave functions of particles areentangled, the term coined by
Schrödinger[3] to mean that even when the wave functions describe system parts
that are spatially separated and out of light-speed contact, the separate wave func-
tions continue to depend on each other and cannot be separately specified. In par-
ticular, the conserved quantities in the system’s parts (even though individually in-
definite) must always add up to the values possessed by the overall quantum system
before it separated into parts.

How could this entanglement and preservation of conservation laws possibly be
arranged by Nature? The mathematics of quantum mechanics gives us no answers to
this question, it only insists that the wave functions of separated parts of a quantum
system do depend on each other. Theorists prone to abstraction have found it con-
venient to abandon the three-dimensional universe and describe such quantum sys-
tems as residing in a many-dimensional Hilbert hyper-spacein which the conserved
variables form extra dimensions and in which the interconnections between particle
wave functions are represented as allowed sub-regions of the overall hyper-space.
That has led to elegant mathematics, but it provides little assistance in visualizing
what is really going on in the physical world.

Consider these questions:

• Is the quantum wave function a real object present in space-time?
• What are the true roles of the observers and measurements in quantum processes?
• What is wave function collapse?
• How can quantum nonlocality be understood?
• How can quantum nonlocality be visualized?
• What are the underlying physical processes that make quantum nonlocality pos-

sible?
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To our knowledge, the only interpretation that adequately answers these ques-
tions is the Transactional Interpretation of quantum mechanics[1, 7, 8], which will
be described in what follows.

3 The One-Dimensional Transaction Model

The starting point for the Transactional Interpretation ofquantum mechanics is to
view the “normal” wave functionsψ appearing in the wave-mechanics formalism
as Wheeler-Feynman retarded waves, to view the complex-conjugated wave func-
tions ψ∗ as Wheeler-Feynman advanced waves, and to view the calculations in
which they appear together as Wheeler-Feynman “handshakes” between emitter and
absorber[9].

Fig. 1 (color online) Schematic of the emission stage of a transaction. An emiter produces a re-
tarded wave (solid) toward an absorber and an advanced wave (dashed) in the other time direction.

While there are notable similarities between the Wheeler-Feynman time-symmetric
approach to electrodynamics and this approach to the quantum formalism, there are
also important differences. In the classical electrodynamics of Wheeler-Feynman,
it is the advanced-wave responses from all of the absorbers in the future universe,
arriving together back at the emitter that cause it to radiate, lose energy, and recoil
during emission. There are no photons and there is no quantization of energy, and so
there is no single future absorber that receives all of the energy and momentum that
the emitter has transmitted. Further, the emitter is responding to the full intensity of
the superimposed advanced-wave fields from the future in a completely determin-
istic way, losing energy and gaining recoil momentum as a moving electric charge
responding to external electric and magnetic fields.
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In the domain of quantum mechanics these rules must be changed to reflect quan-
tization and the probabilistic nature of quantum mechanics. In the case of photon
emission and absorption, an emitter emits a single photon, losing a quantum of
energy and experiencing momentum recoil. An absorber receives a single photon,
gaining a quantum of energȳhω and experiencing momentum recoilh̄k. The rest of
the future universe does not explicitly participate in the process. If the wave function
ψ propagates for a significant distance before absorption, itbecomes progressively
weaker, much too weak to be consistent with the behavior of anelectric charge sim-
ply responding to external fields as in classical Wheeler-Feynman electrodynamics.

Fig. 2 (color online) Schematic of the confirmation stage of a transaction. An absorber responds
with an advance wave (dashed) back to the emmitter and a retarded wave (solid) going foward in
time beyond the absorber.

As an intermediate conceptual step, it is useful to think about the quantum
situation in a single space dimensionx and in one time dimensiont, so that
the attenuation of the wave function with distance can be putaside, for the mo-
ment. This is a wave-on-a-string situation in which the light cone becomes a di-
agonal Minkowski line connecting emitter to absorber, as shown in Fig.1. In the
spirit of even-handed time symmetry, the emitter must simultaneously send out re-
tarded wave functionF1(x, t) = ψ = Aexp[i(kx−ωt)] and advanced wave function
G1(x, t) = ψ∗ = Aexp[−i(kx−ωt)] in the two time and space directions, i.e., in
both directions from the emitter along the Minkowski line. The energy and momen-
tum eigenvalues ofF1 are h̄ω and h̄k, while the eigenvalues ofG1 are−h̄ω and
−h̄k. Therefore, the emission of the composite wave functionF1+G1 involves no
change in energy or momentum, i.e., it has no energy or momentum cost. This is
to be expected, since the emission process is time-symmetric, and time-symmetric
fields should not produce any time-asymmetric loss of energyor momentum.
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The absorber at some later time receives the retarded waveF1 and terminates it by
producing a canceling waveF2 = −A/exp[i(kx−ωt)], as shown in Fig. 2. Because
the absorber must respond in a time-symmetric way, it must also produce advance
waveG2 =−Aexp[−i(kx−ωt)], which travels back along the Minkowski line until
it reaches the emitter. At the emitter it exactly cancels theadvanced waveG1 that
the emitter had produced in the negative time direction.

Fig. 3 (color online) Schematic of the completed transaction. Extra waves cancel, leaving an
advanced-retarded “handshake” that transfers energyh̄ω and momentum̄hk from emitter to ab-
sorber.

The net result is that a superposition ofF1+G2 connects emitter with absorber,
the emitting charge interacts withG2 by losing energȳhω and recoiling with mo-
mentum−h̄k, and the absorbing charge interacts withF1 by gaining energȳhω and
recoiling with momentum̄hk. Due to the cancellations beyond the interaction points,
there is no wave function on the Minkowski diagonal before emission or after ab-
sorption. A Wheeler-Feynman handshake, shown in Fig. 3, hasmoved a quantum
of energyh̄ω and momentum̄hk from emitter to absorber. An observer, unaware of
the time-symmetric processes involved, would say that a forward-going wave was
emitted and subsequently absorbed.

4 The Three-Dimensional Transaction Model

Now let us consider the more realistic situation of three spatial dimensions and one
time dimension. Now, assuming symmetric emission, the wavefunctionψ spreads
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out in three dimensions like a bubble expanding from the central source location.
The wave function, attenuated by distance, can reach many potential absorbers, each
of which can respond by producing an advanced wave functionψ∗ that, also atten-
uated by distance, travels back to the emitter. The emitter at the instant of emission
can thus receive many advanced-wave “echoes”. In this way, guided by the quantum
formalism, attenuation and competition have been added to this picture.

We can think of the retarded waves from the emitter as offers to transmit energy
or “offer waves”, the first step in a handshake process that may ultimately produce
the emission of a photon. Similarly, the advanced wave responses from potential ab-
sorbers can be thought of as “confirmation waves”, the secondstep in the handshake
process to transfer a photon. The advanced waves travel in the negative time direc-
tion and arrive back at the emission space-time locationat the instant of emission,
each with a strengthψ that reflects the attenuation of the offer wave in traveling
forward from emitter to absorber multiplied by a strengthψ∗ that reflects the atten-
uation of the confirmation wave in traveling back from absorber to emitter.

Therefore, the emitter receives an “echo” of magnitudeψiψi∗ from theith poten-
tial future absorber. To proceed with the process, the emitter must “choose” one (or
none) of these offer-confirmation echoes as the initial basis for a photon-emission
handshake or “transaction”, with the choice weighted in probability by the strength
of each echo. After the choice is made, there must be repeatedemitter-absorber wave
exchanges, until the strength of the space-time standing wave that thus develops is
sufficient in strength to transfer a quantum of energyh̄ω and momentum̄hk from
the emitter to the absorber, completing the transaction.

As a criticiam of this transaction model, it might be argued that while the quan-
tum wave functionψ is a solution of the Schrödinger wave equation, its complex
conjugateψ∗ is not, and therefore the transaction model is inappropriately mix-
ing solutions with non-solutions. However, we observe thatthe Schrödinger wave
equation is inconsistent with Lorenz invariance and can be regarded as only the
non-relativistic limit of the “true” relativistic wave equation, i.e., the Klein-Gordon
equation for bosons or the Dirac wave equation for fermions,both consistent with
relativity. Taking the non-relativistic limit of the Klein-Gordon or Dirac wave equa-
tion producestwo wave equations, the Schrödinger wave equation and its complex
conjugate. The wave functionψ is a solution of the Schrödinger wave equation,
while ψ∗ is a solution of the complex conjugate of Schrödinger wave equation, and
so both are equally valid solutions. The quantum version of the electromagnetic
wave equation, which is relativistically invariant and is appropriate for describing
the emission and absorption of photons, has both advanced and retarded solutions.

We note here that the sequence of stages in the emitter-absorber transaction pre-
sented here employs the semantic device of “pseudo-time”, describing a process be-
tween emitter and absorber extending across lightlike or timelike intervals of space-
time as if it occurred in a time sequence external to the process. This is only a
pedagogical convention for the purposes of description. The process itself is atem-
poral, and the only observables come from the superpositionof all of the steps that
form the final transaction.
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This is the transaction model by which the Transactional Interpretation describes
the elements of the wave-mechanics formalism and accounts for quantum mechani-
cal processes. The wave functionsψ of the wave-mechanics formalism are the offer
waves. In some sense they are real waves traveling through space, but in another
sense they are not real because they represent only a mathematical encoding of
the possibility of a quantum process. The transaction that forms after the emitter-
absorber offer-confirmation exchange process goes to completion is the real object,
what we would call the “particle” that has been transferred from emitter to absorber.
In that sense, the real objects in our universe are waves, while particles are an illu-
sion created by the boundary conditions that must be observed at the vertices of the
wave-exchange transactions.

What happens to the offer and confirmation waves that do not result in the for-
mation of a transaction? Since the formation of a transaction produces all of the
observable effects, such waves are ephemeral, in that they produce no observable
effects, and their presence or absence has no physical consequences. However,
in explaining seemingly paradoxical quantum phenomena such as interaction-free
measurements[10, 11], such waves can be viewed as “feeling out” components of
the system even when no transaction forms.

The transactional model not only provides a description of the process that under-
lies the calculation of a quantum mechanical matrix element, but it also explains and
justifies Born’s probability rule[12]. In particular, it explains why a quantum event
described by a wave functionψ has a probability of occurrence given byψψ∗. In
the transaction model, the quantitiesψψ∗ are the strengths of the advanced-wave
echoes arriving back at the site of emission at the instant ofemission. The “lightning
strike” of a transaction formation depends probabilistically on the strengths of these
echoes.

The Born probability rule is an assumption of the CopenhagenInterpretation, as-
serted axiomatically without justification as one of the tenets of the interpretation.
On the other hand, the Born probability rule follows naturally from the transactional
account of the Transactional Interpretation and does not need to be added as a sep-
arate assumption. In that sense, the Transactional Interpretation is superior to the
Copenhagen Interpretation because it is more philosophically “economical”, requir-
ing fewer independent assumptions.

There is one more element of the transaction model,hierarchy, which needs to
be added in order to avoid transactional inconsistencies pointed out by Maudlin[13].
All advanced-wave echoes are not equal. Those propagating back to the emitter from
small space-time separation intervals rank higher in the selection hierarchy than
those propagating back to the emitter from large space-timeseparation intervals.
The emitter’s probabilistic decision to select or not select an echo propagating back
from a small space-time interval must occur “before” any echoes from larger space-
time intervals are considered and their transaction allowed to form.

This hierarchy of transaction formation has interesting implications for time itself
in quantum processes. In some sense, the entire future of theuniverse is reflected in
the formation of each transaction, with the echoes from time-distant future events
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allowed the possibility of forming transactions only afterthe echoes from near future
absorbers have been weighed and rejected. To make another analogy, the emergence
of the unique present from the future of multiple possibilities, in the view of the
Transactional Interpretation, is rather like the progressive formation of frost crystals
on a cold windowpane, first nearby and then extending furtherout. As the frost
pattern expands, there is no clear freeze-line, but rather amoving boundary, with
fingers of frost reaching out well beyond the general trend, until ultimately the whole
window pane is frozen into a fixed pattern. In the same way, theemergence of the
present involves a lace-work of connections with the futureand the past, insuring
that the conservation laws are respected and the balances ofenergy and momentum
are preserved.

5 The Transactional Interpretation of Quantum Mechanics

The Transactional Interpretation of quantum mechanics[1,7, 8], inspired by the
structure of the quantum wave mechanics formalism itself, views each quantum
event as a Wheeler-Feynman “handshake” or “transaction” process extending across
space-time that involves the exchange of advanced and retarded quantum wave func-
tions to enforce the conservation of certain quantities (energy, momentum, angular
momentum, etc.). It asserts that each quantum transition forms in four stages: (1)
emission, (2) response, (3) stochastic choice, and (4) repetition to completion.

The first stage of a quantum event is the emission of an “offer wave” by the
“source”, which is the object supplying the quantities transferred. The offer wave is
the time-dependent retarded quantum wave functionψ , as used in standard quan-
tum mechanics. It spreads through space-time until it encounters the “absorber”, the
object receiving the conserved quantities.

The second stage of a quantum event is the response to the offer wave by any
potential absorber (there may be many in a given event). Suchan absorber produces
an advanced “confirmation wave”ψ∗, the complex conjugate of the quantum offer
wave functionψ . The confirmation wave travels in the reverse time directionand
arrives back to the source at precisely the instant of emission with an amplitude of
ψψ∗.

The third stage of a quantum event is the stochastic choice that the source exer-
cises in selecting one of the many received confirmations. The strengthsψψ∗ of the
advanced-wave “echoes” determine which transaction formsin a linear probabilistic
way.

The final stage of a quantum event is the repetition to completion of this process
by the source and selected absorber, reinforcing the selected transaction repeatedly
until the conserved quantities are transferred and the potential quantum event be-
comes real.

Here we summarize the principal elements of the Transactional Interpretation,
structured in order to contrast it with the Copenhagen Interpretation:



10 John G. Cramer

• The fundamental quantum mechanical interaction is taken tobe the transaction.
The state vectorψ of the quantum mechanical formalism is a physical wave with
spatial extent and is identical with the initial “offer wave” of the transaction. The
complex conjugate of the state vectorψ∗ is also a physical wave and is identical
with the subsequent “confirmation wave” of the transaction.The particle (pho-
ton, electron, etc.) and the collapsed state vector are identical with the completed
transaction. The transaction may involve a single emitter and absorber and two
vertices or multiple emitters and absorbers and many vertices, but is only com-
plete when appropriate quantum boundary conditions are satisfied at all vertices,
i.e., loci of emission and absorption. Particles transferred have no separate iden-
tity independent from the satisfaction of the boundary conditions at the vertices.

• The correspondence of “knowledge of the system” with the state vectorψ is a
fortuitous but deceptive consequence of the transaction, in that such knowledge
must necessarily follow and describe the transaction.

• Heisenberg’s Uncertainty Principle[6] is a consequence ofthe fact that a transac-
tion in going to completion is able to project out and localize only one of a pair
of conjugate variables (e.g., position or momentum) from the offer wave, and in
the process it delocalizes the other member of the pair, as required by the math-
ematics of Fourier analysis. Thus, the Uncertainty Principle is a consequence of
the transactional model and is not a separate assumption.

• Born’s Probability Rule[12] is a consequence of the fact that the magnitude of the
“echo” received by the emitter, which initiates a transaction in a linear probabilis-
tic way, has strengthP = ψψ∗. Thus, Born’s Probability Rule is a consequence
of the transactional model and is not a separate assumption of the interpretation.

• All physical processes have equal status, with the observer, intelligent or oth-
erwise, given no special status. Measurement and measuringapparatus have no
special status, except that they happen to be processes thatconnect and provide
information to observers.

• Bohr’s “wholeness” of measurement and measured system exists, but is not re-
lated to any special character of measurements but rather tothe connection be-
tween emitter and absorber through the transaction.

• Bohr’s “complementarity” between conjugate variables exists, but like the uncer-
tainty principle is just a manifestation of the requirementthat a given transaction
going to completion can project out only one of a pair of conjugate variables, as
required by the mathematics of Fourier analysis.

• Resort to the positivism of “don’t-ask-don’t-tell” is unnecessary and undesirable.
A distinction is made between observable and inferred quantities. The former
are firm predictions of the overall theory and may be subjected to experimental
verification. The latter, particularly those that are complex quantities, are not
verifiable and are useful only for visualization, interpretational, and pedagogical
purposes. It is assumed that both kinds of quantities must obey conservation laws,
macroscopic causality conditions, relativistic invariance, etc.

In summary, the Transactional Interpretation explains theorigin of the major
elements of the Copenhagen Interpretation while avoiding their paradoxical impli-
cations. It drops the positivism of the Copenhagen Interpretation as unnecessary,
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because the positivist curtain is no longer needed to hide the nonlocal backstage
machinery.

It should also be pointed out that giving some level of objective reality to the state
vector colors all of the other elements of the interpretation. Although in the Trans-
actional Interpretation, the uncertainty principle and the statistical interpretation are
formally the same as in the Copenhagen Interpretation, their philosophical implica-
tions, about which so much has been written from the Copenhagen viewpoint, may
be rather different.

The Transactional Interpretation offers the possibility of resolvingall of the many
interpretational paradoxes that quantum mechanics has accumulated over the years.
Many of these are analyzed in reference [1], the publicationin which the Transac-
tional Interpretation was introduced. Here we will not attempt to deal with all of the
paradoxes. We will instead focus on the interpretational problems associated with
quantum nonlocality and entanglement.

6 The Transactional Interpretation and Nonlocality

As we discussed in Section 2, quantum nonlocality is one of the principal counter-
intuitive aspects of quantum mechanics. Einstein’s “spooky action-at-a-distance” is
a real feature of quantum mechanics, but the quantum formalism and the orthodox
Copenhagen Interpretation provide little assistance in understanding nonlocality or
in visualizing what is going on in a nonlocal process. The Transactional Interpreta-
tion provides the tools for doing this.

Perhaps the first example of a nonlocality paradox is the Einstein’s bubble para-
dox, proposed by Albert Einstein at the 5th Solvay Conference in 1927[14]. A
source emits a single photon isotropically, so that there isno preferred emission
direction. According the the quantum formalism, this should produce a spherical
wave functionψ that expands like an inflating bubble centered on the source.At
some later time, the photon is detected, and according to thequantum formalism, the
bubble visualized as the wave function should “pop”, disappearing instantaneously
from all locations except the position of the detector. Einstein asked how the parts of
the wave function away from the detector could “know” that they should disappear,
and how it could be arranged that only a single photon was detected?

At the 5th Solvay Conference, Werner Heisenberg[14] dismissed Einstein’s bub-
ble paradox by asserting that the wave function is not a real object moving through
space, as Einstein had implicitly assumed, but instead is a mathematical representa-
tion of the knowledge of some observer who is watching the process. Until detec-
tion, the observer knows nothing about the location of the emitted photon, so the
wave function must be spherical, distributed over the 4π solid angle to represent his
ignorance. However, after detection the location of the photon is known to the ob-
server, so the wave function “collapses” and is localized atthe detector. One photon
is detected because only one photon was emitted.
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Fig. 4 (color online) Schematic of the transaction involved in theEinstein’s bubble paradox. The
offer waveψ forms a spherical wave front, reaching the detector on the right and causing it to
return a confirmation waveψ∗, so that a transaction forms and a photon of energy is transferred.
Other detectors also return confirmation waves, but the source has randomly selected the detector
on the right for a transaction.

The Transactional Interpretation provides an alternativeexplanation, one that
permits the wave function to be, in some sense, a real object moving through space.
This is illustrated in Fig. 4. The offer waveψ from the source indeed spreads out as
a spherical wave front and eventually encounters the detector on the right. The de-
tector responds by returning to the source a confirmation wave ψ∗. Other detectors
(i.e., potential absorbers) also return confirmation waves, but the source randomly,
weighted by theψψ∗ echoes from the potential absorbers, selects the detector on
the right to form a transaction. The transaction forms between source and detector,
and onēhω photon’s worth of energy is transferred from the source to the detector.
The formation of this particular transaction, satisfying the source boundary condi-
tion that only one photon is emitted, prevents the formationof any other transaction
to another possible photon absorber, so only one photon is detected. Further, the
wave function bubble never pops, as Einstein had suggested.The unblocked parts
of the offer wave keep moving outward and encountering more distant absorbers,
which participate in the competition for transaction formation.

One might ask about the “left over” offer and confirmation waves that do not
participate in the formation of a transcation. However, we note that the first two
stages (offer and confirmation) of transaction formation map directly into classical
Wheeler-Feynman time-symmetric electrodynamics[9], in which the advanced and
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retarded waves before emission and after absorption largely cancel out, leaving little
in the way of residue.

This is an illustration of a simple two-vertex transaction in which the transfer of
a single photon is implemented nonlocally. It avoids Heisenberg’s peculiar assertion
that the mathematical solution to a simple 2nd order differential equation involving
momentum, energy, time, and space is somehow a map of the mind, deductions, and
knowledge of a hypothetical observer.

As another example of nonlocality in action, consider the Freedman-Clauser
experiment[4]. An atomic transition source produces a pairof polarization-entangled
photons. The three-level atomic transitions that produce the two photons have a net
orbital angular momentum change ofL = 0 and even parity, so, if the photons are
emitted back-to-back, they must both be in the same state of circular polarization or
linear polarization. Measurements on the photons with linear polarimeters in each
arm of the experiment show that when the planes of the polarimeters are aligned,
independent of the direction of alignment, the two polarimeters always measure HH
or VV for the two linear polarization states.

When the plane of one polarimeter is rotated by an angleθ with respect to the
other plane, some opposite-correlation HV and VH events creep in, and these grow
as 1− cos2(θ ), which for small values ofθ is proportional toθ 2. This polarization
correlation behavior produces a dramatic violation of the Bell inequalities[5], which
for local hidden variable alternatives to standard quantummechanics require alinear
growth in HV and VH withθ . The implication of the Bell-inequality violations is
that quantum nonlocality is required to explain the observed quadratic polarization
correlations.

How are the nonlocality-based polarization correlations of the Freedman-Clauser
experiment possible? The Transactional Interpretation provides a clear answer,
which is illustrated in Fig. 5. The source of the polarization-entangled photons seeks
to emit a photon pair by sending out offer wavesψL andψR to the left and right de-
tectors. The detectors respond by returning confirmation wavesψL∗ andψR∗ back
to the source. A completed three-vertex transaction can form from these, however,
only if the two potential detections are compatible with theconservation of angu-
lar momentum at the source. This requirement produces the observed polarization
correlations.

There are also a large number of more complicated experiments that demon-
strate the peculiarities of quantum nonlocality and entanglement in other ways, and
which involve transactions with more than three vertices. One such example is the
interaction-free measurement experiment of Elitzur and Vaidmann[10], which has
been analyzed with the Transactional Interpretation[11].In all such cased, the Trans-
actional Interpretation provides a way of visualizing multi-vertex nonlocal processes
that otherwise seem strange and counter-intuitive.
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Fig. 5 (color online) Space-time schematic of a nonlocal “V” transaction for visualizing the
polarization-entangled Freedman-Clauser EPR experiment. Offer wavesψL and ψR (blue/solid)
move from source to detectors, and in response, confirmationwavesψL∗ andψR∗ (red/dashed)
move from detectors to source. The three-vertex transaction can form only if angular momentum is
conserved by having correlated and consistent measured polarizations for both detected photons.

7 Do Quantum Wave Functions Exist in Real
Three-Dimensional Space or Only in Hilbert Space?

In classical wave mechanics, propagating waves, e.g. lightor sound waves, are
viewed as existing in and propagating through normal three-dimensional space.
However, early in the development of the formalism of quantum mechanics it was
realized that there was a problem with treating the quantum wave functions of multi-
particle systems in the same way. Because of conservation laws and entanglement,
the uncollapsed wave function of each particle in such a system was not only a func-
tion of its own space and momentum coordinates and other variables (e.g. spin and
angular momentum), but might also be dependent on the equivalent coordinates of
the other particles in the system. For example, the momentummagnitude and direc-
tion of each particle of a quantum system might be unspecifiedand allowed to take
on any value over a wide range, but their momenta must be correlated so that the
overall momentum of the system can have a well defined momentum value.

Therefore, it was concluded that Hilbert space provided a general way of de-
scribing quantum systems and that in multi-particle systems, a quantum mechanical
wave function could not exist in simple three-dimensional space, but must instead
reside in a higher Hilbert space of many more dimensions, with a dimension for
each relevant variable. The wave function of a “free” independent non-entangled
particle in such a space simply “traces over” the extra Hilbert space dimensions,
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allowing the extra variables to take on any value because there is no dependence on
them. In such a Hilbert space the inter-dependences of multi-particle systems could
be described, conservation laws could be defined as “allowedregions” that the wave
functions could occupy, and powerful mathematical operations appropriate to higher
dimensional spaces could be applied to the quantum formalism. The assertion that
quantum wave functions cannot be considered to exist in normal space and must be
viewed as existing only in an abstract higher-dimensional space, of course, creates
a severe roadblock for any attempt to visualize quantum processes. (We note that
Ruth Kastner’s “Possibilist Transactional Interpretation”[15, 16] adopts this point
of view and treats quantum wave functions as being real objects only in an abstract
multidimensional Hilbert space, from which transactions emerge in real space. The
possibilist approach is not incorrect, but we consider it tobe unnecessarily abstract.)

The “standard” Transactional Interpretation, with its insights into the mechanism
behind wave function collapse through multi-vertex transaction formation, provides
a new view of the situation that make the retreat to Hilbert space unnecessary. The
offer wave for each particle can be considered as the wave function of a free particle,
initially free of the constraints of conservation laws and indepent of the character-
istics of other particles, and can be viewed as existing in normal three dimensional
space. The connections between an ensemble of such free particles is only estab-
lished when the multi-vertex transaction forms. The application of conservation
laws and the influence of the variables of the other particlesof the system comes
not in the initial offer wave stage of the process but in the final formation of the
transaction The transaction “knits together” the various otherwise independent par-
ticle wave functions that can span a wide range of possible parameter values into an
interaction, and only those wave function sub-components that correlate to satisfy
the conservation law boundary conditions can participate in the final multi-vertex
transaction formation. The “allowed zones” of Hilbert space arise from the action
of transaction formation, not from constraints on the initial offer waves, i.e., particle
wave functions. Hilbert space is the map, not the territory.

Thus, the assertion that the quantum wave functions of individual particles in
a multi-particle quantum system cannot exist in ordinary three-dimensional space
might be a misinterpretation of the role of Hilbert space, the application of conser-
vation laws, and the origins of entanglement. Offer waves are somewhat ephemeral
three-dimensional space objects, but only those components of the offer wave that
satisfy conservation laws and entanglement criteria are permitted to be projected out
in the final transaction, which also exists in three-dimensional space.

Another interesting question, relevant to the current needfor a yet-unknown the-
ory of quantum gravity, is whether the Transactional Interpretation would be consis-
tent with the existence of a “universal” quantum wave function that could describe
the state of the entire universe. The Copenhagen Interpretation, with its focus on
observers, has a severe problem with a universal wave function that would be in-
terpreted as a description of observer knowledge and would require an observer
outside the universe to collapse it. The Transactional Interpretation, which is inde-
pendent of observers and observer knowledge, has no such problems. Further, it is
relativistically invariant, and therefore could, in principle, be extended to a theory
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of quantum gravity, should one that used wave functions emerge from the current
theoretical effort.

The two examples of nonlocality-basedgedankenexperiments presented here
provide only a sample of the power of the Transactional Interpretation in analyz-
ing the complex and counter-intuitive experimental results that seem to be emerging
from experimental quantum optics at an exponentially increasing rate. The trans-
actional analysis of interaction-free measurments[10, 11] is another example of the
power of the method. However, as the experiments become morecomplex, the anal-
ysis inevitably becomes more elaborte and difficult to follow. Therefore, for the pur-
poses of the present discussion, we will confine ourselves tothe above two analysis
examples.

8 Conclusion

Is free will possible in such a system? It is our view that it is. Freedom of choice
does not include the freedom to choose to violate physical laws. The transactional
handshakes between present and future are acting to enforcephysical laws, and they
restrict the choices between future possibilities only to that extent.

By analogy, when you present a debit card to purchase groceries, there is a nearly-
instantaneous electronic transaction between the cash register and the bank that
deducts the purchase cost from your bank account and insuresthat you have suffi-
cient funds for the purchase. The bank transaction enforcessome “law of conserva-
tion of money” as applied to your finances. But the transaction is not deterministic,
and in particular it does not determine what you buy, only that you can afford what
you have bought. This is similar to what goes on in a photon emission-absorption
transaction, the transaction ensuring that precisely one photon-worth of energy and
momentum is deducted from one system and added to another system.

We conclude that the Transactional Interpretation does notrequire (butis consis-
tent with) a deterministic block universe. It does, however, imply that the emergence
of present reality from future possibility is a far more hierarchical and complex pro-
cess than we have previously been able to imagine.

We have seen that the Transactional Interpretation of quantum mechanics pro-
vides the tools for understanding the many counterintuitive aspects of the quantum
formalism and for visualizing nonlocal quantum processes.Further, the transaction
model is “visible” in the quantum formalism itself, once oneassociates the wave
functionψ with an offer, the conjugated wave functionψ∗ with a confirmation, and
quantum matrix elements with completed transactions.

To our knowledge, the Transactional Interpretation of quantum mechanics is the
only interpretation that adequately answers the questionsarising from quantum non-
locality and entanglement and also deals with all of the other interpretational prob-
lems of the quantum formalism.
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