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Abstract
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I. PRELUDE

Quantum gravity is the research that seeks a consistent unification of the two foundational pillars

of modern physics — quantum theory and Einstein’s theory of general relativity. It is commonly

considered as the paramount open problem of theoretical physics, and many fundamental issues

— such as the microscopic structure of space and time, the origin of the universe, the resolution

to spacetime singularities, etc. — relies on a better understanding of quantum gravity.

The quest for a satisfactory quantum description of gravity began very early. Einstein after

proposing general relativity thought that quantum effects must modify general relativity in his

first paper on gravitational waves in 1916 [1] (although he switched to a different point of view

working on the unification of electromagnetism and gravitation in the 1930s). Klein argued that

the quantum theory must ultimately modify the role of spatio-temporal concepts in fundamental

physics [2–4] and his ideas were developed by Deser [5]. With the interests and developments of

Rosenfeld, Pauli, Blokhintsev, Heisenberg, Gal’perin, Bronstein, Frenkel, van Dantzig, Solomon,

Fierz, and many other researchers, three approaches to quantum gravity after World War II had

already been enunciated in 1930s pre-World War II as summarized by Stachel [6]:

1. Quantum gravity should be formulated by analogy with quantum electrodynamics (Rosen-

feld, Pauli, Fierz).

2. The unique features of gravitation will require special treatment — the full theory with

its nonlinear field equations must be quantized and generalized as to be applicable in the

absence of a background metric (Bronstein, Solomon).

3. General relativity is essentially a macroscopic theory, e.g. a sort of thermodynamics limit of

a deeper, underlying theory of interactions between particles (Frenkel, van Dantzig).

Many ideas of the early time continue to provide valuable insight about the nature of quantum

gravity even today. For example, the 1939 work on linearized general relativity as spin-2 field by

Fierz and Pauli [7] inspired a recent development on massive gravity, bimetric gravity, etc.

Modern work on quantum gravity, however, did not really start off until the development of a

canonical formalism in 1959-1961 by Arnowitt, Deser, and Misner (ADM) for the case of asymp-

totically flat boundary conditions [8–18] (for a review, see Ref. [19]). This served as the basis for

Schoen and Yau’s proof that the classical energy is bounded below [20, 21] and is the starting

point for numerical simulations of classical general relativity. Of course the ADM formalism also

2



provides the Hamiltonian and canonical variables whose quantization defines quantum general rela-

tivity. However, the sacrifice of manifest covariance made perturbative computations prohibitively

difficult, although many strategies to tackle this difficulty have been suggested e.g. in loop quantum

gravity.

Ninety-nine years passed since the very first conception of Einstein. Today, quantum gravity

has grown into a vast area of research in many different (both perturbative and nonperturbative)

approaches. Many directions have led to significant advances with various appealing and ingenious

ideas; these include causal sets, dynamical triangulation, emergent gravity, H space theory, loop

quantum gravity, noncommutative geometry, string theory, supergravity, thermogravity, twistor

theory, and much more. (For surveys and references on various approaches of quantum gravity, see

Refs. [22–25]; for detailed accounts of the history and development, see Refs. [6, 26]; for a popular

science account of quantum gravity, see the book Ref. [27].)

II. PERTURBATIVE QUANTUM GRAVITY

The quantization of general relativity on the perturbative level (with or without matter) was

the life work of DeWitt, for which he was awarded the 1987 Dirac Medal and the 2005 Einstein

Prize [28–30]. His program eventually succeeded — against the expectation of most expert opinion

during the 1960s — in generalizing Feynman’s covariant quantization of quantum electrodynamics

so that it could be applied as well to theories such as general relativity and Yang-Mills that are

based on non-Abelian gauge symmetries. There were three key steps:

1. The introduction of the background field method for representing the effective action as a

gauge invariant functional of the fields [29, 31]. This made clear the connection between

invariant counterterms and all possible ultraviolet divergences of scattering amplitudes at a

fixed order in the loop expansion.

2. The realization that non-Abelian gauge symmetries require the inclusion of opposite-normed

ghost fields to compensate the effect of unphysical polarizations in loop corrections [29, 32].

3. The development of invariant regularization techniques, the first of which was dimensional

regularization [33, 34]. This permitted efficient computations to be made without the need

for non-invariant counterterms.

The first application of these techniques was made in 1974 by ’t Hooft and Veltman [35]. They

showed that general relativity without matter has a finite S-matrix at one loop order, but that the
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addition of a scalar field leads to the need for higher curvature counterterms that would destabilize

the universe. Very shortly thereafter Deser and van Nieuwenhuizen showed that similar unaccept-

able counterterms are required at one loop for general relativity plus Maxwell’s electrodynamics

[36, 37], for general relativity plus a Dirac fermion [38], and (with Tsao) for general relativity plus

Yang-Mills [39]. The fate of pure general relativity was settled in 1985 when Goroff and Sagnotti

showed that higher curvature counterterms are required at two loop order [40–42].

These results show that quantum general relativity is not fundamentally consistent as a pertur-

bative quantum field theory. Opinion is divided as to whether this means that general relativity

must be abandoned as the fundamental theory of gravity or whether quantum general relativity

might make sense nonperturbatively. String theory discards general relativity, and does not even

employ the metric as a fundamental dynamical variable. Loop quantum gravity and causal dy-

namical triangulation are approaches that attempt to make sense of quantum general relativity

without employing perturbation theory. At this time it would be fair to say that there is not yet

any fully successful quantum theory of gravity.

But being unable to do everything is not at all the same as lacking the ability to do anything.

Perturbative quantum general relativity (with or without matter) can still be used in the standard

sense of low energy effective field theory [43, 44], in the same way that Fermi theory was for years

employed to understand the weak interactions, even including loop effects [45, 46]. The most

interesting effects tend to occur in curved spacetime backgrounds, on which one can also consider

quantizing only matter, without dynamical gravity [47].

When working on curved backgrounds one often finds the formalism of flat space scattering

theory to be inappropriate because it is based on incorrect assumptions about free vacuum at

very early times (which actually began with an initial singularity) and at very late times (which

may be filled with ensembles of particles created by the curved geometry). Solving the effective

field equations under these conditions is especially troublesome because the in-out effective field

equations at a spacetime point xµ contain contributions from points x′µ far in its future, and

because even the in-out matrix elements of Hermitian operators such as the metric and the Maxwell

field strength tensor can develop imaginary parts. For these reasons it is often more appropriate

to employ the Schwinger-Keldysh formalism. This is a diagrammatic technique that is almost as

simple to use as the standard Feynman rules, which gives true expectation values instead of in-out

matrix elements. It was devised for quantum mechanics in 1960 by Julian Schwinger [48]. Over the

next few years it was generalized to quantum field theory by Mahanthappa and Bakshi [49–51], and

to statistical field theory by Keldysh [52]. Although Schwinger-Keldysh effective field equations are
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nonlocal, they are causal — in the sense that only points x′µ in the past of xµ contribute — and the

solutions for Hermitian fields are real [53, 54]. They are the natural way to study quantum effects

in cosmology [55] and nonequilibrium quantum field theory [56]. Steven Weinberg recently devised

a variant of the formalism which is especially adapted to computing the correlation functions of

primordial inflation [57, 58].

For a recent review of perturbative quantum gravity, see Ref. [59]

III. STRING THEORY

On the other hand, the search for a completely consistent theory of quantum gravity has never

stopped. Although it does not embrace general relativity at the foundational level and it is dis-

putable whether it can be genuinely formulated in a background-independent, nonperturbative

fashion, string theory is arguably considered by many as the most promising candidate for a con-

sistent theory of quantum gravity on the grounds that its low-energy limit surprisingly gives rise

to (the supersymmetric extension of) the theory of (modified) gravity plus other force and matter

fields. In the framework of string theory, the point-like particles of particle physics are replaced by

(the different quantum excitations of) minuscule one-dimensional objects called strings. In addi-

tion to being a quantum theory of gravity, string theory also aims to unify all fundamental forces

and all forms of matter, striving for the ultimate goal of being a “theory of everything”. (For

textbooks on string theory, see Refs. [60–62]; for a detailed account of its history and development,

see Ref. [63].)

String theory was born in the late 1960s as a never completely successful theory of the strong

nuclear force and was later recognized as a suitable framework for a quantum theory of gravity (see

[64] for its “prehistory”). The idea of identifying the string action as the area of the worldsheet

of the string traveling in spacetime was introduced independently by Nambu [65], Goto [66], and

Hara [67] in the early 1970s. The modern treatment of string theory based on the worldsheet

path integral of the Polyakov action was initiated by Polyakov in 1981 [68, 69] and has led to

an intimate link with the conformal field theory. The worldsheet conformal field theory in the

presence of spacetime background fields was studied by Callan et al. [70]; the conformal invariance

demands beta functions of the worldsheet field theory to vanish identically and consequently yields

the equations of motion of the background fields that bear remarkable resemblance to the Einstein

field equation and (non-abelian) Maxwell’s equations with higher-order corrections.

Quantization of the bosonic string requires the number of spacetime dimensions to be 26, of
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which 22 extra spatial dimensions are thought to be compactified in the deep microscopic scale

and thus undetectable at low energies. The bosonic string theory is unsatisfactory in two aspects:

first, it entails existence of negative-normed tachyon fields and consequently is non-unitary and

inconsistent; second, it does not contains fermions and thus cannot account for the quarks and

leptons in the standard model. In the 1980s, bosonic string theory was extended into superstring

theory, which incorporates both bosonic and fermionic degrees of freedom via supersymmetry and

requires 6 extra spatial dimensions to be compactified on a Calabi-Yau manifold. Superstring

theory not only gets rid of negative-normed fields but also includes fermions as desired. There

are basically two (equivalent) approaches to embody supersymmetry in string theory: (i) the

Ramond-Neveu-Schwarz (RNS) formalism with manifest supersymmetry on the string worldsheet

[71, 72]; (ii) the Green-Schwarz (GS) formalism with manifest supersymmetry on the background

spacetime [73–75]. The first superstring revolution began in 1984 with the discovery by Green

and Schwarz [76] that the cancellation of gauge and gravitational anomalies demands a very strong

constraint on the gauge symmetry: the gauge group must be either SO(32) or E8×E8. Eventually,

five consistent but distinct superstring theories were found: type I, type IIA, type IIB, SO(32)

heterotic, and E8 × E8 heterotic.

In the late 1980s, it was realized that the two type II theories and the two heterotic theories

are related by T-duality, which, simply speaking, maps a string winding around a compactified

dimension of radius R to that of radius ℓ2s/R, where ℓs is the string length scale. (For reviews on

T-duality, see Refs. [77, 78].) A few years later, S-duality was discovered as another kind of duality

that maps the string coupling constant gs to 1/gs. The two basic examples are the duality that maps

the type I theory to the SO(32) heterotic theory [79] and the duality that maps the type IIB theory

to itself [80]. As S-duality relates a strongly coupled theory to a weakly coupled theory, it provides

a powerful tool to explore nonperturbative behaviors of a theory with gs > 1, given the knowledge

of the dual theory perturbatively obtained with gs < 1. In the mid-1990s, understanding of the

nonperturbative physics of superstring theory progressed significantly, revealing that superstring

theory contains various dynamical objects with p spatial dimensions called p-branes, in addition to

the fundamental strings. Particularly, type I and II theories contain a class of p-branes, known as

D-branes (or Dp-branes, more specifically), upon which open strings can end in Dirichlet boundary

conditions. In 1995, Polchinski identified D-branes as solitonic solutions of supergravity that are

understood as (generalized) black holes [81], a landmark discovery that heralded the prominence

of D-brane dynamics.

Furthermore, studies on the S-duality of type II [82, 83] and E8 ×E8 heterotic [84, 85] theories
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sprang a big surprise: these two theories grow an eleventh dimension of size gsℓs at strong coupling.

These discoveries together with the aforementioned relations between different superstring theories

via T- and S-dualities brought about the second superstring revolution that took place around 1994–

1997, suggesting the existence of a more fundamental theory in 11 dimensions. The existence of

such a theory was first conjectured and named as M-theory by Witten at a string theory conference

at University of Southern California in 1995. M-theory is supposed to be the fundamental theory

of everything, of which the five distinct superstring theories along with the 11-dimensional theory

of supergravity are regarded as different limits. Although the complete formulation of M-theory

remains elusive (and whether “M” should stand for “mother”, “magic”, “mystery”, “membrane”,

“matrix”, etc. remains a matter of taste), a great deal about it can be learned by virtue of the

fact that the theory should describe 2- and 5-dimensional objects known as M-branes (M2- and

M5-branes, respectively) and reduce to 11-dimensional supergravity theory at the low-energy limit.

Investigations of M-theory have inspired a great number of important theoretical results in both

physics and mathematics.

A collection of coincident D-branes in string theory or M-branes in M-theory produces a warped

spacetime with flux of gauge fields akin to a charged black hole, as the branes are sources of

gauge flux and gravitational curvature. The low-energy limit of the gauge theory on the branes’

worldvolume (referred to as “boundary”) is found to describe the same physics of string theory

or M-theory in the near-horizon geometry (referred to as “bulk”). In this way, one is led to

conjecture a remarkable duality that relates conventional (non-gravitational) quantum field theory

on the boundary to string theories or M-theory on the bulk. This gauge theory/string theory

duality is often referred to as anti-de Sitter/conformal field theory (AdS/CFT) correspondence,

which was first spelled out in a seminal paper by Maldacena in 1997 [86]. (A detailed review on

AdS/CFT correspondence was given in Ref. [87].) By considering N coincident D3-branes in the

type IIB theory, one obtains the celebrated example: the type IIB theory in AdS5×S5 (the product

space of 5-dimensional anti-de Sitter space and 5-dimensional sphere) is equivalent to the SU(N)

super Yang-Mills theory with N = 4 supersymmetry on the 4-dimensional boundary (which is

a super-conformal field theory). Many other examples have also been substantiated to various

degrees of rigor. In the attempt to construct the complete formulation of M-theory, the AdS/CFT

correspondence sets out a new strategy based on the holographic principle, which posits that the

physics of a bulk region is completely encoded on its lower-dimensional boundary, as originally

propounded by ’t Hooft in 1993 [88] and elaborated by Susskind in 1994 [89].

In string theory, the shape and size of the compactified manifold and consequently the fun-
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damental physical constants (lepton masses, coupling constants, cosmological constant, etc.) are

dynamically determined by vacuum expectation values of scalar (moduli) fields. The crucial ques-

tion arises known as the moduli-space problem or moduli-stabilization problem: what mechanism

stabilizes the compactified manifold and uniquely determines the physical constants? Answers to

this problem have been proposed in the approach of flux compactifications as a generalization of

conventional Calabi-Yau compactifications, which where first introduced by Strominger in 1986

[90] and by de Wit, Smit, and Hari Dass in 1987 [91] and now have become a rapidly developing

area of research. The idea is to generate a potential that stabilizes the moduli fields by compacti-

fying string theory or M-theory on a warped geometry. In a warped geometry, the fluxes associated

with certain tensor fields thread cycles of the compactified manifold; as the magnetic flux of an

n-form field strength through an n-cycle depends only on the homology of the n-cycle, the flux

stabilizes due to the flux quantization condition and gives rise to a nonvanishing potential. Flux

compactifications were first studied in the context of M-theory by Becker and Becker in 1996 [92].

(A comprehensive review on flux compactifications was given in Ref. [93].)

In 1999, Gukov, Vafa, and Witten made it evident that flux compactfications generate nonvan-

ishing potential for moduli fields, leading to a solution to the moduli-space problem [94]. However,

since the fluxes can take many different discrete values over different homology cycles of different

(generalized) Calabi-Yau manifolds, flux compactifications typically yield a vast multitude (com-

monly estimated to be of the order 10500 [95]) of possible vacuum expectation values, referred to

as the string theory landscape, and therefore we have to abandon the long-cherished hope that the

fundamental physical constants are supposed to be uniquely fixed by string theory or M-theory.

In response to this problem, Susskind in 2003 [96] proposed the anthropic argument of the string

theory landscape as a concrete implementation of the “anthropic principle”, which suggests that

physical constants take their values not because fundamental laws of physics dictate so but rather

because such values are at the loci of the landscape that are suitable to the existence of (intelli-

gent) life (in order to measure these constants). The properties of the string theory landscape was

shortly analyzed in a statistical approach by Douglas [95]. The scientific relevance of the anthropic

landscape has sparked fierce debate and remained highly controversial, yet it has gradually gained

popularity (especially in the context of cosmology).

The application of flux compactifications as well as the string theory landscape to the study of

cosmology has spawned a whole new growing research area known as string cosmology. A notable

subfield of it is brane cosmology, which posits that our four-dimensional universe is restricted to a

brane inside a higher-dimensional space, as first proposed by Randall and Sundrum in 1999 [97].
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The primary goal of string cosmology is to place field-theoretic models of cosmological inflation on

a firmer logical ground from the perspective of string theory or, more boldly, to open entirely new

realms of pre-big bang scenarios that cannot be described by any field-theoretic models. In 2003,

Kachru et al. outlined the construction of metastable de Sitter vacua [98] and shortly investigated

the application to inflation [99]. String cosmology has made some concrete predictions that will soon

be confronted with the near-future astrophysical observations. (For reviews on string cosmology,

see Refs. [100, 101] and the textbook Ref. [102].)

IV. LOOP QUANTUM GRAVITY

The primary competitor of string theory for a complete quantum theory is loop quantum gravity

(LQG). In sharp contrast to the ambitious goal of string theory, LQG does not intend to pursue a

theory of everything that unifies all force and matter fields but deliberately adopts the “minimalist”

approach in the sense that it focuses solely on the search for a consistent quantum theory of

gravity without entailing any extraordinary ingredients such as extra dimensions, supersymmetry,

etc. (although many of these can be incorporated compatibly). The beauty of LQG lies in its

faithful attempt to establish a conceptual framework whereby the apparently conflicting tenets of

quantum theory and Einstein’s theory of general relativity conjoin harmoniously, essentially in a

nonperturbative, background-independent fashion. (For textbooks on LQG, see Refs. [103–105];

for a detailed account of its history and development, see Ref. [106]; for a recent review of LQG,

see Ref. [107].)

The research of LQG originated from the works by Ashtekar in 1986–1987 [108, 109], which

reformulated Einstein’s general relativity into a new canonical formalism in terms of a selfdual

spinorial connection and its conjugate momentum, now known as Ashtekar variables, casting gen-

eral relativity in a language closer to that of the Yang-Mills gauge theory. The shift from metric

to Ashtekar variables provided the possibility of employing nonperturbative techniques in gauge

theories and opened a new avenue eventually leading to LQG. Shortly thereafter, Jacobson and

Smolin discovered that Wilson loops of the Ashtekar connection are solutions of the Wheeler-

DeWitt equation (the formal equation of quantum gravity) [110]. This remarkable discovery led

to the “loop representation of quantum general relativity” introduced by Rovelli and Smolin in

1988-1990 [111, 112]. The early developments of LQG were reviewed in Ref. [113].

In the 1990s, by the works of Brügmann, Gambini, and Pullin [114, 115], it became clear that

intersections of loops are essential for the consistency of the theory and quantum states of gravity
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should be formulated in terms of intersecting loops, i.e., graphs with links and nodes. Later on,

inspired by Penrose’s speculation on the combinatorial structure of space [116], Rovelli and Smolin

[117] obtained an explicit basis of states of quantum geometry known as spin networks, which are

oriented graphs labelled by numbers associated with spin representations of SU(2) on each link

and node. The mathematical construction of spin networks was systematized by Baez [118, 119].

The idea that LQG could predict discrete quantum geometry was first suggested in the study of

“weave states” [120]. In 1995, the area and volume operators were defined upon spin networks and

their eigenvalue spectra were found to be discrete [121], showing that quantum geometry is indeed

quantized in the Planck scale as had long been speculated. Rigourous and systematic studies of

geometry operators and their eigenvalues were further elaborated (e.g. see Refs. [122–124]).

The physical interpretation of spin networks (or more precisely, diffeomorphism-invariant knot

classes of spin networks, known as s-knots) is extremely appealing: they represent different quan-

tized 3-dimensional geometries, which are not quantum excitations in space but of space. This

picture manifests the paradigm of background independence of general relativity, as any reference

to the localization of spin networks is dismissed. Furthermore, inclusion of matter fields into LQG

does not require a major revamp of the underlying framework. (For a systematic account of in-

clusion of matter, see Ref. [104].) The quantum states of space plus matter naturally extend the

notion of spin networks with additional degrees of freedom. In the presence of matter fields, the

background independence becomes even more prominent, as geometry and matter fields are gen-

uinely on the equal footing and reside on top of one another via their contiguous relations in the

spin network without any reference to a given background.

While kinematics of LQG is well understood in terms of spin networks, its dynamics (i.e., evo-

lution of spin networks) and low-energy (semi-classical) physics is much more difficult and unclear.

An anomaly-free formulation of the quantum dynamics was first obtained by Thiemann in 1996

[125], and shortly the formulation was fully developed in his remarkable “QSD” series of papers

[126–128]. Since then, a great number of variant approaches have been pursued, but the quantum

dynamics remains very obscure, largely because implementation of the quantum Hamiltonian con-

straint is very intricate. The Master constraint program [129] initiated by Thiemannn proposed

an elegant solution to the difficulties and has evolved into a fully combinatorial theory known as

algebraic quantum gravity (AQG) [130–133]. Meanwhile, various techniques, notably by the idea

of holomorphic coherent states [134–139], have been devised to investigate the low-energy physics.

Up to now, LQG has achieved considerable progress in understanding the quantum dynamics and

providing contact with the low-energy physics.
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Applying principles of LQG to cosmological settings leads to the symmetry-reduced theory

known as loop quantum cosmology (LQC), which was originally proposed by Bojowald in 1999 and

reached a rigourous formulation around 2006. Providing a “bottom-up” approach to the full theory

of LQG, LQC has become the most well-developed subfield of LQG and led to many significant

successes. Most notably, it suggests a new cosmological scenario where the big bang is replaced by

the quantum bounce, which bridges the present expanding universe with a preexistent contracting

counterpart. Absence of cosmological singularities has been shown to be robust for a great variety

of LQC models, therefore affirming the long-held conviction that singularities in classical general

relativity should be resolved by the effects of quantum gravity. (For textbooks and reviews on

LQC, see Refs. [140–143].)

The standard formalism of LQG adopts the canonical (Hamiltonian) approach but is closely

related to the covariant (sun-over-histories) approach of quantum gravity known as the spin foam

theory. The concept of a spin foam, which can be viewed as a (discrete) “worldsurface” swept out

by a spin netwrok traveling and transmuting in time, was introduced in 1993 as inspired by the

work of Ponzano-Regge model [144] and later developed into a systematic framework of quantum

gravity by Perez et al. in the 2000s. A spin foam represents a quantized spacetime in the same

sense that a spin network represents a quantized space; the transition amplitude from one spin

network to another is given as the discrete sum (with appropriate weights) over all possible spin

foams that connect the initial and final spin networks. (For reviews on the spin foam theory, see

Refs. [145–148].)

LQG has grown into a very active research field pursued in many directions, both in the tra-

ditional canonical approach and in the covariant (i.e. spin foam) approach. Recently, the precise

connection between the canonical and covariant approaches has become one of the central topics

of LQG. The merger of different approaches has yielded profound insight and suggested a new the-

oretical framework referred to as covariant loop quantum gravity, which provides new conceptual

principles and could pave a royal road to a complete theory of quantum gravity as advocated by

Rovelli [149–151] (also see Ref. [105] for a comprehensive account).

V. BLACK HOLE THERMODYNAMICS

Perhaps the most notable achievement in the study of quantum gravity so far was the discovery

that black holes are not really black, but emit thermal Hawking radiation. The surprising fact that

black holes behave as thermodynamic objects has radically affected our understanding of general
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relativity and given valuable hints about the nature of quantum gravity.

The study of black hole thermodynamics can be traced back to 1972 when Hawking proved

that an area of an event horizon can never decrease [152] — a property reminiscent of the second

law of thermodynamics. The resemblance between black hole mechanics and thermodynamics

was further enhanced by the discovery of analogs of other thermodynamical laws and formally

elaborated in the paper by Bardeen, Carter, and Hawking [153] in terms the “four laws of black

hole mechanics”, which are in clear parallel with the four usual laws of thermodynamics as the

surface gravity (κ) plays the role of temperature and the area of horizon (Ahor) of entropy. Around

the same time, considering a series of thought experiments initiated by his advisor, Wheeler [154],

Bekenstein argued that the black hole entropy has to be of the form SBH = ηkBAhor/(~G), where

kB is Boltzmann’s constant and η is a proportional constant of order one, and correspondingly

obtained the “generalized second law of thermodynamics”, which asserts that the total of ordinary

entropy of matter plus black hole entropy never decreases [155–157].

In 1974, using the newly developed techniques of quantum field theory in curved spacetime,

Hawking [158, 159] showed that all black holes radiate as black bodies with the Hawking tem-

perature TH = ~κ/(2π). The first law of black hole mechanics then determines the entropy as

SBH = 1
4
kBAhor/(~G), which confirms Bekenstein’s expression with η = 1/4 and is often referred

to as the Bekenstein-Hawking formula. As the equivalence principle implies that the gravitational

field near a black hole horizon is locally equivalent to uniform acceleration in a flat spacetime, it is

expected that an accelerated observer should perceive an effect similar to the Hawking radiation.

In 1976, Unruh [160] demonstrated that an observer moving with a constant proper acceleration

a in Minkowski spacetime indeed see a thermal flux of particles with the Unruh temperature

TU = ~a/(2π), which is in almost exact analogy with the Hawking temperature. At almost the

same time, Bisognano and Wichmann gave an independent and mathematically rigorous proof of

the Unruh effect in quantum field theory [161]. To resolve the worrying issue whether the flux of

particles formally obtained via the standard quantum field-theoretical definitions of vacuum states

and particle numbers can be physically interpreted as “particles” as seen by detectors, Unruh

[160] and DeWitt [162] devised simple models of particle detectors and showed that the answer is

affirmative for these detectors.

The Hawking temperature and the Bekenstein-Hawking entropy are inherently quantum grav-

itational, in the sense that they depend explicitly on both Planck’s constant ~ and Newton’s

constant G. They are also surprisingly universal. The entropy, for example, depends only on the

horizon area, and takes the same simple form regardless of the black hole’s charges, angular mo-
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mentum, horizon topology, and even the number of spacetime dimensions. The thermal properties

of black holes have not been directly observed, but by now they have been derived in so many

different ways — from Hawking’s original calculation of quantum field theory in curved spacetime

and Unruh’s approach of an accelerated observer to Euclidean partition functions [161, 163–165],

canonical quantization in Hamiltonian formulation [166], quantum tunneling [167, 168], anomaly

techniques [169–174], the computation of pair production amplitudes [175–178], and many others

developed since early on to very recently — that their existence seems very nearly certain!

The natural question is then whether black hole thermodynamics, like the ordinary thermody-

namics of matter, has a microscopic “statistical mechanical” explanation. In 1996, using methods

based on D-branes and string duality in string theory, Strominger and Vafa suggested a strategy

of “turning down” the strength of the gravitational interaction until a black hole become a weakly

coupled system of strings and D-branes so that at weak coupling one can count the number of states;

this strategy led to the same Bekenstein-Hawking entropy for extremal (i.e., maximally charged)

supersymmetric (BPS) black holes in five dimensions [179]. This remarkable result was quickly

extended to a large number of extremal, near-extremal, and some particular non-extremal black

holes [180, 181]. However, it becomes harder and uncertain to obtain the right factor η = 1/4

for far-from-extremal black holes (the Schwarzschild black hole is a typical case). This issue is

currently under intense investigation in various approaches but has yet to be fully elucidated.

In 2005, Mathur proposed running the analysis backwards: starting at weak coupling with a

particular collection of strings and D-branes, one then turns the gravitational coupling up and

see what geometry appears at strong coupling [182]. The result is typically not a black hole but

instead a “fuzzball” — a configuration with no horizon and no singularity but with a geometry

akin to that of a black hole outside a would-be horizon [183]. In a few special cases, one can count

the number of such classical fuzzball geometries and reproduce the Bekenstein-Hawking entropy.

In general, however, many of the relevant states may not have classical geometric descriptions.

In the context of string theory, the notable AdS/CFT correspondence also provides a feasible

scheme to derive the black hole entropy. For asymptotically anti-de Sitter black holes, one can

in principle compute the entropy by counting states in the (nongravitational) dual conformal field

theory. The most straightforward application of this correspondence is for the (2+1)-dimensional

BTZ black hole [184]. In 1997-1998, Strominger [185] and Birmingham, Sachs, and Sen [186]

independently computed the BTZ black hole entropy, which precisely reproduces the Bekenstein-

Hawking expression. Since many higher dimensional near-extremal black holes have a near-horizon

geometry of the form BTZ× trivial, the BTZ results can be used to obtain the entropy of a large
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class of string theoretical black holes [187].

The second major research program to derive the black hole entropy from a microscopic picture

is loop quantum gravity. The suggestion that counting the quanta of area in loop quantum gravity

could offer the statistical description of black hole thermodynamics was first proposed by Krasnov

in 1997 [188]. The idea essentially is that the statistical ensemble is composed of the microstates

of the horizon geometry that give rise to a specified total area. By introducing the concept of

“isolated horizons”, Ashtekar et al. rigorously developed the framework of the idea and derived the

right Bekenstein-Hawking formula for the Schwarzschild black hole [189–191]. These results were

soon extended to other black holes with rotation, distortion, etc. [192–197].

In 2004, the combinatorial problem of counting the microscopic states in loop quantum gravity

was rephrased in a more manageable way by Domaga la and Lewandowski [198] and by Meissner

[199]. These works corrected an flawed assumption considered true for several years and enabled

one to compute the formula for Ahor ≫ G~ to the subleading order as k−1
B S = γM

γ
Ahor

4G~
− 1

2
ln A

G~
+· · · ,

by which the Barbero-Immirzi parameter γ is fixed as γ = γM ≈ 0.23653. For small areas, the

precise number counting was first suggested in 2006 [200, 201] and later thoroughly investigated by

employing combinatorial methods (see Ref. [202] for a detailed account and Ref. [203] for a review).

The key discovery is that, for microscopic black holes, the so-called black hole degeneracy spectrum

when plotted as a function of the area exhibits a striking “staircase” structure, which makes contact

in a nontrivial way with the evenly-spaced black hole horizon area spectrum predicted by Bekenstein

and Mukhanov [204]. Recently, an explicit SU(2) formulation for the black hole entropy has been

developed by Engle et al. based on covariant Hamiltonian methods [205–207], giving rigorous

support for the earlier proposal that the quantum black hole degrees of freedom could be described

by an SU(2) Chern-Simons theory. (Also see the review Ref. [203] and references therein for other

recent advances.)

In addition to string theory and loop quantum gravity, we now have a number of statistical me-

chanical approaches to black hole thermodynamics. These include entanglement entropy [208–212],

induced gravity [213–215], and many others. While they may differ on the subleading corrections

[216], they all seem to give the correct Bekenstein-Hawking entropy. (In general, one expects

k−1
B S = Ahor

4G~
− α ln A

G~
+ · · · , where the coefficient α depends on the quantum theory.) A new

puzzle is why such a diverse set of quantum gravitational approaches should all agree. (There are

some indications that even the subleading corrections might be universal, up to differences on the

treatment of angular momentum and conserved charges [216].)

Even more puzzling is the “information loss problem”: if a black hole is formed by collapse
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of matter in a pure quantum state, how can the seemingly thermal final state be compatible

with unitary evolution? This question is currently the subject of intense research, and may yield

surprising new insights into the nature of space and time. (For a detailed account of the information

paradox, see Ref. [217].)

For a recent review of black hole thermodynamics, see Ref. [218].

VI. QUANTUM GRAVITY PHENOMENOLOGY

Quantum gravity is often denounced as merely a theoretical enterprise that have no direct

contact with experimental or observational realms, as quantum gravitational effects are appreciable

only at the Planck scale, which is thought to be completely out of current reach. Today, as idea

flourishes and technology advances drastically, the situation could be changed soon and quantum

gravity might become reachable in the foreseeable future.

Many quantum gravity models suggest departures from the equivalence principle, CPT symme-

try, and/or local Lorentz invariance in the deep Planck regime; among them the specific examples

are string theory [219], brane-world scenarios [220], loop quantum gravity and spin foam theory

[221, 222], noncommutative geometry [223–225], emergent gravity [226], etc. Deviations from the

symmetries at the Planck scale in turn modify the pure metric spacetime structure and the local

Lorentzian energy-momentum dispersion relation at lower-energy scale.

Modifications of the pure metric spacetime structure implies deviations from the Einstein Equiv-

alence Principle (EEP). The most stringent test of EEP comes from cosmic observations. The null

result of birefringence in cosmic propagation of polarized photons and polarized gamma rays so far

has ascertained the light-cone structure and the core metric to ultrahigh precision of 10−38; this

high precision already probes the second order in the ratio of W -boson mass or proton mass to the

Planck mass [227]. To this precision, the only freedoms left over regarding the metric structure are

a scalar degree of freedom (dilaton) and a pseudo-scalar degree of freedom (axion). The dilaton al-

ters the amplitude while the axion rotates the linear polarization of the cosmic propagation. Based

on the cosmic propagation since the last scattering surface of the Cosmic Microwave Background

(CMB), the fractional variation of the dilaton degree of freedom is constrained to 8 × 10−4 by the

precision agreement of the CMB spectrum to the black-body spectrum [228]. The cosmic axion

degree of freedom is constrained by comic polarization rotation (CPR): uniform CPR to less than

0.02 (rad) [229]; CPR fluctuations to 0.02 (rad) [229, 230].

Observations on Ultrahigh Energy Cosmic Rays (UHECR) [231] — cosmic rays with kinetic
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energy greater than 1018 eV, the most energetic particles ever observed — provide a chance to see

possible modifications to the local Lorentzian energy-momentum dispersion relation of ultrarela-

tivistic (v ∼ c) particles. The UHECR spectrum measured at the Pierre Auger Observatory thus

far has put very strong constraints on deviations from the Lorentzian dispersion relation [232].

Future investigation with improved precision will either impose even stronger constraints or pick

up signals of new physics including quantum gravitational effects (see Refs. [233, 234] for detailed

surveys).

Similarly, observations on propagation of ultrahigh energy cosmic electromagnetic waves can be

used to test any momentum dependence of the speed of photons, as an indication of a breakdown

of the Lorentz symmetry. Particularly, the detailed analysis of the relationship between the arrival

time, photon momentum, and redshift of gamma-ray bursts is approaching very closely to the

desired sensitivity to the Planck-scale physics [235].

On the other hand, the ultra-precise measurements of “atom-recoil frequency” in the cold-

atom experiments allow us to probe the energy-momentum dispersion relation of nonrelativistic

(v ≪ c) particles with Planck-scale sensitivity, thus providing revealing insight into various types

of modifications to the dispersion relation considered in the quantum gravity literature [236, 237].

Combining studies of the two complementary regimes of the nonrelativistic and ultrarelativistic

dispersion relations would tell us a great deal about the nature of quantum spacetime [237].

In the context of astrophysics, many theories — such as attractor theory [238], the DGP model

[239], massive gravity [240], etc. — predict effects of quantum gravity in the solar system dynamics.

None of these effects have been observed yet, but they might be testable in the proposed space

missions designed to test relativistic gravity [241, 242] and/or to detect and measure gravitational

waves by using laser interferometry (see Ref. [243] for a detailed survey on space-based gravitational-

wave detectors). Sensitive tests of the equivalence principle, local Lorentz invariance, modifications

to Einstein’s field equations, etc. might also be possible in the coming space missions [244].

In the context of cosmology, quantum effects in the pre-inflationary era may give rise to sufficient

deviations from the standard inflationary scenario and leave footprints on the CMB. In string the-

ory, various observable imprints on anisotropies and polarization of the CMB have been suggested

by different models of string cosmology and by the existence of cosmic strings (see Ref. [102] for a

review). In loop quantum gravity, the standard inflationary scenario is extended to the epoch from

the big bounce in the Planck era to the onset of slow-roll inflation [245]. Some research works have

attempted to reveal possible observable imprints of loop quantum effects on the CMB [246–251].

There are a few experiments currently in operation or in ongoing development, aiming to make
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accurate measurements of anisotropies and polarization of the CMB, and their results will soon

lead to great excitement. Very recently, the joint analysis of BICEP2/Keck Array and Planck Data

found no statistically significant evidence for tensor modes in the B-mode polarization, yielding

an upper limit r < 0.12 at 95% confidence on the tensor-to-scalar ratio r [252]. This upper limit

already ruled out many “large-r scenarios” of pre-inflationary models, including those in string

cosmology. The conclusive result of B-mode polarization expected to arrive in the near future will

further discriminate between different quantum gravity theories.

There are many other cosmological and astrophysical observations as well as laboratory experi-

ments that could reveal possible quantum gravitational effects. At the turn of the centennial of the

birth of Einstein’s general relativity, quantum gravity phenomenology will in time become an im-

portant area of relevant research. (For a comprehensive survey on quantum gravity phenomenology,

see Ref. [253]; also see [254] for a survey from the perspective of loop quantum gravity.)
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[174] L. Bonora, M. Cvitan, S. Pallua and I. Smolić, “Hawking fluxes, Fermionic currents, W(1+infinity)

algebra and anomalies,” Phys. Rev. D 80, 084034 (2009) [arXiv:0907.3722 [hep-th]].

[175] D. Garfinkle, S. B. Giddings and A. Strominger, “Entropy in black hole pair production,” Phys. Rev.

D 49, 958 (1994) [gr-qc/9306023].

[176] J. D. Brown, “Black hole pair creation and the entropy factor,” Phys. Rev. D 51, 5725 (1995)

[gr-qc/9412018].

[177] F. Dowker, J. P. Gauntlett, D. A. Kastor and J. H. Traschen, “Pair creation of dilaton black holes,”

Phys. Rev. D 49, 2909 (1994) [hep-th/9309075].

[178] R. B. Mann and S. F. Ross, “Cosmological production of charged black hole pairs,” Phys. Rev. D 52,

2254 (1995) [gr-qc/9504015].

[179] A. Strominger and C. Vafa, “Microscopic origin of the Bekenstein-Hawking entropy,” Phys. Lett. B

379, 99 (1996) [hep-th/9601029].

[180] A. W. Peet, “TASI lectures on black holes in string theory,” in TASI 99: Strings, Branes and Gravity,

eds. J. Harvey, S. Kachru and E. Silverstein (World Scientic, Singapore, 2001) [hep-th/0008241].

[181] S. R. Das and S. D. Mathur, “The quantum physics of black holes: Results from string theory,” Ann.

Rev. Nucl. Part. Sci. 50, 153 (2000) [gr-qc/0105063].

[182] S. D. Mathur, “The Fuzzball proposal for black holes: An Elementary review,” Fortsch. Phys. 53, 793

(2005) [hep-th/0502050].

[183] S. D. Mathur, “The Quantum structure of black holes,” Class. Quant. Grav. 23, R115 (2006)

[hep-th/0510180].

[184] M. Banados, C. Teitelboim and J. Zanelli, “The Black hole in three-dimensional space-time,” Phys.

Rev. Lett. 69, 1849 (1992) [hep-th/9204099].

[185] A. Strominger, “Black hole entropy from near horizon microstates,” JHEP 9802, 009 (1998)

[hep-th/9712251].

[186] D. Birmingham, I. Sachs and S. Sen, “Entropy of three-dimensional black holes in string theory,”

Phys. Lett. B 424, 275 (1998) [hep-th/9801019].

[187] K. Skenderis, “Black holes and branes in string theory,” Lect. Notes Phys. 541, 325 (2000)

26

http://arxiv.org/abs/gr-qc/0502074
http://arxiv.org/abs/hep-th/0602146
http://arxiv.org/abs/hep-th/0606018
http://arxiv.org/abs/0710.0456
http://arxiv.org/abs/0808.2360
http://arxiv.org/abs/0907.3722
http://arxiv.org/abs/gr-qc/9306023
http://arxiv.org/abs/gr-qc/9412018
http://arxiv.org/abs/hep-th/9309075
http://arxiv.org/abs/gr-qc/9504015
http://arxiv.org/abs/hep-th/9601029
http://arxiv.org/abs/hep-th/0008241
http://arxiv.org/abs/gr-qc/0105063
http://arxiv.org/abs/hep-th/0502050
http://arxiv.org/abs/hep-th/0510180
http://arxiv.org/abs/hep-th/9204099
http://arxiv.org/abs/hep-th/9712251
http://arxiv.org/abs/hep-th/9801019


[hep-th/9901050].

[188] K. V. Krasnov, “Counting surface states in the loop quantum gravity,” Phys. Rev. D 55, 3505 (1997)

[gr-qc/9603025].

[189] A. Ashtekar, J. Baez, A. Corichi and K. Krasnov, “Quantum geometry and black hole entropy,” Phys.

Rev. Lett. 80, 904 (1998) [gr-qc/9710007].

[190] A. Ashtekar, A. Corichi and K. Krasnov, “Isolated horizons: The Classical phase space,” Adv. Theor.

Math. Phys. 3, 419 (1999) [gr-qc/9905089].

[191] A. Ashtekar, J. C. Baez and K. Krasnov, “Quantum geometry of isolated horizons and black hole

entropy,” Adv. Theor. Math. Phys. 4, 1 (2000) [gr-qc/0005126].

[192] A. Ashtekar, S. Fairhurst and B. Krishnan, “Isolated horizons: Hamiltonian evolution and the first

law,” Phys. Rev. D 62, 104025 (2000) [gr-qc/0005083].

[193] A. Ashtekar, C. Beetle and J. Lewandowski, “Mechanics of rotating isolated horizons,” Phys. Rev. D

64, 044016 (2001) [gr-qc/0103026].

[194] A. Ashtekar, C. Beetle and J. Lewandowski, “Geometry of generic isolated horizons,” Class. Quant.

Grav. 19, 1195 (2002) [gr-qc/0111067].

[195] A. Ashtekar, A. Corichi and D. Sudarsky, “Nonminimally coupled scalar fields and isolated horizons,”

Class. Quant. Grav. 20, 3413 (2003) [gr-qc/0305044].

[196] A. Ashtekar and A. Corichi, “Nonminimal couplings, quantum geometry and black hole entropy,”

Class. Quant. Grav. 20, 4473 (2003) [gr-qc/0305082].

[197] A. Ashtekar, J. Engle and C. Van Den Broeck, “Quantum horizons and black hole entropy: Inclusion

of distortion and rotation,” Class. Quant. Grav. 22, L27 (2005) [gr-qc/0412003].

[198] M. Domaga la and J. Lewandowski, “Black hole entropy from quantum geometry,” Class. Quant. Grav.

21, 5233 (2004) [gr-qc/0407051].

[199] K. A. Meissner, “Black hole entropy in loop quantum gravity,” Class. Quant. Grav. 21, 5245 (2004)

[gr-qc/0407052].

[200] A. Corichi, J. Diaz-Polo and E. Fernandez-Borja, “Quantum geometry and microscopic black hole

entropy,” Class. Quant. Grav. 24, 243 (2007) [gr-qc/0605014].

[201] A. Corichi, J. Diaz-Polo and E. Fernandez-Borja, “Black hole entropy quantization,” Phys. Rev. Lett.

98, 181301 (2007) [gr-qc/0609122].

[202] I. Agullo, J. Fernando Barbero, E. F. Borja, J. Diaz-Polo and E. J. S. Villasenor, “Detailed black hole

state counting in loop quantum gravity,” Phys. Rev. D 82, 084029 (2010) [arXiv:1101.3660 [gr-qc]].

[203] J. F. Barbero G., J. Lewandowski and E. J. S. Villasenor, “Quantum isolated horizons and black hole

entropy,” PoS QGQGS 2011, 023 (2011) [arXiv:1203.0174 [gr-qc]].

[204] J. D. Bekenstein and V. F. Mukhanov, “Spectroscopy of the quantum black hole,” Phys. Lett. B 360,

7 (1995) [gr-qc/9505012].

[205] J. Engle, A. Perez and K. Noui, “Black hole entropy and SU(2) Chern-Simons theory,” Phys. Rev.

Lett. 105, 031302 (2010) [arXiv:0905.3168 [gr-qc]].

27

http://arxiv.org/abs/hep-th/9901050
http://arxiv.org/abs/gr-qc/9603025
http://arxiv.org/abs/gr-qc/9710007
http://arxiv.org/abs/gr-qc/9905089
http://arxiv.org/abs/gr-qc/0005126
http://arxiv.org/abs/gr-qc/0005083
http://arxiv.org/abs/gr-qc/0103026
http://arxiv.org/abs/gr-qc/0111067
http://arxiv.org/abs/gr-qc/0305044
http://arxiv.org/abs/gr-qc/0305082
http://arxiv.org/abs/gr-qc/0412003
http://arxiv.org/abs/gr-qc/0407051
http://arxiv.org/abs/gr-qc/0407052
http://arxiv.org/abs/gr-qc/0605014
http://arxiv.org/abs/gr-qc/0609122
http://arxiv.org/abs/1101.3660
http://arxiv.org/abs/1203.0174
http://arxiv.org/abs/gr-qc/9505012
http://arxiv.org/abs/0905.3168


[206] J. Engle, K. Noui, A. Perez and D. Pranzetti, “Black hole entropy from an SU(2)-invariant formulation

of Type I isolated horizons,” Phys. Rev. D 82, 044050 (2010) [arXiv:1006.0634 [gr-qc]].

[207] J. Engle, K. Noui, A. Perez and D. Pranzetti, “The SU(2) Black Hole entropy revisited,” JHEP 1105,

016 (2011) [arXiv:1103.2723 [gr-qc]].

[208] R. D. Sorkin, “On the Entropy of the Vacuum outside a Horizon,” Tenth International Conference

on General Relativity and Gravitation (held Padova, 4-9 July, 1983), Contributed Papers, vol. II, pp.

734-736 [arXiv:1402.3589 [gr-qc]].

[209] L. Bombelli, R. K. Koul, J. Lee and R. D. Sorkin, “A Quantum Source of Entropy for Black Holes,”

Phys. Rev. D 34, 373 (1986).

[210] M. Srednicki, “Entropy and area,” Phys. Rev. Lett. 71, 666 (1993) [hep-th/9303048].

[211] S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from AdS/CFT,” Phys.

Rev. Lett. 96, 181602 (2006) [hep-th/0603001].

[212] V. E. Hubeny, M. Rangamani and T. Takayanagi, “A Covariant holographic entanglement entropy

proposal,” JHEP 0707, 062 (2007) [arXiv:0705.0016 [hep-th]].

[213] A. D. Sakharov, “Vacuum quantum fluctuations in curved space and the theory of gravitation,” Sov.

Phys. Dokl. 12, 1040 (1968) [Dokl. Akad. Nauk Ser. Fiz. 177, 70 (1967)] [Sov. Phys. Usp. 34, 394

(1991)] [Gen. Rel. Grav. 32, 365 (2000)].

[214] V. P. Frolov, D. V. Fursaev and A. I. Zelnikov, “Statistical origin of black hole entropy in induced

gravity,” Nucl. Phys. B 486, 339 (1997) [hep-th/9607104].

[215] V. P. Frolov and D. V. Fursaev, Phys. Rev. D 56, 2212 (1997) [hep-th/9703178].

[216] S. Carlip, “Logarithmic corrections to black hole entropy from the Cardy formula,” Class. Quant.

Grav. 17, 4175 (2000) [gr-qc/0005017].

[217] S. D. Mathur, “What Exactly is the Information Paradox?,” Lect. Notes Phys. 769, 3 (2009)

[arXiv:0803.2030 [hep-th]].

[218] S. Carlip, “Black Hole Thermodynamics,” Int. J. Mod. Phys. D 23, 1430023 (2014) [arXiv:1410.1486

[gr-qc]].

Quantum gravity phenomenology

[219] V. A. Kostelecky and S. Samuel, “Spontaneous Breaking of Lorentz Symmetry in String Theory,”

Phys. Rev. D 39, 683 (1989).

[220] C. P. Burgess, J. M. Cline, E. Filotas, J. Matias and G. D. Moore, “Loop generated bounds on changes

to the graviton dispersion relation,” JHEP 0203, 043 (2002) [hep-ph/0201082].

[221] R. Gambini and J. Pullin, “Nonstandard optics from quantum space-time,” Phys. Rev. D 59, 124021

(1999) [gr-qc/9809038].

[222] C. Rovelli and S. Speziale, “Lorentz covariance of loop quantum gravity,” Phys. Rev. D 83, 104029

(2011) [arXiv:1012.1739 [gr-qc]].

28

http://arxiv.org/abs/1006.0634
http://arxiv.org/abs/1103.2723
http://arxiv.org/abs/1402.3589
http://arxiv.org/abs/hep-th/9303048
http://arxiv.org/abs/hep-th/0603001
http://arxiv.org/abs/0705.0016
http://arxiv.org/abs/hep-th/9607104
http://arxiv.org/abs/hep-th/9703178
http://arxiv.org/abs/gr-qc/0005017
http://arxiv.org/abs/0803.2030
http://arxiv.org/abs/1410.1486
http://arxiv.org/abs/hep-ph/0201082
http://arxiv.org/abs/gr-qc/9809038
http://arxiv.org/abs/1012.1739


[223] J. Lukierski, H. Ruegg and W. J. Zakrzewski, “Classical quantum mechanics of free kappa relativistic

systems,” Annals Phys. 243, 90 (1995) [hep-th/9312153].

[224] G. Amelino-Camelia and S. Majid, “Waves on noncommutative space-time and gamma-ray bursts,”

Int. J. Mod. Phys. A 15 (2000) 4301 [hep-th/9907110].

[225] S. M. Carroll, J. A. Harvey, V. A. Kostelecky, C. D. Lane and T. Okamoto, “Noncommutative field

theory and Lorentz violation,” Phys. Rev. Lett. 87, 141601 (2001) [hep-th/0105082].

[226] C. Barcelo, S. Liberati and M. Visser, “Analogue gravity,” Living Rev. Rel. 8, 12 (2005)

[Living Rev. Rel. 14, 3 (2011)] http://relativity.livingreviews.org/Articles/lrr-2011-3/

[gr-qc/0505065].

[227] W. T. Ni, “Spacetime structure and asymmetric metric from the premetric formulation of electromag-

netism,” Phys. Lett. A 379, 1297 (2015) [arXiv:1411.0460 [gr-qc]].

[228] W. T. Ni, “Dilaton field and cosmic wave propagation,” Phys. Lett. A 378, 3413 (2014)

[arXiv:1410.0126 [gr-qc]].

[229] S. d. S. Alighieri, “Cosmic Polarization Rotation: an Astrophysical Test of Fundamental Physics,”

Int. J. Mod. Phys. D 24, 0016 (2015) [arXiv:1501.06460 [astro-ph.CO]].

[230] H. H. Mei, W. T. Ni, W. P. Pan, L. Xu and S. d. S. Alighieri, “New constraints on cosmic polarization

rotation from the ACTPol cosmic microwave background B-Mode polarization observation and the

BICEP2 constraint update,” Astrophys. J. 805, no. 2, 107 (2015) [arXiv:1412.8569 [astro-ph.CO]].

[231] K. Kotera and A. V. Olinto, “The Astrophysics of Ultrahigh Energy Cosmic Rays,” Ann. Rev. Astron.

Astrophys. 49, 119 (2011) [arXiv:1101.4256 [astro-ph.HE]].

[232] T. Yamamoto [for the Pierre Auger Collaboration], “The UHECR spectrum measured at the Pierre

Auger Observatory and its astrophysical implications,” arXiv:0707.2638 [astro-ph].

[233] F. W. Stecker and S. T. Scully, “Searching for New Physics with Ultrahigh Energy Cosmic Rays,”

New J. Phys. 11, 085003 (2009) [arXiv:0906.1735 [astro-ph.HE]].

[234] S. Liberati and L. Maccione, “Quantum Gravity phenomenology: achievements and challenges,” J.

Phys. Conf. Ser. 314, 012007 (2011) [arXiv:1105.6234 [astro-ph.HE]].

[235] G. Amelino-Camelia, A. Marciano, M. Matassa and G. Rosati, “Testing quantum-spacetime relativity

with gamma-ray telescopes,” arXiv:1006.0007 [astro-ph.HE].

[236] G. Amelino-Camelia, C. Laemmerzahl, F. Mercati and G. M. Tino, “Constraining the Energy-

Momentum Dispersion Relation with Planck-Scale Sensitivity Using Cold Atoms,” Phys. Rev. Lett.

103, 171302 (2009) [arXiv:0911.1020 [gr-qc]].

[237] F. Mercati, D. Mazon, G. Amelino-Camelia, J. M. Carmona, J. L. Cortes, J. Indurain, C. Laemmerzahl

and G. M. Tino, “Probing the quantum-gravity realm with slow atoms,” Class. Quant. Grav. 27,

215003 (2010) [arXiv:1004.0847 [gr-qc]].

[238] T. Damour and K. Nordtvedt, “General relativity as a cosmological attractor of tensor scalar theories,”

Phys. Rev. Lett. 70, 2217 (1993).

[239] G. R. Dvali, G. Gabadadze and M. Porrati, “4-D gravity on a brane in 5-D Minkowski space,” Phys.

29

http://arxiv.org/abs/hep-th/9312153
http://arxiv.org/abs/hep-th/9907110
http://arxiv.org/abs/hep-th/0105082
http://relativity.livingreviews.org/Articles/lrr-2011-3/
http://arxiv.org/abs/gr-qc/0505065
http://arxiv.org/abs/1411.0460
http://arxiv.org/abs/1410.0126
http://arxiv.org/abs/1501.06460
http://arxiv.org/abs/1412.8569
http://arxiv.org/abs/1101.4256
http://arxiv.org/abs/0707.2638
http://arxiv.org/abs/0906.1735
http://arxiv.org/abs/1105.6234
http://arxiv.org/abs/1006.0007
http://arxiv.org/abs/0911.1020
http://arxiv.org/abs/1004.0847


Lett. B 485, 208 (2000) [hep-th/0005016].

[240] C. de Rham, “Massive Gravity,” Living Rev. Rel. 17, 7 (2014)

http://relativity.livingreviews.org/Articles/lrr-2014-7/ [arXiv:1401.4173 [hep-th]].

[241] W. T. Ni, “Super-ASTROD: Probing primordial gravitational waves and mapping the outer solar

system,” Class. Quant. Grav. 26, 075021 (2009) [arXiv:0812.0887 [astro-ph]].

[242] C. Braxmaier et al. [ASTROD Collaboration], “Astrodynamical Space Test of Relativity using Optical

Devices I (ASTROD I) - A class-M fundamental physics mission proposal for Cosmic Vision 2015-2025:

2010 Update,” Exper. Astron. 34, 181 (2012) [arXiv:1104.0060 [gr-qc]].

[243] J. R. Gair, M. Vallisneri, S. L. Larson and J. G. Baker, “Testing General Relativity with

Low-Frequency, Space-Based Gravitational-Wave Detectors,” Living Rev. Rel. 16, 7 (2013)

http://relativity.livingreviews.org/Articles/lrr-2013-7/ [arXiv:1212.5575 [gr-qc]].

[244] C. Lämmerzahl, “General relativity in space and sensitive tests of the equivalence principle,”

gr-qc/0402122.

[245] A. Ashtekar, “Loop Quantum Gravity and the The Planck Regime of Cosmology,” arXiv:1303.4989

[gr-qc].

[246] J. Grain and A. Barrau, “Cosmological footprints of loop quantum gravity,” Phys. Rev. Lett. 102,

081301 (2009) [arXiv:0902.0145 [gr-qc]].

[247] A. Barrau, “Loop quantum gravity and the CMB: Toward pre-Big Bounce cosmology,”

arXiv:0911.3745 [gr-qc].

[248] J. Mielczarek, T. Cailleteau, J. Grain and A. Barrau, “Inflation in loop quantum cosmology: dynamics

and spectrum of gravitational waves,” Phys. Rev. D 81, 104049 (2010) [arXiv:1003.4660 [gr-qc]].

[249] J. Grain, A. Barrau, T. Cailleteau and J. Mielczarek, “ Observing the Big Bounce with Tensor Modes

in the Cosmic Microwave Background: Phenomenology and Fundamental LQC Parameters,” Phys.

Rev. D 82, 123520 (2010) [arXiv:1011.1811 [astro-ph.CO]].

[250] A. Barrau, “Inflation and Loop Quantum Cosmology,” PoS ICHEP 2010, 461 (2010) [arXiv:1011.5516

[gr-qc]].

[251] I. Agullo, A. Ashtekar and W. Nelson, “The pre-inflationary dynamics of loop quantum cosmol-

ogy: Confronting quantum gravity with observations,” Class. Quant. Grav. 30, 085014 (2013)

[arXiv:1302.0254 [gr-qc]].

[252] P. A. R. Ade et al. [BICEP2 and Planck Collaborations], “Joint Analysis of BICEP2/KeckArray and

Planck Data,” Phys. Rev. Lett. 114, no. 10, 101301 (2015) [arXiv:1502.00612 [astro-ph.CO]].

[253] G. Amelino-Camelia, “Quantum-Spacetime Phenomenology,” Living Rev. Rel. 16, 5 (2013)

http://relativity.livingreviews.org/Articles/lrr-2013-5/ [arXiv:0806.0339 [gr-qc]].

[254] L. Smolin, “Loop quantum gravity and Planck scale phenomenology,” Lect. Notes Phys. 669, 363

(2005).

30

http://arxiv.org/abs/hep-th/0005016
http://relativity.livingreviews.org/Articles/lrr-2014-7/
http://arxiv.org/abs/1401.4173
http://arxiv.org/abs/0812.0887
http://arxiv.org/abs/1104.0060
http://relativity.livingreviews.org/Articles/lrr-2013-7/
http://arxiv.org/abs/1212.5575
http://arxiv.org/abs/gr-qc/0402122
http://arxiv.org/abs/1303.4989
http://arxiv.org/abs/0902.0145
http://arxiv.org/abs/0911.3745
http://arxiv.org/abs/1003.4660
http://arxiv.org/abs/1011.1811
http://arxiv.org/abs/1011.5516
http://arxiv.org/abs/1302.0254
http://arxiv.org/abs/1502.00612
http://relativity.livingreviews.org/Articles/lrr-2013-5/
http://arxiv.org/abs/0806.0339

	I Prelude
	II Perturbative quantum gravity
	III String theory
	IV Loop quantum gravity
	V Black hole thermodynamics
	VI Quantum gravity phenomenology
	 References
	 Prelude
	 Perturbative quantum gravity
	 String theory
	 Loop quantum gravity
	 Black hole thermodynamics
	 Quantum gravity phenomenology


