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domain (evidently bordering the region) appears
to keep individual experimental observation un-
likely.

The foregoing treatment remains independent
of fundamental constants by replacing Hall's quan-
tum mechanical parameter v =(8/2m) 1n(b/a), in
terms of Planck's constant 8, the mass m of the
helium atom, and the inner and outer radii of quan-
tized vortices a and b, respectively. Implications
are not intended, however, that rotating helium
remains devoid of macroscopic quantum effects.
In imagining such features, the domain structure
indicating ability to preserve the irrotational state"
(quantum index, n= 0) over prescribed regions may
in fact, constitute a form of macroscopic uncer-
tainty principle. Such considerations mill be
discussed more fully in a later detailed treat-
ment.
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Such magnus force 2ps(Q xv) exerted per unit vol-
ume against vortex lines constituted the product of total
circulation (2Q) residing per unit area in vortex lines
times the relative momentum density (psv).

SProcedures employed by Hall in reference 6 for eval-
uating curvature in terms of the circulation vector 7'

x v retain validity here. Application of the k V' opera-s
tion to V' x vs results in the same differential functional
dependence of domain axis velocity v on system coordi-
nate position as appear in Eqs. (5)-(7) of that reference
for vortices.

Space forbids equation-by-equation detail, and the
reader is therefore referred to the following equations
of the Hall 1958 treatise, reference (6): (a) Eq. (1),
(b) Eqs. {5)-(8), (c) Eqs. {9)-{10),and (d) Eqs. {16)-
(17).

~~In this connection, note the interesting observations
that magnitude of the angular momentum and rotational
energy content for counter-rotating domains become,
respectively,

angular momentum=2mp a Q/p ra2
s s

=3.4 & 10 3 cm /sec

per gram of superfluid, and

rotational energy =4' a Q
s

=3.5 && 10 ~p g-cm/sec2
s

per unit length of domain, each evidently independent of
angular rotation rate Q.
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In 1956 Hanbury Bromn and Tmiss' reported
that the photons of a light beam of narrow spec-
tral width have a tendency to arrive in correlated
pa. irs. We have developed general quantum me-
chanica1 methods for the investigation of such
correlation effects and shall present here re-
sults for the distribution of the number of pho-
tons counted in an incoherent beam. The fact
that photon correlations are enhanced by narrow-
ing the spectral bandwidth has led to a prediction'
of large-scale correlations to be observed in the
beam of an optical maser. We shall indicate
that this prediction is misleading and follows
from an inappropriate model of the maser beam.
In considering these problems we shall outline

a method of describing the photon field mhich ap-
pears particularly mell suited to the discussion
of experiments performed with light beams, wheth-
er coherent or incoherent.

The correlations observed in the photoioniza-
tion processes induced by a light beam were giv-
en a simple semiclassical explanation by Purcell, '
who made use of the methods of microwave noise
theory. More recently, a number of papers have
been written examining the correlations in con-
siderably greater detail. These papers'&' ' re-
tain the assumption that the electric field in a
light beam can be described as a classical Gaus-
sian stochastic process. In actuality, the be-
havior of the photon field is considerably more
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ln ) =exp(--,' ln l')Q [n /(& l)'"]l&)k= k' nk
where Q.k is an arbitrary complex amplitude.
We shall call the l nit) coherent states; their use
is well known in discussions of the harmonic os-
cillator in the classical limit. The expectation
value in the state l n~) of the contribution of the
kth mode to the total field is a monochromatic
wave with complex amplitude proportional to ak.
The coherent states l n&), for all complex n&,
form a complete set in a sense best expressed
by the relation

(1/~)fin )(n ld'"n
k k k

(2)

where d"'zk is a real element of area of the com-
plex nk plane. It follows that any state may be
expanded linearly in terms of coherent states.
The most general light beam can thus be de-
scribed by a density operator of the form

p= f+((n, n '})ll ln )(n 'ld'~n d'"n ', (3)
k k k'

which deals with all the modes of the field at once.
An incoherent light beam must be described as

a statistical mixture of all the excitation states
available for each mode excited. For the kth
mode, the probability to be associated with the
state ln&) is proportional to ((N&)/(1+(&t, ))} ",

varied than such an assumption would indicate.
Whereas a stationary Gaussian stochastic process
is described completely by its frequency-depend-
ent power spectrum, a great deal more informa-
tion in the form of amplitude and phase relations
between differing quantum states may be required
to describe a steady light beam. Beams of identi-
ca,l spectral distributions may exhibit altogether
different photon correlations or, alternatively,
none at all. There is ultimately no substitute
for the quantum theory in describing quanta.

We assume, for convenience, that the field has
discrete propagation modes labeled by an index
k (which in free space, for example, specifies
propagation vector and polarization). To describe
the quantum state of the kth mode we must specify
an infinite set of complex amplitudes, one for
each quantum occupation state [nt,), nt = 0, 1, 2, ~ ~ ~ .
Since the states me wish to describe include ones
in which the phase of the kth mode is fairly mell
defined, and a, large number of states ln~) must
then be superposed, it is preferable to use an al-
together different set of basis states. We take
these to be of the form

where (Nt) is the mean number of photons occu-
pying the mode. A simple theorem expresses
this mixture in terms of the coherent states de-
fined earlier: The density operator (3) reduces
to a product of operators of the form

where the probability p(n&) is a Gaussian func-
tion,

p(n ) =(~(N )}-'exp(-ln l'/(X )).

In particular, blackbody radiation may be de-
scribed as a mixture of coherent waves by sub-
stituting for (N&) the familiar value for thermal
excitation of a field oscillator.

To discuss photon correlations me examine the
photoionization probability of a pair of atoms,
labeled 1 and 2, which lie at r, and r, within the
light beam. We assume that the incident beam
is of narrow enough spectral bandwidth that any
variation of frequency-dependent parameters en-
tering the ohotoionization probabilities may be
neglected. Then, if we sum the transition prob-
abilities over final electron energies, there is
no difficulty in defining a time at mhich each
electron emission takes place. The probability
density for ionization of atom 1 at time t, and
for atom 2 at t2 may be mritten as

w(t, t, ) = w, w2C(r, t,r, t,), (6)

where M, and x, are the constant transition prob-
abilities for each atom placed individually in the
beam, and C is the function whose departure from
unity expresses a tendency for the tmo events to
be correlated.

We assume, to simplify notation, that photons
of only one polarization are present. The appro-
priate vector component of the electric field op-
erator has a positive-frequency part 8 '+'(r, t)
and a negative-frequency part 8 ' '(r, t). The
correlation function may be expressed in terms
of these operators as

C (r,t,r2t2)

trg h ' '(r, t,) 8' '(r2t2) 8+'(r~t, ) 8'+'(r2t2)}
trQ g' '(r, t,) g'+'(r, t,)}trQ 8' '(r, t,) 8'+'(r, t,)}'

(t)
where tr stands for trace, and p is a density op-
erator of the general form (3).

It is easily shown that coherent states of the
field lead to no photoionization correlations at
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C =1+!ft(t,- t, -c-'(x, -x,))!', (8)

all. If the state of the field is specified by any
density operator of the form IIy I o't, )(of, !, the
correlation function C reduces to unity. A cor-
relation between photons only appears when inco-
herent mixtures or superpositions of the coherent
states are present. For collimated, completely
incoherent beams of the type described earlier
(e.g. , filtered thermal radiation), we find

(ywt)
a(n, t) =—,— S [t(y'+2yW)"']1

n! (y +2yW)'

(N~) - j(~t, - &u)'+ y') ', with central frequency cu,

may be stated as follows: Let W be the average
rate at which photons are recorded; then the
probability that n photons are recorded in a time
t, long compared to 1/y, is

where the coordinates x& are the components of

rj ln the propagation dlrectlon* and the f nctlon
R is given by

x exp[-t[(y'+2yW) '-yD. (10)

(9)

This result, for incoherent beams, corresponds
in the classical limit, when the modes are treated
as forming a continuum, to that derived using
stochastic models. ' ' It may be associated, in

this limit, with a tendency of the complex total
field strength of the beam to fluctuate in modu-
lus with time.

The density operator which represents an actual
maser beam is not yet known. It is clear that
such a beam cannot be represented by a product
of individual coherent states, II&!a&)(a&!, un-
less the phase and amplitude stability of the de-
vice is perfect. On the other hand, a maser
beam is not at all likely to be described by the
ideally incoherent classical model which under-
lies the calculation of Mandel and Wolf, and
leads them to results corresponding to Eqs. (8)
and (9). More plausible models for a steady ma-
ser beam are much closer in behavior to the
ideal coherent states. They may be shown to
lead to photon correlations only to the extent that
random amplitude modulation is present in the
statistically averaged beam.

If photoionization processes tend to be corre-
lated in time, the distribution of the number of
photons recorded by a counter in a fixed interval
of time should differ from the Poisson distribu-
tion. We have developed a general technique for
finding this distribution for incoherent light beams. '
The result for the important case in which the
spectral distribution has the Lorentz line shape,

The functions S„(x) are nth order polynomials in

x ', familiar in the theory of modified Bessel
functions of half-integral order. They may be
found from the relations Sp Sy 1 and Spy+ $ ~pg'

+(1+nx ')S„. The full set of moments of the dis-
tribution is given by the averages of products of
the form n!/(n —j)!. These are

(n! /(n -j)!) = (Wt) S.(yt). (11)
av

When the number of photons recorded during a
relaxation time is small, S'«y, e. g. , when the
linewidth becomes appreciable, the distribution
(10) approaches the Poisson distribution as a
limit.
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