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We derive the Schrodinger and Dirac equations from basic principles. First we 
determine that each eigenfunction of a bound particle is a specific superposition 
of plane wave states that fulfills the averaged energy relation. The Schrodinger 
equation is derived to be the condition the particle eigenfunction must satisfy, at 
each space-time point, in order to fulfill the averaged energy relation. The same 
approach is applied to derive the Dirac equation involving electromagnetic 
potentials. Effectively, the Schrodinger and Dirac equations are space-time 
versions of the respective averaged energy relations. 
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1 Introduction 
 
 Erwin Schrodinger obtained in 1926 an equation that described and explained adequately 
atomic phenomena and which became the dynamical centerpiece of quantum wave mechanics. 
The Schrodinger equation yields the eigenfunctions of a particle in an energy potential. Despite 
its fundamental role in physics, the dynamical status and justification of the Schrodinger equation 
have become vague, varied and discordant.   
 Quantum mechanics textbooks axiomatize, justify or derive the Schrodinger equation in a 
variety of ways. This constitutes a unique anomaly since the fundamental equations in physics 
arise from first principles.   
 In most texts, the Schrodinger equation is termed to be “an axiom” or “a physical law 
analogous to Newton’s second law of motion in classical physics” or a phenomenological 
equation that “just works” [1−5]. 
 Other texts share the belief that the Schrodinger equation cannot be derived but proceed to 
obtain it “heuristically” as an extension of the free particle wave equation, either by inserting the 
potential energy term by hand or by introducing this term into the free particle Hamiltonian 
[6−12].  
 I find that the above statements and derivations are faulty. To begin with, the Schrodinger 
equation does not seem to be an independent dynamical principle since it has the form of the non-
relativistic energy relation. Furthermore, the Dirac equation has the form of the relativistic energy 
relation. These correspondences indicate that these equations originate, not just formally, from 
the respective energy relations.  
 On the other hand, the heuristic derivations do not only involve a “leap of faith” but actually 
have inappropriate logic. In particular, the free particle wave equation does not contain any 
dynamics itself to serve as a dynamical basis that can be extended. The free particle equation 
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yields back what we have already put in: a plane wave of wavelength λ = h/p and period T = h/E, 
where the momentum (p) and energy (E) are interconnected through the free particle energy 
relation. Bearing in mind the uncertainty principle, we realize that the insertion of the potential 
term (depending on position and time) into the free particle energy relation is inappropriate. 
 Finally, there exist a series of derivations [13−16], including the original derivation by Erwin 
Schrodinger [9] and that of Richard Feynman [14], but none of these arises from basic physical 
principles and none has been generally accepted. As a result, the physical justification of the 
Schrodinger equation has been cloudy and controversial. 
 The origin of all this confusion is the improper use of the energy relation which contains 
mutually exclusive dynamical variables. In quantum mechanics, the energy relation must be used 
in its averaged form from which we can derive the Schrodinger equation [17]. We will show that 
the Schrodinger and Dirac equations are space-time versions of the averaged energy relations. 
 
 
2 Analysis 
 
 Below we use basic principles to grasp the structure of the eigenfunction of a bound particle 
and the physical meaning of the Schrodinger equation. First we reflect on how the eigenfunction 
of a bound particle is formed.  
 We start by considering the simple case of a particle inside a one dimensional box of size L. 
The wave properties of the particle and the boundary conditions determine that each 
eigenfunction is a standing wave arising from the interference of two plane waves having 
wavelength λn = 2L/n and opposite momenta pn = ±h/λn. A measurement of the momentum of the 
particle in the box would yield, with equal probability, either +pn or –pn. In conclusion, each 
eigenfunction arises from the superposition of two plane wave states having specific momenta 
and equal, in magnitude, amplitudes. 
 Next, let us consider the ground state of the electron in a Hydrogen atom. Since there are no 
boundaries, the electron can have any wavelength (momentum). Therefore, the electron 
eigenfunction is a superposition of waves with momenta from –∞ to +∞ with the constraint that it 
fulfills the averaged energy relation.  
 Accordingly, we write the eigenfunction of a spinless particle as the superposition of plane 
wave states of momentum (pi) and energy (Ej) having amplitudes a(pi,Ej)  
 

( )

,

( , ) ( , ) i j
i p r E t

i j
i j

r t a p E eψ
⋅ −

=∑     (1) 

 
where, for convenience, we have suppressed the eigenfunction indices in ψn(r,t) and an(pi,Ej).  
 Using periodic boundary conditions, the normalization of ψ(r,t) in (1) yields  
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where V0T0 is the space-time quantization volume. 
 The energy relation provides the dynamics of a system by interrelating its dynamical 
variables. But, in quantum mechanics, specific values of momentum and energy cannot be related 
directly to specific values of position and time. For that reason, the energy relation that includes 
potentials should be used in its averaged form.  
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 The non-relativistic averaged energy relation for a particle inside a potential V(r,t) is  
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 The eigenfunctions of the particle are superpositions of plane wave states with amplitudes 
that yield average kinetic, potential and total energy values fulfilling the above relation. 
 In the next section, the Schrodinger equation will be derived from (3). Below we show, in 
fewer steps, that a particle eigenfunction ψ(r,t) that satisfies the Schrodinger equation 
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fulfills the averaged energy relation (3). 
 Using (1) the Schrodinger equation takes the form 
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Next, we multiply the last equation by ψ*(r,t) and integrate over the quantization volume to get 
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 On the left hand side, we substitute ψ*(r,t) from (1), we carry out the space-time integrations 
that yield δ-functions in momenta and energies, and we obtain 
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 Thus, we have shown that a particle eigenfunction that satisfies the Schrodinger equation 
fulfills the averaged energy relation. 
 
 
3 Derivation of the Schrodinger equation 
 
 We start by considering that the eigenfunction of a spinless particle inside a potential is a 
superposition of plane wave states of momentum (pi) and energy (Ej)  
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where the amplitudes a(pi,Ej) are such so that ψ(r,t) fulfills the averaged energy relation. 
 The non-relativistic averaged energy relation can be written as 
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 This last equation can be put in the form 
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 The above expression states that the average value of the integrand over the space-time 
volume V0T0 is zero. One solution of this equation is to take the bracket in the integrand equal to 
zero at all points 
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In other words, we take the integrand at each point to be equal to its average (zero) value. This 
solution is actually the Schrodinger equation. 
 Mathematically, there are infinite other conditions that can satisfy the averaged energy 
relation (9) for which the integrand is positive at some points and negative at others, averaging to 
zero. However, none of these solutions can be physically acceptable because there is no principle 
to dictate the infinite number of choices and parameters we have to impose.  
 Therefore, 0Φ =  is the only physically acceptable solution that we write as  
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 Next we employ (1), that ψ(r,t) arises from the superposition of plane waves states, and we 
get 
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 Rearranging terms, we obtain a space-time differential equation, the Schrodinger equation 
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 Since ψ (r,t) is the eigenfunction of a particle, we can impose normalization and single value 
requirement conditions to extract physically meaningful solutions. 
 Finally, we note that the Schrodinger equation is effectively a space-time version of the non-
relativistic averaged energy relation. 
 
 
4 Derivation of the Dirac equation 
 
 We will show that the Dirac equation is the condition that the eigenfunction of a charged 
spin-1/2 particle inside an electromagnetic potential (Aμ) must satisfy in order to fulfill the 
relativistic averaged energy relation.  
 The eigenfunction of a spin-1/2 particle arises from a superposition of plane wave states of 
the form  
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where the four-row spinor u(pi,Ej) describes the spin orientation.  
 The energy relation of a spin-1/2, charge q particle (q = −e for the electron) bound in an 
electromagnetic potential Aμ(r,t) can be written in linear form as  
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Multiplying the above equation by  
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and using the anticommutation properties of the γ matrices, we get the relativistic energy-
momentum relation 
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 Now, we write the averaged form of the linear energy relation (15) as 
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where †
0u u γ= and †

0ψ ψ γ= .  
 Next, we put equation (18) in the form  
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 The above equation states that the average value of the integrand over the space-time volume 
is zero. This is possible in two cases: either the integrand is zero at each space-time point or it can 
have arbitrary values averaging to zero. The only physically acceptable solution of (19) is to take 
the integrand to be equal to its average (zero) value.  
 So, we take ( , ) 0r tΘ =  at each (r,t) point. Then we have 
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 Employing (14) – that the eigenfunction arises from a superposition of plane wave states – 
the above equation becomes 
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 Rearranging terms we get  
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which is the Dirac equation for a charged spin-1/2 particle in an electromagnetic potential Aμ. 
 
 
5 Amplitudes of plane waves 
 
 Our derivations have been based on the insight that a particle eigenfunction arises from the 
superposition of plane wave states |pi,Ej> with amplitudes a(pi,Ej). This can be tested by 
experimentally measuring the amplitudes a(pi,Ej). 
 Once we have solved, say, the Schrodinger equation and have obtained the eigenfunction of 
a state, we can extract the amplitude of each plane wave contributing to the eigenfunction by 
reversing the superposition equation.  
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 As an example, we consider the electron ground state eigenfunction ψ0(r,t) in the Hydrogen 
atom. Solving the corresponding Schrodinger equation, with 2( , ) /V r t ke r= −  and with p taking 
continuous values, we obtain  
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 Inverting (24) we get 
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 The electron momentum distribution in (25) has been verified experimentally by 
measurements of photoelectrons in ionization experiments and in inelastic electron scattering 
experiments [6].  
 
 
 6 Discussion 
 
 The Schrodinger equation is the only fundamental equation in physics with controversial 
dynamical status. Some textbooks claim that it is an independent physical law, others derive it as 
a “plausible extension of the free particle wave equation” and some texts use various heuristic 
derivations not based on first principles. 
 However, the confusion surrounding the physical justification and derivation of the 
Schrodinger equation originates from inappropriate physical arguments.  
 Based on first principles we have obtained a transparent and justified dynamical picture. 
Each eigenfunction of a bound particle is a specific superposition of plane waves that fulfills the 
averaged energy relation. The Schrodinger and Dirac equations are the conditions that the particle 
eigenfunction must satisfy at each space-time point in order to fulfill the respective averaged 
energy relation. Effectively, the Schrodinger and Dirac equations are space-time versions of the 
respective energy relations. 
 The assumption that the Schrödinger equation is an independent principle prevents us from 
discerning that the eigenfuntion arises from a superposition of plane waves.  
 Furthermore, we point out that the heuristic derivations use, uncritically, the analogy of form 
that exists between the free energy relation and the free wave equation and extend this analogy to 
the energy relation with potential terms. This analogy is deceptive. The free particle wave 
equation and the Schrodinger equation are dynamically different. The former does not contain 
any dynamics and has plane wave eigenfunctions with momentum and energy related through the 
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free energy relation. On the other hand, the eigenfunctions of the Schrodinger equation are 
specific superpositions of plane wave states that fulfill the averaged energy relation.  
 The use of the Schrodinger and Dirac equations is most appropriate for particles bound in 
smoothly varying potentials. Particles hitting potential barriers or bound inside square wells 
should be described by using the wave properties of particles with appropriate boundary 
conditions, while particle scattering processes can be considered best as arising from intermediate 
particle exchanges.   
 The concepts used in this paper can be applied to provide a simpler and more justified 
presentation of quantum mechanics.  
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