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Derivation of the Nonlinear Schrödinger Equation

from First Principles
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ABSTRACT. The generic form of the nonlinear Schrödinger (NLS)
equations is derived from two assumptions which are entirely inde-
pendent from the postulates of quantum mechanics. This derivation
is not possible if the particles are assumed to be point-like. Regard-
ing the Schrödinger equation proper as a special case of the NLS
equations, we argue that the results of this paper imply that the
probabilistic interpretation of quantum mechanics is not necessary.

1. Introduction

It is a common understanding that the fundamental equations of
physics cannot be derived, they can only be deduced. This is also the
case with the Schrödinger’s equation which was deduced from the de
Broglie relations and from certain correspondences between optics and
mechanics which are found in Jacobi’s equation [1], [2], [3]. However,
the generic form of the nonlinear Schrödinger (NLS) equations can be
derived.

This paper treats the Schrödinger equation proper as a special case
of the NLS equations, for the complex field ψ = ψ(x, t), whose form is

i
∂ψ

∂t
= −µ∇2ψ +G(ψ∗ψ, x)ψ . (1.1)

Here µ is a positive constant and G(ψ∗ψ, x) is a real-valued function
(which needs not be continuous) of the density ψ∗ψ and the coordinates
x = (x1, . . . , xn). We show that the form (1.1) the NLS equations, and
hence that of the Schrödinger equation proper, can be derived from two
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assumptions which are completely independent of the postulates of quan-
tum mechanics. This derivation is presented as a new evidence that the
probabilistic interpretation of quantum mechanics is not necessary. The
discussion of this topic is left for the last section. In addition, the fact
that such derivation is possible shows that there is a well defined math-
ematical connection between classical field theory / classical mechanics,
on one hand, and quantum mechanics on the other. We maintain that
this quantitative connection is far more specific than the qualitative cor-
respondence principle of Bohr.

For the convenience of the reader we give the following outline of
the derivation:
a. The first assumption is: the sought equation for the spatially localized
field ψ belongs to the family of Complex Hamiltonian Evolution (CHE)
equations.
b. A set of n functionals of ψ are defined whose values give the n
coordinates of the field’s localization center.
c. The velocity of the localization region is obtained by differentiating
the above position functionals with respect to time and using the field
equation to eliminate the time derivatives of ψ. The values of the re-
sulting functionals, called the velocity functionals, cannot depend on the
choice of the coordinate system ’s origin. This requirement is met only
if the Hamiltonian functional satisfies certain identity. When this is the
case, two consequences follow: the Hamiltonian density is Gauge type I
invariant and the norm of ψ is constant in time.
d. Next, we find an expression for the field’s linear momentum density
using the appropriate components of the energy-momentum 4-tensor.
e. The second assumption is: The linear momentum densities are pro-
portional to the integrands of the corresponding velocity functionals.
The constant of proportionality is the field’s mass. This assumption
leads to a set of 2n simple partial differential equations for the Hamil-
tonian density. When their solution is inserted into the generic form of
the CHE equations the result is the NLS equation, in the nonlinear case,
and the Schrödinger equation in the linear case.

2. The Derivation

According to the standard approach to quantum mechanics atomic
systems and, in particular, elementary particles can be represented by
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wave-functions which are solutions of the Schrödinger equation. This im-
plies that a particle and its wave-function are two distinct entities. Here,
following the views of Louis de Broglie and Albert Einstein we adopt an
alternative approach, which is: the particle is a spatially localized wave-
function or field. Consequently, this field must be endowed with energy
and momentum densities. The simplest, if not the only, way to do this
is via the energy-momentum 4-tensor of the classical field theory, which
requires a Lagrangian density for the field.

Thus, our objective is to find an evolution equation for the scalar
complex field ψ = ψ(x1 . . . , xn, t) for which there exists a Lagrangian
density. This motivates the following

Assumption 1. The sought field equation is a Complex Hamiltonian
Evolution (CHE) equation, i.e., it is of the form

i
∂ψ

∂t
=
δH

δψ∗
(2.1)

where H = H[ψ∗ψ] is the Hamiltonian functional

H =
∫

IRn

H(ψ,ψ∗, ∂ψ, ∂ψ∗) dnx (2.2)

with ∂ψ = ∂ψ/∂x and

δH

δψ∗
=

∂H
∂ψ∗

− d

dxj

∂H
∂(∂jψ∗)

is the variational derivative of H with respect to ψ∗. The summation
convention of repeated indeces is adopted in this paper. For a discus-
sion of the CHE family of equations see Bodurov [4]. Equation (2.1) is
meaningful if H is finite, hence ψ must be spatially localized field since
the integration domain in (2.2) is always the entire IRn.

In what follows we will need n functionals of ψ whose values are the
n coordinates Xk of the center of the localization region of the density
ψ∗ψ. The candidates are

(Xk)s =
1
N

∫
IRn

(xk)sψ∗ψ dnx , k = 1, . . . , n
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where s is a positive odd integer and

N =
∫

IRn

ψ∗ψ dnx (2.3)

is the norm of ψ. However, the natural requirement that the localization
center of any spherically symmetric density ψ∗ψ must coincide with the
center of symmetry is satisfied only for s = 1. This justifies the following

Definition 1. The coordinates of the center of the localization region of
ψ are given by

Xk =
1
N

∫
IRn

xk ψ
∗ψ dnx , k = 1, . . . , n . (2.4)

One can find the velocity of the localization region of ψ by simply
differentiating the position functional (2.4) with respect to time. The
result, called the velocity functional, is a functional of ψ and ψ∗

Vk =
dXk

dt
=

1
N

∫
xk

d(ψ∗ψ)
dt

dnx− 1
N2

dN

dt

∫
xk ψ

∗ψ dnx

=
i

N

∫ (
ψ
∂H
∂ψ

− ψ∗ ∂H
∂ψ∗

+ ∂jψ
∂H

∂(∂jψ)
− ∂jψ

∗ ∂H
∂(∂jψ∗)

)
xk d

nx

+
i

N

∫ (
ψ

∂H
∂(∂kψ)

− ψ∗ ∂H
∂(∂kψ∗)

)
dnx− 1

N2

dN

dt

∫
xk ψ

∗ψ dnx (2.5)

where ∂jψ stands for ∂ψ/∂xj . In the above, equation (2.1) was used
to eliminate the ∂ψ/∂t and ∂ψ∗/∂t and then integration by parts was
applied to the appropriate terms.

We see that the first and the third integrands in (2.5) contain the
factor xk which makes the velocity of the localization region dependant
on our choice of the coordinate system origin. This, certainly, cannot
be the case. Therefore, the first and the third integrals in the above
expression must be zero. Moreover, they must vanish separately since
the first depends on derivatives of ψ and ψ∗ while the third does not.
The vanishing of the first integral requires that the Hamiltonian density
H identically satisfies the condition

ψ
∂H
∂ψ

− ψ∗ ∂H
∂ψ∗

+ ∂jψ
∂H

∂(∂jψ)
− ∂jψ

∗ ∂H
∂(∂jψ∗)

= 0 . (2.6)



Derivation of the Nonlinear Schrödinger Equation . . . 347

Next, using equ. (2.1) we calculate the time derivative of ψ∗ψ

d

dt
(ψ∗ψ) + i

d

dxj

(
ψ

∂H
∂(∂jψ)

− ψ∗ ∂H
∂(∂jψ∗)

)
= i

(
ψ
∂H
∂ψ

− ψ∗ ∂H
∂ψ∗

+ ∂jψ
∂H

∂(∂jψ)
− ∂jψ

∗ ∂H
∂(∂jψ∗)

)
.

Taking (2.6) into account we see that the density ψ∗ψ obeys the conser-
vation law

d

dt
(ψ∗ψ) + i

d

dxj

(
ψ

∂H
∂(∂jψ)

− ψ∗ ∂H
∂(∂jψ∗)

)
= 0 . (2.7)

Hence, the norm N is constant, i.e.

dN

dt
=

∫
d

dt
(ψ∗ψ) dnx = 0 (2.8)

and the third integral in (2.5) also vanishes. Thus, the velocity functional
(2.5) reduces to

Vk =
i

N

∫ (
ψ

∂H
∂(∂kψ)

− ψ∗ ∂H
∂(∂kψ∗)

)
dnx , k = 1, . . . , n . (2.9)

Observe that the integrand of (2.9) is equal to the flux density in (2.7)
divided by N .

A second consequence of (2.6) is that the Hamiltonian density H is
Gauge type I invariant [5], that is, invariant under the transformations

ψ′ = ψ eiε , ψ′∗ = ψ∗ e−iε (2.10)

where ε is the parameter of the transformation. To see this, denote the
transformed Hamiltonian density by

H ′ = H(ψ′, ψ′∗, ∂ψ′, ∂ψ′∗) .

Then, the invariance condition

dH ′

dε

∣∣∣∣
ε=0

= i

(
ψ
∂H
∂ψ

− ψ∗ ∂H
∂ψ∗

+ ∂jψ
∂H

∂(∂jψ)
− ∂jψ

∗ ∂H
∂(∂jψ∗)

)
= 0
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is fulfilled if and only if the condition (2.6) is fulfilled.
In order to determine the field’s linear momentum we follow a com-

mon practice in classical field theory, that is, we identify the densities
of the field’s linear momentum Pk with the entries −Tk0 of the energy-
momentum 4-tensor for the field ψ

Pk = −Tk0 = − ∂ψ

∂xk

∂L
∂(∂tψ)

− ∂ψ∗

∂xk

∂L
∂(∂tψ∗)

(2.11)

where ∂tψ stands for ∂ψ/∂t and

L =
i

2

(
ψ∗

∂ψ

∂t
− ∂ψ∗

∂t
ψ

)
−H (2.12)

is the Lagrangian density for the field equations (2.1). Inserting (2.12)
into (2.11) produces for the components of the linear momentum density

Pk =
1
2i

(
ψ∗

∂ψ

∂xk
− ∂ψ∗

∂xk
ψ

)
, k = 1, . . . , n . (2.13)

Consequently, the components of the field’s linear momentum are given
by the functionals

Pk =
1
2i

∫
IRn

(
ψ∗

∂ψ

∂xk
− ∂ψ∗

∂xk
ψ

)
dnx = − i

∫
IRn

ψ∗
∂ψ

∂xk
dnx. (2.14)

It is remarkable that the last functional, obtained from purely classical
arguments, differs from the expectation value of the linear momentum in
quantum mechanics only by the multiplicative constant h̄/N (note that
ψ is not normalized).

Assumption 2. The linear momentum density (2.13) is proportional
to the integrand of the velocity functional (2.9) for any spatially localized
solution ψ of (2.1), i.e.

1
2i

(
ψ∗

∂ψ

∂xk
− ∂ψ∗

∂xk
ψ

)
= m

i

N

(
ψ

∂H
∂(∂kψ)

− ψ∗ ∂H
∂(∂kψ∗)

)
. (2.15)

Integrating both sides of the above equation produces

Pk = mVk , k = 1, . . . , n
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which shows that the constant of proportionalitym should be interpreted
to be the mass of the field ψ. It follows from (2.15) that H satisfies the
partial differential equations

∂H
∂(∂kψ∗)

=
N

2m
∂ψ

∂xk
,

∂H
∂(∂kψ)

=
N

2m
∂ψ∗

∂xk
(2.16)

in which xk, ψ, ψ∗, ∂kψ and ∂kψ
∗ are the independent variables. The

general solution of the first set of equations is

H =
N

2m
∂ψ∗

∂xk

∂ψ

∂xk
+ G(ψ,ψ∗, ∂ψ, x)

where G(ψ,ψ∗, ∂ψ, x) is the integration “constant”. When the last
expression is inserted into the second set of equations (2.16) one finds

∂ G
∂(∂kψ)

= 0 , k = 1, . . . , n .

Finally, we take into account that G is Gauge type I invariant, i.e.
invariant under the transformations (2.10), since H is such according
to (2.6). Consequently, G is a function of only x and ψ∗ψ. Thus, the
Hamiltonian density becomes

H =
N

2m
∂ψ∗

∂xk

∂ψ

∂xk
+ G(ψ∗ψ, x) =

N

2m
∇ψ∗ .∇ψ + G(ψ∗ψ, x) . (2.17)

Inserting expression (2.17) into the CHE equation (2.1) yields the
NLS equation (1.1)

i
∂ψ

∂t
= − N

2m
∇2ψ +G(ψ∗ψ, x)ψ (2.18)

with µ = N/2m and G(ρ, x) = ∂ G(ρ, x)/∂ρ. If ψ does not interact with
any external fields then H, and hence G, cannot depend explicitely on
the coordinates x. In this case, the field is spatially localized due to the
self-interaction potential G(ψ∗ψ) which makes the equation nonlinear.
For spatially localized solutions of nonlinear field equations see [6].

Alternatively, if the field equation is linear G must be proportional
to ψ∗ψ, and at the same time, depend explicitely on x in order to insure
localization

G(ψ∗ψ, x) = U(x)ψ∗ψ .
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Thus, the Hamiltonian density in the linear case is

H =
N

2m
∇ψ∗ .∇ψ + U(x)ψ∗ψ . (2.19)

When this is inserted into the CHE equation (2.1) one obtains the linear
Schrödinger equation

i
∂ψ

∂t
= − N

2m
∇2ψ + U(x)ψ (2.20)

in whichN appears in place of h̄ and U(x) is the potential (of the external
interaction) divided by h̄.

3. A Concluding Discussion

There are several implications of the above derivation. First of all, it
should be observed that this derivation is not possible with the standard
approach to quantum mechanics for the following reasons:
a. In the conventional quantum mechanics the wave-function of a free
particle is a complex plane wave. This wave, as a field, cannot be the
carrier of the particle’s attributes since the energy and momentum den-
sities will, then, be constant in space making the energy and momentum
functionals either infinite or zero, and hence, meaningless. In this case,
one is forced to regard the wave-function merely as a calculational device.
b. The ψ-field can be spatially localized either by a self-interaction
(represented by a nonlinearity in the field equation) or by an interaction
with an external field. If the equation is linear only the second alternative
remains. Then, the position of the localization center is determined by
the position of the external field in space. Hence, the velocity functionals
are not meaningful unless the linear Schrödinger equation is considered
as a special (or a limiting) case of the NLS equation.
c. The ψ-field cannot be a measure of the probability of a particle being
found in certain space region and at the same time the carrier of defini-
tive energy and momentum densities for the same particle. Thus, the
probabilistic interpretation of ψ is neither compatible with nor needed
for the present derivation.

The second observation is that this derivation is clearly not mean-
ingful if the particles are assumed to be point-like. On the other hand,
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the probabilistic interpretation is meaningful only for point-like par-
ticles. This is so because probability density cannot be defined for
an ensemble of objects with finite dimensions. Indeed, the number of
such objects in a given volume element is not defined when the vol-
ume element is smaller than the objects. Hence, the limit of the ra-
tio [number of objects]/[volume], when [volume] → 0 does not exist.
Again, there are two alternatives to choose from. We believe that this
paper demonstrates that choosing the alternative all particles are spa-
tially extended entities opens up possibilities which the other alternative
prohibits.

The fundamental rule of quantum mechanics is: the equations gov-
erning the quantum counterpart of a classical system are found by replac-
ing the linear momenta pk with the operators − ih̄ ∂/∂xk and treating
all functions of the coordinates as multiplication operators. This rule
has produced an immense number of wonderful results. On the other
hand, the number of those who ask “why does this rule work so well?”
is continuously diminishing. The answer is needed not to give us more
confidence in the rule, but rather to tell us how and where to look for
the next “magic rule”. This paper should have demonstrated that the
question is meaningful and its answer can be fruitful. For example, the
functional (2.14) is identical with the expectation value of the linear mo-
mentum operator of quantum mechanics except that N appears in place
of h̄ (note that ψ in (2.14) is not normalized). This functional was de-
rived from commonly accepted principles of classical field theory and not
postulated as in quantum mechanics. The assumptions on which such
derivations are based constitute, at least, partial answers to the above
question.

It was already observed that in equation (2.20) the norm N of ψ
appears in place of Planck’s constant h̄. This correspondence cannot
be dismissed as some peculiar coincidence because the same correspon-
dence is obtained from several other completely unrelated arguments.
See Bodurov [7], [8].

In conclusion, let us recall that the empirical laws of Kepler describe
the motions of the planets very accurately. For some time after Kepler’s
discovery, apparently, no one asked “why Kepler’s laws work so well?”
Newton asked this question and answered it by showing that these laws
can be derived from a few assumptions which became the foundations of
classical astronomy and mechanics.
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