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This paper presents a general framework for introducing nonlinear corrections into 
ordinary quantum mechanics, that can serve as a guide to experiments that would be sensitive 
to such corrections. In the class of generalized theories described here, the equations that 
determine the time-dependence of the wave function are no longer linear, but are of 
Hamiltonian type. Also, wave functions that differ by a constant factor represent the same 
physical state and satisfy the same time-dependence equations. As a result, there is no 
ditliculty in combining separated subsystems. Prescriptions are given for determining the 
states in which observables have definite values and for calculating the expectation values of 
observables for general states, but the calculation of probabilities requires detailed analysis 
of the method of measurement. A study is presented of various experimental possibilities, 
including the precession of spinning particles in external fields, experiments of Stern-Gerlach 
type, and the broadening and de-tuning of absorption lines. 0 1989 Academic Press, Inc. 
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1. INTRODUCTION AND SUMMARY 

Considering the pervasive importance of quantum mechanics in modern physics, 
it is odd how rarely one hears of efforts to test quantum mechanics experimentally 
with high precision. It is true that over the last decade there have been a number 
of experimental tests [l] of predictions that distinguish quantum mechanics from 
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local hidden variable theories, and these experiments have conclusively ruled out 
the hidden variable theories, but they do not provide tests of quantum mechanics 
itself to a precision better than about 1%. 

In principle, the test of any specific quantum mechanical theory like quantum 
electrodynamics is also a test of quantum mechanics itself, but it ought to be 
possible to test quantum mechanics more stringently than any individual quantum 
theory. Or, to put this more open-mindedly, perhaps we can formulate experiments 
that would show up departures from quantum mechanics itself at a much tinier 
level than departures from any specific theory. 

The problem is to know what to test. Usually we can get guidance on how to test 
a theory like general relativity or the standard model of elementary particle interac- 
tions, by first inventing some generalized theory as a foil, such as general relativity 
with extra massless scalars, or the standard model with extra gauge bosons. By a 
“generalized” theory, I mean one that differs from the theory we want to test, but 
reduces to it when some parameters become very small. (In this sense, the local 
hidden variable theories do not qualify as generalizations of quantum mechanics.) 
We can set upper bounds on these parameters by doing experiments to look for 
new effects that could arise in the generalized theory, and in this way we get a sense 
of how accurate is the theory we want to test. 

The trouble is that it is very difficult to find any logically consistent generaliza- 
tion of quantum mechanics. One obvious target for generalization is the linearity of 
quantum mechanics, but if we arbitrarily add nonlinear terms to the Schrodinger 
equation, how do we know that the theory we obtain will have a sensible physical 
interpretation? At least in part, it is the dearth of generalized versions of quantum 
mechanics that has made it so hard to plan experimental tests of quantum 
mechanics. 

This paper will outline a possible nonlinear generalization of quantum 
mechanics, that can be used as a guide in subjecting quantum mechanics to 
experimental tests. (A brief description has already been given in Ref. [a].) It is not 
our purpose here to find the most general such theory, but only to find some 
generalization of quantum mechanics, introducing only such new features as seem 
inevitable once we give up the principle of linear superposition. 

Section 2 describes our general formalism, without yet specifying a physical inter- 
pretation. As in quantum mechanics, physical states are represented by rays in a 
complex vector space and observables by the generating functions for transforma- 
tions of these rays, but these transformations are not in general linear. (This section 
also comments briefly on the differences between the work of this paper and other 
work on possible non-linear corrections to quantum mechanics.) The first step 
toward a physical interpretation is taken in Section 3, where we describe the “eigen- 
value” condition satisfied when a state has a definite value for some observable. 
Eigenstates of the energy have a simple harmonic time dependence, as in ordinary 
quantum mechanics, but more general states have a richer of possible variation 
with time, including possible chaotic behavior. In Sections 2 and 3, the rules of the 
theory are illustrated by reference to a simple case, the general two-component 
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theory. In Section 4 we turn to a more realistic class of examples, in which a single 
particle with spin is subjected to various external fields. One of the striking conse- 
quences of the inclusion of non-linearities is that some of the theorems derived from 
symmetry principles in ordinary quantum mechanics no longer apply; for instance, 
the energy levels of a particle of spin ja 1 in an arbitrarily weak magnetic field are 
no longer equally spaced, and a spin f particle can have a linear interaction with 
a weak quadrupole electric field. Also, spin precession frequencies can be very 
accurately measured, so it is noteworthy that non-linearities give these frequencies 
an anomalous dependence on the mixture of states in the initial wave function. We 
return in Section 5 to the problem of interpreting this formalism and make a 
general proposal regarding expectation values and some tentative remarks about 
probabilities. In Section 6 we take up the question of calculating the resonant 
frequencies and line shapes for the absorption of radiation. In the simplest case, a 
single photon striking an atom or nucleus in an energy eigenstate, the resonant 
absorption frequencies are equal to differences of energy eigenvalues, just as in 
ordinary quantum mechanics. However, this is not generally the case here. In a 
classical electromagnetic field, containing unlimited numbers of photons, resonant 
absorption frequencies turn out to be indirectly related to energy differences, and 
there is an anomalous line broadening, arising either from mixtures of states in 
the initial wave function, or from changes in the wave function as it evolves. The 
latter effect leads to a characteristic “de-tuning,” which would prevent resonant 
transitions in sufficiently weak external fields. The observation of such resonant 
transitions between hyperfine levels of the Be9+ ion [3] has already been used [4] 
to set stringent upper bounds on the contribution of nonlinearities to the internal 
energy of the Be9 nucleus. Finally, an Appendix describes a useful transformation 
of the components of the wave function, which allows us to put the time-dependent 
Schriidinger equation in a convenient form when it is integrable, and allows us to 
apply a version of the KAM theorem to this equation when it is not integrable. 

2. FORMALISM 

(a) Wave Functions 

As in ordinary quantum mechanics, the state of a system is assumed to be 
represented by a complex-valued wave function @. For illustrative purposes we will 
mostly take $ here to be a function $k of a discrete variable k that takes values 
1, 2, . ..) iV, but later we shall consider also cases where the wave function is a func- 
tion Yk(x) also of a continuous position variable x. A special feature of quantum 
mechanics that will be required here as well is that for an arbitrary complex 
number Z, the wave functions ek and Zek represent the same physical state. 

(b) Observables 

In ordinary quantum mechanics, observables are represented by Hermitian 
matrices A,,. Equivalently, one could describe observables in quantum mechanics 
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in terms of real bilinear functions $~Ak,@l. We generalize this here, representing 
observables by real non-bilinear functions a($, tj*). (These functions will be inter- 
preted in Section 5 in terms of expectation values.) However, in order to retain the 
feature of quantum mechanics that for an arbitrary non-zero complex number Z, 
the wave functions @ and Z$ represent the same physical state, we require that the 
functions representing observables are (like $~A,&,) homogeneous of degree one 
in both II/* and $ 

aa aa 
hx=*k*m=a. (2.1) 

Such functions (without a reality condition) form an algebra. The sum is defined in 
the obvious way 

(a + b)($, $*I = a($, +*I + b(lCI, +*L 

as is multiplication with a complex scalar 5, 

(ta)(+, +*I = t;a(+, $*I. 

Multiplication, on the other hand, is defined by 

(2.2) 

(2.3) 

(2.4) 

(This is an obvious generalization of the matrix multiplication in ordinary quantum 
mechanics: if a = $,*A,,,,$,,, and b = +,* B,,+,,, then a * b = $zAk,B,,,,$,.) One 
bilinear function will be important here as in quantum mechanics; it is the norm 

n = *Wk 

which acts as a unit element for the product (2.4): 

(2.5) 

n*a=a*n=a. (2.6) 

The product (2.4) is distributive, but neither commutative nor associative. From the 
failure of associativity will follow most of the differences between this formalism and 
ordinary quantum mechanics. 

(c) Symmetries 

One important class of functions are those that generate symmetry transforma- 
tions. To generalize the linear transformations B$k = -~EA~~~C/~ of quantum 
mechanics, we suppose that the change in the wave function associated with an 
infinitesimal function ~a($, **) is 
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Then the change in some other function b induced by &a is 

or, compactly, 

[ 

ab aa ab da --- 
=-" a*,a$,* 

-- 
ati,* ati, 1 

6,b=i[a,b]-i(a*b-b*a). (2.8) 

(Equations (2.6) and (2.8) imply that the norm n is invariant under all symmetries.) 
This “commutator” is obviously antisymmetric: 

[a, b] = -[b, a]. (2.9) 

A little less obviously, even though the product (2.4) is non-associative, the 
commutator (2.8) satisfies the Jacobi identity 

[a, Cb, cl1 + Cb, Cc, all + Cc, [a, 611 = 0. (2.10) 

Thus, as in quantum mechanics, we can introduce Lie algebras of symmetry trans- 
formations (2.7), in which we require that 

(2.11) 

with C, the structure constants of some ordinary Lie algebra. 

(d) Time Dependence 

One symmetry of special importance is that of time translation, generated by a 
real “Hamiltonian” function h($, +*). We define the time dependence of the wave 
function so that 

or, in other words, 

Q/c ah -= 
dt -ia. (2.12) 

This is our time-dependent nonlinear Schrodinger equation. 
Equation (2.12) and its complex conjugate show that this is a classical 

Hamiltonian system, with real q’s and p’s given by 

It/k = (q/c + ipd/& (2.13) 

Indeed, the “commutator” (2.8) is just proportional to the classical Poisson 
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bracket, so it is not surprising that it satisfies the Jacobi identity (2.10). All this, of 
course, trivially also true in ordinary quantum mechanics, where h is the bilinear 
$~H,&,. We shall call h the “Hamiltonian function,” to distinguish it from the 
quantum-mechanical Hamiltonian, which is Hk,, rather than +z H&,. 

Any function a of a wave function e(t) (and its complex conjugate ) that satisfies 
(2.12) has the time dependence 

da 
z= -i[a, h] (2.14) 

just as in quantum mechanics. We immediately note two conserved functions: h 
itself and the unit element n, which according to (2.6) commutes with everything. 
However, because of the failure of associativity, a product a * b of conserved 
functions is not necessarily itself conserved. 

This leads to an important difference between ordinary quantum mechanics and 
the nonlinear formalism described here. In ordinary N-component quantum 
mechanics, the time-dependence of the wave function is at worst quasi-periodic; it 
is a sum of N simple harmonic complex terms, in general with incommensurate 
frequencies. A large class of non-linear Hamiltonian systems display quasi- 
periodicity of a more general sort; the 2N quantities Re tik and Im ek move on an 
N-torus, with 

+/c(t)= c Cd% B-.n,)exp (-i; n,co,t), (2.15) 
n, . ..n&’ 

the difference being that in the non-linear case the sum runs over all positive and 
negative integers and the frequencies CD, as well as the constants ck depend on the 
initial conditions. This behavior is guaranteed for Hamiltonian systems that are 
integrable; that is, for which there are N functionally independent quantities 
b,($, I(I*) that commute (in the sense of Eq. (2.8)) with each other and with 
h(y?, +*). In ordinary quantum mechanics, this is always the case; with 
h = $t H&,, we can take the N conserved quantities as b, = $t(HY)k, Jlr, with 
v = 0, 1, . ..) N - 1, or equivalently as the individual lrl/k 1’ in a basis in which Hk, is 
diagonal. (This is one way of understanding why the wave function always has 
quasi-periodic time-dependence in ordinary quantum mechanics.) As already 
mentioned, in the generalized theory described here there are always at least two 
conserved commuting quantities b,, namely, the norm n and the Hamiltonian 
function itself, so such theories are integrable for N < 2. However, the “powers” 
h * h, h * (h * h), etc. do not necessarily commute with h, so these systems are not 
in general integrable with N > 2 components. 

This opens up the possibility that the time-dependent wave function may not 
move quasi-periodically over an N-torus, as in ordinary quantum mechanics, but 
may instead move chaotically through the whole 2N-dimensional space of the 
variables Re tik and Im ek. Actually, such chaos is rare in Hamiltonian systems 
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that (like those considered here) are close to integrable systems. Suppose that the 
Hamiltonian takes the form 

where h, is integrable and h, is in some sense small. Because h,, is integrable, we 
can define a set of canonical action and angle variables, Jk and Ok, with rates of 
change, 

dJk WJ, 0) 
z= -3Gy 

dQ, %(J, Q) 
z=dJ)+ aJ 3 

k 

where 

ah,(J) C&(J) = a~. 
k 

According to the “averaging principle” [S], since @k changes much more rapidly 
than Jk, for sufficiently incommensurate frequencies ok, the right-hand sides may 
be replaced with their averages over 0: 

=o 

d@k 7 =%(J)+$ (h,(J)). 
k 

These averaged equations are just the same as if the Hamiltonian function had the 
integrable form 

h,,, = ho(J) + <h,(J))- 

Hence as long as the departures from quantum mechanics are small compared with 
the incommensurate frequency differences in the quantum limit, the time-dependent 
Schriidinger equation may be expected to behave as if it were integrable. 

This argument is not rigorous, and not always reliable. However, there are 
rigorous theorems that in some cases lead to a similar conclusion. A profound 
result, the KAM theorem [6], tells us that the motion of a Hamiltonian system in 
phase space is quasi-periodic except for q’s and p’s close to certain resonant tori. 
For N> 1, the “Arnol’d diffusion” produced by small perturbations will eventually 
destroy quasi-periodicity. However, a theorem of Nekhoroshev [7] states that for 
all initial conditions, the action variables remain close to their initial values for an 
exponentially long time. Unfortunately, in proving both theorems it is assumed not 
only that the departures from integrability are small, but also that the frequencies 
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ok(J) are sufficiently “steep” functions of the J’s This condition is not satisfied if 
we take h,(J) to be the Hamiltonian function of ordinary quantum mechanics, for 
which the ok(J) are just constants. In the Appendix we show that a version of the 
KAM theorem applies in the theories of this paper at least in a neighborhood of 
each of the solutions of (2.12) with simple harmonic time-dependence. The numeri- 
cal calculations described in Section 4 suggest that quasi-periodic behavior tends to 
persist even in regions of phase space where no version of the KAM theorem 
applies. 

(e) Galilean Invariance: One Particle Realizations 

Time-translation invariance can be easily embedded in a larger group of sym- 
metries, that of Galilean invariance. For this, we need functions h, p, j, and k that 
respectively generate time translations, space translations, rotations, and boosts, 
and satisfy the commutation relations 

[p, h] = cj, h] = [ki, kJ = 0 

[k, h] =ip [ki, pj] = i 6,A! 

CjiT PiI = ieuk Pk [j,, kj] = ie,k, 

hi, jjl = iEok j,, 

(2.16) 

where ./Z commutes with everything. (All “commutators” are defined as in 
Eq. (2.8)) It is not easy (though perhaps not impossible) to find realizations of the 
subalgebra spanned by j, k, p, and ./Z other than the conventional bilinear ones (or 
equivalent realizations obtained by nonlinear homogeneous canonical transforma- 
tions) so it is natural to adopt these conventional realizations here. For a single free 
particle of mass m, described by wave function Y,Jx), these are 

p = -i 
I 

Y:(x) V!F,Jx) d3x (2.17) 

k = m j Y:(x) x Y,(x) d3x (2.18) 

j=j ~~(x)C-i(xxV)6,,+S,,l y,(x) (2.19) 

~‘4 = m 
I 

d3xYz(x) YJx) = mn, (2.20) 

where S are Hermitian spin matrices satisfying the algebra S x S = is. But since h 
nowhere appears on the right-hand side of any commutation relation, there is no 
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obstacle to constructing a wide variety of non-bilinear Hamiltonian functions, by 
adding a suitable internal energy term h’ to the conventional bilinear kinetic energy: 

h= -+-j Y~(x)V*Yk(x)d3x+h’. (2.21) 

Any h’ that commutes with j, p, and k provides a realization of the Galilean 
algebra. 

The simplest possibility is that the internal energy h’ is the integral over x of a 
homogeneous scalar function of ul,(x) and Y:(x) 

h’ = j d3xa?( Y’(x), Y*(x)). (2.22) 

This will yield a satisfactory realization of the Galilean algebra provided that the 
function &? satisfies the rotational invariance and homogeneity conditions 

Y; =x. 

(2.23) 

(2.24) 

With total Hamiltonian function given by (2.21) and (2.22), the time-dependent 
free-particle Schrodinger equation is 

.ayk 6h as(lu, Y*) 
-&v*&+ ay 

/F 
. 

For instance, Z could be taken in the form 

(2.25) 

Here the sum runs over integer s = 0, 1, 2, . . . . p is the density 

,$y, y*)= yzy, (2.27) 

and X, is a sum of terms proportional to 1 + s factors of Y’s and Y’*, e.g., 

%( y, y*) = Hkz ul,* y/u,, (2.28) 

%(y, ~*)=Gk,,,,~~~YI;C~,n~,,, etc. (2.29) 

with constant coefficients Hk,, Gklmn, etc., chosen to make each 2, a scalar in the 
sense of (2.23). If the spin matrices S,, furnish an irreducible representation of the 
rotation algebra, then by Schur’s lemma, the Hk, must be proportional to 8k,, 
giving a contribution to h’ simply proportional to the norm n. Thus the bilinear 
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(s = 0) terms in h’ have no effect other than to set the zero of energy for each spin. 
The internal energy function h’ acquires a dynamical significance only when we 
include non-bilinear terms, with s 2 1. (This is why it plays no role in ordinary non- 
relativistic quantum mechanics.) The particular form (2.26) for these non-bilinear 
terms has the advantage, that although the density p inthe denominators can vanish 
at particular spacetime points, it can to so only where all components Sv, vanish, 
and at such points the numerators in (2.26) vanish even more strongly than p”. 
Even the variational derivative of h’ with respect to Yk or !Pz vanishes where p = 0, 
so there are no infinities in the Schriidinger equation (2.25) at such points. It is only 
the second and higher variational derivatives of h’ that become ill-defined where p 
vanishes. 

Because of the homogeneity (2.24) of the Hamiltonian density X, the time- 
dependent Schrijdinger equation (2.25) allows separable solutions 

Yk(XP t) = cp(X? t) IClAt) (2.30) 

with 

id’p= -iv2 
dt 2m ’ 

(2.31) 

(2.32) 

For the most part in this paper we shall simply ignore the translational degree of 
freedom, and write h instead of 2 in the time-dependent Schrodinger equation 
(2.32), as if X were the total Hamiltonian function. 

(f) Another Option 

We might try to avoid the denominators p-’ in (2.26), which introduce 
singularities though not infinities in (2.25) at points where all components of the 
wave function vanish, by writing 

h’=x rips 
s d2x4(W), Y’*(x)) (2.33) 

s 

instead of (2.22). (This is the case discussed in Ref. [2].) As before, the sum ranges 
over integers s = 0, 1, 2, . . . . the functions 2, are scalars in the sense of Eq. (2.23) 
formed as a sum of products of 1 +s factors of !P’s and 1 +s factors of Y*‘s; and 
n is the norm 

n = d3x!Pz(x) !PJx). I (2.34) 

The norm n is time-independent, so here there is no possibility of a singularity. On 
the other hand, (2.33) is not really local, because n is itself an integral over x. For 
instance, if the wave function differs from zero only in two widely separated regions 
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d, 9, then the Schriidinger equation in region d depends on the wave function in 
region LB, though only through the coefficients nP= (n& + nl))‘, where IZ& and 
n, are the integrals of Y:(x) ul,(x) over the regions d and 6@. This non-locality 
is not in itself so disturbing; we are not attempting a relativistic formulation, and 
locality is a tricky matter even in ordinary quantum mechanics. However, a particle 
that has undergone many measurement episodes (like Stern-Gerlach experiments) 
will have its wave function spread out over so many different regions JZZ, a’, %Z, . . . 
that the total value of n will be enormously larger than the contribution, say n&, 
from any one region. This will correspondingly decrease the effect of any non- 
bilinear (s > 1) terms in (2.33), perhaps to the point of non-observability, with the 
s = 1 term the least suppressed. Indeed, according to the “many-worlds” interpreta- 
tion [8] of quantum mechanics, the wave function of the universe has since the 
beginning been spread over vastly many configurations (in most of which we do not 
even exist), so that even in a thoroughly non-linear theory, the world would now 
be well described by linear quantum mechanics [9]. This suggests the disturbing 
reflection, that our linear quantum mechanical theories may give no insight 
whatever to the physics relevant to the origin of the universe. However, these con- 
siderations only arise in non-local theories such as those described by (2.33), and 
not in the local theories discussed in item (e) above. (Another important difference 
between the two classes of theory is that the time-dependent Schrodinger equation 
derived from (2.33) does not generally have separable solutions like (2.30).) 

(g) Separated Systems 

The above discussion of the Galilean group has been for a single particle. 
However, in constructing realistic physical theories, it is essential to be able to 
combine separate isolated systems, in a way that does not introduce unphysical 
correlations between them. 

Consider two systems I and II, taken now for simplicity to have only a finite 
number of degrees of freedom, with states represented by wave functions tik and (pI, 
respectively, and with Hamiltonians hi($, $*) and h,,(cp, cp*). We want to combine 
these systems in a compound system I + II, with wave function Iykl, but for the 
present without introducing any interaction between the subsystems. In ordinary 
quantum mechanics hi and hii are bilinear, and the Hamiltonian hi +iI of the 
combined system is constructed as a bilinear with a matrix coefficient given by the 
direct sum of the matrices in hi and h,*. As a generalization of this direct sum, we 
take the Hamiltonian here as 

where 

hI + Id y, Y’*) = c MV’, V”) + 1 MP’k’, cpCk)7, 
I k 

(2.35) 

lpk E cp(k’r E Yk,. (2.36) 

(It is easy to see that in the special case where hi and hn are bilinear, so is hi + hii, 
with a matrix kernel equal to the direct sum of those in hi and hi,.) More generally, 
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any observable that is additive for separated subsystems will be represented by a 
function like (2.35). 

In general, (2.35) gives the wave function Yk, a time-dependence governed by 

ii ykl=ahl+ll= 
afez 

ah,(lp, lp’) + ah,,(cp’k’, qGk”) 
a* ‘Ok+ acp cd: . 

Suppose we try a separable solution 

ykl= IcIkG(pI. 

(2.37) 

(2.38) 

The homogeneity of the Hamiltonian functions tells us that then 

Hence the Schrodinger equation (2.37) has a solution of the form (2.38), provided 
that the factors lClk and ‘pI satisfy the separate Schrodinger equations for systems I 
and II 

(2.39) 

(2.40 ) 

The result, that the Schrodinger equation has a solution of the separable form 
(2.38), shows that (2.35) represents the correct way to combine noninteracting 
systems. 

For example, the Hamiltonian function given by (2.21) and (2.22) is of the form 
(2.35) (with indices 1, k replaced with k, x) which explains why the time-dependent 
Schrodinger equation here has separable solutions of the form (2.30). This is not 
the case for a Hamiltonian function with h’ given by (2.33), and so in this case we 
do not find separable solutions. 

(h ) Changes of Basis 

Commutation relations and the time-dependent Schrodinger equation are left 
unchanged if we subject the wave function to a transformation 
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which is canonical in the sense that 

Cll/bP 11/;*1= Sk, (2.42) 

cc $3 = [ICI;*, +;*I = 0 (2.43) 

with “commutators” defined by Eq. (2.8). Such canonical transformations can be 
generated by real functions f($, $*); we take the transformed wave functions as 

*; = Lu 19 (2.44) 

where 

(2.45) 

L(O) = $k. (2.46) 

In ordinary quantum mechanics we would require these transformations to be 
linear, in which case ek would be transformed by an element of Sp(2N). 

Here as in quantum mechanics, we must require that functions like h would have 
the same homogeneity properties when expressed in terms of t& and I,+;* as when 
expressed in terms of It/k and $ z. Then I& must be homogeneous of degree (1,0) 
in Ic/ and t+P: 

Equivalently, the generating function f( $, $ *) must be homogeneous of degree one 
in both Ic/ and +*, This incidentally also shows that the norm n is form-invariant, 

n-*k*tfQk =*;*I&. (2.48) 

In ordinary quantum mechanics this requirement restricts these transformations to 
the subgroup U(N) of Sp(2N), and all interpretative postulates are required to be 
invariant under such unitary transformations of the wave functions. The reader will 
be able to check that the interpretative postulates to be proposed further on in this 
paper are invariant under the larger set of canonical transformations (2.44) withf 
real and homogeneous of degree one in the $ and $*, but not necessarily bilinear. 
Thus we can freely use such transformations to change the choice of our wave 
functions. 

Before continuing with these generalities, it may be helpful to look briefly at one 
very simple system that can exhibit departures from ordinary quantum mechanics. 
The wave function has just two components, 1,5i and ti2. For a 2-component system 
it is always possible to carry out a canonical homogeneous transformation (as 
described in Appendix A) so that the Hamiltonian function is of the form 

h = nh( a), (2.49) 
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where 

~+h12+l$212 (2.50) 

a- 14b212/n. (2.51) 

In ordinary quantum mechanics h is bilinear in tik and +z, so /i(u) is linear in a. 
Departures from ordinary quantum mechanics are represented by non-linear terms 
in h(a). 

With Hamiltonian function (2.49), the non-linear time-dependent Schrodinger 
equation (2.12) takes the form 

The solution is immediate, 

~k(t)=Ckexp(-iok(u)t) (2.52) 
with 

o,(u) = h(u) - ah’(u), (2.53) 

02(u) = h(u) + (1 - a) h’(u), (2.54) 

and a is now a constant of motion. If h(u) is linear, then wi and w2 are independent 
of a. Otherwise, the frequencies depend on the initial conditions, as expected for 
non-linear oscillators. This is a particularly simple example of quasi-periodic 
behavior, which is expected here because these two-component systems are 
automatically integrable. 

*** 

Now that our formalism has been outlined, it is time to say a few words 
comparing the work described in this paper with other work on possible non-linear 
corrections to quantum mechanics. There is a large literature on what is called the 
“non-linear Schrbdinger equation,” typically taken in the form 

In most of this work, this equation is studied as a test case in non-linear dynamics 
and not as a serious proposal for modifications to quantum mechanics. The results 
obtained by the mathematical studies of this equation are unfortunately of no 
use to us here, because this equation lacks the crucial property of homogeneity, 
according to which if $ is a solution then so is ZJ/ for arbitrary complex constant 
Z. Some authors [lO-121 have considered non-linear corrections to quantum 
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mechanics as possible means of resolving the difficulties of quantum mechanical 
measurement theory, but without imposing the homogeneity conditions and 
without considering specific experimental tests. The problem of combining separate 
systems in non-linear theories was taken up by Bialynicki-Birula and Mycielski 
[ 131, with the conclusion that the non-linear terms in the one-particle Schrodinger 
equation should take a logarithmic form, as in the free-particle equation 

Shimony [14] suggested that this equation could be tested by neutron inter- 
ferometry, exploiting the feature that a partial absorption of one of the neutron 
beams would reduce the value of 111/l 2 and hence affect the subsequent change in 
phase of the neutron wave function. An experiment of Shull et al. [15] subse- 
quently put a bound of 3.4 x lo-l3 eV on b. This was subsequently improved to 
3 x lo-l5 eV by measurements of neutron Fresnel diffraction [ 161. It should be 
emphasized that this sort of experiment cannot detect non-linearities in local 
homogeneous equations, like Eq. (2.25) of this paper, where the overall scale of the 
wave function has no effect on the evolution of the phase. (Also, these experiments 
are more limited in accuracy than those discussed here in Sections 4 and 6, such as 
that carried out in Ref. [3], because it is possible to observe atomic transitions or 
precession over times much longer than even a very cold neutron.) It has been 
pointed out to me that homogeneous non-linear Schrodinger equations have been 
considered by Haag and Bannier [ 173 and Kibble [ 181. In order that $ and Z$ 
should represent the same state, Haag and Bannier considered a modification of the 
non-linear Schrodinger equation of Ref. [12], to read (in our notation) 

i$= -&V’Il,+EI/IA.VArg$. 

Homogeneity here is achieved at the cost of introducing a mysterious extraneous 
vector potential A. Kibble briefly considered a homogeneous non-linear 
Schrodinger equation of the form 

but he rejected this possibility in favor of that of Ref. [13], because Kibble’s equa- 
tion violates Galilean invariance. (Kibble was mostly concerned in Ref. [lS] with 
an interesting suggestion on how to formulate relativistic non-linear quantum- 
mechanical models.) 

The present paper seeks to establish a general framework for considering non- 
linear generalizations of quantum mechanics, not just the addition of non-linear 
terms to a particular Schrodinger equation. As discussed earlier in this section, for 
particles with internal quantum numbers like spin, it is possible and even natural 
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within this framework to include homogeneous non-linear terms in the Schrodinger 
equation, in such a way as to allow a proper treatment of separated systems and 
without needing to introduce extra potentials like A or to violate Galilean 
invariance. By concentrating on the dynamics of these internal degrees of freedom, 
we are led to propose experiments (in Sections 4 and 6) that can subject quantum 
mechanics to unprecedentedly stringent tests. 

3. EIGENVALUES 

In quantum mechanics, the state represented by a wave function It/k has a definite 
value a for the observable represented by a matrix A,, if I++~ is an eigenvector of A,, 
with eigenvalue CL We generalize this here, by postulating that a state represented 
by $k has a definite value a for the observable represented by a non-bilinear 
function a(+, $*), if and only if 

and 

&2 
all/k =4k*. 

(3.1 1 

(3.2) 

(Where a is a bilinear $~Ak,t+b,, this is just the usual eigenvalue condition of quan- 
tum mechanics.) Note that if t,Qk satisfies (3.1) or (3.2), then so does Z+,, where Z 
is an arbitrary complex number. Also, contracting (3.1) with ll/z and using (2.1). 
allows us to express CI in terms of a itself 

(3.3) 

where $ is taken as the eigenvector satisfying (3.1). This shows, in particular, that 
c1 is real if a is. In this case, (3.2) just follows from (3.1) by taking the complex 
conjugate. However, for general complex functions, (3.2) must be taken as a 
separate condition. 

Where a is a symmetry generator, Eq. (3.1) just tells us that 

ii,*, = -ia*,. 

That is, II/ is invariant up to a phase under the transformation generated by a. In 
particular, a state with a definite value E for the energy has a time dependence 
given by (2.12) and (3.1) as I,$ a exp( - Xt), just as in ordinary quantum 
mechanics. 

In quantum mechanics, the eigenvalues of an observable represented by a matrix 
A are the stationary values of the function ~++jfA~,~),/$j?)~. The corresponding 
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variational principle holds here as well: the eigenvectors of an observable represen- 
ted by a function a($, t+G*) are the stationary points of the function 

(3.4) 

and the eigenvalues are the values of Cs at these stationary points. (Differentiating 
(3.4) with respect to ek and $: yields 

ati 1 i% -=---- 
a*,* 

a It/k na$k* n2 

aii 1 aa -=---- 
a*, 

a *k*. nd+, n2 

If these both vanish then $ is an eigenvector of a with eigenvalue a/n. On the other 
hand, if $ is an eigenvector of a with eigenvalue a then (3.3) shows that CI = a/n, so 
&I/la$; =&i/8$, = 0.) We will see in Section 5 that the function (3.4) is the 
expection value of the observable represented by a($, $*) in the state with wave 
function $. 

The variational principle allows us to reach useful conclusions about the number 
of eigenvectors of a real function a(+, II/*). We note that the function Cs defined by 
(3.4) is invariant under multiplication of + by an arbitrary complex number Z, 

ii(Z$, z*+*) = c?(l), II/*). (3.5) 

Therefore, for an N-component wave function tik, we should think of (5 as being 
deined not on the space of N complex variables, but on the projective space 
CPN- ‘, a compact space. 

A well-known result of Morse theory [19] tells us that there are at least N 
stationary points of any smooth function on CPN- ‘. Hence, the observable 
represented by a($, $*) hast at least N eigenvectors. Where a($, $*) is the bilinear 
$:A,&,, the eigenvectors of the function are just the eigenvectors of the Hermitian 
N x N matrix Akl, and so there are precisely N of them. By continuity, it follows 
that for a weakly non-bilinear function, where a($, +*) is close to a bilinear 
I+G~A,&,, there are also just N eigenvectors. 

We may have to consider observables constructed as functions of other observ- 
ables. Now, it is trivially obvious that if a state represented by a wave function $k 
has definite values c1 and /I for observables represented by functions a and 6, then 
it has a definite value <cr + q/3 for the observable represented by 5a + qb, with 5 and 
q any complex numbers. It is a little less obvious that it also has a definite value 
CX~ for the observable represented by a * 6. Here is the proof. First note that 

+(u*b)=&$+$-a~f2&, . 
I I k k k k : 
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Next use the eigenvalue condition (3.1) for a, and the corresponding condition (3.2) 
for h: 

Then note that by differentiating (2.1) with respect to $.?, 

Using the eigenvalue condition again gives then 

a*a 
*k all/, a$: =a*l~ 

d2a 
*: a+,* a*? = ‘7 

and likewise for b. We have then the desired result, 

(3.6) 

In the same way, we can verify the other half of the eigenvalue condition 

+ (a * b) = a$ll/:. (3.8) 
/ 

We are tacitly assuming throughout this work that departures from quantum 
mechanics are generally very small. In particular, it should be possible to write any 
observable a (like the Hamiltonian h) in the form 

a=ao+a,, 

where a, is the bilinear rl/t Aklll/! of ordinary quantum mechanics, and a, is a small 
non-bilinear perturbation. It is natural then to ask, how much does the perturba- 
tion a, shift the eigenvalues of a? More generally, we would like to know how to 
calculate shifts in eigenvalues due to small perturbations of observables, whether or 
not a0 is the bilinear of ordinary quantum mechanics. 

Suppose that tjo is an eigenvector of a, with eigenvalue txO, 

Then to first order in perturbations, the condition that Il/o + 11/, should be an eigen- 
vector of a, + a, with eigenvalue a0 + a, is that 

595/ 19412.9 
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Multiplying with $& and using Eq. (3.6), we have then 

or, in other words, 

aI = al(lClo, ll/lT). (3.9) 

This is pretty much the same as the first Born approximation of ordinary quantum 
mechanics. 

For a simple example, consider the 2-component system with Hamiltonian func- 
tion (2.49). The energy eigenstates may be found by requiring that all components 
(2.52) oscillate with the same time-dependent factor exp( -St). For all forms of the 
function h(a), there are at least two solutions: 

A: l/9, #O, 1//2=0, E=h(O) (3.10) 

B: $I =o, **zo, E=l;(l). (3.11) 

In addition, for sufficiently strong non-linearities the function I;(a) may have a 
stationary point at some a, in the range 0 < a, < 1, and in this case there is a third 
class of solutions, 

C: a=~,, E=h(a,). (3.12) 

These form a degenerate family of physically inequivalent energy eigenstates, 
because there is nothing to fix the relative phase of It/r and ti2. Note that in 
accordance with the general remarks above there are just N= 2 energy eigenstates 
for sufficiently weak non-bilinearities. For instance, if we give h(a) a small quadratic 
term 

h(a) = (1 -a) I;(O) + ah( 1) + &a( 1 - a), 

then the third class of solutions appears only for 

I&l > pi( 1) -@O)l. 

4. SPINNING PARTICLES IN EXTERNAL FIELDS 

We shall now consider what may be the simplest physically interesting sort of 
system that can show departures from ordinary quantum mechanics: a spinning 
particle (with spatial motion ignored) in various sorts of weak external field. We 
shall first examine a spin 1 particle in a uniform magnetic field or quadrupole elec- 
tric field, and then consider a particle of spin 1 or i in a weak uniform magnetic 
field. As we shall see, all of these are integrable systems, with general time- 
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dependence described by Eq. (2.15). We shall calculate not only the energy eigen- 
values, but also the characteristic precession frequencies appearing in Eq. (2.15). 

These calculations were originally carried out for purposes of illustration, and 
because as discussed in Section 6, the characteristic frequencies play a key role in 
prediction of the system’s spectrum for absorption of radiation. However, after the 
publication of Ref. [4], both N. Fortson [20] and T. Chupp [21] independently 
pointed out to me that it was possible to monitor the precession of spinning nuclei 
coherently over rather long times and measure the characteristic frequencies (or 
frequency differences) with great precision. Small departures from the linearity of 
quantum mechanics would show up as a weak dependence of the characteristic 
frequencies on the initial state of the nuclear spin. Both Fortson and Chupp are 
considering the measurement of these precision frequencies, for Hg*” and Ne*‘, 
respectively. These nuclei both have spin 1, and although the time-dependent 
Schrbdinger equation for spin $ is integrable for a free particle or in a weak 
magnetic field, it is not integrable for the sort of external field that would be present 
in such experiments. Treating the non-bilinear part of h as a small perturbation, we 
shall calculate the precession frequencies for this case by using the method of 
averaging, and find an interesting dependence on the initial wave function. 

Spin 112 

Here the wave function has just two components, so as remarked in Section 2, 
the time-dependent Schrodinger equation is automatically integrable, whatever 
external fields may be present. 

Now let us consider the case of a spin i particle in an external field with the 
3-dimensional rotation properties of a symmetric traceless tensor of rank r = 1, 2, . . 
The only term in the Hamiltonian function with the correct rotation-invariance 
properties and homogeneity properties takes the form of a sum of products of Y 
factors of $, and Y factors of $7, times a factor n’-‘. (To see this, note that a 
product of r factors of t+Vs transforms uniquely like a quantity of spin r/2, and 
likewise for a product of r factors of $*‘s, so the product of r factors of I,VS and r 
factors of $*‘s transforms as a sum of spins r, r - 1, . . . . 0. Now, an obvious way of 
forming spins r - 1, r - 2, . . . . 0 out of rfs and rll/*‘s is to form then from a product 
of r - 1 t/s and r - 1 $*‘s, and multiply with n. Since each spin in the product of 
r $‘s and r II/*‘s occurs only once, the terms in this product of spin r - 1, r - 2, . . . . 0 
must be of this form. Thus a symmetric traceless tensor of rank r, which transforms 
as spin r, appears as a new tensor only in the product of r $‘s and r II/*‘s. ) 

For a homogeneous magnetic field r = 1, so the most general Hamiltonian 
function is bilinear 

(4.1) 

with (r the usual Pauli matrices. There is no difference here between ordinary quan- 
tum mechanics and our generalized theory. This is important, because it shows that 
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no non-linear effects in the internal structure of particles of spin i like the proton, 
neutron, or electron or in their interaction with weak uniform magnetic fields can 
show up when these can be considered as point particles. 

On the other hand, a quadrupole electric field has r = 2. In ordinary quantum 
mechanics a spin i particle cannot have an interaction of first order with such a 
field, but now it can, uniquely of the form 

h = Eon + QnP’E;,$taill/$taj$, 

where Q is a constant, and 

(4.2) 

(4.3) 

It is not hard to show that in the generic case, where all eigenvalues of 6’ are dif- 
ferent, the energy eigenvalues are just equal to E, + QL, where I runs over the three 
eigenvalues of 8. For each energy eigenvalue there are two eigenstates, namely, the 
two eigenstates of the component of c in the direction of the corresponding eigen- 
vector of 8. For each energy eigenvalue there are two eigenstates, namely, the two 
eigenstates of the component of c in the direction of the corresponding eigenvector 
of 1. Thus a free spin i particle in a generic quadrupole electric field would have 
three distinct energy values, which would be split by a very weak magnetic field 
into six energy values. If the strength of the magnetic field is increased so that the 
magnetic dipole term in h is much larger than the electric quadrupole, then the 
six energy eigenstates will merge into the two expected in ordinary quantum 
mechanics. 

The time-dependent Schrijdinger equation is integrable here, but the general 
solution is a bit complicated. It simplifies greatly in the case of axial symmetry, 
where two of the eigenvalues of the quadrupole field tensor C$ are equal. Taking the 
3-axis in the direction of the eigenvector for the other eigenvalue, we easily see that 
the Hamiltonian function takes the form (2.49), with 

~(a)=Q~,,(1-2a)*+4Q~,a(l-a), (4.4) 

where A,,, A,, Li are the three eigenvalues of &Yj, and a is given by (2.51), with 
** -*+I,*, ti2 = II/ -,,*. The time-dependence is given by (2.52), with frequencies 
(2.53) and (2.54). As we have seen, in this case we find energy eigenstates of all 
three types, (3.10), (3.11), and (3.12). 

Spin 1 
The three components of $ can be assembled into a complex 3-vector, w. The 

angular momentum is taken to have the bilinear form of ordinary quantum 
mechanics 

j= -iyf*x\y. 
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As long as the external fields are axially symmetric, j, as well as h and n will be 
conserved and the time-dependent Schriidinger equation will be integrable. In the 
absence of external fields, the most general unperturbed Hamiltonian function with 
the appropriate reality and homogeneity properties and that commutes with j takes 
the form 

ho =w(l~12h (4.5) 

where g is a real function and c1 is the only scalar in our problem, apart from n: 

(4.6) 

with n the usual norm 

We turn on a weak uniform magnetic field B. Rotational invariance requires that 
the term in the Hamiltonian function of first order in B takes the form 

h, = -p.B, (4.8) 

where lo transforms as a 3-vector, in the sense that 

The most general p with the required reality, homogeneity, and isotropy properties 
takes the form 

P= -i(w*xv)~Oa12) (4.9) 

with p(a) another real function of (a/‘. 
Now that we have our Hamiltonian, let us find its energy eigenstates. The energy 

eigenvalue problem here takes the form 

Ety= w, +h,) 
w 

= vg - i(B x W)P 

+2(aw*- la12yt)(g’+iB.(vt*xyf)p’/n). (4.10) 

(Primes denote differentiation with respect to /al’.) It is straightforward to find the 
general solutions. For arbitrary magnetic field (in the z-direction), we have a triplet 
of eigensolutions: one pair, 

E = g(O) + WO) (4.11) 

w cc (1, +i, 0) (4.12) 
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and also 

E= g(l) (4.13) 

w CJz (0, 0, 1). (4.14) 

Also, for a sufficiently small magnetic field we have a continuum of additional 
degenerate solutions 

E= g(,a,*) + 2(1 - b12) s’(la12) P(b12) 
Pe42hw42)(1 - Ial’) 

(4.15) 

w=(C~L(I~12)-~‘(Ia12)(1-la12)]B, 2i(l-a)g’(la12), O), (4.16) 

where Ial is determined in terms of the magnetic field by 

4(1- Ial’) d2(k12) 
B2=(~(lalz)-~‘(la12)(1 - Ial’))’ 

(4.17) 

and the phase of a is arbitrary. These extra solutions disappear if B2 is greater than 
the maximum value of the right-hand side of Eq. (4.17) (presumably reached at 
a = 0). This is quite consistent with the general remarks of Section 3: we always 
have at least N= 3 energy eigenstates, and we have precisely three eigenstates for 
sufliciently small departures from bilinearity. For instance, in Ref. [2] we briefly 
considered the case g(la12) = E [al’, p(lal’) =p. Equation (4.17) here gives 

la12= l- P'B~/~E~, 

so this solution disappears for IpBI > 2 1~1. In this case, (4.15) gives the energy 

a result quoted in Ref. [2]. Note that at the critical field, E= 2s, so this energy 
eigenvalue merges with one of the eigenvalues (4.11) at this field. 

It is interesting that even for a large magnetic field, the energy eigenvalues (4.11), 
(4.13) do not satisfy the equal-spacing rule of ordinary quantum mechanics; 
the energy differences between adjacent levels are g(0) - g(1) + BP(O) and 
g( 1) - g(0) + BP(O). We will find a similar result below for spin 3. This can happen 
here because the derivation of the equal-spacing rule relies not only on rotational 
invariance but also on the linearity of ordinary quantum mechanics. This example 
suggests one general approach to developing high-precision tests of quantum 
mechanics: one may search for small departures from those consequences of exact 
symmetry principles in ordinary quantum mechanics that depend on linearity as 
well as on symmetry. 

In fact, the equal spacing rule has already been subjected to high-precision tests 
in some of the experiments [22-261 designed to search for possible failures of 
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rotation invariance arising from an anisotropy of inertia. However, as discussed in 
Section 6, in the presence of non-linearities the quantities measured in resonance 
absorption experiments, as well as in spin precession experiments, are not 
necessarily simply related to differences of energy eigenvalues, but depend instead 
on the details of the experiment. To analyze such experiments, we need to know not 
just the energy eigenvalues, but the characteristic frequencies o, for arbitrary initial 
conditions. A somewhat tedious but straightforward calculation shows that the 
general time-dependent solution is 

I)~ = e-““‘[xl cos w,l+ x2 sin o,t] (4.18) 

*2=e-WAr[-~1sino,t+~,coso,t] (4.19) 

1(/3 = e-‘“A’x3, (4.20) 

where 
x = a,ce -W’+(l +Jl- 1C1012)C*e+““‘. (4.21 ) 

Here LYE and c are constants depending on initial data, and the characteristic 
frequencies are 

mA = g(lao12)+2(1 - laoI’) g’(ao12) (422) 

oB =pB (4.23 ) 

wc =W(lao12)J~. (4.24) 

(For simplicity, it is assumed here that p( Ial’) is independent of its argument, 
which should be a good approximation in the usual case where the magnetic energy 
is a weak perturbation.) The solutions (4.11k(4.17) of the energy eigenvalue 
problem may easily be recovered from the condition that the whole wave function 
should oscillate with a single frequency E. (The eigensolution (4.11), (4.12) has 
ao=O, E=o, -o,fw B; the eigensolution (4.13), (4.14) has a0 = 1, E=w,, 
0 C =O; and the eigensolution (4.15)-(4.17) has o=wA, og = +oC.) 

The frequency oA is not directly observable, as the factor exp( - iw, t) appears as 
a common factor in all components of the wave function. The frequency og is 
observable, but it represents just the same precession in a magnetic field that we 
would expect in ordinary quantum mechanics. In fact, this precession frequency can 
be derived (for arbitrary spin) just as in quantum mechanics: Equation (2.14) and 
(2.16) show that 

4 
-= -i[j, h] = -ip[j, j .B] 
dt 

=pBxj. 

The really interesting new phenomenon produced here by the non-linear correc- 
tions to quantum mechanics is the oscillation at frequency oC, a frequency that 
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vanishes in ordinary quantum mechanics, where g(a) is a constant. If we somehow 
prepare a spin 1 particle so that Re w and Im w are initially neither parallel nor 
perpendicular, then even in the absence of a magnetic field the magnitude of each 
component of v will oscillate at a frequency wc, dependent on the angle between 
Re \v and Im w. However, the spin expectation value j/n simply precesses at the 
frequency ws, just as in ordinary quantum mechanics. 

Spin 312 

According to the general rules discussed in Section 2, for integrability here we 
need 2j+ 1 = 4 conserved quantities, all commuting (“in involution”) with each 
other. This condition is satisfied for a spin $ particle that is free, or in a weak 
uniform external magnetic field, say in the z-direction. In such cases the 
Hamiltonian function takes the form 

h = ho + pBj,, (4.25) 

where h, is rotationally invariant, and j is the angular momentum function 

j = *+SI) (4.26) 

with S the usual 4 x 4 spin matrix for j= $. (Non-bilinear terms in the magnetic 
moment are dropped here, because this term is assumed to be already very small.) 
Both ho and j, “commute” with each other and with n, and also with j2, which 
provides our fourth conserved quantity. (By j’ is meant the sum of the ordinary 
squares of the functions j,, j,, j,, not the function j * j = Il/+S211/, which is here just 
equal to 15n/4.) We write the wave function here as $,, with m running over the 
values 3, f, -4, and - $. This is somewhat more complicated than earlier exam- 
ples, so instead of working with the most general non-bilinear Hamiltonian func- 
tion, we will limit ourselves to homogeneous functions of degree one of the simplest 
non-bilinear form, consisting of a product of two t/s, two $*‘s, and a factor 
n - ‘. The product of two identical j = 5 $‘s can only have spins j = 3 or j = 1, and 
likewise for two II/*%, so there are just two ways of constructing a rotationally 
invariant function of this form: by combining (@),.=, with ($*$*)j,3, or (II/$),.=, 
with (lc/*$*)j=I. However, one linear combination of these must be proportional 
to d/n, which is a rotational invariant of the same general form. This term amounts 
to an additive constant appearing in the energy of all states, and hence can be 
disregarded here. Another independent linear combination must be proportional to 
j2/n, which is also a rotational invariant of the same general form. We therefore 
take 

ho = -tzj’/n (4.27) 

with E a small energy that may be either positive or negative. This is essentially the 
same (as it must be) as the Hamiltonian function given in Ref. [4], aside from an 
additive constant. That is, (4.27) may be written 
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&I = -y+; (2 l~*3,2*-1,2 -1c11,21c11,212 

+ IW~,~IC/-W -*1,21cI-1,21~ 

+2 IJ5II/-3,2@1,2 -11/-1,2~-1,212~. (4.28) 

(The factor 3 appeared outside the absolute value sign in the second term of 
Eq. (12) in Ref. [4] through a typographical error.) Even though we take h, 
proportional to j*, the model is still integrable; for the fourth conserved quantity we 
can take any function of the 8 - 3 = 5 rotational invariants that can be formed from 
a complex j = 2 wave function. 

For a Hamiltonian function given by (4.25) and (4.27), the time-dependent 
Schrbdinger eqution yields 

ill/ = -2&j .S$/n + &j2+/n2 + ,uBS,IC/. (4.29) 

As usual, we can eliminate the magnetic field by transforming to a rotating from of 
reference. Define 

II/,,, =exp( -ipBmt)rp,. (4.30) 

Then (4.29) takes the form 

i@ = -2Ej0 .Sfp + .cjiq, (4.31) 

where 

i. = cptScplrptcp. (4.32) 

The vector j. is time-independent, so the general solution of (4.31) takes the form 

cpm = C cpff exp( - iu,t), 

where q(” denotes the eigenvectors of j, . S, 

i. .Sv (0 = z ljo 1 q(‘) (4.33) 

with I= -+, -$, +i, +$, and 

uI = -2.4 ljol +E ljo12. (4.34) 

This is a quasi-periodic time-dependence, with just three independent characteristic 
frequencies 

$PB, E Ijo I? E lio12 (4.35) 

which appear in the components of $,,, in just 16 integer linear combinations. (The 
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quasi-periodic behavior for B = 0 was discovered in numerical calculations by 
M. Marder, before it was realized that this is actually an integrable system.) The 
constant ljol can take any value in the range from 0 to $, depending on the initial 
conditions. The appearance of two additional frequencies in the time-dependence of 
the wave function, which unlike pB/2 depend on initial conditions, would be a sign 
of departures from the linearity of quantum mechanics. 

The energy eigenvalues here are found as usual by looking for time-dependent 
solutions that oscillate with just a single frequency E. These are of two types: 

1. l&j,, 1 # IpBI. In order to avoid a multiplicity of frequencies, the energy 
eigenstate here must have just a single non-vanishing component $,,,, so that j,, is 
along the z-axis, with z-component m. Equation (4.33) shows that here I= Iml, so 
the energy eigenvalue is 

E=,uBM--cm’. (4.36) 

We again find a departure from the equal-spacing rule of ordinary quantum 
mechanics. 

2. Isjo 1 = J,uBI. Here we can have an arbitrary mixture of components $,, by 
arranging that the I-dependent term in (4.34) cancel the time-dependence in (4.30), 
by restricting I to +m, where + is the sign of ~B/E. This leaves us with a common 
oscillation frequency 

E = E lj, I2 = p2B2/4&. (4.37) 

The wave function here is restricted only by the condition that j, should be in the 
z-direction, with ljo I = IpB/2~l. To make the x- and y-components of j, vanish, we 
need only arrange that there are no components of the wave function with m-values 
differing by only one unit; the non-vanishing components can have m = - ; and 
m= f, or m= - $ and m= $, or m= -4 and m= +$. We can then satisfy the 
condition that 2sjoZ = f pB by an appropriate choice of the relative magnitude of 
the two non-vanishing components of the wave function (the relative phase is 
arbitrary), provided that IpB/2tI < $, i.e., provided that 

I4 ’ I/4/3. (4.38) 

(To have non-vanishing components with m = + $ and m = T f, we need the more 
stringent condition that 1.~1 > IpBI.) These results are typical of such eigenvalue 
problems; for small non-linearities there are just the four eigenvalues (4.36), but for 
1~1 above the threshold (4.38), there appears an additional highly degenerate energy 
eigenvalue (4.37). 

In the proposed spin-precession experiments [20, 213 as in earlier work [25, 261, 
the nucleus is subject to additional fields, due in part to interaction withthe vessel 
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walls. As long as the environment (including any magnetic field) is axially sym- 
metric, the extra terms in the Hamiltonian function may be approximated by 

(Typically, Sz, is of the form Q, N bm + cm’.) Both (4.39) and (4.27) separately 
define integrable systems, but the sum h, + dh yields a system that is not integrable. 
Although dh is small in absolute terms, it is presumably much larger than the non- 
bilinear term h,, so we may take dh as our “unperturbed” Hamiltonian function 
and treat ho as a small perturbation. However, this is not by itself enough for us 
to be able to use the theorems of Refs. [6, 71 to justify treating the system as if it 
where integrable. Strictly speaking, as discussed in the Appendix, for this purpose 
we would also need the initial wave function to be close to an eigenvector of Ah, 
i.e., to have one component II/, much larger from the others. Nevertheless, com- 
puter experiments [27] with h,,/Ah z 0.01 indicate a behavior that seems very close 
to quasi-periodic for randomly chosen initial conditions-the Fourier transform of 
$,(t) shows just a few very sharp peaks. 

With this encouragement, we can try supposing that the inclusion of ho in the 
Hamiltonian function leaves the behavior of the wave function essentially quasi- 
periodic and use the averaging method described in Section 2(d) to estimate the 
shift in the frequencies a,,,. Equation (4.39) is an integrable Hamiltonian function, 
with action and angle variables 

and frequencies 

Jm = 111/m I23 Q, = Arg h (4.40) 

aAh 

wm - aJ, 
=--=Qsz,. (4.41) 

Inserting the zeroth order solution II/, a exp( -zQ,,,t) in (4.28) and averaging over 
time gives 

(4,) = -T+; {6J,,,J-,,, +2J;,, +9J,&,,, 

+ J,,z Jp 1/2 + 6J-,,I JI,~ + 252.1,2 > 
with 

n = J-312 + J- 112 + J,,2 + J3,2. 

(4.42) 

(4.43) 

This shifts the frequencies w, by 

60, = y. 
m 

(4.44) 
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Even the precession of the spin expectation value is affected by these frquency shifts, 
because although (4.28) is rotationally invariant, its average (4.42) is not [20]. 
Their dependence on the J’s is a symptom of a departure from the linearity of 
quantum mechanics. 

5. PROBABILITIES AND EXPECTATION VALUES 

In the historical development of quantum mechanics, the interpretation of the 
wave function in terms of probabilities emerged somewhat later than the interpreta- 
tion of eigenvalues as the possible values of observables. In Section 3 we have 
already discussed the eigenvalue problem and its physical interpretation in our 
generalized version of quantum mechanics. As in quantum mechanics, it will take 
some extra work to establish the probabilistic interpretation of the wave function. 

There are various ways of formulating the interpretative postulates of ordinary 
quantum mechanics. In one common version, it is assumed that the measurement 
of an observable represented by an operator A must give a result equal to one of 
the eigenvalues of A, with a probability equal to the absolute value squared of the 
component of the wave function along the corresponding eigenvector. This assump- 
tion will not work in our generalized version of quantum mechanics; the analysis 
below of the measurement process will show that the possible values obtained when 
we measure some observable in a general state depend on the wave function of that 
state. 

However, there is another way of stating the interpretative postulates of quantum 
mechanics, actually used by Dirac in his classic book [28] and occasionally in 
textbooks [29] since then, that carries over very nicely to the generalized version 
of quantum mechanics studied here. In ordinary quantum mechanics, one can 
postulate that in a state represented by a wave function tik, any measurement of a 
set of observables A, B, . . . represented by commuting Hermitian operators (in 
matrix notation) A,,, Bkl, . . . . will yield as average values, the expectation values 
thi!X~Wk*~~~ vWWll+k*tik9 etc. A s a natural generalization, we shall assume 
here that in a state represented by a wave function r+Gk, the measurement of a set 
of observables A, B, . . . represented by commuting real homogeneous functions 
a($, $*), b(+, +*), . . . (commuting in the sense that a * b = b * a, etc.) will yield as 
average values, the expectation values 

(5.1) 

This is just a postulate, but it has a number of physically plausible features: 

(a) Because the functions a($, $*), b($, $*), etc. as well as n($, II/*) are all 
homogeneous of degree one in both $k and $z, the expectation values (5.1) are the 
same for wave functions tik and Z$, for arbitrary complex 2, as required if tik and 
Ztik are to represent the same physical state. 
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(b) As discussed in Section 2(g), an observable which receives independent 
additive contributions from two separated systems is represented by a function of 
the form 

a, + Id K Y’*) = c GP, V”) + 2 %(cp’k’, cpCk)‘h (5.2) 
I k 

where !Pk, is the joint wave function (the first and second indices describing degrees 
of freedom of systems I and II, respectively) and 

+(I) E &k’- 
k I 

y 
kl. (5.3) 

If there is no correlation between the subsystems, then Y,, takes the separable form 

yk, = tik(PP (5.4) 

Using the homogeneity of these functions, we see that for a wave function of this 
form, Eq. (5.2) has the value 

(5.5 

Also, the norm here is 

so the expectation value is simply a sum of the expectation values for the separated 
systems 

(5.7) 

as physically required if these systems are really independent. 
(c) Suppose a state is represented by a wave function $k that satisfies the 

eigenvalue condition 

Using the homogeneity of a(+, $* ), we have then 
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and so the expectation value of this observable is 

(a>$ = a (5.8) 

in accord with our earlier assumption that the observable has definite value a in 
this state. 

(d) We saw in Section 3 that the stationary points of the function ti(ll/, +*) E 
4tit $*)M@, $*I on the compact manifold CPN- ’ are the eigenvalues of the func- 
tion a($, $*). The expectation value (a), = ti(+, $*) in a state represented by an 
arbitrary wave function tik must lie between the maximum and minimum of 
a($, $*) on this manifold, and hence between the largest and smallest eigenvalues 

(5.9) 

In ordinary quantum mechanics, we could use the postulated formula for expec- 
tation values to infer the probability distribution for values of any observable in 
any given state. This is because any matrix A,, commutes with all its powers, so all 
powers of the observable can be simultaneously measured. The usual result for the 
probability distribution (that the observable takes values equal to its various eigen- 
values, with probabilities equal to the absolute value squared of the component of 
the normalized wave function along the eigenvector) can then be justified by noting 
that it gives the right expectation values for all powers of the observable. In 
particular, if a state is represented by an eigenvector of some observable, then the 
expectation value of any power of the observable is equal to that power of the 
eigenvalue, from which we can infer that in such a state the observable takes a 
unique value, equal to that eigenvalue, without needing this as a separate postulate. 

In contrast, in our generalized version of quantum mechanics, because of the 
failure of associativity, a function a(+, Ic/*) will not in general commute with its 
“powers” a * a, a * (a * a), etc. Indeed, although the square of a is unambiguously 
a * a, and its cube can be fixed by a reality requirement as 

+[u*(u*u)+(u*a)*u], 

there are three independent candidates for a real fourth power 

(a * a) * (a * a) 

${a * [(a * a) * a] + [a * (a * a)] * a} 

f(u * [a * (a * a)] + [(a * a) * a] * a}, 

so there is no unique way to deduce a probability distribution from the expectation 
values of the powers of the observable. (A similar problem arises at a different level 
in ordinary quantum mechanics; although it is possible to infer the probability 
distribution for an observable from the expectation values of its powers, it is not 
possible to deduce the joint probability distribution of two observables from the 
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expectation values of the products of their powers, unless the operators representing 
these observables commute.) 

Fortunately, even in our generalized quantum mechanics there are some observ- 
ables that commute with all their powers; these are the observables which symmetry 
principles require to be represented (up to a homogeneous canonical transforma- 
tion) by bilinear functions 

We guessed in Section 2 that observables like momentum and angular momentum 
are in this class. The usual arguments of quantum mechanics apply to such 
observables and show that a measurement of such an observable must yield one of 
the eigenvalues of A,, as the measured value, with a probability equal to the 
absolute value of the square of the component of the normalized wave function tik 
along the corresponding eigenvector. We can exploit this fact to work out the 
probability distribution for an arbitrary observable, if it is measured by allowing it 
to interact with one of these bilinearly represented observables. 

An example is provided by experiments of the Stern-Gerlach variety. Suppose 
that we wish to measure some observable A (like a component of the magnetic 
moment; see Section 4) that is represented by a non-bilinear function a($, $*), with 
+ an N-component wave function. Send a beam of the systems (e.g., atoms or 
nuclei) that carry this observable through an external field, so that a term is added 
to the system’s Hamiltonian function 

Ah(lCI, )I/*)= g-M+, Ic/*), (5.10) 

where x is the coordinate in some direction transverse to the beam and g is a 
coupling parameter. Take the constant g large enough so that dh dominates over 
other terms in the Hamiltonian function. The time-dependence of the wave function 
is then given by 

.dh aa 
17=&q@ 

As discussed in Section 2, the solution of Eq. (5.11) is the same as if the equation 
were integrable for a wide range of initial conditions. That is, we typically find 

(5.12) 

(The LY, are the values of the frequency CO, in (2.15) if the a(+, II/*) were the 
Hamiltonian function.) We see that the beam breaks up into an infinite number of 
sub-beams, one for each set of the N integers n,, each sub-beam with a transverse 
momentum which after a time t has the value 

AP, = -gt 1 v, (5.13) 
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with probability 

P(n,n, -.)=C Ic,(n,n, . ..)I*. 
k 

(5.14) 

Interpreting this as a measurement of the observable A, we would conclude that the 
possible values are 

4 =C n,a,, (5.15) 

each with probability (5.14). 
We can now check that the probability distribution we have deduced for results 

of the Stern-Gerlach experiment are consistent with our general assumptions about 
expectations values. First, note that the norm n is 

x exp c -igxt 1 (n, - n:)a, I . 
\  ”  /  

Also, using the homogeneity condition, the function a($, $*) takes the value 

But on general grounds, both n and a (which here plays the role of the Hamiltonian) 
must be time-independent. As long as we avoid resonant initial conditions, for 
which these solutions are not valid anyway, there are no non-zero integers m, for 
which Cvmvav vanishes, so the only time-independent terms in (5.16) and (5.17) 
which could contribute to n and a are those with n: = n, for all v. We thus have 

k II,“,... 

The expectation value of A is then given by (5.15) and (5.14) as 
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in agreement with our earlier assumptions. 
To check our previous assumptions a bit more thoroughly, we should also 

consider how to measure several commuting observables. Consider two observables, 
represented by functions a( +, $ * ) and b(+, $*), that commute in the sense that 
a * b = b * a. We couple these to external fields in such a way that the Hamiltonian 
function is dominated by an interaction term 

Ah = gxa + hyb, (5.21) 

where x and y are coordinates in different directions transverse to the beam, and 
g and h are coupling parameters. We again treat the system as if it were integrable. 
Because a and b commute (that is, “in involution”) it is possible to find a set of 
action and angle variables j, and 8,, that are related by a canonical transformation 
to $ Im l(/k and fi Re l(lk, respectively, such’that both a and b depend only on 
j,, not 8,. The wave junction is given in terms of thej, and 6, by an expression of 
form 

$/r(j, w= 1 ck(jlj2 -..;n,n, . ..)exp 
n,lq.. 

(-i~d4). 

If the Hamiltonian were dominated by a or b alone, then the time-dependence of 
0, would be given by 8, = &@j, E a, or 8, = ab/aj, E/?“, respectively. With the 
Hamiltonian dominated by (5.21), the time-dependence is 

de 
2=b(gxa(j)+hyb(j)) 
dt aj, 

= g-w(j) + MW). 
The beam thus breaks up into an infinite number of sub-beams, one for each set of 
the N integers n,, each sub-beam with a transverse momentum which after a time 
t has the components 

AP, = -gCnvav 

AP? = -h c nvBv 

with probability (5.14). We can now repeat the previous analysis and confirm that 

59S/l94jZ-IO 
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the mean values of the observables represented by a and b, as inferred from 
measurements of dp, and dpY, are just a/n and b/n, respectively, as assumed 
earlier. 

6. SPECTRAL LINES 

There are various ways of measuring the spectrum of an atomic or nuclear 
system. One may observe the resonant absorption or scattering of individual 
photons by the system, or, at an opposite extreme, one may observe the effects on 
the system of a macroscopic oscillating electromagnetic field, containing unlimited 
numbers of photons. Also, the atomic or nuclear system may be at zero tem- 
perature, and hence in the lowest energy eigenstate, or at a high temperature, in 
which case the individual atoms or nuclei are almost uniformly distributed among 
all possible superpositions of states, with only a small excess of lower energy states. 
Of course, the distribution may also be non-thermal, as in the measurement of 
emission spectra, and here also individual atoms or nuclei may or may not be 
initially in pure energy eigenstates. 

In ordinary quantum mechanics, none of these experimental details make much 
difference in the interpretation of observed spectral frequencies: we always get 
absorption or emission lines at frequencies simply equal to differences of energy 
eigenvalues. As we shall see here, matters are very different in our non-linear 
generalization of quantum mechanics. 

To explore the various possibilities, let us consider the simplest realistic case. We 
assume that the atomic or nuclear system may be described by a 2-component wave 
function ll/k, with k = 1 or 2. (This should be a good approximation even in more 
complicated systems, if only two components of Ic/ are appreciably excited.) Also, 
we will assume that only one normal mode of the electromagnetic field is excited, 
with frequency w. The wave function of the system of matter plus radation is then 
Y k,n, where k = 1 or 2, and n = 0, 1, 2, . . . gives the number of photons in the normal 
mode in question. In accordance with the general considerations of Section 2, the 
Hamiltonian is taken in the form 

+c nwY$,, yk,, + hNT( y, y*)- (6.1) k,n 
Here h(ll/, , $:, ti2, I,+;) is the Hamiltonian function in the absence of radiation, 
and hINT represents the effects of the interaction of radiation and matter. Since this 
interaction is assumed here to be a weak perturbation, we take it to have the form 
it would have in ordinary quantum mechanics 

hvr( Y y*) = 1 41 yZ,,- , yy,, & + C.C. 
nkl 

(6.2) 
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with dkl a constant 2 x 2 matrix characterizing the interaction between matter and 
radiation. 

For simplicity, let us also assume an angular-momentum selection rule, which 
requires the matter Hamiltonian function h to depend only on 1 Y!,: I2 and 1 Y’,., I ‘, 
and allows single-photon absorption or emission only in transitions 1 + 2 and 
2 -+ 1, respectively, so that the only non-vanishing component of dk, is dZ1 - d. (For 
instance, we might suppose that in the single normal mode of our problem, photons 
have a pure helicity, + 1 or - 1, and that components k = 1,2 refer to states of the 
matter system whose angular momentum in the photon direction differs by one 
unit.) The time-dependence of the system is then governed by the equations 

dy’, n 
i----= K.n~,lwl,n12, I~2,n12)+~~%.. dt 

+d*& Yb-l 
d’Y2 n 

iA= ~2.n~,2wLn12~ I’Y,,.I’)+~~‘Yz,n dt 

(6.3) 

+dJn+ 1 yL,+l~ (6.4) 

where 

In the absence of radiation, the matter system would have energy eigenvalues 

kI(l~I12JY=~,~ h,2(0? 149212)=E2. (6.5) 

(Homogeneity makes these derivatives independent of their arguments.) 
Let us first consider the simplest interesting case, in which initially there is just 

one photon, and the matter system is in its k = 1 energy eigenstate. The only non- 
zero component of the wave function is initially just Y’,,,, and the only other com- 
ponent that becomes excited is Y2,0, representing photon absorption. With only 
these two components non-zero, the time-dependence equations (6.3), (6.4) become 

dy’, I 
i;=(E, +o)Yv,,, +d*Y,,o 

dt 
(6.6) 

dy’, o i L = E, Y2,, + dYY,, 1. 
dt 

These are just the same equation that would apply in ordinary quantum mechanics. 
As is well known, for an arbitrary weak coupling d, the matter system is driven by 
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photon absorption from k = 1 to k = 2, provided we wait a time of order l/Id1 and 
provided that o is chosen to have the value 

o=E,-E, (6.8) 

to within a width of order Idl. 
Matters are much more complicated if we assume that the wave function in the 

initial one-photon state is a mixture of k = 1 and k = 2 components, Yi,, and Y’,, i . 
The growth of the no-photon component Yy,,, is still given by Eq. (6.7), but the 
decay of this state back to Y,,, is now governed by 

d’Y, 1 
~~=C~,IwI,,12> 1~2,112)+4~1,, +d*Y*,o. dt 

To evaluate the right-hand side we need to calculate the change in the other one- 
photon amplitude Y2, r, which is governed by its coupling to the two-photon 
amplitude Y’,,,. 

Instead of pursuing this further now, we shall consider a different sort of com- 
plication, of greater experimental interest: the initial state may contain many 
photons. Consider a range of photon numbers n that are so large that d ,,& and 
d m may both be taken as approximately equal to an n-independent constant 

d&dJn-lzg. (6.10) 

Equations (6.3) and (6.4) then hae solutions of the form 

Yk,, = tjk exp( - inwt) (6.11) 

with tik independent of n and satisfying the equations 

These are just the equations we would derive from an effective Hamiltonian 
function 

h EFF=~(I+II*, l~212)+ge~i”‘IC13bI +CL (6.14) 

corresponding to a matter system with Hamiltonian function h in a classical exter- 
nal field that oscillates with frequency w. 

In the absence of the time-varying perturbation term in (6.14), the components 
tik would simply oscillate as exp( -iok t), with characteristic frequencies given by 

(6.15) 
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The time-varying perturbation term in (6.14) will therefore have a time dependence 
given approximately by 

ge-im’$:lC/l cc exp(-i(w-o, +wi)t). 

Even if g is very small, the effects of this perturbation term will continue to grow 
over a time T, provided that this factor does not average to zero over this time, i.e., 
provided that 

lo-o,+w,I~l/T. (6.16) 

Because of the non-linearities in the unperturbed Hamiltonian function 
h(j$i\*, I$*\*), the frequency difference o2 - o1 varies by a small amount do as 
) $ 1 I */I ti2 I ’ varies. We can try to observe this variation, as a sign of departure from 
quantum mechanics, either by measuring resonant absorption in a sample of atoms 
or nuclei with differing initial values of the ratio l+i l*/lt~Q~ I*, or by allowing the 
transition to continue so long that this ratio changes (or both). Either way, if want 
to observe the variation of the frequency difference w2 -0, over a range do, we 
need to observe the system for a time T at least as long as l/Am, 

T2 l/do. (6.17) 

Before considering the details of these different sorts of experiment, this is a good 
place to pause and comment on the relation between the frequency difference 
w2 - o, and the difference E2 - E, of energy eigenvalues. It will be convenient from 
now on to make the homogeneity of the Hamiltonian function manifest, writing 

h = nh(a), (6.18) 

where, as in Section 2, 

~=lh12+l~*12 (6.19) 

a= 19G21*/n. (6.20) 

From (2.53) and (2.54), we see that the frequency difference is 

02(u) -o,(a) = h’(a). (6.21) 

On the other hand, (3.10) and (3.11) give the energy difference as 

E, -E, =1;(l)-h(0). 

We see that energy difference is the average frequency difference 

~52 - E, = j-; Co2(a) - wAa)l da, 

(6.22) 

(6.23) 
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but the quantity measured in individual experiments may have nothing directly to 
do with the energy difference. Even if we start in a pure energy eigenstate, with 
a = 0 or a = 1, the resonant frequency (6.21) is not generally exactly equal to the 
energy difference (6.22). 

It may appear as a violation of the conservation of energy that the resonant 
photon absorption frequency is in general not precisely equal to the energy 
difference E2 -E,, but it should be kept in mind that the initial and final states 
of the radiation field are assumed here to not have a definite energy, since they 
contain an infinite number of photons. We say earlier that when the radiation field 
initially contains just one photon, the photon energy w required to drive a 
transition from one energy eigenstate to the other is precisely E, -El. 

Now let us consider experiments designed to detect the changes in the charac- 
teristic frequency difference due either to (A) changes in the initial wave function 
or (B) changes in the wave function as it evolves. 

(A) Variations in Initial Characteristic Frequency 
Suppose that we try to detect the dependence of the characteristic frequency on 

the initial wave function by exposing our system to the time-varying perturbation 
in (6.14) for a time T, which is long enough to detect a spread in the resonant 
frequency w2 - wi of order Aw, and yet short enough so that the action parameter 
a on which w2 - wi depends does not change very much during this period. That 
is, we want 

(do)-‘< T4 lgl-‘. (6.24) 

We can then apply perturbation theory to the solution of Eqs. (6.12) and (6.13). 
These equations may be rewritten in the form 

$ = f(a) sin c1 (6.25) 

~=hYa)-w+f’(a)cosor, (6.26) 

where a is the variable (6.20), c( is the angle, 

a = ArgCgtiIllC/J -w (6.27) 

and f(a) is the function, 

“f(a) = 2 lgl &Cl -a). (6.28) 

(The functionf(a) would be different if we allowed non-bilinear terms in the inter- 
action (6.2) between matter and radiation, but as we shall see, the most important 
features of the solution would be unaffected.) 
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To zeroth order in g, the solution is simply 

a(t) = a, 

a(t)=a, -Q,t=&t), 

where 

m, = w - h’( ao) 

(6.29) 

(6.30) 

(6.31) 

and a, and ~1~ are the initial values for u(r) and a(t). Inserting these on the right- 
hand side of (6.25) and (6.26), integrating, and then repeating the process, we 
obtain u(t) and tl( t) as power series’ in g: 

+f2(uo) h”(u, 
[ 

(sin d(t) - sin CC~)~ 
2a; 

+ 
cos u,(c0s uo - 

Qi 
cos &t )) + t cos a0 sin fj( 2) 

Q:, 1 + m3) (6.32) 

cc(t)=(b(t)+ -7 

[  

f’(ao) +f@o) h”(Uo) 

f-4 1 (sin d(t) _ sin c( )  

0 
0 

+ Wg2). (6.33) 

The absorption of radiation can be calculated from the change with time of the 
energy expectation value Qu(t)), which is easily calculated as a power series in g 
by use of Eq. (6.32). The result is complicated and not especially illuminating, but 
in most cases of experimental interest the individual atoms or molecules will have 
randomly distributed phases of the initial wave function components ekr and hence 
randomly distributed values of czo. Averaging &u(t)) over clo, we obtain the fairly 
simple result 

l j2n &u(t)) da, E (h(a(t))) ii0 
= Quo) +d f2(ao) h'(ao)(l -cm Q,t) 

duo 2a:, l- (6.34) 

At very high temperatures we would expect the atoms or molecules to be initially 
distributed uniformly in “phase space” on the surface of fixed norm: 
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dN a dRe It/,(O) dim +,(O)dRe e2(0) 

x~Im~2WWl(W2+ W2(0)12- 1) 

a da, da, (6.35) 

We have already averaged over a,, and if we now also average over a,, we find that 
the second term in (6.34) drops out (becausef(a,) vanishes at the end points a, = 0 
anda,=l), so 

<44t))>> = j; 4(44t))) = <440))>>. (6.36) 

That is, just as in ordinary quantum mechanics, the material system absorbs no 
energy from radiation at high temperature, because induced emission cancels 
absorption. There is a net absorption of energy at finite temperatures, where dN 
contains a Boltzmann factor. In this case, the average energy of 
nuclei is 

xf2(u,) E2(uo)[1 -cos sz,t] 
252; + W’). 

the atoms or 

(6.37) 

Note that the second term is always positive, because at finite temperatures absorp- 
tion exceeds induced emission. 

Now let us give t a value T that is much larger than the reciprocal of the range 
dw over which k(u,) and hence 52, varies as a, runs from 0 to 1. Then effectively 
the factor (1 - cos Q,t)/Q~ in (6.37) is proportional to a delta function 

(1 - cos 8, T)/Q; + nT d(f2,). (6.38) 

The rate at which radiation energy is absorbed is then 

r=fT <h(4T))> 

= f Bn J’ hJ-2(4 ~“(4 W-J,) 

= 4 8Q-2(%J) ~‘2hmwL)l 

=vn IA2 %(l -4J whJYl~“(%)l~ (6.39) 
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where a, is defined by 

h’( a,) = 0. (6.40) 

For values of w at which Eq. (6.40) has no solutions with 0 < a, < 1, the absorp- 
tion rate vanishes. 

We see that the absorption line extends over the frequency range from h’(O) to 
h’( 1). The precise line shape depends on the function h(a). For instance, for the sim- 
plest possible departure from quantum mechanics, we would have h(a) quadratic, 

h(a) = h(0) + (EZ - E,)a + &a( 1 -a) 

14 <E, -E,. 

(Recall that E, -E, =h(l) -t?(O).) Then (6.39) and (6.40) would give 

r, = V71 lgl’ (E2 -El)* a,(1 -a,)llel 

a l-(o-E,+E,)*/&*. 

(6.41) 

(6.42) 

In this case the line has width 1~1 and is centered on the energy difference E, - E, 
This broadening of absorption lines for systems in a distribution of initial states is 
a general symptom of the presence of non-linear corrections to quantum mechanics. 
No such broadening was seen in the experiment of Ref. [22], within the natural 
width of the line. The interpretation of this experiment is complicated, because the 
nucleus has spin $, so there are three absorption transitions going on at the same 
time and also because the experiment searched for a line splitting that would vary 
with sidereal time. However, from the absence of anomalous broadening, we can 
presumably infer that the nonlinearity parameter here must be less than about 
10Pzo MeV. It should be possible to do even better than this in an experiment 
designed for the purpose. 

(B) Variation of Characteristic Frequency with Time: Detuning 
We now suppose that the individual atoms or nuclei all start in the same initial 

state and, hence, with the same characteristic frequency difference w2 - w,, and we 
examine the effects of changes in this frequency as the wave function evolves. To 
study this evolution, we return to Eqs. (6.25) and (6.26) and note that these 
equations can be integrated to give the phase c1 as a function of a, 

f(a) cos 01= wa - h(a) + C, 

where C is an integration constant. Combining this with (6.25) gives 

(6.43) 

=f*(a) - (wa - h(a) + C)*. 
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For definiteness, suppose we start our system in the energy eigenstate a = 0, with 
E = E, . Then, since f(0) = 0, Eq. (6.44) forces us to take the integration constant as 

c= h(0). (6.45) 

We now must adopt a positive sign for da/dt, so (6.44) yields 

da 
z= + Cf’(a) - ( oa - h(a) + h(o))*]“‘. 

The transition will proceed all the way to the other energy eigenstate a = 1, with 
E = E,, provided that two conditions are met. First, since f( 1) = 0, it is necessary 
for the second term in the square root in (6.46) also to vanish when a = 1: 

w=h(l)-h(O)=E,-E,. (6.47) 

This condition would also be required in ordinary quantum mechanics. Here it is 
further necessary that the argument of the square root in (6.46) not change sign 
during the transition: 

If(u)1 > Iwu - h(a) + h(O)1 for O<a<l. (6.48) 

This condition is automatically satisfied in quantum mechanics as a consequence of 
(6.47), because in quantum mechanics h(a) is linear, and so the right-hand side of 
(6.48) vanishes. In our generalized version of quantum mechanics h(a) is non-linear, 
so the right-hand side of (6.48) does not vanish, and Eq. (6.48) sets a lower bound 
on the strength of the radiation field that will drive the transition from one energy 
eigenstate to the other. Withy(a) given (as usual) by (6.28), Eq. (6.48) requires that 

lgl z Clwa-h(a)+h(0)1/2~~1,,,. (6.49) 

For instance, if we give h(a) the simple non-linear form (6.41), this condition is 

I~l~Cl~~-~,+E,)a+~~(~--)1/2J;Io],,,. (6.50) 

With w tuned to the value (6.47), the right-hand side of (6.50) reaches its maximum 
at a = f, so this condition reads 

Id 2 l&l/4. (6.51) 

If this condition is not satisfied, then a(t) cannot reach a = 4, much less a = 1. 
Observing a transition go from near one energy eigenstate to near another thus sets 
an upper bound in the non-linearity parameter E. Observations of this sort [3] have 
already been used [4] to set an upper bound on the non-linearity parameter IsI of 
the Be9 nucleus of order lo-‘* eV, a result that has very recently been improved 
[30] to 1.~1 < 2.4 x 10Pzo eV. As far as I know, this is the most stringent current 
limit on nonlinear corrections to quantum mechanics. 
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Even where the condition (6.49) is satisfied, the non-linearities in h(a) can have 
a conspicuous effect on the line shape. Suppose (as in Ref. [3]) we monitor the 
transition 1 -+ 2 by inducing a resonant transition to a third state, which can only 
be reached from the k = 2 component of tik. The intensity of the 2 + 3 transition 
is proportional to the value of a that has been reached. For instance, assume again 
that h(a) is given by Eq. (6.41), but now suppose that (6.47) is not satisfied. The 
maximum value reached by a(t) is given by the smallest value of a > 0 at which 
the inequality (6.50) becomes an equality, i.e., by the smallest root of the cubic 
equation 

a[o-E, +E, +&(l--a)]*-4 1g/2(1 -a)=O. 

If (6.51) is satisfied the smallest root reaches a = 1 at o = E, -E,, but the points 
where a= l/2 are at E, -E, -(e/2)*/? I gl. (When (6.51) is not satisfied, the 
smallest root rises monotonically to a value a > i as o increases from - co, and 
then at a critical value 0,. drops discontinously to a value a < 1, after which it falls 
monotonically as w increases to + co. The critical frequency where a reaches its 
maximum is not at E, -E,; rather, w, -E, + E, has a sign opposite to that of E). 
Observation of this highly asymmetric line shape would be a sign of nonlinear 
departures from quantum mechanics. 

APPENDIX: A USEFUL TRANSFORMATION 

This Appendix will describe a transformation of the N complex components l//k 
of the wave function that replaces then with the norm n, an over-all phase c(, and 
N- 1 complex functions zI of the ratios of the tik. This transformation is useful in 
solving specific problems, and more generally, because it allows an immediate 
application of the KAM theorem to our nonlinear version of quantum mechanics. 

Consider any one value of the wave function ek and apply a unitary (and hence 
canonical) transformation, to make all components vanish except +r. In some 
neighborhood around this point, I,$, will be non-vanishing, and hence have a well- 
defined phase CI. Within this neighborhood, we introduce our transformation by 
writing 

*k = nIl*,ia- 
&k (A.1 1 

Since n - Ck ]zk 1 2, the zk are subject to the constraint & ]zk I2 = 1. But 11/, has 
phase c(, so z, is real and positive and can therefore be expressed in terms of the 
other z, as 

z1 = +(1-z* lz,ll)“. (A.21 

The independent dynamical variables here are taken as n, CI, and the z, with 12 2. 
These z, may easily be expressed directly in terms of the I,$~: 

-‘=Jl+x 
*1/*1 
In>* Itin& 12’ 

(A.3) 
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The great advantage of using these z, as variables (instead of, say, the ratios @,/r,ki 
themselves) lies in the simplicity of the equations that govern their time- 
dependence. The homogeneity of the Hamiltonian functions allows it to be written 
as 

h = nh(z, z*). (A.4) 

Using (A.4) and the time-dependent Schrodinger equation (2.12), we easily find 
that the zI with I> 2 satisfy the time-dependence equation 

. dz, %(z, z*) 
57 aZ: (for Ia 2). (A.9 

These equations are again of the Hamiltonian form, with canonically conjugate 
variables fi Re z, and fi Im zI. 

The energy eigenstates are represented by solutions of (2.12) for which all com- 
ponents $k have the same time dependence, given by a factor exp( -Et). In this 
case the zk are all constant, so (AS) shows that energy eigenstates are given by 
stationary points of /; = h/n, as already seen for general observables in Section 3. 

This transformation has a useful application to the case where the reduced 
Schrodinger equation (A.5) (and hence the original equation (2.12)) is integrable. 
We shall show that in this case it is possible by a homogenous canonical transfor- 
mation to introduce new wave-function components $k such that the Hamiltonian 
function depends only on the lqk 1’. Integrability allows us to express z[ and z: in 
terms of N - 1 angle and action variables, j/and 8,, which are canonically conjugate 
in the sense that 

where, now, for any functions of z and z* 

Ca, 61 -i(&-$g-&&) 
I I I 64.7) 

and with li dependent only on the j’s, not the 8’s. The time-dependence of these 
variables is then 

4, ah o -= --= 

dt ae, 
de[ ah -=- 
dt aj,' 

We may therefore introduce a new set of z-variables 

64.9) 

2, = jj” exp( - 8,) (A.lO) 
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with a time-dependence governed again by the reduced Schriidinger equation (AS), 

. dzz a&) ah(l.q2) ah -- z~=j~‘2exp(-iB,)-=Zi,~- 
ah a ~2~1 az;t (A.ll) 

but with h now a function only of the l?,12. Finally, we can return to the 
N-component formalism, defining 

lp, y/k” (1- c ,q2 (A.12) 
I>2 

IJ, y/L-%, (1>2), (A.13) 

where n is the constant Ck Iek I 2, and the phase d satisfies 

~=h(lri’)- 1 ,Z,12qg 
122 

(A.14) 

With this definition of the components of the wave function, we have the usual 
time-dependence equation 

(A.15) 

but with a Hamiltonian function that now depends only on the moduli lqk 1, 

~=~ww~), (A.16) 

where now we write 

n=C l3,l’. 
k 

(A.17) 

Note that h is now homogeneous of degree one in the $k and $,*, just as it was 
in the ek and $z. Not only h, but any observable that is homogeneous of degree 
one in It/k and $h may be written as the norm n times a function of the z, and z:, 
and hence as the norm n times a function of the 2, and Z:, and is therefore 
homogeneous of degree one in the 3, and $,*. (It was in order to achieve this 
homogeneity property that we needed to introduce the z-variables; otherwise it 
would have been easy to convert the Hamiltonian function into a function only of 
moduli /$k I2 by writing Gk = Jk” exp( -iQk), where Jk and 8, are the action and 
angle variables of the N-component system.) 

This result applies for integrable systems, and only for integrable systems. 
However, Birkhoff’s theory of normal forms [31] allows us to write a formal power 
series for variables 5, in terms of the Original $k in such a way that the 
Hamiltonian function is formally a function only of the I $k I2 in a neighborhood of 
any energy eigenstate. Suppose that we take arbitrary wave function with which we 
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started, which by a unitary transformation we gave a value with only I+G, non-zero, 
to be at one of the stationary points of /z/n. At this stationary point, the zI with 12 2 
all vanish, so the leading terms in a series expansion are, aside from a constant, of 
second order in the z, and z:, 

h = h(0) + u[mz:z, + ~bl,z,z, + 4 bkz,z:zZ 

+ O(z3, z2z*, zz**, z*3) (A.18) 

with a, Hermitian. Hence, infinitesimally close to the energy eigenstate, the time- 
dependent Schrodinger equation (and its adjoint) takes the form 

i$[:*]=M[:*] 
ME [ -;* -:*I. 

(A.19) 

It is easy to see that if 1 is an eigenvalue of M then so are -I, 1*, and -A*. (This 
is because -M* and -MT are related to M by similarity transformations with the 
unitary supermatrices (pi and 02, respectively.) Hence the eigenvalues come either 
in complex quartets, or real doublets, or imaginary doublets. In ordinary quantum 
mechanics, h is bilinear in $ and Ic/*, so h is bilinear in z and z*, so bl,,, =O; and 
therefore the eigenvalues all come in real doublets, w, and -wI. We assume that 
our theory is close to a generic quantum mechanical theory, with all o, different 
and non-zero. By continuity then the eigenvalues must still come in real doublets 
when we add very small non-bilinear terms to the Hamiltonian function. (Any real 
doublet of eigenvalues that developed small imaginary parts would have to become 
a quartet, yielding two too many different eigenvalues.) With all eigenvalues of M 
real and different, it follows that it is possible by a linear canonical Sp(2N- 2) 
transformation z, -+ z; to bring the quadratic terms in /? to a bilinear diagonal form 

N 

h = h(o) + C w, 1z;12 + o(zf3, z’*z’*, z’z’*~, z’*‘) 
1=2 

(A.20) 

with real CD,. 
We can make use of Birkhoffs results. The frequencies oI are said to satisfy a 

resonance relation of order K if there exist integers vI such that 

pyo,=o (A.21) 

c IVII = K. (A.22) 

If the frequencies o, do not satisfy any resonance relation of order 1, 2, . . . . K, then 
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we can make a non-linear canonical transformation z; + z;l to bring the whole 
Hamiltonian function to the form 

h = PK( lz”12) + R,(z”, z”*), (A.23 ) 

where P, is a polynomial of order [K/2], and R, is of total order in z” and z”* 
at least [K/2] + 1. Generically, the frequencies will not satisfy a resonance relation 
of any order, and so at least formally we can let K go to infinity and write di as a 
power series in the moduli lz;112 of N- 1 canonical variables z;l or, equivalently, 
write h as a power series in the moduli /gk I2 of N canonical variables $,. 

The trouble is, of course, with the convergence of this procedure. A given set of 
frequencies may not satisfy a resonance relation of any finite order, but by taking 
large integers v, we can satisfy (A.21) increasingly closely. (The exception is for 
N- 1 = 1, where (A.21) can never be satisfied. In this case (A.5) is integrable, and 
therefore as discussed earlier, it is possible by a canonical transformation to write 
h as a function only of the modulus IzI 2 of a canonical variable z.) 

Fortunately, the KAM theorem [6] provides a rigorous alternative to this con- 
struction of a dubiously convergent power series. This theorem says in effect that 
a nearly integrable system behaves as if integrable for “most” initial conditions. The 
difficult question is to specify the volume of phase space within which the KAM 
theorem applies. Unfortunately, in our case it is not enough to say that the 
Hamiltonian function h($, $* ) or h(z, z*) is close to the bilinear and hence 
integrable Hamiltonian function of ordinary quantum mechanics. This is because in 
order to apply the KAM theorem to, say, (A.5), it is necessary that the 
Hamiltonian function should take the form 

&, z*) = h,(j) + &hl(j, w, (A.24) 

where E is sufficiently small, j, and 8, are action and angle variables, and h,(j) is not 
only integrable but also non-degenerate, in the sense that 

Det a*MA zo. 
( > aj, ?i, 

(A.25) 

Unfortunately, we cannot just take h,(j) as the Hamiltonian function of ordinary 
quantum mechanics, because this is bilinear in z, and z.? and, therefore, linear in the 
action variables lz;l’ (where z; are unitarity related to the z,). 

There is a version of the KAM theorem due to J. Moser [32], that allows us to 
apply it to a Hamiltonian system in a sufficiently small neighborhood of an elliptic 
fixed point, without having to split the Hamiltonian function into a non-degenerate 
integrable term and a small perturbation. By an “elliptic fixed point” is meant a 
point in phase space where the first derivatives of the Hamiltonian all vanish, and 
the eigenvalues of the matrix of second derivatives are all real. As we have seen, the 
transformation of coordinates from N$‘s and $*‘s to N- 1 z’s and z*‘s has the 
effect (when the non-bilinear terms in the Hamiltonian function are sufficiently 
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small) of converting an energy eigenstate of h($, I++*) to an elliptic fixed point of 
h(z, z*). Thus by means of this, transformation, we can apply this version of the 
KAM theorem to our problem. To summarize the analysis very briefly, one must 
make use of the Birkhoff result (A.23) and move part of the non-bilinear terms in 
1;(+, $*) into the “unperturbed” Hamiltonian h,. Assuming that the bilinear quan- 
tum-mechanical Hamiltonian function lie, of our system does not satisfy a 
resonance relation of order 1, 2, 3, or 4, in the neighborhood of an energy 
eigenstate we can define canonical variables z;’ such that 

I;=s(O)+~w,lz;‘l?+~~w, \z;l’ JZ;12+Rq(Z”,Z”*), (A.26) 
I Im 

where R, is at least of total order 5 in the z;’ and z;I*. Generically, wlm has a non- 
vanishing determinant, so we can take the first three terms of (A.26) as our 
integrable non-degenerate unperturbed Hamiltonian, with action variables 
j, = lz;l*, and use R, as the non-integrable perturbation E1. However, we cannot 
rely on the smallness of R4 to justify the application of the KAM theorem, because 
the determinant (A.25), though non-zero, is equally small for general zI. Instead, we 
may limit ourselves to a very small region around the assumed energy eigenstate, 
taken here to have the coordinates z; = 0, and use the smallness of lz;l to justify 
the treatment of z1 = R4 as a small perturbation. 

As far as I know, even the Hamiltonian consists of an integrable term and a small 
perturbation, in cases where the integrable term is degenerate there are no theorems 
that justify the application of the KAM results, except in small neighborhoods 
around elliptic fixed points. Thus, even though we assume here that the departures 
from quantum mechanics are very small, we cannot use the KAM theorem to 
justify treating these theories as if they were integrable, except in correspondingly 
small neighborhoods of energy eigenvectors. However, experience shows that 
degenerate integrable systems with weak non-integrable perturbations actually do 
behave as if integrable, as long as the frequencies in the unperturbed Hamiltonian 
are sufficiently incommensurate. An example is provided by the numerical calcula- 
tions of M. Marder, described in Section 4. One may conjecture that although the 
non-degeneracy condition is really needed to prove that the chaotic regions around 
resonant tori occupy a small volume of phase space or action-variable space, it is 
not needed if one is content to show that they occupy a small volume of frequency 
space. 

Note added in prooJ (i) After this paper was submitted for publication, it was pointed out to me that 
the interpretation of the time-dependent Schrodinger equation of ordinary quantum mechanics as a 
particular case of classical Hamiltonian systems has also been discussed by A. Heslot, Phys. Rev. D 31 
(1985), 1341. (ii) J. Polchinski [private communication] has raised the question of whether in non-linear 
generalizations of quantum mechanics it is possible to violate causality in experiments of the Einstein- 
Podolsky-Rosen type. This appears to be a serious problem, because with the treatment of separated 
systems given in Section 2(g) of this paper, functions representing observables associated with separated 
systems (such as the two terms in Eq. (2.35)) do not necessarily commute. Work is in progress by 
Polchinski and myself to give a treatment of separated systems that would avoid this problem. 
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