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Within the context of semiquantum nonlocal games, the trust can be removed from the measurement
devices in an entanglement-detection procedure. Here, we show that a similar approach can be taken to
quantify the amount of entanglement. To be specific, first, we show that in this context, a small subset of
semiquantum nonlocal games is necessary and sufficient for entanglement detection in the local operations
and classical communication paradigm. Second, we prove that the maximum payoff for these games
is a universal measure of entanglement which is convex and continuous. Third, we show that for the
quantification of negative-partial-transpose entanglement, this subset can be further reduced down to a
single arbitrary element. Importantly, our measure is measurement device independent by construction and
operationally accessible. Finally, our approach straightforwardly extends to quantify the entanglement
within any partitioning of multipartite quantum states.
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Introduction.—Entanglement is a valuable resource for
practical as well as fundamental applications of quantum
theory, ranging from quantum computation and communi-
cation tometrology [1–3]. There are twomajor challenges in
understanding entanglement that stimulates this research.
First, it is extremely difficult to specify all the nonentangled
bipartite or multipartite quantum states. In fact, the problem
is known to be NP-hard [4,5]. Second, not surprisingly, the
characterization of entangled states, i.e., the quantification
of entanglement within quantum states, is an equally
difficult task. The answer to the second challenge is practi-
cally very important because it tells us how well our
protocols will perform using a given state [6–9].
Focusing on the second challenge above, a first level of

hardness is that the quantification of entanglement using
almost any entanglement measure, e.g., entanglement of
formation [10], negativity [11,12], or random robustness
[13], requires estimating a large number of density matrix
elements, a task which is difficult to perform on bipartite
and multipartite quantum states. While this difficulty can
be partially circumvented by making use of entanglement
witnesses (EWs)when lower boundson the entanglement are
desired [14–19], errors and misalignments of the measure-
ment devices can still lead to incorrect estimations of the
quantities and thus, erroneous conclusions. A measurement-
device-independent approach is therefore desirable.
Recent work by Buscemi [20] has introduced a new way

to think about entanglement detection [21–24]. The idea is to
map the problem onto a modified class of nonlocal games,
called semiquantum nonlocal games (SQNLGs). In any
such game, two players (Alice and Bob) share a possibly
entangled state. A referee (Charlie) starts by asking them

quantum questions by sending quantum states and receiving
classical answers—the outcomes of some local measure-
ments (see Fig 1). He then evaluates a reward function from
the responses and pays the players accordingly. Confined
to not communicate during the game, known as the local
operations and shared randomness (LOSR) paradigm, all
separable states deliver an equal payoff (maximum average
reward) in any specific SQNLG. Importantly, for every
entangled quantum state, one can always find a SQNLG
which can deliver a larger payoff than any separable state.
This mapping allows one to merely rely on the coincidence
statistics of measurement outcomes, without any assump-
tions that specific quantum operators are measured, to
violate an entanglement witnessing inequality [21], a
property called measurement device independence that
was once believed to be true only in Bell nonlocality tests.

FIG. 1. The scheme of a semiquantum nonlocal game. Charlie
asks the players quantum questions while the players return
classical answers. The shared state between the players helps
them to obtain a maximum payoff in the game. Here, we allow
LOCC operations to be applied to the shared state and quantum
questions and introduce a device-independent measure of
entanglement.
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Consequently, researchers interpreted Buscemi’s results as a
clever way to remove the trust frommeasurement devices in
an entanglement witnessing procedure since any linear EW
can be recast as a SQNLG [21,25].
In this Letter, inspired by Buscemi’s approach, we con-

sider SQNLGs in the paradigm of local operations and
classical communication (LOCC). We show that a small
subset of games, which we call extremal semiquantum
witnessing games (ESQWGs), are both necessary and
sufficient for the full characterization of entangled states.
We then focus on the entanglement of negative-partial-
transpose (NPT) states as the necessary ingredient for
distillability [26]. We present a practical measurement-
device-independent (MDI) NPT-entanglement measure by
proving thatNPTentanglement can be quantified by a referee
in a single arbitraryESQWG. The main result of the present
Letter is thus to introduce a MDI measure of entanglement
which is convex and operationally accessible. Furthermore,
we extend our measure to quantify the entanglement in all
possible partitionings of multipartite quantum states.
From SQNLGs to SQWGs.—Let us start by describing

SQNLGs more rigorously. A SQNLG is a collaborative
game, denoted here byGsq, in which Alice and Bob share a
quantum state ϱ̂AB. Charlie prepares two sets of quantum
states fτ̂A0

i g and fω̂B0

i g as (quantum) questions with
probability fpig and sends them to Alice and Bob,
respectively. Here, A (B) and A0 (B0) label Alice’s
(Bob’s) input Hilbert spaces for shared state and quantum
questions, respectively. The joint Hilbert space of Alice
thus can be labeled by ~A≡ AA0 and similarly for Bob,
~B≡ B0B. Alice responds to each question classically from
the set of labels fxg and similarly, Bob from the set fyg.
Before the game starts, given the LOSR paradigm, they can
agree on a best strategy to win the game; however, during
the game; they are no longer allowed to communicate. For
each question i, Charlie evaluates a reward corresponding
to the answers x and y according to the function ℘ðx; yjiÞ.
The average reward of the game is then given by

℘̄ðϱ̂AB; P̂ ~A; Q̂ ~B;GsqÞ ¼
X

i;x;y

pi℘ðx; yjiÞμðP̂ ~A
x ; Q̂

~B
y ji; ϱ̂ABÞ;

ð1Þ
in which the joint probability distribution μðP̂ ~A

x ; Q̂
~B
y ji; ϱ̂ABÞ

is given by

TrðP̂ ~A
x ⊗ Q̂ ~B

y Þðτ̂A0

i ⊗ ϱ̂AB ⊗ ω̂B0

i Þ; ð2Þ
where P̂ ~A

x ∈ M ~A and Q̂ ~B
y ∈ M ~B are local effects (positive

operator-valued measure (POVM) elements) of the players.
They win or lose some value if the average reward is
positive or negative, respectively.
The players’ goal is, of course, to maximize the average

amount they can obtain in a game. Let us call the maximum
average reward the payoff value [27] and denote it by

℘⋆ðϱ̂AB;GsqÞ ¼ max
P̂ ~A;Q̂ ~B

℘̄ðϱ̂AB; P̂ ~A; Q̂ ~B;GsqÞ: ð3Þ

The main result of Buscemi [20], relevant for entanglement
detection, can be recast as follows. Given the set of all
SQNLGs Gsq and the set of all separable states Ssep for
any gameGsq ∈ Gsq and for any two states ϱ̂AB, σ̂AB ∈ Ssep,
one has

℘⋆ðϱ̂AB;GsqÞ ¼ ℘⋆ðσ̂AB;GsqÞ ≔ ℘⋆ðSsep;GsqÞ: ð4Þ
This simply reads as all separable quantum states, at best,
are equal in a SQNLG.
Criterion 1. (Buscemi).—A quantum state ϱ̂AB is

entangled if and only if there exists a SQNLG for
which ℘⋆ðϱ̂AB;GsqÞ > ℘⋆ðSsep;GsqÞ.
It is relevant to ask whether one should search within

the whole set Gsq for a game violating Eq. (4). The short
answer is negative [21]. Without a loss of generality, we
assume that the Hilbert spaces are finite dimensional since
entanglement can always be verified in finite dimensional
subspaces [28]. It is well known that, by the Hahn-Banach
theorem, for any entangled state ϱ̂AB∉Ssep, there exists an
EW Ŵ such that

TrŴϱ̂AB > 0; and ∀σ̂AB ∈ Ssep; TrŴσ̂AB ≤ 0: ð5Þ

Note that, here, for the sake of consistency, we have
changed the sign of the usual convention. Moreover, we
set TrŴ ¼ −D, withD ¼ minfdA; dBg being the minimum
dimensionality of Alice and Bob’s subsystems, to compare
different EWs, where such a normalization is always
possible [29]. Now, every EW can be transformed into a
SQNLG as follows. Charlie decomposes the witness in
terms of product states as Ŵ ¼ P

iβiτ̂
A0T
i ⊗ ω̂B0T

i , with T
denoting the transposition operation and βi ∈ R, and
defines a SQNLG via

Ŵ ↔ Wsq⇔℘ðx; yjiÞ ¼
�
βi
pi

�
δ1;xδ1;y:

We can then rewrite Eq. (3) as

℘⋆ðϱ̂AB;WsqÞ ¼ max
P̂ ~A;Q̂ ~B

TrðP̂ ~A
1 ⊗ Q̂ ~B

1 ÞðŴ ⊗ ϱ̂ABÞ: ð6Þ

We call any such a game a semiquantum witnessing game
(SQWG) and denote the set of all such games by Wsq.
Branciard et al. [21] showed that the set Wsq is indeed
necessary and sufficient for verifying the entanglement of a
state ϱ̂AB shared by the players. That is, ℘⋆ðSsep;WsqÞ ≤ 0,
and for any entangled state ϱ̂AB∉Ssep, there exists a SQWG
such that ℘⋆ðϱ̂AB;WsqÞ > 0.
SQWGs with LOCC.—In general, every EW is (with our

sign convention) a member of the compact convex set of
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normalized block-negative operators (defined as operators
with negative expectation values in all pure product states).
An extremal EW (EEW) Ŵe is one that cannot be written as
a convex combination of any two other block-negative
operators, and hence, there exists a pure product state
ja; bi ∈ Ssep such that ha; bjŴeja; bi ¼ 0 [30,31]. We now
introduce the set of extremal semiquantum witnessing
games (ESQWGs), We

sq ⊂ Wsq, which correspond to
EEWs. This class of games is necessary and sufficient
for entanglement detection, since for every entangled state
there exists an EEW which detects it [30,31]. A very
important corollary thus follows. For any We

sq ∈ We
sq, we

have that [32]

℘⋆ðSsep;We
sqÞ ¼ 0: ð7Þ

We extend this statement by first allowing the local
effects to be relabeled [37]. This is the procedure of
shuffling the labels of the measurement effects and possibly
assigning the same label to multiple outcomes with the help
of classical communication. This leads to LOCC effects
on the shared state and input quantum questions of the

form Ẑ ~A ~B
xy ¼ P

fðu;vÞ¼ðx;yÞP̂
~A
uv ⊗ Q̂ ~B

uv ∈ MLOCC [38]. Here,
x and y are labels to be sent to Charlie, u and v characterize
the local outcomes obtained by Alice and Bob, and
f∶N × N → N × N is a LOCC strategy relating the output
labels to the local measurement outcomes. Note that any
LOCC POVM is necessarily separable, but the converse is
not true [39]. Next, by substituting this into Eqs. (1) and (2)
and restricting the games to extremal ones, we define

℘MDIðϱ̂ABÞ ¼ max
We

sq

max
Ẑ ~A ~B

℘̄ðϱ̂AB; Ẑ ~A ~B
11 ;We

sqÞ: ð8Þ

Consequently, we have the following entanglement
criterion.
Criterion 1’.—A quantum state ϱ̂AB is entangled if and

only if ℘MDIðϱ̂ABÞ > 0.
The proof is given in the Supplemental Material [32].

The importance of Criterion 1’ is that it reduces the
entanglement detection down to a much smaller set of
games while simultaneously relaxing to general LOCC
measurements.
MDI quantification of entanglement.—Criterion 1’ also

provides an equivalent way to define the set of separable
states as the set of all quantum states providing a maxi-
mum payoff of zero: Ssep ¼ fϱ̂j℘MDIðϱ̂Þ ¼ 0g. This also
induces the idea that there exists the following continuous
hierarchy of sets.
Definition 1.—For any λ ≥ 0, define Sλ ¼

fϱ̂ABj℘MDIðϱ̂ABÞ ≤ λg.
Importantly, the set Sλ is convex as shown in the

Supplemental Material [32]. In addition, for any λ > 0,
Ssep ⊂ Sλ, with Ssep ¼ S0. For any ϱ̂AB∉Sλ, there exists

an ESQWG We
sq ∈ We

sq and an effect Ẑ ~A ~B
11 ∈ MLOCC for

Alice and Bob such that they can obtain a payoff value
℘MDIðϱ̂ABÞ > λ. To show this, we note that by the Hahn-
Banach theorem, there exists a (nonextremal) witness Ŵ for
the convex set Sλ which detects ϱ̂AB, and that it can be
optimized (i.e., made tangent) to Sλ [29,40]. The resulting
optimal witness can be written as a convex combination of
extremal points for which at least one of them detects ϱ̂AB.
Definition 1, along with the above considerations,

suggests that ESQWGs are also necessary and sufficient
for characterizing the continuum of the convex sets Sλ via
℘MDI. Moreover, we see that the average reward function
provides a lower bound on the amount of entanglement
shared by Alice and Bob. If, for a given quantum state ϱ̂AB,
the reward value that Alice and Bob obtain in an ESQWG

is ℘̄ðϱ̂AB; Ẑ ~A ~B
11 ;We

sqÞ ¼ λ0, then ϱ̂AB∉Sλ for any λ < λ0. We
formalize the above observations in the theorem below and
point the interested reader to the Supplemental Material for
the detailed proof [32].
Theorem 1.—The payoff ℘MDI measures entanglement

without relying on the quantum description of the meas-
urement devices.
Importantly, not only is ℘MDI a measure of entanglement

for the shared state, but allowing the players to access
infinite rounds of LOCC on input questions will not
improve their best achievement. Consequently, we can
relax the LOSR restriction in ESQWGs to LOCC [41,42].
Nevertheless, it is clear that this task of measuring ℘MDI is
practically challenging in high dimensions. Shortly, we will
provide a particularly interesting scenario where the referee
is only interested in the amount of NPT entanglement
which, in turn, eliminates the need for the maximization
over all EEWs. This removes the aforementioned difficulty
while preserving measurement-device independence.
MDI quantification of NPT entanglement.—It is a

well known fact that there are two types of entangled
states, namely, positive- and negative-partial-transpose
(P- and NPT) entangled states, which possess legitimate
or unphysical density operators upon partial transposition,
respectively. It is also known that NPT entanglement is
necessary for distillability [26], and this is the only type of
entanglement for systems with dimensions up to 6 [43],
e.g., two-qubit systems.
Similarly, EEWs are divided into indecomposable and

decomposable classes, where the latter only detects NPT
entangled states [29,44]. Denoting the corresponding games
as W ie

sq and Wde
sq, respectively, we have We

sq¼W ie
sq∪Wde

sq.
We now state and prove the most important result of the
present Letter, which enables a referee to characterize NPT
entanglement between two untrusted agents.
Theorem 2.—For every Schmidt-rank-D decomposable

ESQWG Wde
sq , the payoff,

℘MDI
NPTðϱ̂AB;Wde

sqÞ ¼ max
Ẑ ~A ~B

℘̄ðϱ̂AB; Ẑ ~A ~B
11 ;Wde

sqÞ; ð9Þ
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measures NPT entanglement without relying on the quan-
tum description of the measurement devices.
An immediate consequence is the following.
Corollary.—℘MDI

NPT is necessary and sufficient for full
MDI characterization of entanglement of the systems with
dimensions up to 6.
To outline the proof of the above theorem, we first notice

that decomposable EEWs are sufficient for detection of
NPT entangled states and possess a very simple structure
[30]; they are of the form Ŵde ¼ −Djψihψ jTB , where jψi is
a normalized entangled vector, and TB denotes the partial
transposition operation with respect to the second party.
Second, in a dA × dB dimensional Hilbert space, we may
further restrict the vectors jψi to have a Schmidt rank of
D ¼ minfdA; dBg. The main point here is that, for any
Schmidt-rank-D pure entangled state jψi, there exists a
stochastic LOCC (SLOCC) procedure that converts jψi
into an arbitrary pure entangled state jϕi with the same
Schmidt rank [1,34,35]. The class SLOCC is a subset
of separable operations, implying that the partial transpose
of a SLOCC map is also SLOCC. Therefore, Ŵde can be
transformed into any other decomposable EEW V̂de ¼
−DjϕihϕjTB , with a nonzero probability 0 < q ≤ 1 via
SLOCC. This simple fact enables Alice and Bob to win a
positive payoff in an arbitrary Schmidt-rank-D decompos-
able ESQWG chosen by Charlie if and only if they share
a NPT entangled state, via appropriately altering the
questions using SLOCC. As a result, the maximization
on ESQWGs in Eq. (8) becomes unnecessary for Charlie
if we restrict the games to Schmidt-rank-D decomposable
extremal ones. We refer the interested reader to the
Supplemental Material [32] for a detailed proof of
Theorem 2.
Clearly, ℘MDI

NPTðϱ̂AB;Wde
sqÞ ≤ ℘MDIðϱ̂ABÞ and ℘MDI

NPTðϱ̂AB;
Wde

sqÞ ¼ 0 if and only if ϱ̂AB ∈ SPPT. We also note that
universality follows from the fact that all completely
positive local operations (in particular, invertible ones)
preserve PPT and NPT entanglement. Furthermore, chang-
ing the game to a different Schmidt-rank-D decomposable
ESQWG provides a different universal measure of NPT
entanglement. We emphasize that the whole procedure
described here is MDI and thus, it is not possible for the
players to cheat and convince the referee that they have
more NPT entanglement than that contained in their state.
At this point, it is important to mention that the

maximization in the expression for ℘MDI
NPT is, in principle,

performed by the players. Note that this is of least
importance for the referee because ℘̄ ≤ ℘MDI

NPT guarantees
that the average reward always gives a lower bound on
the amount of NPT entanglement of ϱ̂AB. To Charlie, the
average reward ℘̄ can be considered as the effective
entanglement shared by Alice and Bob. This is the amount
of NPT entanglement contained within their shared state
ϱ̂AB extracted by their LOCC effect. We also note that

Charlie’s payment is based on the quantum questions he
prepares himself and the coincidence statistics of the
responses from Alice and Bob. Thus, he does not need
to make any assumptions about Alice and Bob’s measure-
ments in any form, as long as they are spatially separated.
However, he should hide the indices of the questions by
ensuring that his questions cannot be unambiguously
discriminated and that there are no side channels from
his lab to Alice and Bob [41]. The players can increase ℘̄ by
either sharing a more entangled state or using a better
LOCC strategy. We also emphasize that there is no need for
the referee to trust the players; if the players do not perform
their optimization appropriately, they will incur losses.
Connection to other measures.—Consider the measure

℘MDI
NPTðϱ̂AB;Wde

sqÞ obtained in a decomposable ESQWG,
where the optimal POVM element is determined to be

X̂ ~A ~B
11 , i.e., ℘MDI

NPTðϱ̂AB;Wde
sqÞ¼maxẐ ~A ~BTrẐ

~A ~B
11 ðŴde ⊗ ϱ̂ABÞ¼

TrX̂ ~A ~B
11 ðŴde⊗ ϱ̂ABÞ. Following the discussion given in the

previous section, defining the partial trace of the POVM
element and the state as the effective entangled state,

ς̂A0B0
¼ TrABX̂

~A ~B
11 ϱ̂AB, we arrive at the following form of

the measure:

℘MDI
NPTðϱ̂AB;Wde

sqÞ ¼ max
V̂de∈Vde

TrA0B0
V̂deς̂A0B0

; ð10Þ

where Vde is the set of all decomposable EEWs with a trace
equal to −D. The equality can be easily deduced by noting
that any transformation from Ŵde to some better witness
can be done using SLOCC operations, the effect of which
can be mimicked via the conjugate SLOCC operation on
the state ς̂A0B0

. By assumption, this leads to no increase in
the payoff and thus, Ŵde is the witness with highest payoff
for ς̂A0B0

.
The second equality in Eq. (10) has exactly the form of

the witness-based measures introduced by Brandão [14] for
the class of decomposable witnesses with a trace equal
to −D [45]. Consequently, we argue that ℘MDI

NPT is comput-
able using convex optimization algorithms in almost all
cases of interest. Following Brandão [14] and Eisert et al.
[15], in this particular case, our measure provides a MDI
lower bound on the amount of random robustness,
Rðς̂A0B0

Þ ≥ ℘MDI
NPTðϱ̂AB;Wde

sqÞ, [13] that is the minimum
amount of white noise to be added to the effective
entangled state ς̂A0B0

so that all the entanglement is
removed [46].
Example.—Consider the Schmidt-rank-2 decomposable

EEW Ŵde¼−2jΨ−ihΨ−jTB, where jΨ−i¼ð1= ffiffiffi
2

p Þðj01i−
j10iÞ is a Bell state. In a standard witnessing procedure,
the Bell state jΦþiAB ¼ ð1= ffiffiffi

2
p Þðj00iAB þ j11iABÞ is

detected by maximally violating the witnessing inequality
of Eq. (5), TrŴdejΦþiABhΦþj ¼ 1, while the other Bell
states cannot be detected using Ŵde and require different
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witnesses. In an ESQWG corresponding to Ŵde, on
the other hand, by sharing jΦþiAB, Alice and Bob
will win the payoff ℘MDI

NPTðjΦþiABÞ ¼ 1 if they perform

the projection onto Ẑ ~A ~B
11 ¼ jΦþi ~AhΦþj ⊗ jΦþi ~BhΦþjþ

jΦ−i ~AhΦ−j ⊗ jΦ−i ~BhΦ−j þ jΨþi ~AhΨþj ⊗ jΨþi ~BhΨþjþ
jΨ−i ~AhΨ−j ⊗ jΨ−i ~BhΨ−j. Now, one would naively expect
that the players could not gain a positive reward in the same
game if they share instead, for instance, the state jΦ−iAB, just
as thewitness Ŵde could not detect their state in the standard
witnessing procedure. Theorem 2, however, states the
contrary because the shared state is indeed NPT entangled.
It can be easily checked that if Alice and Bob project

onto Ẑ ~A ~B
11 ¼ jΦ−i ~AhΦ−j ⊗ jΦþi ~BhΦþj þ jΦþi ~AhΦþj ⊗

jΦ−i ~BhΦ−j þ jΨ−i ~AhΨ−j ⊗ jΨþi ~BhΨþj þ jΨþi ~AhΨþj ⊗
jΨ−i ~BhΨ−j, they will obtain the payoff ℘MDI

NPTðjΦ−iABÞ ¼ 1.
As a result, in accordance with Theorem 2, both jΦþiAB and
jΦ−iAB are maximally NPTentangled as measured by ℘MDI

NPT.
Multipartite extension.—It is straightforward to extend

our approach to quantify the entanglement within any
partitioning of a multipartite quantum state. In such
scenarios, there are K players denoted by the index set
I ¼ f1; 2;…; Kg, where a k partition of them is uniquely
specified by the set Pk ¼ fI1;…; Ikg such that∪k

j¼1Ij ¼ I
and that the players within the same party Ij (j ¼ 1;…; k)
can perform joint (global) measurements on their respective
questions, while the group of players in different parties are
confined to LOCC.
According to Refs. [19,47], in general, multipartite

entanglement has a highly complex structure. However,
the subset of witnesses extremal to the set of Pk-separable
quantum states is necessary and sufficient for detecting
entanglement within Pk. Depending on the partitioning,
Charlie thus performs the optimization over all such games
denoted as WPk

sq .
Theorem 3.—The payoff,

℘MDIðϱ̂Pk
Þ ¼ max

W
Pk
sq ∈W

Pk
sq

max
ẐPk∈MPk

LOCC

℘̄ðϱ̂AB; ẐPk
11;W

Pk
sq Þ; ð11Þ

measures entanglement with respect to the partitioning Pk
in a MDI way, and it is universal and faithful.
The proof follows from the same line of proof of

Theorem 1.
Conclusions.—We showed that entanglement can be

quantified operationally in a measurement-device-
independent way within the context of extremal semi-
quantum witnessing games, a subclass of semiquantum
nonlocal games, and in the LOCC paradigm. Thus, we
reduced the whole set of games down to a much smaller
subset of games. We proved that the LOCC does not help
the players to increase their maximum reward for a fixed
amount of effective shared entanglement. In this way, the
average reward provides a lower bound on the amount of
entanglement within the shared state, while the payoff

value provides a universal convex measure of entangle-
ment. We also showed that an arbitrary decomposable
member of this class of games is necessary and sufficient
for both detection and quantification of NPT entanglement,
and thus, we reduced the whole set of games down to a
single arbitrary game in such scenarios. We also extended
our approach to the multipartite scenario where quantifi-
cation of entanglement within an arbitrary partitioning of a
multipartite quantum state is desired.
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