
Violating Bell’s inequalities in vacuum

Benni Reznik, Alex Retzker, and Jonathan Silman
School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 69978, Israel

sReceived 23 November 2004; published 14 April 2005d

We employ an approach wherein the ground state entanglement of a relativistic free scalar field is directly
probed in a controlled manner. The approach consists of having a pair of initially nonentangled detectors
locally interact with the vacuum for a finite durationT, such that the two detectors remain causally discon-
nected, and then analyzing the resulting detector mixed state. We show that the correlations between arbitrarily
far-apart regions of the vacuum cannot be reproduced by a local hidden-variable model, and that as a function
of the distanceL between the regions, the entanglement decreases at a slower rate than,expf−sL /cTd3g.
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It is known that the vacuum state of a relativistic free field
is entangled. For two complementary regions of space-time,
such asx,0 andx.0, this entanglement is closely related
to the Unruh acceleration radiation effectf1g, and gives rise
to a violation of Bell’s inequalitiesf2,3g. For two fully sepa-
rated regions, entanglement persistsf4g, although, it is not
known in this case whether Bell’s inequalities are violated,
and how entanglement decays with the increase of separa-
tion, as compared to correlations. Similar questions concern-
ing entanglement have been addressed in the case of discrete
modelsf5–7g.

In this paper we shall study this problem by probing the
field’s entanglement with a pair of localized two-level detec-
tors f8g. This is done as follows. A state is prepared in which
the two detectors are not entangled with one another, or the
field. We then have each of the detectors locally interact with
the field for a finite duration, such that the detectors remain
causally disconnected throughout the processsFig. 1d. Since
entanglement cannot be produced locallyf9g, the net en-
tanglement between the detectors, once the interaction has
been switched off, must necessarily have its origin in
vacuum correlations. The interaction thus serves as a means
of redistributing entanglement between the field and the de-
tectors. We shall show that for arbitrarily far-apart regions,
the detectors’ final mixed state, after filtering, violates Bell’s
inequalities, and in the process obtain a lower bound on the
amount of vacuum entanglement.

To setup the model, we shall assume that the detectors are
localized within a region of a typical scale ofR, and are
separated by a much larger distanceL@R. Consistency with
relativity requires us to use detectors of a rest massM, for
which R@lCompton=" /Mc. In this limit, the effects of both
detector pair creation, and the “leakage” of each detector’s
wave function to the outside of its localization region, be-
come exponentially small, of the order of,exps−2cMR/"d
f10,11g. Note that this ensures that the overlap between the
detectors’ wave functions is negligible. Under these condi-
tions, in their rest frame, the detectors can be described as
nonrelativistic quantum-mechanical systems. Finally, we
shall assume that, by means of an external coupler, each
detector’s degrees of freedom can be coupled “at will” to the
field. Since the coupler need not be of the same type as the
studied field, we shall make the additional assumption that it
can be described classically, and therefore does not generate
entanglement.

There have been several proposals for detector models
which can satisfy the above requirements; notably, the
Unruh-Wald “particle in a box” detectorf12g and the DeWitt
monopole detector modelf13g. In both models the detector
Hamiltonian issV /2dsz, with V being the energy gap be-
tween the two levels andsz a Pauli matrix. The field-detector
interaction Hamiltonian is

Hint = estdE d3x csxWdse+iVts+ + e−iVts−dfsxW,td. s1d

fsxW ,td is a relativistic free scalar field in three spatial dimen-
sions, thes± are the detector’s ladder operators, andestd
governs the strength and duration of the interaction.csxWd is a
function of the detector’s spatial degrees of freedom, and is
determined by the model employedf14,15g.

Consider now a pair of DeWitt monopole detectors,A and
B, that are localized about the coordinatesxWA andxWB, respec-
tively. These detectors interact with the field throughHint
=HA+HB, whereHA andHB are interaction Hamiltonians of
the form of Eq.s1d. The window functionseAstd andeBstd are
chosen to vanish except for a finite durationT, such that
cT!L= uxWB−xWAu, ensuring that the detectors remain causally
disconnected throughout the interaction. In the following we
shall work in the Dirac interaction representation and employ
“natural” units s"=c=1d.

Since the interaction takes place in two causally discon-

FIG. 1. The world lines of detectorsA andB are shown for the
duration of the interaction. The horizontal and vertical axes are
space and time, respectively. The arrows denote the emitted radia-
tion. Notice that the radiation emitted by detectorAsBd does not
affect detectorBsAd, since fort.T the interaction is switched off.
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nected regions, the HamiltoniansHA andHB commute. The
evolution operatorU for the whole system thus factors to a
product of local unitary transformations

U = T̂fe−ieHAstddt 3 e−ieHBst8ddt8g, s2d

whereT̂ denotes time ordering. This guarantees thatU does
not change the net entanglement between the regions.

We take the initial state of the detectors and the field to be
uCil= u↓Alu↓Blu0l, whereu↓ l andu0l denote detector and field
ground states, respectively. In the weak-coupling limiteistd
!1si =A,Bd, expanding to the second order we get

uC fl = fs1 − Cdu↓↓l − FA
+FB

+u↑↑l

− iFA
+1Bu↑↓l − i1AFB

+u↓↑lgu0l + Ose3d, s3d

where Fi
±=edt eistde±iVited3x cisxWdfsxW ,td and C

= 1
2 eedtdt8 T̂ fHAstdHAst8dg+sA↔Bd. We observe that in the

first term above, the state of the detectors is unchanged,
while in the second term both detectors are excited and the
final state of the field isuXABl;FA

+FB
+u0l. Since uXABl con-

tains either two photons or none, it describes, respectively, an
emission of a photon by each of the detectors or an exchange
of a single virtual-photon between themsFig. 2d. Finally, the

last couple of terms describe an emission of a single photon
by either detectorA or B. In this case the final state of the
field is, respectively,uEAl;FA

+u0l, or uEBl;FB
+u0l.

Tracing over the field degrees of freedom, when working
in the basishuilji=0

3 =h↑↑ , ↑ ↓ , ↓ ↑ , ↓ ↓ j and employing the
notationiXABi2=kXABuXABl, we obtain the detectors’ reduced
density matrixf16g

r =1
iXABi2 0 0 − k0uXABl

0 iEAi2 kEBuEAl 0

0 kEAuEBl iEBi2 0

− kXABu0l 0 0 1 − iEAi2 − iEBi2
2

+ Ose4d. s4d

Note the two types of off-diagonal terms. The amplitude
k0uXABl acts to maintain coherence betweenu↓A↓Bl and
u↑A↑Bl, while the amplitudekEAuEBl acts to maintain coher-
ence betweenu↓A↑Bl and u↑A↓Bl. It is the relative magnitude
of these off-diagonal terms, as compared to the diagonal de-
coherence terms, that determines whether the density matrix
is entangled.

A density matrix is said to be inseparable or entangled iff
it cannot be expressed as a convex sum of local density ma-
tricesf17g. In the present case of a 232 system, a necessary
f18g and sufficientf19g condition for inseparability is that the
negativity f20g be positive. We shall therefore use the nega-
tivity as a measure of entanglement. The following expres-
sion is obtained for the negativity:

Nsrd < uk0uXABlu − iEAi iEBi . 0. s5d

Physically speaking, the inequality above is satisfied if the
single virtual-photon exchange process is more probable than
the off-resonance emissions of a single photon by each of the
detectors. The main contribution to the entanglement then
arises from states of the formau↓A↓Bl+bu↑A↑Bl.

The inequalitys5d can be reexpressed as

E
0

` dv

L
sinsvLde−v2R2

ẽAsVA + vdẽBsVB − vd .ÎE
0

`

v dv e−v2R2
uẽAsVA + vdu2E

0

`

v dv e−v2R2
uẽBsVB + vdu2, s6d

where the factore−v2R2
accounts for the “smearing” of the

detectors andẽisvd denotes the Fourier transform ofeistd.
sNote that for a massive field a factor ofv /Îv2+m2 must be
added to each integral.d The term sinsvLd on the left-hand
side can be interpreted as an effective window function that
characterizes the field’s response to the detectors. When in-
tegrating overv, this function governs the overall sign of
each mode’s contribution, and thus acts to reduce the ex-
change amplitude. This destructive interference effect can be
minimized by employing a window functionẽA for which
sinsvLdẽAsVA+vd remains positive over a finite integration

regime in the limit of largeL. A superoscillating function
meets this requirementf21,22g. In particular the function
f23g

ẽAsvd = fsvdJ0hÎsvTd2 − N2fsL/Td2 − 1gj, s7d

where fsvd is any function that converges faster than 1/v
and has finite temporal support. We observe thatẽAsvd is
bounded in time as required, and oscillates as sinsvLd about
v=vs±ÎN/2L, whereTvs=NL/T, approximatelyÎN times,
before gradually resuming “normal” slow oscillations for
larger values ofv. The use of superoscillations, however, is

FIG. 2. Emission and exchange processes. The exchange ampli-
tude, portrayed on the right, is dominated by a single off-shell emis-
sion followed by an on-shell absorption, while the double emission
amplitude, portrayed on the left, consists of two off-resonance pro-
cesses. Thus, asVA,B increases, the emission termiEAi iEBi de-
creases more rapidly than the exchange termuk0uXABlu.
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not without a price. ForvT,NÎsL /Td2−1 the function
ẽAsvd decays exponentially, rendering the exchange term,
and hence the negativity, exponentially small inL. The sec-
ond window functionẽB is a fixed hat function, convolvedk
times with itself. In v space it assumes the form
fsinsvT/kd /vT/kgk. For given values ofL andT we choose
the energy gapsVA=sN/TdÎsL /Td2−1 and VB=vs−VA

<N/2L. This choice ofVB fixes the center of the window
function ẽBsVB−vd in the region of superoscillations. For
large values ofL, the inequalityfEq. s6dg can then be ap-
proximated by ÎNsT/Ld2s1/VATVBTdfẽBs0d / ẽBsVBdg.1.
This ratio can be made arbitrarily large, at the expense of
reducing the negativity, by increasingN. To get a lower
bound, we takeN=sL /Td2. Substituting the expressions for
VA and VB into the above approximation, it takes on the
form sT/Ld5sL /2Tdk.1. Fork.5 this ratio increases withL.
We thus get a lower bound on the negativity

Nsrd ù e−sL/cTd3. s8d

Numerical computations show that this bound can be further
improved. TakingNùL /T, we getNsrdùe−sL /Td2 f24g. The
leakage of each detector’s wave function to the outside of
their localization regions introduces a correction of the order
of e−2MR to the above expression. However, this correction
can be made arbitrarily small by settinge−sL /Td2@e−2MR.
Note that we are free to do this, since the mass scaleM and
the distance scaleL are independent.

In passing, we would like to point out that in the case of
the free electromagnetic field the analysis can easily be re-
peated. Similar results are obtained in the case of the finite
duration coupling of a detector’s magentic or electric dipole
to the field. For a massive field, in the limit of largeL, the
above result remains unchanged, because then the contribu-
tion to the integrals arises from the range of frequenciesv
@m for which the field effectively behaves as if massless.

The reduced density matrix derived in the previous sec-
tion is entangled. The question arises as to whether these
vacuum correlations admit a local hidden-variablesLHV d de-
scription f3g. Applying the Horodecki theoremf25g to Eq.
s4d, we find that the detectors’ final state does not violate the
CHSH inequalityf26g. We shall now demonstrate that by
using local filtersf27g, a violation of the CHSH inequality
can be achieved for every separation distanceL. Hence, the
density matrixs4d reveals a “hidden” nonlocalityf28g, as in
the case of Werner statesf29g.

To show this we follow Gisinf27g. Once the interaction
with the field has been switched off we have each detector
pass through the filter

fA,B = S1 0

0 h
D . s9d

The density matrix is thus transformed according tor→r f
=sfA ^ fBdrsfA ^ fBd, so that thesnon-normalizedd filtered
density matrix is given by

1
iXABi2 0 0 − h2k0uXABl

0 h2iEAi2 h2kEBuEAl 0

0 h2kEAuEBl h2iEBi2 0

− h2kXABu0l 0 0 h4s1 − iEBi2 − iEAi2d
2 . s10d

Consider now the choiceh2<kXABu0l. We note that the
00, 33, 03, 30 termsfEq. s10dg are now nearly equal, and of
the order ofukXABu0lu2. Ideally, in the absence of decoher-
ence terms in the inner block, these terms come close to
reproducing a maximally entangled stateu↑ ↑ l− u↓ ↓ l. No-
tice, however, that the decoherence terms are of the order of
ukXABu0lu iEA,Bi2. Previously we have shown that the ratio
ukXABu0lu / siEAi iEBid can be made, by a suitable choice of
window functions, arbitrarily large. Therefore in this extreme
limit the relative strength of the decoherence terms, as com-
pared to the entangling terms, is greatly reduced, andr f can
be brought as close as we like to a pure, maximally en-
tangled state. This implies a maximal violation of Bell’s in-
equalities for the final state of the detectors, and since ini-
tially the detectors are not entangledsthus admitting a LHV
descriptiond, it follows that correlations between arbitrarily
separated regions of the vacuum cannot be ascribed to a
LHV model.

Maximal violation can be achieved at the price of reduc-
ing the detectors’ entanglementsnegativityd, which grows
smaller in the above limitsFig. 3d. We now wish to quantify
the more general case, for which the final state is more en-
tangledslarger negativityd, but gives rise to a weaker viola-
tion of Bell’s inequalities. Applying yet again the Horodecki
theoremf25g, we find that the CHSH inequality is violated if

uk0uXABlu
iEAi iEBi

. 4
iXABi

uk0uXABlu
. s11d

Note that for far-apart regions, this inequality is only slightly
stronger than the condition for entanglement.

Interestingly, if we repeat our process many times, the
resulting ensemble of entangled pairs can be reduced to a
smaller one of higher quality entangled pairs. This process is
known as distillation of entanglement, and is feasible for any
inseparable 232 mixed statef30g. Furthermore, since Bell’s
inequalities are violated in our example, the two detectors
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could be used directly for teleportation tasks, without having
to distill them firstf31g.

In conclusion, we have presented a physical effect of
vacuum fluctuations which is associated with quantum non-
locality. This effect stands in marked contrast to other
vacuum phenomena, such as the Lamb shift or the Casimir
effect, which to some extent can be “mimicked” by classical
stochastic local noisef32g.
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FIG. 3. Violation of the CHSH inequality. The dashed line
represents the negativity of the detectors before passing through
the filter, while the solid line represents the quantityMsrd−1,
which is calculated after the detectors have passed through the filter.
Since the CHSH inequality can be written in the formMsrd,1
f25g, we see that forV→`, the CHSH inequality is maximally
violated.
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