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Violating Bell's inequalities in vacuum
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We employ an approach wherein the ground state entanglement of a relativistic free scalar field is directly
probed in a controlled manner. The approach consists of having a pair of initially nonentangled detectors
locally interact with the vacuum for a finite duratidn such that the two detectors remain causally discon-
nected, and then analyzing the resulting detector mixed state. We show that the correlations between arbitrarily
far-apart regions of the vacuum cannot be reproduced by a local hidden-variable model, and that as a function
of the distancd. between the regions, the entanglement decreases at a slower rateekgr(L/cT)3].
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It is known that the vacuum state of a relativistic free field There have been several proposals for detector models
is entangled. For two complementary regions of space-timeyhich can satisfy the above requirements; notably, the
such asx<<0 andx>0, this entanglement is closely related Unruh-Wald “particle in a box” detectdd 2] and the DeWitt
to the Unruh acceleration radiation effédf, and gives rise  monopole detector modél3]. In both models the detector
to a violation of Bell's inequalitie$2,3]. For two fully sepa-  Hamiltonian is(Q/2)a,, with Q being the energy gap be-

rated regions, entanglement persigt although, it is not  yyeen the two levels and, a Pauli matrix. The field-detector
known in this case whether Bell's inequalities are violated,interaction Hamiltonian is

and how entanglement decays with the increase of separa-

tion, as compared to correlations. Similar questions concern- ; L0t g

ing entangleﬁwent have been addressed inqthe case of discrete ~ Hint= f(t)f dx p(x)(€" Vo +e Mo (K D). 1)
models[5-7].

In this paper we shall study this problem by probing the¢(X,t) is a relativistic free scalar field in three spatial dimen-
field's entanglement with a pair of localized two-level detec-sions, thec* are the detector’'s ladder operators, aft)
tors[8]. This is done as follows. A state is prepared in whichgoverns the strength and duration of the interactif(®) is a
the two detectors are not entangled with one another, or thginction of the detector’s spatial degrees of freedom, and is
field. We then have each of the detectors locally interact wittyetermined by the model employgii, 15.
the field fo_r a finite duration, such that the d_etectors_ remain - consider now a pair of DeWitt monopole detectasand
causally disconnected throughout the prodsg. 1). Since g hat are localized about the coordinafgsandXs, respec-

entanglement cannot be produced locay, th.e net en- tively. These detectors interact with the field throulgh,
tanglement between the detectors, once the interaction has +H.. whereH. andH- are interaction Hamiltonians of
B A B

been switched off, must necessarily have its origin in__ % , .
vacuum correlations. The interaction thus serves as a mealtl ¥ formtof Eq.(l)r; The WT?OW fufr?c.ttlon:A(t)tgnd 6‘3(2 tar:et
of redistributing entanglement between the field and the getnosen 1o vanish except for a finite duralion suc a

tectors. We shall show that for arbitrarily far-apart regions,8T<L:|XBt_)éAlhensur:mgt Epat_tr;e dett_ectolrs trfn}a'l? Causa”y
the detectors’ final mixed state, after filtering, violates Bell's Isconnected throughout the Interaction. In the following we

inequalities, and in the process obtain a lower bound on théhall wo”rk in_ the _Dirfc interaction representation and employ
amount of vacuum entanglement. natl_JraI unlts_(ﬁ—c—_l). : .

To setup the model, we shall assume that the detectors are Since the interaction takes place in two causally discon-
localized within a region of a typical scale &, and are
separated by a much larger distahce R. Consistency with .
relativity requires us to use detectors of a rest mdsdor
which R>\compror=ft/Mc. In this limit, the effects of both )
detector pair creation, and the “leakage” of each detector’s
wave function to the outside of its localization region, be-
come exponentially small, of the order efexp(—2cMR/#)
[10,11]. Note that this ensures that the overlap between the

detectors’ wave functions is negligible. Under these condi- A ',///’Q *x B
tions, in their rest frame, the detectors can be described as P IR
nonrelativistic quantum-mechanical systems. Finally, we F o

shall assume that, by means of an external coupler, each

detector’s degrees of freedom can be coupled “at will” to the  F|G. 1. The world lines of detecto andB are shown for the
field. Since the coupler need not be of the same type as thuration of the interaction. The horizontal and vertical axes are
studied field, we shall make the additional assumption that ispace and time, respectively. The arrows denote the emitted radia-
can be described classically, and therefore does not generaten. Notice that the radiation emitted by deteci(B) does not
entanglement. affect detectoB(A), since fort>T the interaction is switched off.
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N s A bs last couple of terms describe an emission of a single photon
by either detectoA or B. In this case the final state of the
c J c I KAV field is, respectively|E) = ®,|0), or |Eg) = Dg|0).

Tracing over the field degrees of freedom, when working
in the basis{i) ?:O:{TT ,11,117,11} and employing the
Ya Y8 Va Ve notation||Xag|?={Xag| Xag), We obtain the detectors’ reduced

ensity matrix{ 16

FIG. 2. Emission and exchange processes. The exchange ampﬂ- y {16]
tude, portrayed on the right, is dominated by a single off-shell emis- ||XAB||2 0 0 - <0|xAB>
sion followed by an on-shell absorption, while the double emission

2

amplitude, portrayed on the left, consists of two off-resonance pro- = 0 ”EA” <EB|EA> 0

cesses. Thus, @, increases, the emission terf&,| |Eg| de- 0 (EAEg)  ||IEg|]? 0

creases more rapidly than the exchange tB1Xag)|. — (Xag/0) 0 0 1 —||E42- |IEgl?
+0(eY). (4)

nected regions, the Hamiltoniaft, and Hg commute. The
evolution operatoU_ for the whole system thus factors to a  Note the two types of off-diagonal terms. The amplitude
product of local unitary transformations (0|Xag) acts to maintain coherence betwefn|g) and

U = Ter iAot ¢ grifHalt1at ] @ |TaTg), While the amplitud&E,| Eg) acts to maintain coher-

: ence betweeh|ATg) and|Talg). It is the relative magnitude
whereT denotes time ordering. This guarantees tiatoes ~ ©f these off-diagonal terms, as compared to the diagonal de-
not change the net entanglement between the regions. coherence terms, that determines whether the density matrix

We take the initial state of the detectors and the field to bdS entangled. _ _
[W)=|1 )| 1s)|0), where| | ) and|0) denote detector and field A density matrix is said to be inseparable or entangled iff
ground states, respectively. In the weak-coupling ligity 't cannot be expressed as a convex sum of local density ma-

<1(i=A,B), expanding to the second order we get trices[17]. In the present case of ax2 system, a necessary
[18] and sufficienf19] condition for inseparability is that the

U =[(L-C)|| ) — PaPg|TT) negativity[20] be positive. We shall therefore use the nega-
- . N tivity as a measure of entanglement. The following expres-
—iDxLel1 ) — i II0Y +O(),  (3) Y J g exp

sion is obtained for the negativity:
where  ®"=[dt&(t)e U [d (X p(X,t) and C

~ ~ - > 0.
:%ffdtdt’ T[Ha(t)HA(t)]+ (A< B). We observe that in the Np) = [OXae)| = B [Es] > O ©)
first term above, the state of the detectors is unchangedihysically speaking, the inequality above is satisfied if the
while in the second term both detectors are excited and theingle virtual-photon exchange process is more probable than
final state of the field i$Xag) =P, P5|0). Since|Xag) con-  the off-resonance emissions of a single photon by each of the
tains either two photons or none, it describes, respectively, adetectors. The main contribution to the entanglement then
emission of a photon by each of the detectors or an exchangises from states of the forad | A g)+8|1aTs)-
of a single virtual-photon between theiffig. 2). Finally, the The inequality(5) can be reexpressed as

OCd oo oo
f T‘”sin(wL)e-szzzAmA+w)’éBmB—w)> \/ J © do € R [Ep(Qp+ o)) J 0do e Qe+ o), (6)
0 0 0

where the factoe “® accounts for the “smearing” of the regime in the limit of largeL. A superoscillating function
detectors and(w) denotes the Fourier transform efit). ~ Meets this requiremerj21,22. In particular the function
(Note that for a massive field a factor of \w?+n? must be  [23]

agded to eagh integralThe term su(@L) on the Ieft-h'and () = o) I (@T)2 = NZ[(LIT)% - 1]}, 7)
side can be interpreted as an effective window function that

characterizes the field's response to the detectors. When ifvhere f(w) is any function that converges faster thanwl/
tegrating overw, this function governs the overall sign of and has finite temporal support. We observe #gdi) is
each mode’s contribution, and thus acts to reduce the exdounded in time as required, and oscillates aéugin about
change amplitude. This destructive interference effect can be=w+ VN/2L, whereTw=NL/T, approximately/N times,
minimized by employing a window functio&, for which  before gradually resuming “normal” slow oscillations for
sin(wL)er(Qa+w) remains positive over a finite integration larger values ofv. The use of superoscillations, however, is
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not without a price. ForoT<Ny(L/T)?2-1 the function In passing, we would like to point out that in the case of
éa(w) decays exponentially, rendering the exchange termthe free electromagnetic field the analysis can easily be re-
and hence the negativity, exponentially smallinThe sec- peated. Similar results are obtained in the case of the finite
ond window functiori; is a fixed hat function, convolvekl ~ duration coupling of a detector’s magentic or electric dipole
times with itself. In w space it assumes the form to the field. For a massive field, in the limit of large the
[sin(wT/K)/ wT/K]¥. For given values of. andT we choose above result remains unchanged, because then the contribu-
the energy gapsQ,=(N/T){(L/T)?>-1 and Qg=ws—Qa tion to the integrals arises from the range of frequencies
~N/2L. This choice ofQ fixes the center of the window > for which the field effectively behaves as if massless.
function x(Qg-w) in the region of superoscillations. For _ The reduced density matrix derived in the previous sec-
large values ofL, the inequality[Eq. (6)] can then be ap- tion is entangled. The question arises as to whether these

roximated bv VN(T/L)2(1/Q.TOT 0)/2a(Q)]>1. vacuum correlations admit a local hidden-variatilelV) de-
P Y AN(T/L)AL/ QAT T €6(0)/€( (D) fcription [3]. Applying the Horodecki theorerf25] to Eq.

This ratio can be made arbitrarily large, at the expense o ) o !
reducing the negativity, by increasiry. To get a lower 4), we find that the detectors’ final state does not violate the
bound, we takd\I:(L/T)’Z. Substituting the expressions for CHSH ineqqality[26]. We' sha}ll now demonstra}te that_ by
0, and Qg into the above approximation, it takes on the using local _f||ters[27], a violation o_f the_CHSH inequality
form (T/L)3(L/2T)*> 1. Fork> 5 this ratio increases with can be achieved for every separation distahcelence, the
We thus get a lower Bound on the neaativit " density matrix(4) reveals a “hidden” nonlocalit}28], as in

9 9 Y the case of Werner statga9].

Mp) = e (Len® (8) To show this we follow Gisir{27]. Once the interaction

with the field has been switched off we have each detector

Numerical computations show that this bound can be furthepass through the filter

improved. TakingN=L/T, we get\(p)=e/T* [24]. The

leakage of each detector’'s wave function to the outside of (1 0

their localization regions introduces a correction of the order fag= 0

of MR to the above expression. However, this correction

can be made arbitrarily small by settig-/7°>e 2R The density matrix is thus transformed accordingpte: p;

9)

Note that we are free to do this, since the mass debbnd =(fo® fg)p(fo® fg), so that the(non-normalizey filtered
the distance scalke are independent. density matrix is given by
|
Xagl? 0 0 = 70Xap)
0 PIEAP  7XEglEw 0
2 212 (10
0 7(EAlEs)  7°|Eg| 0
= 7XXagl0) 0 0 7'(1 - ||Eg]* - [IEAI?)
[
Consider now the choice?~ (X,g|0). We note that the Maximal violation can be achieved at the price of reduc-

00, 33, 03, 30 termEEq. (10)] are now nearly equal, and of ing the detectors’ entanglemefitegativity, which grows

the order of|(X,g|0)|2. Ideally, in the absence of decoher- smaller in the above limitFig. 3). We now wish to quantify
ence terms in the inner block, these terms come close téhe more general case, for which the final state is more en-
reproducing a maximally entangled state])—|| |). No-  tangled(larger negativity, but gives rise to a weaker viola-
tice, however, that the decoherence terms are of the order &pn of Bell's inequalities. Applying yet again the Horodecki
|(Xag| 0| |Eagll?- Previously we have shown that the ratio theorem25], we find that the CHSH inequality is violated if
[(Xag|0)|/(|[EAl||Eg])) can be made, by a suitable choice of 0| Xag)| Xagl

window functions, arbitrarily large. Therefore in this extreme IEAEs O Xae)| (11

limit the relative strength of the decoherence terms, as com- AlT=B AB

pared to the entangling terms, is greatly reduced,@r@hn  Note that for far-apart regions, this inequality is only slightly
be brought as close as we like to a pure, maximally enstronger than the condition for entanglement.

tangled state. This implies a maximal violation of Bell's in-  Interestingly, if we repeat our process many times, the
equalities for the final state of the detectors, and since iniresulting ensemble of entangled pairs can be reduced to a
tially the detectors are not entanglé@tius admitting a LHV ~ smaller one of higher quality entangled pairs. This process is
description, it follows that correlations between arbitrarily known as distillation of entanglement, and is feasible for any
separated regions of the vacuum cannot be ascribed to iaseparable X 2 mixed statd30]. Furthermore, since Bell’s
LHV model. inequalities are violated in our example, the two detectors
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S ainitiiie it could be used directly for teleportation tasks, without having
0.5 to distill them first[31].
el In conclusion, we have presented a physical effect of
] 10 15 20 Q vacuum fluctuations which is associated with quantum non-
-0.5 locality. This effect stands in marked contrast to other
-1 vacuum phenomena, such as the Lamb shift or the Casimir

effect, which to some extent can be “mimicked” by classical

FIG. 3. Violation of the CHSH inequality. The dashed ”neg?]tochastic local noisks2].

represents the negativity of the detectors before passing throu

the filter, while the solid line represents the quanti(p)-1, We thank Y. Aharonov, L. Vaidman, S. Popescu, J. |.
which is calculated after the detectors have passed through the filtegi - | Kklich. and A Bo,tero for helpf,ul discussioné and

Since the CHSH inequality can be written in the foiv(p) <1 :
[25], we see that fo) — o, the CHSH inequality is maximally suggestions. We acknowledge support from the {SFant
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