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It has been observed by numerous authors that a quantum system being entangled with another
one limits its possible entanglement with a third system: this has been dubbed the “monogamous
nature of entanglement”. In this paper we present a simple identity which captures the trade-off
between entanglement and classical correlation, which can be used to derive rigorous monogamy
relations.

We also prove various other trade-offs of a monogamy nature for other entanglement measures
and secret and total correlation measures.

I. INTRODUCTION

One of the fundamental differences between classical
correlations and quantum correlations is in their shara-
bility among many parties. Classical correlations can be
shared among many parties, while quantum ones can-
not be freely shared. For example, if a pair of two-level
quantum systems A and B have a perfect quantum cor-
relation, namely, if they are in a maximally entangled
state |Ψ−〉 ≡ (|01〉− |10〉)/

√
2, then the system A cannot

be entangled to a third system C. This indicates that
there is a limitation in the distribution of entanglement,
and many researches have been devoted to capture this
unique property, dubbed the “monogamy of quantum en-
tanglement”, in a quantitative way [1–4]. On the other
hand, the above example also suggests a slightly differ-
ent limitation on the two types of correlations. Note
that system A cannot even be classically correlated to
system C if AB is maximally entangled. Here a perfect
quantum correlation excludes the possibility of classical
correlations to other systems. One can also see that a
perfect classical correlation between A and B will forbid
system A from being entangled to other systems.

In this paper, we first show (section II) that this mu-
tually exclusive property can be cast into a simple equal-
ity. The derivation is straightforward once we choose
suitable measures for the quantum correlation (entan-
glement cost) and for the classical correlation (one-way
distillable common randomness). The equality also indi-
cates a close connection between the two (apparently dif-
ferent) measures. We may say that the two measures are
complementary to each other. In particular, the question
of additivity of one measure can be reduced to that of the
other. We also derive an inequality describing a limita-
tion on the distribution of entanglement. Then, in section
III, we explore mutual limitations between more general
measures of correlation: entanglement cost, general dis-
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tillable entanglement, “squashed entanglement” [5], and
distillable secret key.

II. ENTANGLEMENT VERSUS CLASSICAL

CORRELATION

Entanglement cost [6] is an operationally defined mea-
sure of bipartite entanglement. It connects an arbitrary
bipartite state ρAB over system A and B to a standard
bipartite state (|01〉 − |10〉)/

√
2 which we call a singlet.

Suppose that we want to prepare n pairs of systems in
state ρ⊗nAB by local operations and classical communica-
tion (LOCC), using a resource of m singlets. The entan-

glement cost EC of ρAB is defined as the infimum of the
ratio m/n in the asymptotic limit n→ ∞, under the con-
dition that the errors in the preparation should vanish in
the same limit. It was shown [6] that EC is equal to the
regularized entanglement of formation Ef [7], namely,

EC(ρAB) = lim
n→∞

1

n
Ef (ρ

⊗n
AB).

The entanglement of formation Ef is defined by

Ef (ρAB) = min
{pi,|ψi〉}

∑

i

piS
(

TrB[|ψi〉〈ψi|]
)

, (1)

where S(ρ) is the von Neumann entropy of density op-
erator ρ, and the minimum is taken over all ensembles
{pi, |ψi〉} satisfying

∑

i pi|ψi〉〈ψi| = ρAB. The entan-
glement cost does not depend on whether the classical
communication is allowed in both directions or restricted
to one direction.

A convincing operational measure of the classical cor-
relation inherent in a bipartite quantum state has been
proposed only recently by Devetak and Winter [8] (but
see also the recent work of Oppenheim and Horodecci [9]
based on a thermodynamical idea, as well as [10] and [11]
which adopt an approach via secret key rates). They con-
sider the optimum amount of the perfect classical corre-
lation that can be extracted from a bipartite state ρAB,
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measured in the number of maximally correlated classi-
cal bits (rbits). One problem in this approach is that
if no communication is allowed, there is no way to pro-
duce a perfect correlation even if we weaken the restric-
tion to an “almost perfect” correlation in the asymptotic
sense. They thus considered the case where C rbits are
extracted from ρAB via R bits of noiseless classical com-
munication between A and B. Noting that R bits of
noiseless classical communication can produce R rbits of
classical correlation by itself, the net contribution of the
state ρAB is (C−R) rbits. This quantity should be opti-
mized overR and over various protocols. Considering the
n states ρ⊗nAB, an asymptotic measure of distillable com-
mon randomness CD is thus defined as the supremum of
(C−R)/n in the limit n→ ∞. Devetak and Winter have
derived the formula for CD when the classical communi-
cation is restricted in one direction. When the direction
is from B to A, the distillable common randomness C←D
is given by

C←D (ρAB) = lim
n→∞

1

n
I←(ρ⊗nAB).

Here the function I←, which was proposed by Henderson
and Vedral [12], is defined by

I←(ρAB) = max
{Mx}

[

S(ρA) −
∑

x

pxS(ρx)

]

=: max I(X ;A),

where the maximum is taken over all the measurements
{Mx} applied on system B, px ≡ Tr[(11A ⊗ Mx)ρAB]
is the probability of the outcome x, ρx ≡ TrB[(11A ⊗
Mx)ρAB ]/px is the state of system A when the outcome
was x, and ρA ≡ TrB(ρAB). The right hand side in the
first line is the Holevo quantity, for which the second line
introduces a notation.

This measure is asymmetric, and C←D (ρAB) 6=
C→D (ρAB) in general; in the classical case however they
coincide and are equal to the mutual information [13].

In order to connect the above two measures, let us in-
troduce a duality relation among bipartite states. We
say that the state ρAB′ is B-complement to ρAB when
there exists a tripartite pure state ρABB′ such that
TrB(ρABB′) = ρAB′ and TrB′(ρABB′) = ρAB. As is ob-
vious from the definition, ρAB′ is B-complement to ρAB
if and only if ρAB is B′-complement to ρAB′ . The states
B-complement to ρAB is unique up to local unitary op-
erations on system B′, namely, any two states ρAB′ and
ρ′AB′ that are B-complement to the same state ρAB are
connected by a unitary operation UB′ on system B′ as

ρAB′ = (11A ⊗ UB′)ρ′AB′(11A ⊗ U †B′). Now we can prove
the following.

Theorem 1 When ρAB′ is B-complement to ρAB,

Ef (ρAB) + I←(ρAB′) = S(ρA) (2)

and

EC(ρAB) + C←D (ρAB′) = S(ρA), (3)

where ρA ≡ TrB(ρAB) = TrB′(ρAB′).

Proof . Let ρABB′ be the pure state satisfying
TrB(ρABB′) = ρAB′ and TrB′(ρABB′) = ρAB. Take
an ensemble {pi, |ψi〉} achieving the minimum in eq. (1).
Since

∑

i pi|ψi〉〈ψi| = ρAB, there exists a measurement

{M̃i} on system B′ such that, if applied on state ρABB′ ,
the outcome i occurs with probability pi, leaving the state
of A and B in |ψi〉. If we neglect system B, this im-

plies that if we apply {M̃i} on state ρAB′ , the outcome
i occurs with probability pi, leaving the state of A in
TrA[|ψi〉〈ψi|]. From the definition of I←, we have

I←(ρAB′) ≥ S(ρA) −
∑

i

piS(TrA[|ψi〉〈ψi|])

= S(ρA) − Ef (ρAB). (4)

Conversely, take a measurement {Mi} on system B′

achieving the maximum in the definition of I←, namely,
I←(ρAB′) = S(ρA) −

∑

i piS(ρi). The rank of the op-
erator Mi may be larger than one in general, so take
a decomposition Mi =

∑

jMij into rank-1 nonnega-
tive operators Mij . This gives a new measurement
{Mij} on system B′. Let pij ≡ Tr[(11A ⊗Mij)ρAB ] and
ρij ≡ TrB[(11A ⊗ Mij)ρAB]/pij . These are related to
pi and ρi as pi =

∑

j pij and piρi =
∑

j pijρij . From
the concavity of the von Neumann entropy, we have
S(ρA)−

∑

ij pijS(ρij) ≥ S(ρA)−
∑

i piS(ρi) = I←(ρAB′).
The definition of I← leads to the opposite inequality,
and we thus have S(ρA) − ∑

ij pijS(ρij) = I←(ρAB′).

Suppose that the measurement {Mij} is applied to the
pure state ρABB′ . The probability of the outcome ij is
given by pij defined above. When the outcome is ij,
the state of AB becomes a pure state |φij〉, since Mij is
rank-1. We thus obtain an ensemble {pij , |φij〉} satisfy-
ing

∑

ij pij |φij〉〈φij | = ρAB. If we neglect system B, the

situation is identical to the case where {Mij} is applied to
ρAB′ . This implies that TrB[|φij〉〈φij |] = ρij . Therefore,

Ef (ρAB) ≤
∑

ij

pijS(TrB[|φij〉〈φij |])

=
∑

ij

pijS(ρij) = S(ρA) − I←(ρAB′). (5)

Eq. (2) is proved by combining Eqs. (4) and (5). In order
to derive Eq. (3), note that ρ⊗nAB′ is B-complement to ρ⊗nAB
because ρ⊗nABB′ is a purification of either of the states.
Therefore, by the additivity of von Neumann entropy,
Ef (ρ

⊗n
AB) + I←(ρ⊗nAB′) = S(ρ⊗nA ) = nS(ρA). Dividing by

n and taking the limit n→ ∞, we obtain Eq. (3). �

In order to represent the mutually exclusive property
of classical and quantum correlations, let us consider
a general tripartite mixed state ρABC . We can always
find a pure state ρABCD on the four systems, such that
TrD(ρABCD) = ρABC . Regarding systems C and D as
a single system B′, we can apply Theorem 1 to obtain
Ef (ρAB)+I←(ρA(CD)) = S(ρA). It is straightforward to
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show I←(ρA(CD)) ≥ I←(ρAC) from the definition of I←.
We thus obtain the following corollary.

Corollary 2 For any tripartite state ρABC ,

Ef (ρAB) + I←(ρAC) ≤ S(ρA) (6)

and

EC(ρAB) + C←D (ρAC) ≤ S(ρA). (7)

The equality in each of the relations holds if ρABC is pure.

This corollary will be interpreted as follows. The local
entropy S(ρA) represents the effective size of the system
A measured in qubits. This view is justified by the ex-
istence of a compression scheme [14] that transfers the
contents of system A into S(ρA) qubits per copy while
retaining any correlation to other systems asymptotically
faithfully. This size will be understood as the capacity
of system A to make correlations to other systems. Here
we are asking how one can correlate system A to system
B and to system C at the same time, under the condi-
tion that the size of system A is limited to S(ρA) qubits.
The corollary states that the quantum correlation to one
system and the classical correlation to the other system
must use up this limited capacity of system A in a mu-
tually exclusive way, namely, the two correlations cannot
share the same fraction of the capacity. In other words,
the existence of a certain amount of quantum (classi-
cal) correlation to one system is sufficient to restrict the
classical (quantum) correlation to other systems by the
same amount. One curious property stated in the corol-
lary is that it is also necessary to restrict the correlations
to other systems. This results from the fact that the in-
equalities are saturated whenever ρABC is pure. Forming
a quantum (classical) correlation to system A is the only
way to assure that the classical (quantum) correlation
between A and other systems is smaller than is available
by the size of system A.

The last property gives us an operational definition of
the amount of entanglement in reference to classical re-
sources, rather than to quantum ones such as singlets.
Considering that what we can directly ‘perceive’ is only
the classical quantity, it is natural to seek a tighter con-
nection between entanglement and classical correlations.
Bell’s inequalities may serve as a tool for that purpose,
but we do not know yet how to measure the amount of
violation of Bell’s inequalities in a satisfactory way, nor
how to use Bell’s inequalities to distinguish the states
with bound entanglement from the separable ones. Here
we can define the amount of entanglement in a bipartite
state ρAB as follows. Consider any purification ρABC
of ρAB. The entanglement is defined as the difference
between two values of one-way distillable common ran-
domness as E(ρAB) ≡ C←D (ρA(BC)) − C←D (ρAC), where
C←D (ρA(BC)) represents the one-way distillable common
randomness between A and the combined system of B
and C, and C←D (ρAC) represents the one between A

and C. The amount C←D (ρA(BC)) − C←D (ρAC) corre-
sponds to the reduction in the amount of distillable clas-
sical correlations caused by the omission of system B.
Since C←D (ρA(BC)) = S(ρA), it follows from Eq. (3)
that E(ρAB) = EC(ρAB). Thus the two measure coin-
cides, but note that E(ρAB) is in the unit of rbits, while
EC(ρAB) is in the unit of ebits.

Since the von Neumann entropy satisfies the additiv-
ity S(ρ ⊗ ρ′) = S(ρ) + S(ρ′), Theorem 1 implies that
the sum of Ef (ρAB) and I←(ρAB′) is additive. Thus
the additivity of one implies that of the other, namely,
Ef (ρA1B1

⊗ρA2B2
) = Ef (ρA1B1

)+Ef (ρA2B2
) holds if and

only if I←(ρA1B
′

1
⊗ ρA2B

′

2
) = I←(ρA1B

′

1
) + I←(ρA2B

′

2
),

where ρAjB
′

j
is Bj-complement to ρAjBj

. Indeed, a

similar relation holds for EC and C←D . The problem
of the (super)additivity of the one-way distillable com-
mon randomness is thus dual to the problem of the
(sub)additivity of entanglement cost or entanglement of
formation. In particular, we can export the known re-
sults [15] about the additivity of entanglement of forma-
tion and cost to that of distillable common randomness
through the duality of B-complement states.

One may wonder why a symmetric measure EC and an
asymmetric measure C←D are connected as in Eq. (3). Let
us introduce the one-way entanglement cost E→C (ρAB),
which is defined as the entanglement cost when we re-
strict the classical communication to be one way from
A to B. Then, we can regard Eq. (3) as resulting from
the two equations, E→C (ρAB) + C←D (ρAB′) = S(ρA) and
E→C (ρAB) = E←C (ρAB) = EC(ρAB). The former connects
two asymmetric measures as one would expect, and the
latter refers to a symmetry lying in the quantum theory.
Due to the presence of this symmetry, Eq. (3) happens to
take an anomalous form. We can also state this symme-
try in terms of one-way distillable common randomness,
in the following corollary that is easily derived from The-
orem 1.

Corollary 3 When ρAB′ is B-complement to ρAB,

S(ρB) − C→D (ρAB) = S(ρB′) − C→D (ρAB′).

This is because both the left and the right hand side are
equal to EC(ρBB′). �

The mutual exclusiveness between classical and quan-
tum correlations is by itself a property that is symmetric
between the two types of correlations. The difference be-
tween the two correlations — the classical correlations
can be freely shared, but the quantum ones cannot —
arises from the following asymmetry. The two systems
can have classical correlations without having any quan-
tum correlations, but the converse is not true. It would
be interesting to find an inequality representing the con-
verse property, namely, to find an upper bound on the
amount of quantum correlations for a given amount of
classical correlations. Combined with Eq. (7), such an
inequality will give us a general inequality expressing the
monogamy of entanglement. As an example, here we
prove the following inequality:
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Proposition 4

C←D (ρAB) ≥ E←D (ρAB), (8)

where E←D (ρAB) is the one-way distillable entanglement

of state ρAB.

Namely, consider any purification |ψ〉ABE of ρAB, and
any measurement on B which will result in a random
variable X and post-measurement states on A and E.
Then clearly,

I(X ;A) ≥ I(X ;A) − I(X ;E).

But according to [8] the maximum of the left hand side
over all measurements (regularized) equals C←D (ρAB),
while the same maximum (regularized) of the right
hand side is the secret key distillable by one-way discus-

sion [11], C←secret(ψABE). (In secret key capacities, the
indices, in this order, represent the first legitimate party,
the second legitimate party, and the eavesdropper.) On
the other hand, it is obvious that C←secret(ψABE) ≥
E←D (ρAB) since one can create one bit of secret key from
one ebit of distilled entanglement. (It is also directly
obtained by looking at the formulas derived in [11].)
Putting together these estimates gives (8). �

Combining Eq. (8) of Proposition 4 with Eq. (7) of
Corollary 2, we obtain a new inequality describing the
monogamy of entanglement,

Theorem 5

EC(ρAB) + E←D (ρAC) ≤ S(ρA), (9)

for any state ρABC .

III. OTHER CORRELATIONS

In the previous section, an inequality [Eq. (9)] describ-
ing the monogamy of entanglement has been derived from
a close connection between two measures of bipartite cor-
relations. In this section, we approach the monogamy
of entanglement through completely different arguments.
We are particularly interested in a family of inequalities
in the form

E(ρAB) + E(ρAC) ≤ E(ρA(BC)), (10)

where E(ρAB) is a measure of correlation between sys-
tems A and B. In the following, we prove that the
above form of inequality is true for the one-way distil-
lable entanglent, the one-way distillable secret key, and
the squashed entanglement.

Before doing so, it will be worth while noting that not
all the entanglement measures satisfy the inequality (10).
In particular, it does not hold for the entanglement cost,
as seen by the following example. Consider the purifi-
cation of the totally antisymmetric state on a two-qutrit

system:

|ψ〉ABC =
1√
6

(

|123〉 − |132〉+ |231〉

−|213〉+ |312〉 − |321〉
)

.

Note that all its two-party restrictions (in particular
to AB and to AC) are isomorphic to the totally anti-
symmetric state, for which the entanglement of forma-
tion and entanglement cost are known to be 1 ebit [17].
Hence we have EC(ρA(BC)) = S(ρA) = log 3 < 1 + 1 =
EC(ρAB) + EC(ρAC). This counterexample also implies
that the monogamy inequality (9) derived in the previ-
ous section can not be superseded by an inequality of the
form (10).

An inequality in the form (10) has a natural interpre-
tation when the measure E represents the optimal yield
of distillation protocols. If an optimal protocol between
A and B and an optimal protocol between A and C can
be carried out simultaneously without interference, the
combined protocol gives an yield E(ρAB) +E(ρAC), and
hence the inequality (10) holds. This is indeed true for
the one-way distillable entanglement. The argument is
as follows: Let us introduce a purification of the state
ρABC on a system E, such that we can phrase everything
in terms of a global pure state. B and C can both in-
dependently perform their halves of their respective pro-
tocols with A and send her (A) their classical messages.
Clearly, then, A can complete the distillation of entan-
glement between her and B by a local unitary U , leaving
the whole system in (a high-fidelity approximation of)
the state |ΦK〉AB⊗|Ψ〉A′CE. After this, she could reverse
the action of U by applying U−1, and apply another local
unitary V , to complete the distillation of entanglement
between her and C, leaving the whole system in (a high-
fidelity approximation of) the state |ΦL〉AC ⊗ |Θ〉A′BE .
Of cource, after this naive protocol, we could not find the
state |ΦK〉AB anywhere. Observe however that since af-
ter the first step AB is disentangled from the rest of the
world, V U−1 could as well be applied with a “dummy
state” |ΦK〉

Ã
˜̃
A

(totally in the possession of A) instead

of |ΦK〉AB, with the same resulting maximally entangled
state |ΦL〉AC between A and C. Thus, A can extract
both maximally entangled states with B and C at the
same time. This operational argument proves the in-
equality

Theorem 6

E←D (ρAB) + E←D (ρAC) ≤ E←D (ρA(BC)), (11)

for any state ρABC .

This inequality can also be derived using a formula for
E←D (ρAB), which has recently been established by prov-
ing the “hashing inequality” [11]. Let us define the quan-
tity

E
←(1)
D (ρAB) ≡ sup

∑

i

pi[S(ρ
(i)
A ) − S(ρ

(i)
AB)],
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where the supremum is taken over all the local instru-
ments carried out by B. The quantity pi is the proba-
bility of having classical outcome i when the instrument

is applied on state ρAB, and ρ
(i)
AB is the state left by the

instrument. Then, the formula is written as

E←D (ρAB) = lim
n→∞

1

n
E
←(1)
D (ρ⊗nAB).

From the strong subadditivity [16], we have

S(ρA)− S(ρAB) + S(ρA) − S(ρAC) ≤ S(ρA) − S(ρABC).

Then, the dervation of Eq. (11) is straightforward by not-
ing that carrying out a local instrument onB and another
on C can be regarded together as a local instrument on
BC. �

Following the analogy between entanglement and
shared secret key (like the monogamy, observed by nu-
merous authors: a good sample is provided by [18], [11]
and [19]), it is possible to apply a similar argument to
the case of the one-way distillable secret key.

Before that, a few remarks will be helpful regard-
ing the relation between the distillable secret key and
the entanglement. The secret key Csecret(ψABE) distil-
lable from the pure state |ψ〉ABE by public (two-way)
disussion between A and B against an eavesdropper E
can be regarded as a function of the marginal state
ρAB = TrE(|ψ〉〈ψ|ABE). This function is easily checked
to be a proper entanglement monotone, hence can be re-
garded as a measure of entanglement. This measure lies
between the distillable entanglement and the entangle-
ment cost, namely,

ED(ρAB) ≤ Csecret(ψABE) ≤ EC(ρAB).

The lower bound is obvious, and the upper bound
comes from the fact that the entanglement of formation
(1/n)Ef (ρ

⊗n
AB) can be shown to be an upper bound by the

following operational argument. An eavesdropper hold-
ing the E part of n copies of |ψ〉ABE can, by a suitable
measurement, effect any pure state decomposition of the
state shared between A and B and will only help them by
announcing her measurement result; hence the distillable
key length is upper bounded by the average of the distill-
able key lengths for these pure states, which is easily seen
to be equal to their respective entropy of entanglement.
Observe that this upper bound was recently improved
in [19], where it was shown that Csecret is in fact upper
bounded by the regularized relative entropy of entangle-
ment (against separable states) [20]. The technique is
very interesting in the present context: the key point is
expressing secret key distillation as a distillation prob-
lem involving LOCC. With these remarks the following
should not come as too big a surprise.

We prove that an inequality of the form (10) is true
for E(ρA(BC)) = C←secret(ψA(BC)E), namely,

Theorem 7

C←secret(ψAB(CE))+C
←
secret(ψAC(BE)) ≤ C←secret(ψA(BC)E).

In fact, even the stronger inequality

C←secret(ρABE) + C←secret(ρAC(BE)) ≤ C←secret(ρA(BC)E)
(12)

holds for any four-partite state ρABCE.

As in the case of the one-way distillable entanglement,
we can prove the inequality by showing that two distilla-
tion protocols can be carried out at the same time. The
protocols achieving the key rates C←secret(ρABE) (between
B and A) and C←secret(ρAC(BE)) (between C and A) can
be integrated in one protocol in which B and C inde-
pendently perform their local operations, and send pub-
lic messages to A. She then completes first the protocol
with B — by the protocol in [11], in which she in fact “de-
codes with high probability” the secret key already held
by B, hence by the gentle measurement principle she will
induce only little disturbance to her state. This means
she then can also complete the protocol with C with high
fidelity of success. By definition of the protocol she ends
up with key shared with B (secret against E) and key
shared with C (secret against BE). The fact that the
latter one is secret against B ensures that the two keys
are (almost) independent. Thus A and BC can obtain
a secret key of length C←secret(ρABE) + C←secret(ρAC(BE))
against E if B and C cooperate.

Again, as in the case of the one-way distillable entan-
glement, we can also prove Eq. (12) by the formula for
C←secret(ρABE) derived in [11], namely,

C←secret(ρABE) = lim
n→∞

1

n
C
←(1)
secret(ρ

⊗n
ABE)

with

C
←(1)
secret(ρABE) ≡ max

(

I(X ;A) − I(X ;E)
)

,

where the maximum is taken over all measurements at B
(result X). Then, the left hand side of Eq. (12) is (the
regularization of) the maximum of

(

I(X ;A) − I(X ;E)
)

+
(

I(Y ;A) − I(Y ;BE)
)

over all measurements at B (result X) and measurements
at C (result Y ). On the other hand, we have

I(X ;A)−I(X ;E) + I(Y ;A) − I(Y ;BE)

≤ I(X ;A) − I(X ;E) + I(Y ;AX) − I(Y ;EX)

= I(X ;A) + I(Y ;A|X) − I(X ;E) − I(Y ;E|X)

= I(XY ;A) − I(XY ;E),

where the last line, again by the formula, is upper
bounded by C←secret(ρA(BC)E), the right hand side of
Eq. (12). �

As a special case of Eq. (12), we can derive a
monogamy relation involving common randomness and
secret key. By setting system E as a trivial one (and by
swapping notaions B and C), we obtain

C←secret(ρABC) + C←D (ρAC) ≤ C←D (ρA(BC)).



6

Finally, we show that the inequality of the form (10)
is true for the so-called “squashed entanglement” [5],

Esq(ρAB) = inf

{

1

2
I(A;B|E) : ρAB = TrE(ρABE)

}

,

where the infimum is over all extensions ρABE of the state
ρAB (i.e., states whose partial trace over E is ρAB), and

I(A;B|E) = S(ρAE) + S(ρBE) − S(ρABE) − S(ρE)

is the conditional quantum mutual information. For it
we can prove:

Theorem 8 For any tripartite state ρABC ,

Esq(ρAB) + Esq(ρAC) ≤ Esq(ρA(BC)). (13)

Using the chain rule for the (conditional) mutual infor-
mation with any state extension ρABCE:

1

2
I(A;BC|E) =

1

2
I(A;B|E) +

1

2
I(A;C|BE)

≥ Esq(ρAB) + Esq(ρAC),

since E extends AB and BE extends AC. As this is true
for every state extension of ρABC we obtain the claim. �

While no operational interpretation has so far been
found for the squashed entanglement, the above inequal-
ity has an interesting corollary for operationally defined
measures of entanglement. This comes from the property
that Esq is lower bounded by ED (distillation under bidi-
rectional protocols) and upper bounded by EC [5]. As a
consequence, we obtain from (13)

Corollary 9

ED(ρAB) + ED(ρAC) ≤ EC(ρA(BC)), (14)

for any state ρABC .

Note that this is in no relation of dependence with
eq. (11): there both the left and the right hand side can
be smaller since we use one-way distillation.

IV. DISCUSSION

In this paper we have contributed to an understanding
of the monogamy of quantum entanglement by casting it

into a variety of quantitative trade-offs between measures
of entanglement and more general correlation measures.
All these are of the form of an upper bound on the sum
of a correlation measure for A − B and (maybe another
measure) for A − C for a tripartite state on ABC. This
trade-off assumes the very pleasing form of a complemen-
tarity identity for entanglement cost and one–way dis-
tillable classical correlation, linking these two quantities
and showing that their additivity problems are equiva-
lent: this extends Shor’s recent list of four equivalent
additivity questions [21] to five entries. It would be inter-
esting to find an operational proof for Theorem 1, which
here we have proved using only formal properties of the
definitions of Ef and I←.

We then went on to exploit our relation to study other
trade-offs involving further entanglement/correlation
measures: we gave an example that the entanglement
cost doesn’t obey a symmetric trade-off, but showed that
the squashed entanglement does — which leads to our
only example of a mutual trade-off for correlation mea-
sures based on distillation under bidirectional commu-
nication. For measures based on optimal yields under
unidirectional communication, we derived monogamy re-
lations through an operational argument, and also gave
an alternative proof based on the basic properties of en-
tropic functions.

There are a number of open questions regarding the
possibility of other inequalities. Along the line discussed
in Sec. II, an important question is whether one can re-
place S(ρA) in the inequality (7) by a correlation measure
between A andBC that is equal to S(ρA) whenever ρABC
is pure [for example, the entanglement cost EC(ρA(BC))].
For inequalities in the form (10) in Sec. III, interesting
cases will be E(ρAB) = E→D (ρAB), E(ρAB) = ED(ρAB),
and similar ones for the secret key. A crucial difference
here is that, for a similar operational argument to be car-
ried out, one must show that the party A can increase
the expected coherent information between A and B by
a measurement, without contaminating the correlation
between A and C. It is not clear, and is an interesting
question, whether this is always true or not.

Acknowledgments

AW was supported by the U.K. Engineering and Phys-
ical Sciences Research Council.

[1] D. Bruß, Phys. Rev. A 60, 4344 (1999); W. Dür, G. Vi-
dal and J. I. Cirac, Phys. Rev. A 62, 062314 (2000);
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