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The relativistic quantum theory of Stueckelberg, Horwitz and Piron (SHP) describes in a simple way the 
experiment on interference in time of an electron emitted by femtosecond laser pulses carried out by 
Lindner et al. In this paper, we show that, in a way similar to our study of the Lindner et al. experiment 
(with some additional discussion of the covariant quantum mechanical description of spin and angular 
momentum), the experiment proposed by Palacios et al. to demonstrate entanglement of a two electron 
state, where the electrons are separated in time of emission, has a consistent interpretation in terms of 
the SHP theory. We find, after a simple calculation, results in essential agreement with those of Palacios 
et al.; but with the observed times as values of proper quantum observables.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

Palacios, Rescigno and McCurdy [1] have described a proposed 
experiment which could show entanglement of a two electron sys-
tem in which each electron is emitted at a slightly different time. 
Although the anticipation of this effect is very reasonable, it does 
not have a theoretical justification in the framework of the stan-
dard nonrelativistic quantum theory, since in the nonrelativistic 
theory, both electrons must be prepared in states at precisely equal
times. As for the Lindner et al. [2] experiment showing interference 
in time for the wave function of a particle, for which extensive cal-
culations were done using the nonrelativistic Schrödinger evolution 
of the electron, wave functions at different times (corresponding 
to elements of different Hilbert spaces [3]) are incoherent in the 
nonrelativistic quantum theory. The direct product states corre-
sponding to the basis for many body systems must, in the same 
way, be constructed from states in the same Hilbert space. There-
fore, the same conclusion can be reached for the entanglement of 
the spins of a two body system. In actual practice, in fact, it would 
not be possible experimentally to generate two body states at pre-
cisely equal times, so that it is important to construct a theoretical 
basis, as we shall do below, in which effects of the type we expect 
to see (and are seen, for example, in the experiment of Lindner et 
al. [2]) can be consistently described.
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The nonrelativistic theory of the two body state with spin is 
constructed from linear combinations of direct product wave func-
tions taken at equal time [4]. One could argue intuitively from the 
vector model, in which the result J2 = j( j + 1) (for J the angular 
momentum operator, and j the integer or half-integer eigenvalue), 
that it appears that the physical angular momentum is not pre-
cisely along the “direction” of the vector J, but can be thought of 
as precessing around it. The entangled spin zero state of two spin 
1/2 systems therefore would be the result of an exact synchro-
nization of these oppositely oriented precessing spins so that the 
total angular momentum is zero. At slightly different times, this 
synchronization would be, in principle, lost. Under nonrelativistic 
Schrödinger evolution the superposition of two-body states at dif-
ferent times would therefore be ineffective. Stated more rigorously, 
states are not coherent [3] at nonequal times and linear superpo-
sition is not defined in the nonrelativistic theory.

As for the Lindner et al. experiment [2], an explanation can be 
given in terms of the relativistic quantum theory of Stueckelberg, 
Horwitz and Piron (to be called SHP) [5]. The computation in terms 
of the SHP [6] was in precise agreement with the experimental re-
sult (actually predicted in 1976 [7], when the technology was not 
available for verification). In this paper, we apply a similar reason-
ing to the entangled two body state.

We start with a review of the basic SHP theory [5] and a discus-
sion of how the Wigner theory of induced representations for rel-
ativistic spin is applied in this framework. We then argue that the 
proposed experiment of Palacios et al. should yield well-defined 
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entanglement for the constituent particles at not precisely equal 
times.

Stueckelberg [5], in 1941, imagined that a particle world line 
would be straight for no interaction, but that interaction could 
bend the world line so that it would turn to propagate in the neg-
ative direction of time. To describe such a picture, he introduced 
an invariant parameter along the world line, which he called τ , 
and interpreted the backward in time evolving branch of the line 
as an antiparticle. Horwitz and Piron [5] then generalized this idea 
in the sense that the parameter τ was to be considered as a uni-
versal invariant time, as for the original postulate of Newton, in 
order to formulate the many body problem in this framework, as 
we discuss below.

As a model for the structure of the dynamical laws that might 
be considered, Stueckelberg proposed a Lorentz invariant Hamilto-
nian for free motion of the form

K = pμpμ

2M
, (1.1)

where M is considered a parameter, with dimension mass, asso-
ciated with the particle being described, but is not necessarily its 
measured mass. In fact, the numerator (with metric − + ++; we 
generally take c = 1),

pμpμ = −m2, (1.2)

corresponds to the actual observed mass (according to the Einstein 
relation E2 = p2 + m2), where, in this context, m2 is a dynamical 
variable.

The Hamilton equations, generalized covariantly to four dimen-
sions, are then

ẋμ ≡ dxμ

dτ
= ∂ K

∂ pμ

ṗμ ≡ dpμ

dτ
= − ∂ K

∂xμ
.

(1.3)

These equations are postulated to hold for any Hamiltonian 
model, such as with additive potentials or gauge fields. A Poisson 
bracket may be then defined in the same way as for the non-
relativistic theory. The construction is as follows. Consider the τ
derivative of a function F (x, p), i.e.,

dF

dτ
= ∂ F

∂xμ

dxμ

dτ
+ ∂ F

∂ pμ

dpμ

dτ

= ∂ F

∂xμ

∂ K

∂ pμ
− ∂ F

∂ pμ

∂ K

∂xμ

= {F , K },

(1.4)

thus defining a Poisson bracket {F , G} quite generally. The argu-
ments of the nonrelativistic theory then apply, i.e., that functions 
which obey the Poisson algebra isomorphic to their group algebras 
will have vanishing Poisson bracket with the Hamiltonian which 
has the symmetry of that group, and are thus conserved quantities, 
and the (τ independent) Hamiltonian itself is then (identically) a 
conserved quantity.

It follows from the Hamilton equations that for the free particle 
case

ẋμ = pμ

M
(1.5)

and therefore, dividing the space components by the time compo-
nents, cancelling the dτ ’s (p0 = E and x0 = t),

dx = p
, (1.6)
dt E
the Einstein relation for the observed velocity. Furthermore, we see 
that

ẋμ ẋμ = pμpμ

M2
; (1.7)

with the definition of the invariant

ds2 = −dxμdxμ, (1.8)

corresponding to proper time squared (for a timelike interval), this 
becomes

ds2

dτ 2
= m2

M2
. (1.9)

Therefore, the proper time interval �s of a particle along a trajec-
tory parametrized by τ is equal to the corresponding interval �τ
only if m2 = M2, a condition we shall call “on mass shell”.

Stueckelberg [5] formulated the quantized version of this the-
ory by postulating the commutation relations

[xμ, pν ] = ih̄gμν, (1.10)

where gμν is the Lorentz metric given above, and a Schrödinger 
type equation (we shall take h̄ = 1 in the following)

i
∂

∂τ
ψτ (x) = Kψτ (x), (1.11)

where ψ(x) is an element of a Hilbert space on R4 satisfying∫
|ψ(x)|2d4x = 1, (1.12)

and satisfies the required Hilbert space property of linear superpo-
sition. With the generalization of Horwitz and Piron [5], Eq. (1.11)
can be written for any number N of particles as

i
∂

∂τ
ψτ (x1, x2 . . . xN)) = Kψτ (x1, x2 . . . xN), (1.13)

where K could have, for example, the form

K = �N
i

pi
μpiμ

2Mi
+ V (x1, x2 . . . xN), (1.14)

and V (x1, x2 . . . xN ) is assumed, for our present purposes, to be 
Poincaré invariant.

The basis of the Hilbert space describing such states is pro-
vided by the direct product of one particle wave functions taken 
at equal τ (as for equal time t in the nonrelativistic theory [4]). 
In the following, we apply this structure to the description of two 
particles with spin.

2. Relativistic spin and the Dirac representation

We shall discuss in this section the basic idea of a relativistic 
particle with spin, based on Wigner’s seminal work [8]. The the-
ory is adapted here to be applicable to relativistic quantum theory; 
in this form, Wigner’s theory, together with the requirements im-
posed by the observed correlation between spin and statistics in 
nature for identical particle systems, makes it possible to define 
the total spin of a state of a relativistic many body system.

The spin of a particle in a nonrelativistic framework corre-
sponds to the lowest dimensional nontrivial representation of the 
rotation group; the generators are the Pauli matrices σi divided 
by two, the generators of the fundamental representation of the 
double covering of S O (3). The self-adjoint operators that are the 
generators of this group measure angular momentum and are asso-
ciated with magnetic moments. Such a description is not relativis-
tically covariant, but Wigner [8] has shown how to describe this 
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dynamical property of a particle in a covariant way. The method 
developed by Wigner provided the foundation for what is now 
known as the theory of induced representations [9], with very 
wide applications, including a very powerful approach to finding 
the representations of noncompact groups [9].

In the nonrelativistic quantum theory, the spin states of a two 
or more particle system are defined by combining the spins of 
these particles at equal time using appropriate Clebsch–Gordan co-
efficients [4][10] at each value of the time. The restriction to equal 
time follows from the tensor product form of the representation of 
the quantum states for a many body problem [4]. For two spin 1/2
(Fermi–Dirac) particles, for example, an antisymmetric space distri-
bution would correspond to a symmetric combination of the spin 
factors, i.e. a spin one state, and a symmetric space distribution 
would correspond to an antisymmetric spin combination, a spin 
zero state. This correlation is the source of the famous Einstein–
Podolsky–Rosen discussion [11]. The experiment proposed by Pala-
cios et al. [1] suggests that spin entanglement could occur for two 
particles at non-equal times; the spin carried by wave functions of 
SHP type would naturally carry such correlations over the width 
in t of the wave packets, and therefore would provide a simple 
and rigorous prediction for this experiment.

Wigner’s formulation [8], however, was not appropriate for ap-
plication to a consistent relativistic quantum theory, since it does 
not preserve, as we shall explain below, the covariance of the ex-
pectation value of coordinate operators [5]. Before constructing a 
generalization of Wigner’s method which is useful in relativistic 
quantum theory we first review Wigner’s method in its original 
form, and show how the difficulties arise.

To establish some notation and the basic method, we start with 
the basic principle of relativistic covariance for a scalar quantum 
wave function ψ(p). In a new Lorentz frame described by the 
parameters 	 of the Lorentz group, for which p′ μ = 	

μ
ν pν (we 

work in momentum space here for convenience), the same phys-
ical point in momentum space described in different coordinates, 
by arguing that the probability density must be the same,

ψ ′(p′) = ψ(p) (2.1)

up to a phase, which we take to be unity. It then follows that as a 
function of p,

ψ ′(p) = ψ(	−1 p). (2.2)

Since, in Dirac’s notation,

ψ ′(p) ≡< p|ψ ′ >, (2.3)

Eq. (2.2) follows equivalently by writing

|ψ ′ >= U (	)|ψ > (2.4)

so that

ψ ′(p) =< p|ψ ′ > =< p|U (	)|ψ >

=< 	−1 p|ψ >

= ψ(	−1 p),

(2.5)

where we have used

U (	)†|p >= U (	−1)|p >= |	−1 p > . (2.6)

To discuss the transformation properties of the representation 
of a relativistic particle with spin, Wigner proposed that we con-
sider a special frame in which pμ

0 = (m, 0, 0, 0); the subgroup 
of the Lorentz group that leaves this vector invariant is clearly 
O (3), the rotations in the three space in which p = 0, or its cov-
ering SU (2). Under a Lorentz boost, transforming the system to 
its representation in a moving inertial frame, the rest momentum 
appears as pμ

0 → pμ , but under this unitary transformation, the 
subgroup that leaves pμ

0 invariant is carried to a form which leaves 
pμ invariant, and the group remains SU (2). The 2 × 2 matrices 
representing this group are altered by the Lorentz transforma-
tion, and are functions of the momentum pμ . The resulting state 
then transforms by a further change in pμ and an SU (2) trans-
formation compensating for this change. This additional transfor-
mation is called the “little group” of Wigner. The family of values 
of pμ generated by Lorentz transformations on pμ

0 is called the 
“orbit” of the induced representation. This SU (2), in its lowest di-
mensional representation, parametrized by pμ and the additional
Lorentz transformation 	, corresponds to Wigner’s covariant rela-
tivistic definition of the spin of a relativistic particle [8].

We now apply this method to review Wigner’s construction 
based on a representation induced on the momentum pμ . Let us 
define the momentum-spin ket

|p,σ >≡ U (L(p))|p0,σ >, (2.7)

where U (L(p)) is the unitary operator inducing a Lorentz trans-
formation of the timelike p0 = (m, 0, 0, 0) (rest frame momentum) 
to the general timelike vector pμ . The effect of a further Lorentz 
transformation parameterized by 	, induced by U (	−1), can be 
written as

U (	−1)|p,σ >

= U (L(	−1 p))U−1(L(	−1 p))U (	−1)U (L(p))|p0,σ > (2.8)

The product of the last three unitary factors

U−1(L(	−1 p))U (	−1)U (L(p)) (2.9)

has the property that under this combined unitary transformation, 
the ket is transformed so that p0 → p0, and thus corresponds to 
just a rotation (called the Wigner rotation), the stability subgroup 
of the vector p0. This rotation can be represented by a 2 ×2 matrix 
acting on the index σ , i.e., so that

U (	−1)|p,σ > = U (L(	−1 p))|p0,σ
′ > Dσ ,σ ′(	, p)

= |	−1 p,σ ′ > Dσ ,σ ′(	, p), (2.10)

where, as a representation of rotations, D is unitary. Therefore, tak-
ing the complex conjugate of

< ψ |U (	−1)|p,σ >=< ψ |	−1 p,σ ′ > Dσ ,σ ′(	, p),

one obtains

< p,σ |U (	)ψ >=< 	−1 p,σ ′|ψ > Dσ ′,σ (	, p), (2.11)

where, in this construction,

Dσ ′,σ (	, p) = (
(L(p)−1	L(	−1 p))

)
σ ′,σ , (2.12)

expressed in terms of the S L(2, C) matrices corresponding to the 
unitary transformation (2.9). The result (2.11) can be written as

ψ ′(p,σ ) = ψ(	−1 p,σ ′)Dσ ′,σ (	, p). (2.13)

The algebra of the 2 × 2 matrices of the fundamental represen-
tation of the group S L(2, C) are isomorphic to that of the Lorentz 
group, and the product of the corresponding matrices provide the 
2 ×2 matrix representation of Dσ ′,σ (	, p); we may therefore have

Dσ ′,σ (	, p) = (
L−1(p)	L(	−1 p)

)
σ ′,σ , (2.14)

where L and 	 are the 2 × 2 matrices of S L(2, C).
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As we have mentioned above, the presence of the p-dependent 
matrices representating the spin of a relativistic particle in the 
transformation law of the wave function destroys the covariance, 
in a relativistic quantum theory, of the expectation value of the 
coordinate operators. To see this, consider the expectation value of 
the dynamical variable xμ , i.e.

< xμ >= �σ

∫
d4 pψ(p,σ )†i

∂

∂ pμ
ψ(p,σ ). (2.15)

A Lorentz transformation would introduce the p-dependent 
2 × 2 unitary transformation on the function ψ(p), and the deriva-
tive with respect to momentum would destroy the covariance 
property that we would wish to see of the expectation value 
< xμ >.

It is also not possible, in this framework, to form wave packets 
of definite spin by integrating over the momentum variable, since 
this would add functions over different parts of the orbit, with a 
different SU (2) at each point.

As we describe in the following, these problems can be solved 
by inducing a representation of the spin on a timelike unit vector 
nμ in place of the four-momentum, using a representation induced 
on a timelike vector, say, nμ , which is independent of xμ or pμ

[12][13]. This solution also permits the linear superposition of mo-
mentum states to form wave packets of definite spin, and admits 
the construction of definite spin states for many body relativistic 
systems. In the following, we show how such a representation can 
be constructed.

Let us define, as in (2.7),

|n,σ , x >≡ U (L(n))|n0,σ , x >, (2.16)

where we may admit a dependence on x (or, through Fourier 
transform, on p). Here, we distinguish the action of U (L(n)) from 
the general Lorentz transformation U (	); U (L(n)) acts only on the 
vector space of the nμ . Its infinitesimal generators are given by

Mμν
n = −i(nμ ∂

∂nν
− nν ∂

∂nμ
), (2.17)

while the generators of the transformations U (	) act on the full 
vector space of both the nμ and the xμ (as well as pμ). In terms 
of the canonical variables,

Mμν = Mμν
n + (xμpν − xν pμ). (2.18)

The operator (2.17) is self-adjoint in the full Hilbert space norm 
defined by the integral of the norm (in the sheets of the foliation 
defined by nμ) to be defined in (2.25) over d4nδ(nμnμ + 1)d4x =
d3n
n0

d4x. The two terms of the full generator commute. Following 
the method outlined above, we now investigate the properties of a 
total Lorentz transformation, i.e.

U (	−1)|n,σ , x >

= U (L(	−1n)
(
U−1(L(	−1n))U (	−1)U (L(n)))

)|n0,σ , x > .

(2.19)

Now, consider the conjugate of (2.19),

< n,σ , x|U (	)

=< n0,σ , x|(U (L−1(n))U (	)U (L(	−1n))
)
U−1(L(	−1n)).

(2.20)

The operator in the first factor (in parentheses) preserves n0, 
and therefore, as before, contains an element of the little group 
associated with nμ which may be represented by the matrices of 
S L(2, C). It also acts, due to the factor U (	) (for which the gener-
ators are those of the Lorentz group acting both on n and x (or p), 
as in (2.18)), taking x → 	−1x in the conjugate ket on the left. 
Taking the product on both sides with |ψ >, we obtain

< n,σ , x|ψ >′=< 	−1n,σ ′,	−1x|ψ > Dσ ′,σ (	,n), (2.21)

or

ψ ′
n,σ (x) = ψ	−1n,σ ′(	−1x)Dσ ′,σ (	,n), (2.22)

where

D(	,n) = L−1(n)	L(	−1n), (2.23)

with 	 and L(n) the corresponding 2 × 2 matrices of S L(2, C)

(	 and L(n) are the corresponding 2 × 2 matrices of S L(2, C)).
With this transformation law, one may take the Fourier trans-

form to obtain the wave function in momentum space, and con-
versely. The matrix D is an element of SU (2), and therefore linear 
superpositions over momenta or coordinates maintain the defini-
tion of the particle spin, and interference phenomena for relativis-
tic particles with spin may be studied consistently. Furthermore, 
if two or more particles with spin are represented in representa-
tions induced on nμ , at a given value of nμ on their respective 
orbits, their spins can be added by the standard methods with the 
use of Clebsch–Gordan coefficients [10]. This method therefore ad-
mits the treatment of a many body relativistic system with spin 
[14]. It is interesting to note that the little group rotations defined 
by (2.23) are in a spacelike surface defined by nμ . The vector nμ

may be thought of as the normal to the spacelike surfaces defined 
by Schwinger [16] in the discussion of his variational principle for 
quantum field theory, thus providing a natural framework for the 
development of a covariant spinor formalism without reference to 
the momentum representation.

There are two fundamental representations of S L(2, C) which 
are inequivalent [15]. Multiplication by the operator σ · p of a 
two dimensional spinor representing one of these results in an ob-
ject transforming like the second representation. Such an operator 
could be expected to occur in a dynamical theory, and therefore 
the state of lowest dimension in spinor indices of a physical system 
should contain both representations [5]. As we shall emphasize, 
however, in our treatment of the more than one particle system, 
for the rotation subgroup, both of the fundamental representations 
yield the same SU (2) matrices up to a unitary transformation, and 
therefore the Clebsch–Gordan decomposition of the product state 
into irreducible representations may be carried out independently 
of which fundamental S L(2, C) representation is associated with 
each of the particles [14].

We now discuss the construction of Dirac spinors.
The defining relation for the fundamental S L(2, C) matrices is

	†σμnμ	 = σμ(	−1n)μ, (2.24)

where σμ = (σ 0, σ); σ 0 is the unit 2 × 2 matrix, and σ are the 
Pauli matrices. Since the determinant of σμnμ is the Lorentz in-

variant n02 − n2, and the determinant of 	 is unity in S L(2, C), 
the transformation represented on the left hand side of (2.24)
must induce a Lorentz transformation on nμ . The inequivalent sec-
ond fundamental representation may be constructed by using this 
defining relation with σμ replaced by σμ ≡ (σ 0, −σ). For every 
Lorentz transformation 	 acting on nμ , this defines an S L(2, C)

matrix 	 (we use the same symbol for the Lorentz transformation 
on a four-vector as for the corresponding S L(2, C) matrix acting 
on the 2-spinors).

Since both fundamental representations of S L(2, C) should oc-
cur in the general quantum wave function representing the state 
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of the system, the norm in each n-sector of the Hilbert space must 
be defined as [13]

N =
∫

d4x(|ψ̂n(x)|2 + |φ̂n(x)|2), (2.25)

where ψ̂n transforms with the first S L(2, C) and φ̂n with the sec-
ond. From the construction of the little group (2.21), it follows 
that L(n)ψn transforms with 	, and L(n)φn transforms with 	; 
making this replacement in (2.23), and using the fact, obtained 
from the defining relation (3.22), that L(n)†−1

L(n)−1 = ∓σμnμ

and L(n)†−1
L(n)−1 = ∓σμnμ , one finds that

N = ∓
∫

d4xψ̄n(x)γ · nψn(x), (2.26)

where γ · n ≡ γ μnμ (for which (γ · n)2 = −1), and the matrices 
γ μ are the Dirac matrices as defined in the books of Bjorken and 
Drell [17]. Here, the four-spinor ψn(x) is defined by

ψn(x) = 1√
2

(
1 1

−1 1

)(
L(n)ψ̂n(x)

L(n)φ̂n(x)

)
, (2.27)

and the sign ∓ corresponds to nμ in the positive or negative light 
cone. The wave function defined in (2.26) transforms as

ψ ′
n(x) = S(	)ψ	−1n(	

−1x) (2.28)

and S(	) is a (nonunitary) transformation generated infinitesi-
mally, as in the standard Dirac theory (see, for example [17]), by 
�μν ≡ i

4 [γ μ, γ ν ].
The Dirac operator γ · p is not Hermitian in the (invariant) 

scalar product associated with the norm (2.16). It is of interest to 
consider the Hermitian and anti-Hermitian parts

K L = 1

2
(γ · p + γ · nγ · pγ · n) = −(p · n)(γ · n)

KT = 1

2
γ 5(γ · p − γ · nγ · pγ · n) = −2iγ 5(p · K )(γ · n),

(2.29)

where K μ = �μνnν , and we have introduced the factor γ 5 =
iγ 0γ 1γ 2γ 3, which anticommutes with each γ μ and has square 
−1 so that KT is Hermitian and commutes with the Hermitian K L . 
Since

K 2
L = (p · n)2 (2.30)

and

K 2
T = p2 + (p · n)2, (2.31)

we may consider

K 2
T − K 2

L = p2 (2.32)

to pose an eigenvalue problem analogous to the second order mass 
eigenvalue condition for the free Dirac equation (the Klein Gordon 
condition). For the Stueckelberg equation of evolution correspond-
ing to the free particle, we may therefore take [13]

K0 = 1

2M
(K 2

T − K 2
L ) = 1

2M
p2. (2.33)

In the presence of electromagnetic interaction, gauge invariance 
under a spacetime dependent gauge transformation, the expres-
sions for KT and K L given in (2.29), in gauge covariant form, then 
imply, in place of (2.33),

K = 1
(p − e A)2 + e

�
μν
n Fμν(x), (2.34)
2M 2M
where

�
μν
n = �μν + K μnν − K νnμ ≡ i

4
[γ μ

n , γ ν
n ], (2.35)

where the γ μ
n are defined in (2.39). The expression (2.34) is quite 

similar to that of the second order Dirac operator; it is, however, 
Hermitian in the scalar product defined by (2.26); it has no direct 
electric coupling to the electromagnetic field in the special frame 
for which nμ = (1, 0, 0, 0) in the minimal coupling model we have 
given here (note that in his calculation of the anomalous magnetic 
moment, Schwinger [18] puts the electric field to zero; a non-zero 
electric field would lead to a non-Hermitian term in the standard 
Dirac propagator, the inverse of the Klein–Gordon square of the 
interacting Dirac equation). The matrices �μν

n are, in fact, a rela-
tivistically covariant form of the Pauli matrices.

To see this, we note that the quantities K μ and �μν
n satisfy the 

commutation relations

[K μ, K ν ] = −i�μν
n

[�μν
n , K λ] = −i[(gμλ + nνnλ)K μ − (gμλ + nμnλ)K ν,

[�μν
n ,�λσ

n ] = −i[(gνλ + nνnλ)�
μσ
n + (gσμ + nσ nμ)�λν

n

− (gμλ + nμnλ)�νσ
n + (gσν + nσ nν)�λν

n ].

(2.36)

Since K μnμ = nμ�
μν
n = 0, there are only three independent K μ

and three �μν
n . The matrices �μν

n are a covariant form of the Pauli 
matrices, and the last of (2.36) is the Lie algebra of SU (2) in the 
spacelike surface orthogonal to nμ . The three independent K μ cor-
respond to the non-compact part of the algebra which, along with 
the �

μν
n provide a representation of the Lie algebra of the full 

Lorentz group. The covariance of this representation follows from

S−1(	)�
μν
	n S(	)	λ

μ	σ
ν = �λσ

n . (2.37)

In the special frame for which nμ = (1, 0, 0, 0)), �i, j
n become 

the Pauli matrices 1
2 σ k with (i, j, k) cyclic, and �0 j

n = 0. In this 
frame there is no direct electric interaction with the spin in the 
minimal coupling model (2.34). We remark that there is, however, 
a natural spin coupling which becomes pure electric in the special 
frame, given by

i[KT , K L] = −ieγ 5(K μnν − K νnμ)Fμν. (2.38)

It is easy to see that the value of this commutator reduces to 
∓eσ·E in the special frame for which n0 = −1; this operator is 
Hermitian and would correspond to an electric dipole interaction 
with the spin.

Note that the matrices

γ
μ

n = γλπ
λμ, (2.39)

where the projection

πλμ = gλμ + nλnμ, (2.40)

appearing in (2.36), play an important role in the description of the 
dynamics in the induced representation. In (2.34), the existence of 
projections on each index in the spin coupling term implies that 
F μν can be replaced by Fn

μν in this term, a tensor projected into 
the foliation subspace.

We further remark that in relativistic scattering theory, the 
S-matrix is Lorentz covariant [17]. The asymptotic states can be 
decomposed according to the conserved projection operators
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P± = 1

2
(1 ∓ γ · n)

P E± = 1

2
(1 ∓ p · n

|p · n| )
and

Pn± = 1

2
(1 ± 2iγ 5 K · p

[p2 + (p · n)2]1/2
).

(2.41)

The operator

2iγ 5 K · p

[p2 + (p · n)2]1/2
→ σ·p/|p| (2.42)

when nμ → (1, 0, 0, 0). i.e., Pn± corresponds to a helicity projec-
tion. Therefore the matrix elements of the S-matrix at any point 
on the orbit of the induced representation is equivalent (by replac-
ing S by U (L(n))SU−1(L(n))) to the corresponding helicity repre-
sentation associated with the frame in which nμ is n0.

The anomalous magnetic moment of the electron can be com-
puted in this framework (Bennett [19]) without appealing to the 
full quantum field theory of electrodynamics.

3. The many body problem with spin, and spin-statistics

As in the nonrelativistic quantum theory, one represents the 
state of an N-body system in terms of a basis given by the tensor 
product of N one-particle states, each an element of a one-particle 
Hilbert space. The general state of such an N-body system is given 
by a linear superposition over this basis [4]. Second quantization 
then corresponds to the construction of a Fock space, for which 
the set of all N body states, for all N , are imbedded in a large 
Hilbert space, for which operators that change the number N are 
defined [4]. In order to construct the tensor product space corre-
sponding to the many-body system, we must consider, as for the 
nonrelativistic theory, only the product of wave functions which 
are elements of the same Hilbert space. In the nonrelativistic the-
ory, this corresponds to functions at equal time; in the relativistic 
theory, the functions are taken to be at equal τ . Thus, in the 
relativistic theory, there are correlations at unequal t , within the 
support of the Stueckelberg wave functions. Moreover, for particles 
with spin we argue that in the induced representation, these func-
tions must be taken at identical values of nμ , i.e., taken at the same 
point on the orbits of the induced representation of each particle 
[20].

This statement lies in the observation that the spin-statistics 
relation appears to be a universal fact of nature. An elementary 
proof, for example, for a system of two spin 1/2 particles, is that 
a π rotation of the system introduces a phase factor of ei π

2 for 
each particle, thus introducing a minus sign for the two body state. 
However, the π rotation is equivalent to an interchange of the 
two identical particles. This argument rests on the fact that each 
particle is in the same representation of SU (2), which can only be 
achieved in the induced representation with the particles at the 
same point on their respective orbits. The same argument applies 
for bosons, which must be symmetric under interchange (in this 
case the phase of each factor in a pair is eiπ ). We therefore see 
that identical particles must carry the same value of nμ [20], and 
the construction of the N-body system must follow this rule. It 
therefore follows that the two body relativistic system can carry 
a spin computed by use of the usual Clebsch–Gordan coefficients, 
and entanglement would follow even at unequal time (within the 
support of the equal τ wave functions), as in the proposed ex-
periment of Palacios et al. [1]. This argument can be followed for 
arbitrary N , and therefore the Fock space of quantum field theory 
carries the properties usually associated with fermion (or boson) 
fields, with the entire Fock space foliated over the orbit of the in-
ducing vector nμ .

Let us now construct a two body Hilbert space in the frame-
work of the relativistic quantum theory. The states of this two 
body space are given by linear combinations over the product wave 
functions, where the wave functions (for the spin (1/2) case; the 
formulation is the same for bosons) are of the type described in 
(2.27), i.e. (for equal n and τ ),

ψi j(x1, x2) = ψi(x1) ⊗ ψ j(x2), (3.1)

where ψi(x1) and ψ j(x2) are elements of the one-particle Hilbert 
space H. Let us introduce the notation, often used in differential 
geometry, that

ψi j(x1, x2) = ψi ⊗ ψ j(x1, x2), (3.2)

identifying the arguments according to a standard ordering. Then, 
without specifying the spacetime coordinates, we can write

ψi j = ψi ⊗ ψ j, (3.3)

formally, an element of the tensor product space H1 ⊗ H2. The 
scalar product is carried out by pairing the elements in the two 
factors according to their order, since it corresponds to integrals 
over x1, x2, i.e.,

(ψi j,ψk,�) = (ψi,ψk)(ψ j,ψ�). (3.4)

For two identical particle states satisfying Bose–Einstein of 
Fermi–Dirac statistics, we must write, according to our argument 
given above,

ψi jn = 1√
2
[ψin ⊗ ψ jn ± ψ jn ⊗ ψin], (3.5)

where n ≡ nμ is the timelike four vector labelling the orbit of the 
induced representation. This expression has the required symme-
try or antisymmetry only if both functions are on the same points 
of their respective orbits in the induced representation. Further-
more, they transform under the same SU (2) representation of the 
rotation subgroup of the Lorentz group, and thus for spin 1/2 par-
ticles, under a π spatial rotation (defined by the space orthogonal 
to the timelike vector nμ) they both develop a phase factor ei π

2 . 
The product results in an over all negative sign. As in the usual 
quantum theory, this rotation corresponds to an interchange of the 
two particles, but here with respect to a “spatial” rotation around 
the timelike vector nμ . The spacetime coordinates in the functions 
are rotated in this (foliated) subspace of spacetime, and correspond 
to an actual exchange of the positions of the particles in space 
time, as in the formulation of the standard spin-statistics theorem. 
It therefore follows that the interchange of the particles occurs in 
the foliated space defined by nμ , and, furthermore:

The antisymmetry of identical spin 1/2 (fermionic) particles, at 
equal τ , remains at unequal times (within the support of the wave 
functions). This is true for the symmetry of identical spin zero 
(bosonic) particles as well.

The construction we have given enables us to define the spin 
of a many body system, even if the particles are relativistic and 
moving arbitrarily with respect to each other.

The spin of an N-body system is well-defined, independent of the 
state of motion of the particles of the system, by the usual laws of 
combining representations of SU (2), i.e., with the usual Clebsch–
Gordan coefficients, if the states of all the particles in the system 
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are in induced representations at the same point of the orbit nμ and 
equal τ .

[14]

Furthermore, as we have pointed out, the generators of the ro-
tation groups in the fibre n of the foliation, act in the spacelike 
subspace orthogonal to nμ . Therefore, orbital angular momenta can 
as well be combined using standard Clebsch–Gordan addition for 
any number of particles, independently of the fact that they are in 
relative motion

4. The Palacios et al. experiment

The Palacios et al. prediction for the measurement of existence 
of entanglement of spin 1/2 electrons emitted by double ioniza-
tion of helium rests on the interference that can be observed for 
the space–time configuration part of the wave functions, which are 
symmetric, since the spin part is antisymmetric in the spin zero 
state. As we have pointed out, the antisymmetry of the spin state 
at unequal times (within the support of the wave function) is valid 
in the SHP theory, and the corresponding spacetime parts of the 
wave function will be, in the same way, symmetric. This exper-
iment would then show interference between parts of the wave 
function carrying different values of the t variable in the same 
way as in the Lindner et al. experiment. The orders of magni-
tude of time intervals in the Palacios et al. configuration are, in 
fact, due to the characteristic properties of helium, very close to 
those of the Lindner et al. experiment. The time intervals involved 
are therefore also of the order of femtoseconds. Our discussion, 
in the framework of the SHP theory, considers the time t as an 
observable, with a spread (rigorously obeying the uncertainty re-
lation �t�E ≥ 1

2 h̄) in the wavepackets (on the Hilbert space over 
the measure d4x), for both particles at equal τ .

The two entangled electrons are considered to be emitted, with 
the same polarization, with energies E1 = 35 eV and E2 = 69 eV
(about 10.4 eV and 14.6 eV after atomic physics corrections), sep-
arated by time intervals of the order of .75 fs (femtoseconds), with 
emission pulse widths of the order of 0.5 fs (non-overlapping), 
here necessarily within the time width of the two-body wave 
packet. Since this time interval is of the order of the time inter-
vals in the Lindner et al. experiment in the emission of a single 
electron, the structure of the two-body wave packet should have 
similar spread in time, the characteristic uncertainty in energy de-
termined by the atomic decay mechanism. As we have remarked in 
our study [6] of the Lindner et al. experiment, Floquet theory [21]
(for which the time t becomes an observable in a nonrelativistic 
framework) then would not explain the interference.

As formulated by Palacios et al., the antisymmetric spin zero 
state is antisymmetric in the spin factors and therefore symmetric 
in the spacetime factors in the two-body state. We write the space-
time factor for the wave function with both functions in the same 
foliation sheet nμ (we suppress the normalization factor 1/

√
2)

� = ϕ1(x1)ϕ2(x2) + ϕ1(x2)ϕ1(x1)

∼= ϕ1(k1)ϕ2(k2)
[
ei(k1·x1+k2·x2−E1t1−E2t2)

+ ei(k1·x2+k2·x1−E1t2−E2t1)
]
,

(4.1)

where we have interchanged the spacetime locations of the two 
identical electrons in the symmetrization (equivalent to inter-
change of the states). The two states, ϕ1 and ϕ2 differ in that in 
the first an electron is emitted from He, the second, the second 
electron is emitted from He+ .

We now define

T = t1 + t2 (4.2)

2

and

�t = t2 − t1, (4.3)

so that Eq. (4.1) becomes

� = ϕ1(x1)ϕ2(x2) + ϕ1(x2)ϕ1(x1)

∼= ϕ1(k1)ϕ2(k2)e−i(E1+E2)T [
ei(k1·x1+k2·x2− i

2 (E2−E1)�t)

+ ei(k1·x2+k2·x1− i
2 (E1−E2)�t)],

(4.4)

in agreement with the structure found by Palacios et al. (we as-
sume equal pulse widths as in their work).

Carrying out the integrals of the wave packets ϕ1(k1), ϕ2(k2)

(here, E1, E2 are independent of k1, k2), there will be an additional 
phase (as in the Palacios et al. calculation, but the �t-dependent 
phase is proportional to E2 − E1. We remark that these ener-
gies, corresponding to the spectra of the relativistic atomic bound 
state problem [22] contain to first order the terms Mic2 plus 
the Schrödinger eigenvalue, with additional relativistic corrections 
(here negligible). The Mic2 terms cancel for two electrons, and the 
remaining bound state level values would be in agreement with 
the Palacios et al. calculation.

5. Conclusions

We have discussed spin and orbital angular momentum rep-
resentations in a consistent relativistic quantum theory, generaliz-
ing Wigner’s construction for the representation of relativistic spin 
from a foliation over momentum to a foliation over an arbitrary 
timelike vector nμ [12] normalized to unity. This formulation ad-
mits the construction of representations of relativistic spin and an-
gular momentum in a quantum mechanical Hilbert space for which 
the generators of both spin and angular momentum act in a space-
like surface orthogonal to the timelike vector nμ. The standard 
Clebsch–Gordan methods are applicable to the reduction of direct 
product representations of two body (or more) states [14], in the 
fibre labelled by nμ , and in particular, to relativistic entanglement. 
The construction of such a state, involving linear combinations of 
direct products of wave functions at equal τ , admit correlations 
are unequal times since the wave functions have support on both 
space and time (as we have remarked, in practice it is not possible 
to prepare a two-body state at precisely equal times).

Since the pulse spacings assumed by Palacios et al. were about 
0.75 fs, interference would be supported between the two two-
body states in superposition with wave function widths of this 
order of magnitude. The uncertainty relation then implies that 
�E ≥ 10−3 eV. Natural line widths in atomic physics appear to be 
of order 10−6 eV, so that the uncertainty in time in the Stueck-
elberg wave packet could be much larger than what is needed to 
account for the observation of interference in time in the entan-
gled state.
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