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  The covariant quantization of the electromagnetic field in the Lorentz gauge gives rise to longitudinal and 
scalar photons in addition to the usual transverse photons.  It is shown here that the exchange of 
longitudinal and scalar photons can produce entanglement between two distant atoms or harmonic 
oscillators.  The form of the entangled states produced in this way is very different from that obtained in the 
Coulomb gauge, where the longitudinal and scalar photons do not exist.  A generalized gauge 
transformation is used to show that all physically observable effects are the same in the two gauges, despite 
the differences in the form of the entangled states.  An approach of this kind may be useful for a covariant 
description of the dynamics of quantum information processing. 

 
 
                             I. INTRODUCTION 
 
 The covariant quantization of the electromagnetic 
field in the Lorentz gauge involves longitudinal and 
scalar (temporal) photons in addition to the transverse 
photons that are familiar from the Coulomb gauge [1-6].  
That is necessary because the vector and scalar potentials 
form the components of a relativistic four-vector, and all 
four components must be quantized in order to maintain 
manifest covariance.  Although the Lorentz and Coulomb 
gauges are physically equivalent, a manifestly covariant 
treatment of photons may be useful in order to provide a 
covariant description of the generation of entanglement 
and of quantum information processing.   
 It will be shown here that the exchange of 
longitudinal and scalar photons can produce 
entanglement between two atoms or harmonic oscillators 
as illustrated in Fig. 1.  The form of the entangled state 
produced in this way is very different from that obtained 
in the Coulomb gauge.  Nevertheless, it will be explicitly 
shown that the results in the two gauges are physically 
equivalent.  Simple examples of this kind provide useful 
insight into the way in which the two gauges are 
equivalent despite their apparent differences. 
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 Most experiments demonstrating entanglement, 
quantum teleportation, and quantum information 
processing have been analyzed using a theory of photons 
(the Coulomb gauge) that is not manifestly covariant.  
The role of special relativity and covariance in 
entanglement and quantum information has been 
discussed in a number of earlier papers [7-25], none of 
which are based on a covariant description of the photons 
in the Lorentz gauge.  A covariant polarization for the 
photons has often been used in the Coulomb gauge, 
which provides a correct description of entangled states 
and quantum information under Lorentz transformations.  
The use of the covariant quantization of the 
electromagnetic field in the Lorentz gauge goes a step 
further and allows a manifestly covariant description of 
the time evolution of the system, including a covariant 
form for the Hamiltonian and perturbation theory [4].      

 In addition to being useful for a covariant description 
of the dynamics of entanglement and quantum 
information processing, these results provide additional 
insight into the techniques used to quantitatively measure 
entanglement.  In particular, the question arises as to 
whether or not the usual measures of entanglement would 
give results that are the same with or without the 
entanglement from the longitudinal and scalar photons.   
 The longitudinal and scalar photons do not physically 
exist in a freely-propagating beam of light, and the theory 
is designed in such a way that the scalar photons are 
associated with negative probabilities (the indefinite 
metric) that cancel the effects of the longitudinal photons 
in the absence of any interaction [1-6].  That is not the 
case in the presence of a charge or current distribution, 
such as in an atom, where the longitudinal and scalar 
photons can produce physically observable effects such 
as the Coulomb force.  It should be emphasized that the 
inclusion of longitudinal and scalar photons along with 
the indefinite metric forms the basis for the accepted 
covariant formulation of quantum electrodynamics [1-6].   
 
 
 
 
 
 
 
 
 
 
Fig. 1.  Entanglement between two atoms or harmonic oscillators A  
and B  produced by the exchange of virtual longitudinal and scalar 
photons.  In the absence of any interaction, oscillator A  is assumed 
to be in its first excited state while oscillator B  is in its ground 
state.  The energies of the first excited states are assumed to differ 
by B AE   Ñ Ñ .  The perturbed eigenstate of the system 

includes a probability amplitude   for oscillator A to be in its 
ground state with oscillator B in its excited state, as can be 
calculated using perturbation theory.   
 
 Since the Lorentz gauge is not widely used in 
quantum optics, a brief review of the covariant 
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quantization of the electromagnetic field in the Lorentz 
gauge is given in the next section.  The entanglement 
between two harmonic oscillators produced by the 
exchange of longitudinal and scalar photons in the 
Lorentz gauge is then calculated in Section III.  The 
corresponding situation is considered in the Coulomb 
gauge in Section IV, where the equivalent interaction 
between the harmonic oscillators is due to the classical 
scalar potential.  The observable properties of the 
entangled states are then compared in Section V, where it 
is shown that there is no physical difference between 
them.  A summary and conclusions are presented in 
Section VI. 
 
 

II.  REVIEW OF THE COVARIANT 
QUANTIZATION IN THE LORENTZ GAUGE 

 
The need for the longitudinal and scalar photons in a 

covariant treatment of problems of this kind can be seen 
by first considering the situation in classical 
electromagnetism, where the vector potential  and 

the scalar potential  form the components 

( , )tA r

( , )t r A  of a 

relativistic four-vector .  Using the Lorentz gauge 
gives rise to the usual wave equations with retarded 
solutions, which are manifestly covariant.  Quantizing all 
three components of  as well as the scalar 

potential  in the Lorentz gauge is necessary in 

order to maintain the manifest covariance of the theory 
under Lorentz transformations.  

A

A r( , )t

( , )t r

  The quantization of the electromagnetic field in 
the Coulomb gauge gives rise to the usual operators 

 and  that create photons with wave vector 

 and transverse polarization  and .  These photons 

represent the transverse part of the vector potential 
, while the scalar potential  is not 

quantized.  This is convenient in several respects, but it is 
not manifestly covariant; under a Lorentz transformation, 
components of the field that were not quantized in one 
reference frame will be quantized in another reference 
frame.   

†
1ˆ ( )a k

k

( , )tA r

†
2ˆ ( )a k

1ε 2ε

( , )t r

 All three components of the vector potential  

as well as the scalar potential  are quantized in a 

covariant treatment in the Lorentz gauge [1-6].  This 

gives rise to a new set of photon creation operators  

and  that create photons associated with the 

longitudinal part of  and the scalar potential 

, respectively.  These photons are referred to as 

longitudinal and scalar (or temporal) photons [1,2].   

( , )tA r

†ˆ ( )la k

( , )t r

†ˆ ( )sa k

)t

( , )tA r

( , r

 Physically, a beam of light is polarized only in the 
transverse direction and the longitudinal and scalar 
photons must be fictitious in the absence of any charge or 
current distributions.  Gupta [1] and Bleuler [2]  
independently proposed a solution to this problem, in 

which negative probabilities are associated with the scalar 
photons in such a way that they cancel out the effects of 
the longitudinal photons in a radiation field.  The usual 
inner product    between two states   and   is 

replaced with an indefinite metric ( | )  , which has the 
property that states with an odd number of scalar photons 
have a negative norm.  An excellent description of the 
indefinite metric and the quantization in the Lorentz 
gauge is given in the text by Cohen-Tannoudi et al. [6] 
and we will use notation similar to theirs.  It should be 
emphasized that this is the currently accepted covariant 
formulation of quantum electrodynamics [3-6]. 
 The adjoint of the operators , , , and 1â 2â ˆla ˆsa  

with respect to the new (indefinite) metric will be denoted 
by 1â

T , 2â
T , , and ˆlaT ˆsaT .  The desired properties of the 

indefinite metric can be obtained if we postulate the 
following commutation relations: 
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It is important to note the minus sign in the commutation 
relation for , which plays an important role in 

maintaining the consistency of the theory.  This is 
equivalent to taking 

ˆ ( )sa k

†ˆ ˆs sa a T , where †ˆsa  is the adjoint of 

ˆsa  with respect to the usual inner product.  It is then 

straightforward to show that states with an odd number of 
scalar photons have a norm of -1. 
 The Hamiltonian for the radiation field is chosen to 
be Hermitian with respect to the indefinite metric and it 
has the form  
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The minus sign on the last term in Eq. (2) gives a positive 
energy for the scalar photons when combined with the 
commutation relations of Eq. (1).   
 The components of the vector and scalar potential 
operators are given by 
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Here 0  is the permittivity of free space and .  

 and  form the components of a four-vector 

ˆ ˆ /sA c 

ˆ (iA r

ˆ (

)

)

ˆ ( )sA r

A r . 
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 The particle field operators  and  are 

defined as usual in the second-quantized Dirac theory.  If 

we let 

ˆ ( , )t r †ˆ ( , )t r

ˆ
PH  denote the Dirac Hamiltonian describing the 

particles in the absence of any interaction with the 
electromagnetic field, then the total Hamiltonian for the 
system of particles and electromagnetic field has the form 
[6] 
 

                            ˆ ˆ ˆ ˆ .P R IH H H H    (4) 

 
Here the interaction Hamiltonian is given by  
 

               

3

3

ˆ ( ) ( )

ˆ ˆ ˆˆ( ) ( ) ( ) ( )

I
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r r r

r - A j r A r r r
 (5) 

 

where ˆ ( ) r  and ˆ( )j r  are the usual charge and current 

density operators. 
 The time dependence of  in the Heisenberg 

picture can be calculated from 

ˆ ( , )t r

 

                        
ˆ ( , ) 1 ˆˆ ( , ), .

d t
t H

dt i

  
r

r


  (6) 

 
Evaluating the commutators gives  
 

2ˆ ( ) ˆ ˆ ˆ( ) ( ) ( ).s

d
i mc qcA c q

dt i

           

r
r α A r r


 


 (7) 
 
This is the usual second-quantized Dirac equation, where 

and α   are the Dirac matrices, which is thus consistent 
with the Hamiltonian of Eq. (4).   
 The negative norms that arise from the anomalous 

commutation relations for  and  could, in 

principle, lead to events that occur with negative 
probabilities.  This can be avoided [1-3] if we restrict the 
physical states 

ˆ ( )sa k ˆ ( )sa kT

  of the field to those that satisfy the 

additional (subsidiary) condition 
 

                 ˆˆ ˆ( ) ( ) ( ) 0.l sa a      k k k 
  (8) 

 

Here the operator  is defined by ˆ( ) k

 

                         
0

ˆ ˆ( ) ( ).
2

c
  

k


 k  (9) 

 
It can be shown that the subsidiary condition of Eq. (8) 
corresponds to the Fourier transform of the Lorentz 
condition 
 

                           
2

ˆ1ˆ 0.
c t


  


A  (10) 

 
Only the positive frequency components of Eq. (10) are 
included in the subsidiary condition of Eq. (8), since it 
would be impossible to satisfy that condition with the 
negative frequency components included. 

 In the absence of any charges,  and the 
subsidiary condition takes on the simpler form 

ˆ( ) 0 k

 

                           ˆ ˆ( ) ( ) 0.l sa a  k k  (11) 

 
It can be seen from Eq. (11) that the probability 
amplitudes to annihilate a longitudinal or scalar photon 
must be equal for a pure radiation field, such as a beam of 
light.  The probability of detecting a scalar photon is then 
equal and opposite to that for detecting a longitudinal 
photon, and the total detection probability is just that of 
the transverse photons.  This is an example of the way in 
which the subsidiary condition ensures that no physically 
observable event can occur with negative probability. 
 It can be shown from the commutation relations of 
Eq. (3) that 
 

                              ˆ ˆ 0s sa a 0 T  (12) 

 
where 0  is the vacuum state with no photons.  This 

result is very useful when calculating the relevant matrix 
elements for use in perturbation theory. 
 This paper is primarily concerned with a comparison 
of the entanglement obtained in the Lorentz and Coulomb 
gauges.  The velocities of the particles will be assumed to 
be much less than the speed of light and only the 
electromagnetic field will be treated covariantly.  In that 
limit Eq. (4) reduces [26] to the usual nonrelativistic 
Hamiltonian: 
 

                 
2

1 ˆˆ .
2

ˆ ˆ
R

e
H q H

m i c
       
 

A
Ñ

 (13) 

 
The entangled states of interest can now be calculated in 
the Lorentz gauge using the Hamiltonian of Eq. (13) and 
the commutation relations of Eq. (1).  A fully relativistic 
example including the use of the Dirac theory for the 
particles will be described elsewhere. 
 
 

III.  ENTANGLEMENT IN THE LORENTZ 
GAUGE 

 
   Any physical interaction between two systems can 
generate entanglement between them.  In the Lorentz 
gauge, the exchange of longitudinal and scalar photons 
can produce an entangled state between the two harmonic 
oscillators shown in  Fig. 1.  For example, oscillator A 
can emit a longitudinal or scalar photon and make a 
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transition from its excited state to its ground state, after 
which oscillator B can absorb the photon and make a 
transition from its ground state to its excited state. 
 For simplicity, we will consider the case of one-
dimensional harmonic oscillators in which the motion of 
the charged particles is confined to lie along the direction 
between the two oscillators, which we will take to be the 
x axis.  Similar results are expected for two-level atoms, 
but the use of one-dimensional harmonic oscillators  
simplifies the matrix elements needed for perturbation 
theory calculations.  This assumption limits the dipole 
moments of the oscillators to the x̂  direction while the 
wave vectors of the photons can be in any direction. 
 In the absence of any coupling to the electromagnetic 
field, the energy eigenstates of the system are product 
states such as  
 
                              0 1 0 .A B   (14) 
 
Here 1A denotes the first excited state of oscillator  

while 

A

0B  denotes the ground state of oscillator B .  The 

difference in the energies of the first excited states will be 
denoted by ( )B AE   Ñ , where A  and B  are the 

unperturbed resonant frequencies of the two oscillators.  
It will be assumed that AE Ñ .   

 If we include the coupling to the electromagnetic 
field, then the exchange of virtual photons will perturb 
the eigenstate of Eq. (14) to give a state of the form 
 
                        1 0 0 1 .A B A B    (15) 
 
Here   is a complex probability amplitude whose value 
can be calculated using perturbation theory.  (Eq. (15) 
will not be normalized in order to simplify the notation.)  
The fact that E  is small causes other possible terms in 
the perturbed state of Eq. (15), such as those in which 
both oscillators occupy higher excited states, to be 
negligible in comparison as will be seen below.  
 One of the main goals of this paper is to compare the 
value of   as calculated in the Lorentz gauge to the 
corresponding value in the Coulomb gauge.  The 
exchange of transverse photons will be neglected here 
since it has the same effect in both gauges.  As mentioned 
above, the velocities of the particles will be assumed to 
be small compared to the speed of light.   
 The value of   can be calculated to second order in 
the charge  of the particles using steady-state 
perturbation theory [26]: 

q

 

           
  

(2)
ˆ ˆ

.I I

m l n m n l

m m H l l H n

E E E E i





  
Ñ

 (16) 

 

Here (2)  is the second-order change in the eigenstate, 

n  is the initial state of Eq. (14), and l  and m  are 

complete sets of possible virtual states.  The iÑ  term 

avoids a singularity if n lE E , where the limit of 0   

is taken as usual.  The matrix elements do not allow 
transitions to intermediate states where l n  and the 

corresponding term can be omitted from the sum over l .  
The value of   in Eq. (15) corresponds to the coefficient 
of the virtual state 0 1A Bm  . 

 There are two basic kinds of processes that can 
produce an entangled state of the form shown in Eq. (15).  
The most intuitive process is one in which oscillator A 
emits a longitudinal or scalar photon and makes a 
transition from its excited state to its ground state, after 
which oscillator B absorbs the photon and makes a 
transition from its ground state to its excited state.  
Diagrams of this kind will be referred to as type I.   
 In addition to this, it is possible for oscillator B to 
emit a longitudinal or scalar photon and make a transition 
from its ground state to its excited state, even though the 
energy n lE E  in the denominator of Eq. (16) is larger in 

magnitude than for the more intuitive type I processes 
described above.  In that case, oscillator A can 
subsequently absorb the photon and make a transition 
from its excited state to its ground state.  Counter-
intuitive diagrams of this kind will be referred to as type 
II.  Their contribution to   will be found to be 
comparable to that from the more intuitive type I 

s in which 
scillator A emits a virtual scalar photon that is absorbed 

by oscillator B.  Using Eqs. (3) and (5) gives the matrix 
 the emission of the scalar photon 

          

processes because there is less cancellation between the 
probably amplitudes to exchange longitudinal and scalar 
photons for a type II process. 
 We will first consider a type I proces
o

element for
 

   

3

3 *
0 13

0

( ) ( ).
2 (2 )

Si
A Ad e



 
  



ˆˆ ˆ' 0 , 1 ,0S A S S A Sl H n d c A

qc

 k r

 (17) 
 k rr r rÑ

 
Here 1 ,0A S  denotes the initial state with oscillator A  in 

first excited state a scalar photons, while  its nd no 
0 ,A Sk  denotes the intermediate state with oscillator A  

i ts ground state and a scalar photon with wave vector 

Sk  and frequency Sck  .  The interaction 

Hamiltonian for the scalar photons has been denoted by 
ˆ

n i

'SH .  The nonrelat the Hamiltoivistic limit of nian, Eq. 

(13), was used to express the matrix elements in terms of 
the harmonic oscillator wave functions 0 ( )A r  and 

1 ( )A r .  
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 The matrix element of Eq. (17) could be evaluated in 
the dipole approximation, but it will be found that that 

ould lead to divergent integrals.  The divergence can be 
eliminated by retaining the exponential factor and not 

the dipole approximation, in whic se the
f Eq. (17) can be evaluated to give 

 

 

w

making h ca  
integral o

         
 

 20

3
0

/2

2 (2 )

.SS A

S S

ie e

  
   k dk r

 (18) 
ˆ 'l H n qc i  k d

Ñ

 is the location of the center of oscillator  and 

 moment of the harmonic oscillato
from the charge) given by 

 
Here 0A

d  is the dipole side 

r  A

r (a

 

                   ˆ0 1
2A A

A

d x
m

 
Ñ  (19) 

 
where  is the mass of the particles.    
 The matrix element for the absorption of the scalar 
photon by oscillator 

 m

B  can be evaluated in the same way 
to give 
 

   20 /2

3
0

ˆ '
2 (2 )

SS Bi
S Sm H l qc i e e

  
    k dk rk d

Ñ

 (20) 
 
where it has been assumed that the two oscillators have 
the same dipole moment.  It is important to note the 

in

scalar p r a type I 

Converting the sum of Eq. (16) to an integral and 
inserting Eqs. (18) and (20) gives the contribution 

m us sign in front of this equation, which comes from 
Eq. (12).  The contribution from the longitudinal and 

hotons will be found to nearly cancel fo
minus sign. process as a result of this 
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 The contribution (2)

IIS
  from the emission of a 

scalar photon by oscillator B

 
 

   2

) 3
3

0

0 0

2 2

1
exp 0 1 .S

S
SIIS

S

S A B A B
B

q c
d

kE

i e
i


  

  





       


k d

k d
k

k r r

 

 (22) 
 
 We

22
(2

 now calculate the contribution from a type I 
rocess in which oscillator A emits a longitudinal photon 

that is absorbed by oscillator B.  The matrix elements for 
the emission of a longitudinal photon by oscillator A

involve 

p

 
ˆ( ) ( )l-j r A r , where  is the longitudinal 

part of the vector potential.  In the nonrelativistic limit 

( )lA r

this gives  
 

 

3
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Here lck  , ˆ 'lH  denotes the interaction Hamiltonian

 longitudinal photons with w e v

 denote the corresponding unit 

ectors.  Evaluating this integral gives 
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This matrix element for the emission of a longitudinal 
photon differs from that for the emission of a scalar 
photon, Eq. (18), by a minus sign and a factor of /A   .  

his ensures that theT
w

 subsidiary condition 
ould be satisfied exactly for the emissi  

longitudinal and scalar photons with 

of Eq. (11) 
on of real

A   , fo r 

example. 
The matrix element for the absorption of a 

gitudinal photon by oscillator B can be evaluated in 
ve 

 
lon
the same way to gi
 

   2 /2ˆ ' i
lm H l q

    k dk rÑ
0

3
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The contribution (2)

Il
 and its absorption by 

oscillator  can be calculat in a similar way.  The 
main difference is the energy of the intermediate state, 
with the result that  
 

A ed 
 of this process to the perturbed 

eigenstate is then given by combining Eqs. (16), (24), and 
(25) to obtain 
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 The nonrelativistic Hamiltonian of Eq. (13) also 

contains a term proportional to 2 2 2/ 2q mcA , which can 
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where here .  The integral can be evaluated if we 
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 The integrals in Eq. (29) can be evaluated using 
tour integration and other techniques in th

where the dipole moment is much less than the distance 
etween the oscillators, or .  In that limit, the 
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where /L c L  .  Eq. (30) corresponds to the principal 

alue of Eq. (29).  This result has been labeled 
ith a

v integral 
 subscript w L  to indicate that it was calculated in the 

Lor mb 
gauge is calculated xt section.  Neither 
alculation includes the contribution from the exchange 

git

Coulomb potential is not 
 and there is no longitudinal component of the

vector potential. 
The total Hamiltonian of the system is still given by 

entz gauge.  The corresponding value in the Coulo
in the ne

c
of transverse photons, which is the same in both gauges 
and of no interest here. 
 
 

IV.  ENTANGLEMENT IN THE COULOMB 
GAUGE 

 
 It was shown in the previous section that the 
exchange of lon udinal and scalar photons can produce 
an entangled state of two harmonic oscillators.  The 
corresponding calculation will now be performed in the 

oulomb gauge where the C
quantized  

 
Eq. (4) where ˆ

PH  is the same as before.  But now the 

Hamiltonian for the radiation field in the absence of 
teraction is given by  

 
in

3
1 1 1 1 2 2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[( ) ( )]
2RH d k a a a a a a a a


          
 T T T  T (31)

sverse 

 

 
which only includes the energies of the tran
photons.  The interaction Hamiltonian becomes [6] 
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 in Eq. (32) 
 of a charge 

 bdis ve een ibutio ˆ
lA ̂

e
 The comparison with the Lorentz gauge is more 
apparent if we use the Fourier transform of the Coulomb 
interaction: 
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†

3 3
2

ˆ1 ( )
'

8
d d


  r r (33) 3

0 0

ˆ ˆ ˆ( ) ( ') ( )
.

| ' | 2
d

k

  



 

r r k k
k

r r
 

t-or
r is now 

               

 
Since the interaction Hamiltonian is already second order 
in q , we only need to use firs der perturbation theory 
here.  The relevant perturbation to the state vecto
given by 
 

       (2)
ˆ 'C

m n m

m H n
m

E E
 

  (34) 

 
where we have denoted the Coulomb interaction 

Hamiltonian of Eq. (33) by ˆ 'CH .  The effects of the 

transverse photons will be neglected once again. 
 Th tor ˆ ( ) k  can produce a transition o f 
the harmonic oscillators from one state ther, while 

†ˆ ˆ( ) ( ) k k  can produce simultaneous transitions in both 

oscillators e matrix elements of ˆ ( ) k  can be shown 
to be the same as those of Eqs. (17) and (20) aside from a 

 the exponential factor now comes from 
the Fourier transform.   
 There are four different ways in hich the virtual 
state 

e opera f one o
to ano

constant, where

 w

.  Th

0 1A B  can be produced starting from 1 0A B .  

or example, there is a contribution F (2)

i
  in which 

 produces a transition of oscillator 
e to its ground state while th  

operator from  ˆ ( ) k
ed stat

ˆ ˆ

A  
e operatorits excit

† ( ) ( )  k k  simultaneously produces a transition of 
oscillator B  from its ground state to its excited state.  
From Eq. (33), the matrix element iM  associated with 

this  process is given by  
 

         3
2

0

ˆ ˆ1 ( ) 0 0 ( ) 1 k k
.

2
B B A A

iM d
k

  k  (35) 

lso possible for operator to rodu
ansition of oscillator  from ed state to its 

es a

 
It is a  p ce a ˆ ( ) k  

 its excittr  A
ground state, while the operator ˆ ( ) k  produc  
transition of oscillator B  from its ground state to its 
excited state.  The corresponding matrix element is given 
by  
 

       3
ˆ1 ( ) 0B B

iiM d


 
k

k
2

0

ˆ0 ( ) 1
.

2
A A

k




k
 (36) 

rinciple, it is also possible for the operator

 annihilate a particle from oscillator  in the st

 
 In p ( ) k   ˆ

ate to A 1A  

and recreate it in oscillator B  in the state 1B , with a 

similar effect from operator ˆ ( ) k .  This corresponds to 
matrix elements of the form  

         3
ˆ ˆ0 ( ) 0 ( ) 1A B A

iiiM d
 

 
k k

k (37) 
2

0

1
.

2
B

k
 

 elements of this kind are negligibly small in the 
f

 
Matrix
imit o

 

l  d L
sci

, since the overlap of the wave functions 
llators decreases exponentially with their 

e therefore neglect 
of the two o
separation.  W iiiM  and the

atrix element 

 

corresponding m ivM  with ̂ and ( )k  

ˆ ( ) k  interchanged. 

 iM  and iiM  into Eq. (34) Inserting the values of 

gives 
 

              
 

    2

22
(2)  

(38) 
3

3 2

0 2

cos 0 1 .

q
d

kE

e

  
 



   


k d

k d
k

k r r

 

ives the result that  

                          

0 0l A B A B 
 
 
Evaluating this integral as before g
 

2 2

3
0

.
2C

d q

EL


 
  (39) 

 
A subscript C has been added to indicate that this is the 
coefficient of the term 0 1A B  in the entangled state as 

calculated in the Coulomb gauge. 
 

V.  COMPARISON OF THE RESULTS IN THE 
TWO GAUGES  

 
 A comparison of C  from Eq. (39) with L  from Eq. 

(30) shows that the exchange of longitudinal and scalar 
photons in the Lorentz gauge gives an entangled state that 
is very different in form from that obtained in the 
Coulomb gauge.  The leading term in the expansion of 
Eq. (30) is the same as that in Eq. (39), but the Coulomb 
gauge does not have the same dependence on the energy 
difference E  as is obtained in the Lorentz gauge.  This 
can be understood in part as being due to the presence of 

 associated 
ith the longitudinal photons in Eq. (25) do not have any 

direct counterpart in the Coulomb gauge.  Thus it is not 
e form of the entangled state is diff

 Nevertheless, one would expect the two results to be 
physically equivalent based on gauge invariance.  For 
lassical fields, the Coulomb and Lorentz gauges are 

by a ga

the energies of the intermediate states in the 
denominators of the second-order perturbation theory of 
Eq. (16), which does not occur in the Coulomb gauge 
treatment.  In addition, the matrix elements
w

surprising that th erent 
in the two cases.   

c
related uge transformation of the form 
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'( , ) ( , ) ( , )

( , )
'( , ) ( , )

t
t t

t
  

 

r

r r

 

t t t r A r r

 (40) 

 

(41) 

sically equivalent in either g

A

where ( , )t r  is an arbitrary function of position and 
time [27].  Under such a gauge transformation, the new 
wave function becomes [26] 

                     ( , )/'( , ) (iq tt e   rr rÑ , ).t  
 
The system is phy auge 

ecause '( , )tb  r  is not directly * observable and     
is unchanged by the t ansformation. 
 The situation is more complicat

r
ed for quantized fields 

 part because the Hilbert spaces have different 
e shown [6,28] that the state ve

in
dimensions.  It can b ctor 

C  in the Coulomb gauge should be related to the state 

vector L  in the Lorentz gauge by  

 

                          ˆ .C LT   (42) 
 

he transformation  is given by T T̂
 

                          
3ˆˆ ( ) ( )ˆ ic S d

T e
 

r r r /Ñ  (43) 
 

while the operator ˆ( )S r  is defined by  

 
3ˆ( )S r d 

k
k  (44) 

3

ˆ ˆ( ) ( )
.

2 (2 )
i is sa a

e e
i i    

 
 

 

T
k r k rk  Ñ

and  are defined in the 
 throughout

0

 

The operators T̂  
Schrodinger picture, which will be used  this 

ˆ( )S r

section.   
 This transformation has the property that the Dirac 
field operator becomes  
 

                       ˆ1 ( )/ˆ ˆ ˆ ˆ( ) ( ),iqcST T e  rr rÑ  (45) 
 
which leaves the charge density unaltered: 
 
                           ˆ ˆ 1 r r  ˆ ˆ

particle at any given 
 by such a transformation and
ges should be physically equiv

]. 

 e

( ) ( ).T T  (46) 
 

hus the probability of detecting a T
location is unaffected  the 
results of the two gau alent 
[6
 It will now be shown that the entangled states 
calculated in the Lorentz and Coulomb gauges are indeed 
related to ach other by the transformation of Eq. (42).  
Consider the state vector 'L  obtained by forming 

the perturbed state vector calculated in the Coulomb 
gauge back int

trans

o the Lorentz gauge: 

                        
 

   1ˆ' .L CT   (47) 

ere
 
H  is the entangled state of Eq. (15) using C  the 

value of C  calculated from the Coulomb gauge in Eq. 

(39).  To second order in q , the value of 'L  can be 

btaino
o

ed  expanding th nsformation  to second 
rder in  and multiply  the appropriate term in the 

expans

 by
q

ion of 

e tra
ing by

1T̂ 

 

C .  This gives 

 

 (2) 1 (2) (0) 1 (1) (1) 1 (0) (2)ˆ ˆ ˆ' ( ) ( ) ( ) .L C C CT T T       

 (48) 

he superscripts in parentheses correspond to the order of 
 
T
that term in q .  As shown in the Appendix, the result is 
that  
 

         

2 2

2

' 1 0
2

1 1
1 ... 0 1 .

2 2

A B

A B
L A

d q

E E




 
  

 

    
       
     Ñ Ñ

 (49) 

 
 
 A comparison of Eqs. (49) and (3

3
0

L EL

0) shows that the 
results from the Lorentz and Coulomb gauges are indeed 
related by the transformation T̂  as expected, at least to 
second order in q .  The derivation of Eq. (49) assumed 

that AE  Ñ  and that d L  as before.  It may be 

wor at the two g e equivalent results 
tion from Fourier component  of 

the field individually before any integration is performed.  
esults show that the entangled stat  in

 and Coulomb gauges are physically uiv
despite the difference in their forms.   
 This result is in agreement with a general proof [6,28] 

at the Coulomb and Lorentz gauges must give 

m

th noting th
for the contribu

a es giv
each

ug
 k

These r es  the 
Lorentz eq alent 

th
equivalent results.  The proof is based on the use of the 
transfor ation T̂  to transform the Hamiltonian in the 
Lorentz gauge into the Coulomb gauge.  The result is that 
 

         

1 3

3 3

0

3 †

ˆ ˆˆ ˆ ˆ ˆ ( ) ( )

ˆ ˆ1 ( ) ( ')
'

8 | ' |

ˆ ˆˆ ˆ( ) ( ) ( ) ( ).

L P R

l

TH T H H d

d d

qc d A c S

 


  


   




     







r j r A r

r r
r r

r r

r r r r r

 (50) 

 

Here ˆ
LH  denotes the Hamiltonian in the Lorentz gauge, 

as given by Eqs. (2) through (5), while ˆ ( )lA r  is the 
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longitudinal part of the vector potential operator.  The 
next to last term in Eq. (50) corresponds to the usual 

s wi

Coulomb potential, as in Eq. (32).  The Fourier transform 
of the last term in Eq. (50) can be shown to contain only 

the current operator multiplied by ˆ ˆ[ ( ) ( )]l sa aT Tk k  and its 

adjoint.  As a result, the longitudinal and scalar photons 
are generated with equal but opposite probability 
amplitudes, as in Eq. (11), and their effects cancel out just 
as they would in the absence of any interaction.  Thus the 
last term in Eq. (50) has no physical effects and can be 

ignored [6], which leaves u ˆ
Cth the Hamiltonian H  in 

the Coulomb gauge. 
The results presented here provide an explicit 

example of the way in which 
 

 
auges give equivalent results m 

d abov
tion for quantu

vestigations of this kind are y 

the Coulomb a
as would be expected fro

e.  Aside from pr
m information pro

also relevant becau
ti
 

d ( , )c t

nd Lorentz

oviding a 
toc
se an
ons or
c

g
the proof outline
covariant formula ols, 
in
proof could conceivably contain hidden assump  
other weaknesses.  For example, consider classical harge 
and current distributions ( , )c t r  an j r

w would the transfor
t with the Schro

 that are 

mation
di

explicit functions of time.   
in that case?  

equation in the Lorentz gauge 

                   

Ho
We starT̂  work nger 

 

   ˆLi H
dt


Ñ   

ultiplying both sides of the equation by  and 
er

.L L

d
(51)

T̂
 
M
ins ting  on the right gives 
 

           

1ˆ ˆ ˆT T I 

1ˆ ˆ ˆ ˆ ˆ ˆ .L
L L C C

d
i T TH T T H

dt


  Ñ  (52) 

 
 The point is that  

                         

 

 ˆ ˆL
L

d d
T T

dt dt


  (53)

finition in

 

 is time dependent, which it is from its de  
d the fact that  is tim

mind, the left hand side of Eq. (52) can be
written as 

 
if T̂
Eq. (43) an e dependent.  

With that in  

( , )c t r

re
 

          
 ˆ ˆ

ˆ .
LL

L

d Td dT
i T i i

dt dt dt


 Ñ Ñ Ñ  (54) 

 
Combining Eqs. (51) through (54) gives 
 

               
ˆ

ˆ .C
C C L

d dT
i H i

dt dt


  Ñ Ñ  (55) 

 

 It can be seen from Eq. (55) that the transformation 
T̂  does not give the correct Schrodinger equation in the 
Coulomb gauge if T̂  is time dependent. Thus the 
standard proof is not valid for time-dependent classical 
charge and current distributions in its current form.  The 
proof outlined above can presumably be generalized to 
deal with time-dependent classical sources, but this 
illustrates the importance of considering simple 

amex ples, such as the entangled states discussed above.   
 
VI.  SUMMARY AND CONCLUSIONS 
 
 The covariant quantization of the electromagnetic 
field in the Lorentz gauge introduces longitudinal and 
scalar photons in addition to the transverse photons 
familiar in the Coulomb gauge [1-6].  For a freely-
propagating beam of light, the effects of the longitudinal 
and scalar photons cancel out and they can be ignored.  
That is not the case in the presence of charge or current 
distributions, where the longitudinal and scalar photons 
can produce observable effects. 
 It has been shown here that the exchange of 
longitudinal and scalar photons can produce an entangled 
eigenstate of two harmonic oscillators that is quite 
different from that produced in the Coulomb gauge where 
the longitudinal and scalar photons do not exist.  This 
difference can be understood from the presence of the 
energies of the inte enomrmediate states in the d inators of 

c

e
m

se ond-order perturbation theory as well as the different 
form of the matrix elements. 
 It was also shown that the entangled stat  in the 
Coulo b gauge can be related to that in the Lorentz 
gauge by a transformation T̂  involving the charge 
density and an operator associated with the scalar photons 
[6,28].  This transformation leaves the charge density 
unaltered, as would a gauge transformation for classical 
fields, and the entangled states in the two gauges are thus 
physically equivalent.  The calculations described here 
were limited to second order in perturbation theory and it 
was assumed that AE  Ñ  and d L .    

 This example illustrates the importance of carefully 
considering what is actually observable in an entangled 
state.  The change in the probability amplitude   for the 
0 1A B  component in the entangled state may seem to 

suggest that the exchange of longitudinal and scalar 
photons has produced an additional source of 
entanglement.  One might suppose that we could measure 
the states occupied by the harmonic oscillators in the 
unperturbed basis and thus determine the magnitude of   
using an ensemble of such states.  But the state vector is 
not physically observable and neither are the coefficients 
in an expansion of the state vector in a particular basis, as 
this example illustrates.  This is also the case for gauge 
transformations in elementary quantum mechanics using 
classical fields. 
 Determining the amount of entanglement present in a 
quantum system is an ongoing field of investigation [29], 
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and several different entanglement measures have been 
introduced, such as the concurrence or entanglement of 
formation [30].  If we were to simply apply one of these 
entanglement measures to the state of Eq. (15) in the 
usual way, we would find that the results depend on the 
value of the parameter  .  This may seem to indicate that 
there is a different amount of entanglement in the 
Coulomb and Lorentz gauges, even though they are 
physically equivalent.  This difficulty may be due in part 
to the fact that Eq. (15) ignores the virtual photons that 
are also present in the system in addition to the 
amplitudes of the oscillator states, and that may have to 
be taken into account in calculating the total amount of 
entanglement in the system.  These issues are beyond the 
intended scope of this paper but they illustrate the need 
for further work in this area. 
 In view of the many nonclassical effects that arise 
from quantizing the field, it seems remarkable that it 
should make no difference whether or not we quantize 
two of the four components of the field.  Simple 
examples of this kind provide physical insight into the 
way in which , which is of 

ndamental importance.  In addition, a manifestly 
cov

erstanding of experiments based on 
Bell’s inequality, especially in view of the nonlocal 
collapse of the wave hniques of this kind 

ay also be useful for a manifestly covariant description 

wh

 

APPENDIX 
 

 discussed in the main text, the Coul b
z gauges should be related by the transform

 defined in Eq. (43).  In this Appendix, the expansion 
Eq. (48) will be used to show that the two gauges are 

c
zero-order term in 

 the two gauges are equivalent
fu

ariant description of entanglement is desirable for a 
fundamental und

function.  Tec
m
of the time evolution of systems used for quantum 
information processing and quantum communications, 

ich may be of practical importance for satellite 
systems where relativistic effects may become 
significant. 
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 As om  and 
Lorent ation 
T̂
f o

equivalent for the situation illustrated in Fig. 1, at least to 
second order in q . 
 The last term in the expansion of Eq. (48) an be 

und by noting that the fo 1T̂   is just the 
e second-order term in the  vect

auge is already given in Eq. ( ), so th

    

identity Î .  Th sta or in 
the Coulomb g 38 at 

te

 

    
 

    2

3 2

0

0 0

2

cos 0 1 .l A B A B

kE

e

  
 

 

    
k dk r r

 (A1) 

 

 The first-order term in  can be found by 
e exponential in the definition of in a
 to obtain 

 

                  (A2) 

n Eq. (44). 

       

22
1 (0) (2) 3ˆ( )

q
T d 


k d

k

1T̂ 

expanding th T  
Taylor series

ˆ  

1 (1) 3ˆˆ ˆ( ) ( ) ( ) .T ic S d   r r r / Ñ  
 

where the operator Ŝ  is defined i  This gives  
 

        

1 (1) 3

0

†

ˆ( )
2

1 1
ˆ ˆˆ ˆ( ) ( ) ( ) ( ) .

k

s s
k k

ic
T d

a a
i i

 

 
 

 

 
   
 

 k

k k k k

Ñ

Ñ
 (A3) 

 
Inserting the matrix elements of ( ) k  from Eqs. (18) and 
(20) gives  

            

      

21 (1) 3 ( ) /2ˆ( )
iqd

T d e    k dk
Ñ

0 0

3/2
0

†

(2 ) 2

ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( )i i

k

i i
s s i i

i

a e a e b b

  
      k r k rTk d k k . 

Ñ  (A4) 

Here  and  are the usual raising and lowering 

pera for th rmonic oscillators located at .   

last n the nian of Eq. 

        

 

îb

tors 

†
îb

e hao 0ir

 The first-order term in the state vector can be found 
by rewriting [6] the term i Hamilto

0) as (5
 

3

0

ˆ ( )[ ( ) ( )]
2

( )[ ( ) ( )]

{

}.

ls l l s
k

l l s

H d j a a

j a a

 
   

 


T T

k k k

k k k

Ñ

 
k

(A5) 

sing first-order perturbation theory and inserting the 
at

 
U
m rix elements for ( )lj k  and ( )lj k  gives 

 

2
0

0

(1) 3 ( ) /2

0

0 0
2

ˆ ˆ1 1 [ ( ) ( )] 0 . 
Ñ +

{

}

A

B

iA
A B

k A k

iB
A B l s F

k B

i dq
d e e

i

i dq
e a a


    


 

  

 


 



 k rk d

k r T T

k

k d k k

Ñ

Ñ Ñ

Ñ

 (A6) 
 
 Combining Eqs. (A4) and (A6) and making use of the 
ommutation relations of Eq. (1) gives  c
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2

0 0

0 0

2 2
1 (1) (1) 3 ( ) 2

3
0

( )

( )

1ˆ( )
(2 ) 2

0 1 0 .

{

}

A B

A B

k

iA

A k

iB
A B F

B k

q d
T d e

e
i

e


  


  


 



  

 

  ˆ ˆ 

 




 k d

k r r

k r r

k (k d)

Ñ Ñ

Ñ Ñ

ntia

(A8) 

 sine term is an odd function of  and it does not
ontribute to the integral, so that Eq. (A7) reduces to 

  (A7) 

 
The expone l factors in Eq. (A7) can be rewritten as  
 

0 0( )
0 0 0 0cos[ ( )] sin[ ( )].A Bi

A B A Bi        k r r k r r k r r  e

 
The  k
c
 

     

2
2 2 3

1 (1) (1) 1ˆ( )
q d d

T e   
k ( ) 2

3
0

0 0

ˆ ˆ
(2 ) 2

cos[ ( )] 0 1 0 .

{ }
k

A B

A k B k

A B A B F

i

  
 

    

  

 
  

  

k d (k d)

k r r

Ñ

Ñ
 (A9) 

 
 The remaining term in Eq. (48) can be found by 
expanding 1T̂   to second order in a Taylor series 
expansion:  
 

    
2

1 (2) 3 3
2

ˆˆ ˆ ˆ( ) ( ) ( ) ( ') ( ') '.
2

c
T S d S d     r r r r r r

Ñ
 (A10) 

 

ˆ

serting the matrix elements for In ( ) k  and using the 
mmutation relations as before gives 

 

    

co

2
2 2 3

1 (2) (0) ( ) 2
3

0

0 0

1ˆ( )
(2 ) 2

cos[ ( )] 0 1 0
k

A B A B F

q d d
T 

  
 

  

 k dk
(k d)

k r r

Ñ  
ˆ ˆe  

(A11) 

he

 

w re we have used the form of (0)  from Eq. (14). 

Virtual states containing more than one photon have been 
neglected as in the text. 
 Combining Eqs. (A1), (A9), and (A11) and 
expanding in powers of 

 

E  as in the text gives the same 
result as Eq. (29) which will not be repeated here.  
Performing the same integrals then gives 
 

 
(2) 1 (2) (0) 1 (1) (1) 1 (0) (2)

22 2

3
0

ˆ ˆ ˆ' ( ) ( ) ( )

1 1
1 ... 0 1 0 .

2 2 2

L

L A

T T T

d q E E

EL

   

 
    

    

    
      

   Ñ Ñ A B F
 

(A12) 

entz 
 Eq. (30).  This shows that the two gauges are 

ysically 
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 Eq. (A12) is the same as the results from the Lor
gauge in

indeed related by the transformation T̂  and ph
equivalent.  It is worth noting that this transformation 
gives the correct results in the Lorentz gauge for each k-
vector in the field individually.  Thus the equivalence of 
the two gauges is independent of the results of the 
integrals, which are primarily useful in showing the 
dependence on the separation between the two oscillators. 
 Finally, it has been pointed out that what is 
traditionally [3-6, 27] referred to as the Lorentz gauge is 
now sometimes referred to as the Lorenz gauge.  The 
traditional terminology is used here. 
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