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Abstract: 

In the present study, a new theory that relates the special theory of relativity with 

quantum mechanics is formulated and then used to explain the remote instantaneous response of 

entangled particles without the assumptions of nonlocality or hidden variables. The basic 

assumptions of the present theory stands on the foundation of two space times, namely, the static 

and dynamic space times, in which the latter contains space points that move at the speed of 

light. The remote instantaneous interaction of the entangled particles is due to the closeness of 

these particles to each other in the dynamic space time in spite of remoteness from each other in 

the static space time.  

1. Introduction:  

 Numerous mysterious phenomena in quantum mechanics such as measurement effect and 

wave particle duality, as well as Einstein–Podolsky–Rosen (EPR) paradox and entanglement, 

still require concrete explanation [1]. Bell's inequality set the path toward the concept of 

nonlocality of entangled particles [2]. Hardy's proof showed that the inequality is not necessary, 

and only four dimensions in Hilbert space are needed to express the nonlocality [3]. Some later 

theories such as scale relativity theory depend on fractals in describing continuous non-

differentiable space time (fractal space time) [4, 5]. Some theories generalized the world line 

formulation of two- time physics by including background fields. Conventional classical or 

quantum mechanics as well as one time field theory are considered ‘‘shadows’’ of two time 

physics systems with one less time and one less space dimension [6, 7]. One of the most 

important theories that have gained popular attention is the double special relativity (DSR), 

which is a generalization of the special relativity that introduces a second invariant scale, in 

addition to the speed of light c [8–11]. DSR assumes a physical energy (or length), which is the 

http://dx.doi.org/10.1140/epjp/i2014-14023-5
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Planck energy (or Planck length), joins the speed of light as an invariant, in spite of a complete 

relativity of inertial frames and agreement with Einstein’s theory at low energies. This condition 

is accomplished by a non linear modification of the action of the Lorentz group on momentum 

space, which is generated by adding a dilatation to each boost in such a way that the Planck 

energy remains invariant. However, a space time that is compatible with momentum-space DSR 

principles could not be derived (or may be derived but with inconsistencies in classical space 

time) as stated by [12, 13].  

All the aforementioned studies, among others, provided satisfactory descriptions of the space 

time in their attempt to explain the mysterious phenomena in quantum mechanics and in unifying 

quantum mechanics with relativity theories. Nevertheless, no available theory can provide 

transformations for time and space that can be used to analyze the quantum mechanics 

phenomena (e.g., entanglement and EPR paradox) that are simultaneously consistent with the 

classical space time. Hence, transformations that are applicable to both at micro and macro scales 

and for both micro and macro masses are not available.  

The present work aims to formulate transformations that are applicable for micro and macro 

observers based on a new theory, which can be used to solve instantaneous response of entangled 

particles. This new theory uses Hubble's relation and special relativity to obtain transformations 

between classical and microscopic or zero-rest mass particles (ZRMPs). These transformations 

will then be related to quantum mechanics to elucidate the instantaneous response of entangled 

particles (which is one of the largest enigmas in modern physics [14]) by assuming dynamic, 

instead of static, space time. 

  

2. Postulates and theoretical concepts of the theory 

The present theory is based on the assumption that the expansion force of the universe 

leads to the movement of space. Space is supposed to be composed of infinite points that radially 

move with the space expansion radially outward toward the edges of the universe. These points 

are assumed to move at the speed of light, thereby creating the velocity limit at the speed of light. 

The velocity (or speed) limit is assumed to be accompanied by time limit. This time is called the 

time of events manufacturing (or briefly, time of events) because it is the time associated with 

the fastest transition of interaction of any force at speed of light, which include moving with 

space points. The combination of the moved spatial coordinates and the time created by this 

movement is called dynamic space time. Unlike the special theory of relativity, the present 

theory assumes that the space time is a dynamic space time, which involves movement of space, 

not just interaction transmission in space. According to the present theory, the photon movement 

at the speed of light is caused by its perfect response to the movements of space time. The 

present theory also assumes that the direction of movements of such dynamic space time is the 

same as the direction of the expansion force of the universe. Accordingly, the directions of 

movements are toward the outer edges of the universe or in radially outward directions. At each 

point in static space time, the dynamic space time movements appear like a ripple that starts from 

a minimum length (can be considered as Planck length) and then the ripple radius increases in a 

speed equal to the speed of light relative to the starting point in the static space time.  

The interactions between different particles and space points during their motion caused by 

the expansion of the universe are classified into the following three types of interactions 

according to particles masses: 
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1. Heavier mass particles (classical objects) produce relatively higher distortion in the 

movements of space points, which minimize their response to expansion force. However, 

these particles still have speeds in the radial direction according to Hubble's law of 

expansion.  

2. Tiny non-ZRMPs (microscopic objects) have very little (or negligible) effects on the 

distortion of the movements of space points. Therefore, these particles have higher speeds 

(caused by the expansion force) than the classical objects. However, these speeds are still 

less than the speed of light because the particles have non-zero rest masses. 

3. ZRMPs transfer with the space points at the same speed (speed of light) in vacuum in 

radial outward direction. 

Differences in the responses of the different type particles to the expansion force result in the 

differences in relative speeds of expansion among these particles, which consequently results in 

the differences in time evolution of such particles caused by the expansion. Given the differences 

in the interactions between the different types of particles with space points, assuming that the 

two-dimensional (ct,x) traditional representation of world lines of a zero mass particle moving at 

the x dimension relative to a classical observer is not applicable because zero mass particles have 

additional components of movements (that originates from their high response to expansion 

force). Minkowski space representation is modified to consider the differences in responses to 

the expansion force of the different types of particles. The effects of the differences in the 

responses to the expansion force on the relative movement of the different types of particles, 

especially a ZRMP and a classical observer are considered in rebuilding such representation. 

Assuming that similar equations relate the speeds of tiny and ZRMPs with their distances 

from the earth during expansion, two equations are added to the traditional Hubble's equation. 

The first equation (eq. (1)) relates the expansion speed of ZRMPs with their distance from the 

earth, whereas the second equation (eq. (2)) relates to the expansion speed of the tiny particles 

with their distance from the earth. Both speeds are measured by a classical object for easy 

comparison. The relations are given as follows: 

                                                    (1) 

                                                               (2) 

where vp and vt are the expansion velocities of the ZRMPs and tiny particles, respectively, Hp 

and Ht are assumed constants (they may be variables) of expansion of the ZRMPs and tiny 

particles, respectively (that are equivalent to Hubble's constant of expansion of the classical 

objects), and r is the distance from the center of the earth. 

The classical Hubble's relation of the classical objects is given as: 

                                          (3) 
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where vc is the expansion speed of the classical objects, and H is the Hubble's constant. In 

eq. (1), vp for small values of r is equal to the speed of light. As r becomes extremely large, the 

expansion speed as measured by Doppler shift may exceed the speed of light because of the 

accumulation effects caused by the accelerated expansion of the universe. Hence, the speed of 

light is constant. To determine the value of Hp in eq. (1), theoretically, as r approaches the 

wavelength 𝜆, the velocity vp must be equal to c, which means that Hp is not constant and is equal 

to the frequency f. This observation produces the usual equation that relates frequency and 

wavelength with the speed of light.  

  𝜆                                                  (4a) 

This principle is also true for tiny particles (microscopic particles), but the velocity of a tiny 

particle is assumed to be vt instead of c as r approaches 𝜆: 

   𝜆                                                      (4b) 

where Ht is assumed to be equal to the frequency f of the tiny particle, and 𝜆 is the De Broglie's 

wavelength. The expansion constants are assumed to be variables in the case of ZRMPs and tiny 

particles because the mechanisms of responses of these particles to the movements of the 

dynamic space time is by making a resonance state with the closest frequency of the dynamic 

space time ripple that is similar to their frequency. Classical objects have constants of expansion 

because the range of frequencies of the ripples of the dynamic space time is much larger than the 

resonance frequency of the classical objects. Therefore, these objects have similar responses to 

the dynamic space time movement, which is encountered by Hubble's constant.  

If two different types of particles, such as a photon and a classical object, started 

expanding from the same point in space, after a time interval Δt, the difference in their relative 

distances is given by eq. (5) 

                                         (5) 

where r2 and r1 are the distances from the center of the earth of a photon and a classical object 

after a time interval Δt, respectively. The time interval is assumed to be measured by the 

classical object. The difference in this distance Δr is in the radially outward direction, which is 

the direction of expansion of the universe. Δr should always be perpendicular to any movement 

of the classical observer other than the movement from expansion given by Hubble's law of 

expansion. This condition is true with negligible Hubble's expansion of a classical object because 

any movement is in the static space time that is confined around the object while the space points 

continue in crossing the classical object perpendicularly toward the radial direction during its 

movement.  

To build a dynamic space time model, the Minkowski space time diagram should be 

modified. The first step is by changing the dynamic space time axes relative to the axes of 

ordinary Minkowski space time axes. Given that the space points are moving radially outward 
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toward the edges of the universe, in considering two axes ct and x in static space time, these axes 

in dynamic space time will be moved upward toward the radial outward direction at a speed of 

light with a slope that is equal to one relative to its corresponding static axes. Therefore, to 

represent the world line of a particle that is moving with space points at the same speed, the 

representation should be drawn upward that is 90°
 
relative to the static (ct,x) plane because the 

direction of expansion of the space points is perpendicular to the static plane. The schematic 

diagram of the dynamic and static space times with the world lines of zero rest mass and 

classical observers are shown in fig. 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The static ct,x plane is assumed to become a cone of x', x'',ct' peripheral axes (fig. 1). The 

x-dimension is divided into two axes, that is, positive x becomes x' and negative x becomes x'' in 

the dynamic space time. This splitting of spatial axes occurs at every spatial point and at every 

moment, which suggests a fractal-shaped dynamic space time relative to the static space time. 

This observation agrees with studies conducted based on the fractal space time, especially at 

Planck scale lengths [4, 5]. To simplify the problem, we will only assume certain symmetry of 

the problem that can provide the appropriate transformations. Therefore, the origin of 

Fig. (1): schematic diagram of static space time represented by x,ct plane and dynamic 

space time represented by x',x'',ct' axes. The world lines denoted by v' and ve are for 

zero rest mass and classical observers respectively.  
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coordinates of a certain event at the dynamic space time should be chosen carefully to obtain the 

best solution from the symmetry of the problem. As noted from fig. 1, the number of dimensions 

is increased by one spatial dimension because of the splitting of one static spatial dimension into 

two dynamic spatial dimensions at the direction of expansion (which is the direction of 

movement of the ZRMP relative to the classical observer). Other dimensions that are 

perpendicular to the direction of expansion can be considered as equal to their counterparts. A 

ZRMP cannot be observed moving radially outward when viewed by a classical observer 

because in the case of ZRMPs, the relative movement is triggered by the differences in the 

response to the movements of space points, which is accompanied by splitting of one spatial 

coordinate. The splitting of this spatial axis makes the observation of the real direction of 

movement of the ZRMP impossible for a classical observer because the classical observer has a 

different number of dimensions. Thus, the classical observer cannot observe the movement of the 

ZRMP at this dimension, but it can observe the projection of this movement on a ct,x plane 

(fig. 1). Instead of the world line being represented by v', the classical observer sees the ZRMP 

moving on the world line represented by v. Graphically, this representation can be found as 

follows: 

First, the values of ct' and x' or x'' for a certain point at the world line v' are determined. 

Then, these values of ct' and x' or x'' are projected on ct- and x-axes, respectively. The projected 

point represents the classically observed point, which corresponds to the original point at the 

ZRMP world line. All points at the world line of the ZRMP are similarly projected on ct,x plane, 

which determines the classically observed world line of the original ZRMP world line. Thus, the 

v' world line is observed as v world line on the ct, x plane. The photon can distinguish that it 

precedes the classical object at the radial direction, but the classical object cannot distinguish that 

the photon is ahead in the direction of expansion of the universe because of the differences in 

dimensions between the dynamic space time (ZRMP space time) and the static space time 

(classical observer space time).  

To obtain transformations between a ZRMP and a classical observer, ZRMP is assumed 

to be moving with velocity v' relative to a stationary classical observer, which is v as observed 

by this classical observer. Another classical observer is moving with velocity ve relative to the 

stationary classical observer (fig. 1). Magnitude | | must equal to |  | = c, but with different 

directions. Although the stationary observer sees v not v', transformation velocity v' is used 

because it describes a more reliable case. The relative velocity between the ZRMP and the 

moving classical observer is determined first, and then the value is substituted in the Lorentz 

transformations while considering the splitting of the dimension at which the ZRMP is moving. 

fig. 1 also shows that, according to the present theory, the velocity of the ZRMP relative to the 

classical observers originates from the difference between their interactions with the space 

points. Thus, the relative movement between the ZRMP and the classical observer is not a spatial 

movement. Instead, the relative movement originates from the movement of the dynamic space 

time relative to the classical observer. The movement of the moving classical observer relative to 
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the stationary one is due to spatial movements only because they have similar interactions with 

space points and they are at relatively close distance, wherein the movement caused by the 

Hubble's law can be neglected. Therefore, two kinds of relative velocities exist, that is, one 

caused by the differences in interaction with space points and the other caused by the spatial 

movements. To determine the relation between these two kinds of relative velocities, the relative 

movement between the ZRMP and the classical observer relative to the stationary observer is 

considered. If the movements occur during a time interval Δt, then the difference in distances ΔR 

between the ZRMP and the moving classical observer as measured by a stationary observer at 

the origin is: 

  ⃗⃗⃗⃗  ⃗    ⃗⃗⃗       ⃗⃗  ⃗        (6) 

If we figure out carefully the origin of the velocities ve and v', we will find that ve is due 

to the dynamic in space at a certain time interval, whereas v' is due to the difference in the 

interaction with space points in which their movement forms the time of events. Therefore, the 

relationship between v' and ve is similar to the relationship between ct and x at a certain place. 

Accordingly,   ⃗⃗⃗⃗  ⃗ is a four-vector quantity, and its magnitude is given as: 

 (  ⃗⃗⃗⃗  ⃗)
 

 (    )  (    )         (7) 

Equation 7 shows that ve must be imaginary to make   ⃗⃗⃗⃗  ⃗ a four-vector quantity. Accordingly, the 

velocities that originated from the change in relative positions at space at a certain time interval 

are assumed imaginary, whereas the velocities that originated from the difference in interaction 

with space points are assumed real. These assumptions can be reversed if the event occurs at the 

frame of the classical observer. To express the relative velocity vr between ZRMP and the 

moving classical observer, the following expression is assumed: 

      ⃗⃗⃗      ⃗⃗  ⃗                           (8) 

The value of (vr)
2 

can be determined using the following equation: 

  
        

        ( ̂
   ̂)               (9) 

where  ̂ and  ̂ are unit vectors directed towards v' and ve, respectively. In the imaginary 

part, the factor  ̂    ̂ must be zero because v' is perpendicular to ve as supposed previously (the 

direction of movement of space points is perpendicular to any movement of the classical 

observer). Thus, eq. 9 becomes: 

  
        

                                       (10a) 
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If  ̂ is not perpendicular to  ̂, as for particles with speeds less than the speed of light, then 

  
  can be given as follows: 

  
      

        
                           (10b) 

To determine the appropriate transformations between ZRMP and a classical observer, 

we should begin from the Lorentz invariance. To account for the splitting of the x-axis and the 

conservation of the Lorentz invariance during the transformations as well as in reference to fig.1, 

the classical Lorentz invariant condition of the classical objects must be equal to an additional 

two terms from the Lorentz invariance conditions of the ZRMP, that is, one term for the x'-axis 

and another for the x''-axis. This equation can be written as follows: 

(       )  (      )  (       )  (       ) = (  )  ( )              (11) 

where θ is the angle between each static space time dimension and its corresponding 

dynamic space-time dimension. θ is equal to 45°
 
to maintain constant speed of light, which 

represents the speed of the dynamic space time. x' and x'' are the spatial dimensions at the 

dynamic space time that correspond to the positive and negative x coordinates, respectively, at 

the static space time. Eq. 11 can be rewritten as follows: 

 (       )  ((      )  (       ) )= (  )  ( )               (12) 

If the origin forms an even symmetry point between x' and x'' for certain time t', x' is 

equal in magnitude to x''. In addition, the x-axis is split to two axes, whereas the t' values from 

the Lorentz invariance conditions of x' and x'' are added, resulting in 2t'. To write the invariant 

condition versus one variable of either x' or x'', both terms        and         should be equal in 

magnitude at certain t' value. Eq. 13 can be rewritten as 

 (       )   (      ) = (  )  ( )                       (13) 

for one direction of x' or x''. Substituting the value of θ (45
o
) and canceling similar terms 

yield: 

(   )  (  ) = (  )  ( )                                            (14a) 

or as a function of x'', it becomes 

(   )  (   ) = (  )  ( )                                           (14b) 

which is the traditional form of the Lorentz invariance.  

Using the relative velocity vr from eqs. 8 and 10 in the Lorentz invariant condition, the 

generalized Lorentz transformations between ZRMP and moving classical observer are 

determined as follows: 
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 ́   (  
  

   (  ⃗⃗⃗      ⃗⃗  ⃗))                                                 (15a) 

    (  (      ) )            For positive x values 

     (   (      ) )         For negative x values 

 ́  y 

  ́    

Fig. 1 shows that the angle between    and    is 90°, whereas   ⃗⃗  ⃗ is at the    

direction. Substituting in eq. 15a gives 

   ́   (  
 

  
(   ))                                          (15b) 

The inverse generalized Lorentz transformations are obtained by changing the sign of the 

relative velocity: 

   (   
  ⃗⃗  ⃗

   (  ⃗⃗⃗      ⃗⃗  ⃗))  

   (   
   ⃗⃗ ⃗⃗  ⃗

   (  ⃗⃗⃗      ⃗⃗  ⃗))                                             (16a) 

   (   (      ) )          

   (     (      ) )         

  y' 

     

where               
 

√  
  
 

  

 

To find the magnitude of the transformed quantities, the usual absolute value equation is 

used for forward transformation:  

 ́   (   (
 

  
  )

 

)
   

 

 ́   ((     )  (   )
 )                                                      (16b) 

and the following transformations are used for inverse transformation: 
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   ((   
  

    )  (
  

    )
 

)
   

                   (17) 

   ((   
   

  
  )  (

   

  
  )

 

)

   

 

   ((       )  (    )
 )    

   ((         )  (    )
 )    

These transformations are applicable even for non-ZRMPs using eq. 10b instead of eq. 10a in 

determining γ. 

Eqs. 15 and 16 show that the two coordinates of the dynamic space time are transformed into one 

coordinate of the static space time. Thus, two objects with the same world line in the dynamic 

space time may be observed with two different world lines in the static space time. This 

phenomenon occurs because of the splitting of the dimension at which the movement of the 

ZRMP occurs relative to the classical observer. This splitting leads to the observance of the 

reverse directions of movement of entangled objects to be at the same direction in the dynamic 

space time frames. To explain the mechanism of splitting of dimensions and world lines (fig. 2), 

we assume two ZRMPs, that is, one moving toward the positive x direction and the other toward 

the negative x direction. According to the present theory, both particles are moving away from 

the classical observers because of their high response to the movements of space points toward 

the edges of the universe. Thus, in dynamic space time, both ZMRPs are moving toward the 

same point, assuming that the initial point is the same, and then the world line of each particle 

will coincide with the other. Given that the movement of space points is equal to the speed of 

light, the axes of the dynamic space time are inclined relative to the static axes by 45°. The 

coordinates at the dynamic space time associated with each point in the world line of the ZRMP 

are projected at the corresponding coordinate of the static space time. Accordingly, one world 

line that is projected on the x'- and x''-axes appears as split to two world lines at the static space-

time plane, that is, one world line at the direction of v1, and the other at the direction of v2, as 

shown in fig. 2. 
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To relate these transformations to quantum mechanics, the measurement is considered at 

the frame of the classical observer. For nonrelativistic speeds without considering the velocity of 

the classical observer, the wave function can be written as follows: 

       (     )      (18) 

This wave function can be rewritten as a function of dynamic space time coordinates. 

Assuming nonrelativistic ranges, the propagation vector in the dynamic space time must be in the 

direction of the velocity v'. Accordingly, if there is a wave vector   ⃗⃗  ⃗ at the dynamic space time, 

then it will be perpendicular to its projection  ⃗  at the static space time. The importance of k' in 

nonrelativistic range is not in its value, because its value can be assumed to be equal to k, but its 

physical meaning. Wave vector k' have one value corresponding to two values of k, in which one 

value is negative, whereas the other is positive, as measured at the static space time that is 

symmetrical around the origin representing the point of creation of the entangled particles from 

their father particle. Using k' instead of k and x' instead of x as well as t' instead of t in eq. 18 

yields 

Fig. (2): schematic diagram of static space time represented by x,ct plane and dynamic 

space time represented by x',x'',ct' cone. The world line v' of the two ZRMPs at the 

dynamic space time is observed to be world lines denoted by v1 and v2 particles moving 

towards positive and negative x directions respectively as observed by the classical 

observer.  
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          (        )                                       (19) 

where r' is at the dynamic space time at the direction of k', for nonrelativistic limit  

|  |  | |                                                                       (20) 

Therefore, eq. 19 becomes 

        (        )                                        (21) 

Using the same procedure, many relations of quantum mechanics can be written using the 

dynamic space coordinates. As an example, the linear momentum operator 〈  〉 can be rewritten 

in dynamic space time as follows: 

〈  〉  ∫  (
 

 

 

   
)                                             (22) 

Before using the dynamic space time equations to solve the entanglement paradox, how 

the entangled particles move at the dynamic space time should be understood. To explain the 

mechanism of entanglement in the dynamic space time, we consider two entangled photons; one 

photon vibrates with vertical polarization and the other with horizontal polarization. The 

movement of these photons is similar to each other in the dynamic space time and they have 

similar wave vector   ⃗⃗  ⃗ in the dynamic space time; the difference is only in their polarization 

(fig. 3). This phenomenon occurs because the photons continue to move in the same path as their 

parent particle and carried by the same ripple of the moving space time toward the edge of the 

universe.  

 

 

 

 

 

 

In the static space time, the classical observers see two photons moving at different 

directions with two wave vectors having different directions. These wave vectors are the 

projections of the single wave vector at the dynamic space time (fig. 4).  

𝑘 ⃗⃗  ⃗ 

𝑜 ⃗⃗  ⃗ 

𝑜 ⃗⃗⃗⃗  

Fig. (3): The directions of the wave vector 𝑘 ⃗⃗  ⃗ and polarization 

vectors 𝑜 ⃗⃗  ⃗ and 𝑜 ⃗⃗  ⃗ of particles 1 and 2 respectively. 
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If one of the photons changes its direction because of certain interaction, which thereby 

changes its wave vector direction in dynamic space time (and of course in static space time 

accordingly), then the other photon instantaneously changes its direction in a way that makes its 

wave vector in dynamic space time equal to its accompanying photon to conserve the 

entanglement between them. This phenomenon explains the general interaction of the entangled 

particles with the measurement process. If one of the entangled particles, for example, an 

electron and a positron, interacts with one detector and at the same time the other particle interact 

with the other detector, then if the detectors are parallel to each other, the projections of k' on the 

static space time would not be altered because both particles are under the same action as their k' 

remains the same. If one of the detectors is rotated by a certain angle while the other remains 

still, then one of the particles would change its wave vector in a way that is different from the 

other. If the other particle does not change its direction with the first particle, the wave vector in 

dynamic space time k' of the two particles would be different, thus, the entanglement of these 

particles would be destroyed. Accordingly, to keep the entanglement between them, the other 

particle would change its direction in static space time to achieve the same value of k' as the 

other particle. From the geometry of the problem, conservation of the entanglement can only be 

achieved if the projections of k' of both particles in the static space time are placed in a straight 

line. In other words, the other particle changes its direction to create a single straight line in its 

path at the static space time with the path of the other particle. The magnitude of the changes in 

direction of both particles depends on the angle between these detectors because angles limit the 

straightness of the projections of the particle paths. Change in directions lead to a change in the 

spin direction (or polarization direction) of the entangled particles, which provide results that are 

different from the EPR predictions because of the effect of the measurement process. The change 

x1' 

x 

k1 

ct
' 

ct
 

k' 

x1'' k2 

Fig. (4): the wave vectors of photons 1 and 2 in dynamic space time they 

have the same wave vector k', in static space time they have wave vectors 

k1 and k2 for particles 1 and 2 respectively. 
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in polarization is simultaneous because the particles are near to each other in the dynamic space 

time in spite of being away from each other in the static space time. Thus, locality is conserved 

in dynamic space time, but not in static space time. 

In quantum mechanics, we can use the dynamic space time coordinates to conserve the 

locality. As an example if a system from two entangled particles 1 and 2 is considered, Assuming 

Bell's version experiment of two detectors that are allowed to be rotated independently. The 

suggested manipulation should be applicable to electron and positron from pion decay, as well as 

light-entangled photons. Two detectors are considered; the first detector    measures the 

component of electron spin (or first photon polarization), whereas the other detector  ⃗  measures 

the spin of the positron (or second photon polarization). For simplicity and generality (to include 

light), spins are assumed to be in units of 
 

 
 of the electron and positron. To calculate the average 

value of the product of the spins,  (    ⃗ ) is assumed to represent such quantity [15]. If the 

detectors are parallel (    ⃗ ), the original EPR/Bohm experiment [16] configuration is 

recovered, in which, one variable is spin up and the other is spin down, so the product is always  

-1. Hence, [15] 

 (     )                                                   (23) 

However, for arbitrary orientations, quantum mechanics predicts 

 (    ⃗ )       ⃗                                              (24) 

Bell's study cancels any hidden local variable theory, which is supposed to be an attempt 

to survive locality [15]. Accordingly, locality of quantum mechanics in static space time is ruled 

out. Whether locality is still ruled out or conserved in dynamic space time is determined through 

quantum mechanics. We consider a system of two particles with its detectors at the directions    

and  ⃗ . The procedure assumes that locality conditions are achieved, but this time, in dynamic 

space time. The effect of measurement is then assumed to cause the change in direction of the 

propagation wave vector k' by an angle θ equal to the angle between the detectors.  

The probability of the product of the spins of the two particles is assumed to be unaltered 

until the measurement process occurs. If the results of eq. 24 are obtained, the locality of 

quantum mechanics in the dynamic space time is conserved; Otherwise, it will be ruled out. 

According to the locality of EPR, only two states for particles 1 and 2 exist. If one particle is spin 

up, then the other is spin down. The first base state is assumed to be | ⟩  , which represents the 

spin up of particle 1 and spin down of particle 2. The second base state is | ⟩  , which 

represents the spin up of particle 2 and spin down of particle 1. The entangled state of these two 

particles can be written in the following form before the measurement process proceeds: 

|    ⟩   | ⟩    | ⟩                                     (25) 



15 
 

where | ⟩   and | ⟩  are determined from eq. 21. 

                                                 (26) 

The propagation vector operator with expectation value 〈   〉 before measurement can be 

written as follows: 

〈   〉  ∫  (
  

 

 

    
)                                  (27) 

where dr1' represents the direction of the particles in dynamic space time. The 

propagation vector is either at the direction of spin or at the opposite direction, in the case of 

electron and positron, and perpendicular with the polarization direction, in the case of photons. 

Assuming one particle is spin up and the other is spin down indicates that the probability of the 

product of spin before measurement is equal to -1, or  

 (    ⃗ )         

This result is true only if the detectors are parallel, in the case of electron and positron. 

However, if the detectors were not parallel, then the effect of measurement on the directions of 

the particles must be considered. Changing the direction of propagation of the particles can be 

represented by assuming that the new wave vector k2' with operator    ̂ directed towards r2 has 

expectation value 〈   〉 that is given by: 

〈   〉  ∫  (
  

 

    

    

 

    
)                                          (28) 

                                                                         (29) 

where   is the angle between r2' and r1' or k2' and k1'. Thus, eq. 28 will be 

〈   〉  ∫  (
  

 
    

 

    
)                                       (30) 

or  

 〈   〉  〈   〉                                                               (31) 

Eq. 31 shows that the expectation value of the propagation vector differs by cos θ before 

and after measurement. Accordingly, because of the direct relation between spin directions (or 

polarization directions) with the wave vector, the measured directions of spins is also be changed 

by the same magnitude after the measurement. Therefore, the probability of the product of spins 

is multiplied by cos θ, which leads to eq. 24. This observation explains why the measured values 

of spins of unparallel detectors differ from the EPR/Bohm experiment predictions. The same 

concepts can be applied to the entangled photons experiments. The results of quantum mechanics 
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of the entangled particles are proved using local assumptions in the dynamic space time, not in 

the static space time. 

 

3. Discussion and conclusions: 

A new theory was proposed, which assumed the dynamic space time instead of the static 

space time assumed in special relativity. In this theory, ZRMP and tiny rest mass particles highly 

respond to the movement of space points relative to the classical observers. The difference in 

responses between different mass particles creates extra dimensions of the smaller rest mass 

particles, which include the splitting of coordinates of the smaller rest-mass particles relative to 

the classical rest-mass observers. Therefore, if two entangled particles are moving at the same 

direction in the dynamic space time, they may be observed as moving in two reversed directions 

in the static space time. A locality between the entangled particles is conserved in the dynamic 

space time but not in the static space time. The entanglement between any two particles, such as 

photons with different polarizations or electron and positron which have different spin directions, 

may be observed as changed after the measurement process. This phenomenon is caused by the 

change in values of the polarization or spin directions of the entangled particles after the 

measurement process. The change in the relative directions of the detectors results in a change in 

the measured spins or polarization values of the entangled particles. The change in physical 

property of the entangled particles proceeds in a mechanism that enables both of the particles to 

be moved near to each other in the dynamic space time. The explanation of this mechanism is as 

follows: One of the entangled particles interacts with the first detector and the other particle 

interacts with the second detector. During the interaction process, if the detectors are aligned, the 

particle spins (or polarizations) would not be affected because the projections of these particles at 

the static space time creates a straight path that corresponds to the same value of propagation 

vector for both particles at the dynamic space time. However, if the detectors are not aligned, the 

propagation vectors of both particles would change simultaneously (because of their closeness to 

each other in the dynamic space time), wherein the change proceeds in such a way that the 

projections of the paths of both particles at the static space time form a single straight path that 

corresponds to a single new value of propagation vector of both particles at the dynamic space 

time. From the geometry of the problem, this result cannot be achieved unless the spins or 

polarizations of both particles are rotated by an angle that is the same with the relative angle of 

directions of the detectors. The need for straight line path projection is due to the geometry of the 

dynamic space time relative to the static space time, which creates a single value of propagation 

vector of the two particles in the dynamic space time, which corresponds to a straight path in the 

static space time. Thus, the problem of nonlocality is resolved using the dynamic space time. The 

closeness of the entangled states in the dynamic space time is due to their common point of 

creation from their father constituent, after which they keep going near to each other because 

they move toward the same direction at the same speed. Therefore, nonlocality of EPR paradox 
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is solved without using any hidden variable because both particles are close to each other in the 

dynamic space time.  

Although these transformations describe the position and time of ZRMP and tiny 

particles, their location cannot be precisely determined because the exact time and location of the 

creation of these particles are unknown. This information is important in determining the exact 

values of the spatial and time coordinates because in all circumstances, we only see the 

projections of the paths of these particles on the static space time. Therefore, if any of these 

particles reverses or changes its direction, it would keep on going toward the radial direction and 

the projection of the static space time would not be equivalent to the original value at the 

dynamic space time. Hence, the present transformations are practically applicable when the 

origin which corresponds to the point of creation of the particles is known. However, these 

transformations are important in understanding the mechanism of transferring interactions 

between entangled particles. This analysis provides new explanations for several classically 

considered mysteries in quantum mechanics using semiclassical manner with a new kind of 

geometry of the space time. In addition, we provided the foundation for a new theory that 

combines special relativity with quantum mechanics in its basic frame.  
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