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Monopoles and Quark Confinement

Tsuneo SUZUKI

Department of Physics, Kanazawa University, Kanazawa 920-11, Japan

I review the studies of quark confinement based on the dual Meissner effect due to
monopole condensation after abelian projection in QCD. The first part is about Monte Carlo
simulations of abelian projection and the role of monopoles in lattice QCD. Abelian projec-
tion in the maximally abelian gauge is found very interesting. The monopole part alone is
responsible for confinement. A block spin transformation on the dual lattice and energy-
entropy balance of the monopole loops suggest that lattice SU(2) QCD is always (for all 8)
in the monopole condensed phase and so in the confinement phase in the infinite volume limit.
Abelian Polyakov loops in various gauges suggest gauge independence of the picture of the
monopole condensation. The effective field theory composed of a dual photon and a
monopole field based on the monopole condensation after abelian projection is shortly
reviewed in the next part.

§1. Introduction

It has been evident from Monte Carlo simulations of lattice QCD that quarks are
confined. However why and how quarks are confined is not yet known. It is crucial
to understand the mechanism of quark confinement in order to explain hadron physics
out of QCD. The 't Hooft idea of abelian projection of QCD is interesting.” The
abelian projection is to fix the gauge in such a way that the maximal torus group
remains unbroken. After the abelian projection, monopoles appear as a topological
quantity in the residual abelian channel. QCD is reduced to an abelian theory with
electric charges and monopoles. If the monopoles make Bose condensation, charged
quarks and gluons are confined due to the dual Meissner effect. Namely, color
confinement can be regarded as abelian charge confinement caused by the monopole
condensation.

On the basis of this standpoint, the present author and his collaborators have
studied color confinement mechanism and hadron physics adopting two approaches.
The first approach is Monte Carlo simulations of abelian projection in lattice
QCD.2~'*®  The aim of the study is to ascertain correctness of the picture, that is, to
check if monopole condensation really occurs and if it is the confinement mechanism
in QCD. The second approach is to construct an infrared effective Lagrangian
directly from QCD on the assumption of the above picture and to explain low energy
hadron physics from the effective theory.!*~'® The purpose of this report is to review
the results of these studies compactly. ‘

In the next section, what is abelian projection is shortly explained. Section 3
reviews the results of the Monte Carlo simulations of abelian projection. Section 4
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is the short summary of the studies based on the infrared effective theory of QCD.
Final section is devoted to concluding remarks.

§2. Abelian projection

2.1. Abelian projection in the continuuwm QCD

Abelian projection of QCD is done as follows. Choose an operator X(x) which
is transformed non-trivially under SU(3) transformation:

Auz) = A0)= V() ALD) V' (2) =20, V() V' (), (1)

¢(z) ~> §(x)=V(x)¢d(x). (2)
Abelian projection is to choose V(x) so that X(x) is diagonalized as

) ~ - /11(I> 0

X(x) » X(I)—( 0 () Ag(x))' (3)

V(x) is fixed up to the diagonal element d(x) of SU(3), where

exp(iaax))

 [explien(x)) 0
d(x)—( 0 exp(ias(x))

)ESU(S) , zi a:(x)=0. (4)

{d(x)} is the maximum torus group of SU(3), which is the residual U(1) X U(1) gauge
symmetry.

We look at QCD at this stage without further fixing the gauge of the residual
symmetry. First, we explore how the fields after the abelian projection transform
under an arbitrary SU(3) gauge transformation W{x). Since X(x) is a functional of
(gauge) fields and so it transforms under W(x). Hence V(x) also transforms non-
trivially. Let us fix the form of V(x) such that all diagonal components of the
exponent of V(x) are zero. This is always possible if one uses the residual symme-
try. Then V(x) is found to transform wunder W(x) as

V(x) == V(x)=d"(x) V(z) W' (x). (5)

V% (x) diagonalizes an operator which is transformed from X(x) under W(x).
d"(x) is necessary for V"(x) to take the fixed form.
The gauge field after the abelian projection, A.(x), transforms under W(x) as

Ada) =5 A (@)= d" () Ad2)d" (1) —La,d " (2)d " (@), )

After the abelian projection, A.(x) transforms only under the diagonal matrix d"(x).
Since the last term of (6) is composed of the diagonal part alone, the diagonal part of
A.(x) transforms like a photon. The off diagonal part of Au(x) transforms like a
charged matter. The quark field transforms under W(x) as

g(x)—"> ¢ (x)=d"(x)¢(x). (7
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It is important that ¢(x)¢{x)® and ¢1(x) ds(x) §s(x) are neutral and at the same
time invariant under any SU(3) transformation W(x). Color confinement is regard-
ed as abelian charge confinement after abelian projection.

The most interesting fact of abelian projection is that monopoles appear in the
residual abelian channel. We treat SU(2) QCD for simplicity. After abelian projec-
tion, we define an abelian field strength as

fux)=0.A%(x)— 0.A ) . (8)
The abelian field A,*(x) written in terms of the original field is

1

Aps(x)_ Ya(x)Apa(x)“; W) eaabY (I)au Yb(«l") (9)
where Y (x)=V"(x)os V(x)= Y%x)o% Y%xz) obeys
Vox)Y4z)=1. ' (10)

Fuw(x) can be rewritten in the form

Ful2)=0( Y 2) A (x))— 0, YV (x)A#‘L(r))* each“(x)ﬁﬂ Vo(x)9, Ye(x)

(11)

in terms of the original field. A current
k#(-r) Ewpda i 6(1'> (12)
_L€ﬂypd€abcay ?a(x)ap?b(x)adj7c<x) ’ (13)

=5q

is always zero if V(x) is fixed. However, at a point x where the eigenvalue of the
diagonalized operator X(x) is degenerate, V(x) is not well defined and %.(x) does not
vanish there. We calculate the charge in the three dimensional volume 2 around x:'*

gm:'/S;ko(x)dsl':%‘/s;ébupo‘eabcau YUx)d°Yo(x)0°Ve(x)d’x , (14)
Zlgf egn€ane Y N(2)0; V(2)0: V(x)d?0; (15)
_4mn

where #» is an integer. = is a topological number corresponding to a mapping
between the sphere (10) in the parameter space and the sphere 0Q of 2. Because this
equation represents the Dirac quantization condition, g» can be interpreted as a
magnetic charge. The monopole current k.(x) is a topologically conserved current
Ouk(2)=0. Abelian projected QCD can be regarded as an abelian theory with electric

*) Each ¢1(x)¢; (3:) (i=1~3) is SU(3) invariant. The sum X3¢ (x)¢(x) is the lowest color singlet as
seen from 2341 (2) §(x)=23¢ (x)¢(x). Other two are excited singlet states composed of quarks and
gluons.
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charges and monopoles. 't Hooft” conjectured if the monopoles condense, abelian
charges are confined due to the dual Meissner effect. This means color confinement.
2.2. Abelian projection on a lattice
We can perform abelian projection on a lattice similarly. Choose an operator
X(s) in, for simplicity, SU(2) QCD. The gauge transformation on a lattice is
Uls, D)= V()U(s, B) V' (s+7), (17)

where U(s, fi) represents a link field corresponding to a gauge field in the continuum
theory. After abelian projection is over, abelian link fields can be separated from
SU(2) link fields as follows:

1—[c(s, P —c*(s, ) \e®™ 0
c(s, 1) 1—[c(s, WF/\ 0 eox®)

=C(s, Duls, i) (19)

u(s, i) transforms like a photon and C(s, &) transforms like a charged matter under
the residual U(1) gauge symmetry. The abelian field strength is defined as a pla-
quette variable

Gu($)=0.(s)+ O0(s+ 7)— 0.(s+ T)—6.(s) . (20)

Us, ﬁ):< (18)

The monopole current is defined®” as
1 _
ky<s>:7€yupdaunpd(s+ /1) , <21)

where 0, is a forward derivative on a lattice and Gu..(s) is decomposed into
0(S)= 0u(s)+2mnum(s), —r<8u(s)<r. (22)

nuw(s) is an integer corresponding to the number of the Dirac string through the
plaquette. The monopole currents are conserved topologically

where 0dx is a backward derivative on a lattice. The monopole currents make closed
loops on the four dimensional lattice.

§3. Monte Carlo study of abelian projection in lattice QCD

Our procedure is as follows:
1. Vacuum configurations of link variables {U(s, 1)} are generated with the Wilson
action.

2. We perform an abelian projection and then separate abelian link variables u(s, 1)
as in (19) to obtain an ensemble of {«(s, )}

3. We construct monopole curents following the DeGrand-Toussaint method as in
(21).2
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4. We measure expectation values of U(1)X U(1) invariant operators O(u(s, 1)) and
operators composed of monopole currents O(%u(s)).

3.1. Abelian dominance in MA gauge

There are infinite ways of abelian projection extracting such an abelian theory
out of QCD. It seems important to find a good gauge at least in the studies on a small
lattice. I show in the following, if one adopts a gauge called maximally abelian
gauge,??% the 't Hooft conjecture is beautifully realized at least in SU(2) QCD.

Define a matrix

X(S>=§[U(s, @osU (s, 1)+ Ut (s— 1, 1oz U(s— p, )]

:X1(8)01+X2(S)02+X3(8)(73 .

Then a gauge satisfying Xi(s)=Xz(s)=0 is the maximally abelian gauge which tends
to a U(1)-convariant gauge (0, *igA,*)A*==0 in the continuum limit.

Gauge-fixed link variables are decomposed into a product of two matrices as
above. We have found that abelian loop operators composed of «(s, ) alone seem
to reproduce essential features of QCD color confinement in MA gauge.®® Explicit-
ly, abelian static potentials derived from abelian Wilson loops composed of u(s, )
alone is plotted in Fig. 1 of Ref. 2) in comparison with full ones.? The string tensions
are derived from the static potentials. The abelian and the full string tensions are
about the same.

Polyakov loops and energy densities play the role of an order parameter of the
deconfinement transition in finite-temperature pure QCD also in the abelian case.”’
The abelian quantities show clearer behaviors around the critical coupling.

3.2. Effective U(1) action

The above abelian dominance suggests that a set of U(1) invariant operators
{O(u(s, 1))} are enough to describe confinement. Then there must exist an effective
U(1) action Ser(z) describing confinement. These matrix elements are obtained as
follows:

_/ ¢S 8(X*) Ax(U) O() DU

O(u)>= :
f eSO XE) A:(U)DU

B fDuO(u)[ fDCe‘S‘”’C)é(Xi)AF(U)]
- fDu[ fDCe”S‘”’C)B(Xi)AF(U)]

/Due‘se“‘”)O(u)

/Due—seﬁ(u)

We tried to derive Ses(#) using Schwinger-Dyson equations, but failed to get it in
a compact and local form.? Sew(%) contains larger and larger loops as 8.
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3.3.  Effective monopole U(1) action S(ku(s))

In compact QED with the Villain
action,” one can perform a dual trans- / /// /

formation analytically to obtain an /

N\

effective action expressed in terms of
monopole currents. Shiba and the pres-
ent author tried to perform a dual trans-
formation of Sex(%) in SU(2) QCD and /
to obtain the effective /(1) action in
terms of monopole currents.”””'” The /

above monopole current is defined by

nu(s) surrounding the smallest cube as

shown in (21). To study the long range

behavior important in QCD, we consid-
23)

ered extended monopoles. They are
defined by #uw(s) surrounding an
extended cube:

NN

\

N\

Fig. 1. An extended cube on which a 2° extended
monopole is defined as the sum of eight (=2%)
smallest monopoles.

k()= Comordo$(s + 1), (24)
n—1
= 2 kuns+(n—1)i+iv+jo+15), (25)
n—1
mé’é)(s):i}Z;Omm(an i10+75). (26)

For example, Fig. 1 represents a 2° cube defining a 2* extended monopole. Adopting
an 7° extended monopole corresponds to performing a block spin transformation on
a dual lattice™” and so is suitable for exploring the long range property of QCD.
Note for example that

237

3
ku®(s)= 20 kulds+37+iv+j0+15)
1
= 2 kPQs+a+iv+jo+1s), (27)
1
k()= 2 ki2s+Z+iv+jb+15). (28)

0

When adopting an #® extended monopole on N®X N, lattice, the effective lattice
(which we call a renormalized lattice) on which the extended monopole runs is

(+(%). =

n n

Hence the following is an example of a block spin transformation:
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ku(s) ku®(s)\. kut(s)
a |— 2¢ |— ba |— . (30)
N* (N/2)* (N/4)*

The partition function of interacting monopole currents is expressed as

Z=(1 > )II6seus0)exp(—S[k]). (31)
8,1t Ru(S)=—o0 S

It is natural to assume S[k]=21./:S:{£]. Here f; is a coupling constant of an interac-
tion S:[£]. For example, fi is the coupling of the self-energy term s .(ku(s))% £ is
the coupling of a nearest-neighbor interaction term Xs,.k.(s)k.(s+ ) and fs is the
coupling of another nearest-neighbor term X5 usvku(s)k.(s+ D).” Shiba and
Suzuki?®" extended a method developed by Swendsen®” to the system of monopole
currents obeying the current conservation rule (23).

The monopole actions are obtained locally enough for all extended monopoles
considered even in the scaling region as shown in Fig. 2. They are lattice volume
independent. The coupling constant fi of the self-energy term is dominant and the
coupling constants decrease rapidly as the distance between the two monopole
currents increases.

Since the action is fixed, it is possible to study energy and entropy balance of
monopole loops in order to confirm the occurrence of monopole condensation. If the
entropy of a monopole loop exceeds the energy, the condensation of a monopole loop
occurs. As done in compact QED,* the entropy of a monopole loop can be estimated
as In 7 per unit loop length. Since monopole currents are distributed randomly in
average for large L, interaction terms between two separate currents are seen to be
cancelled.®® Hence the action is approximated by the self-energy part /iL. Since fi
is regarded as the self-energy per unit monopole loop length, the free energy per unit

T T T T T Y T
T T T T T ™~ 7
2— ® ] 7 (] 5.. §—<
_ - ° | 7L 24% LATTICE { |
°f{ 2% monopole ] s . -
=2 5 B X
a3 BETA=2.6 i in7
°f4 = oL l L S
= {5
1 ~ - - B % " -
@ % § a8 § L] ] - ¥ . § o 23 -
s o A3 N
& } 3 8 I a | l 5_‘0 3 i
’ A 43 ]
2 i g g ? ? L T ? 1 1 1 !
Ok . 24 25 26 2.7 2.8 29 3
12 14 16 18 20 22 24 BETA
LATTICE SIZE Fig. 3. Coupling constants f; versus /A for 2% 3%
Fig. 2. Coupling constants f; versus lattice size. and 4° extended monopoles on 24* lattice.
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monopole loop length is approximated by (i—In7). If /A<In7, the entropy domi-
nates over the energy, which means condensation of monopoles. In Fig. 3, /1 versus
B for various extended monopoles on 24* lattice is shown in comparison with the
entropy value In7. Each extended monopole has its own /A region where the condi-
tion f/1<In 7 is satisfied. When the extendedness is bigger, larger £ is included in such
a region. Larger extended monopoles are more important in determining the phase
transition point.

The behaviors of the coupling constants are different for different extended
monopoles. However, if we plot them versus b=nX a(f), we get a unique curve as
in Fig. 4. The coupling constants seem to depend only on b, not on the extendedness
nor . There is a critical b. corresponding to critical B¢", i.e., be=na(B"). The
monopole action may be fitted by

ST =Zmobk( )+ (5y) Shul)Dls—els) (3)
where ¢(b) is the SU(2) running coupling constant
g(b) e 235[2 1l’1< bzl/‘tz>+ 435[2 In hl( b21/12> (33)

D(s) is a modified lattice Coulomb propagator. This form of the action is predicted
theoretically by Smit and Sijs.”® The solid line is the prediction given by the action
with the parameters written in Fig. 4.

Now we can derive important conclusions. Suppose the effective monopole
action remains the same for any extended monopoles larger than 4° in the infinite
volume limit. Then the finiteness of .= na(fS.") suggests A" becomes infinite when
the extendedness 7z goes to infinity. SU(2) lattice QCD is always (for all 8) in the
monopole condensed and then in the color confinement phase.”’ This is one of what
one wants to prove in the framework of
lattice QCD.

Notice again that considering L
extended monopoles correspond to per- 2.5
forming a block spin transformation on
the dual lattice. The above fact that L
the effective actions for all extended -
monopoles considered are the same for | 2
fixed b means that the action may be the
renormalized trajectory on which one =
can take the continuum Ilimit. Our B

i
i

results suggest the continuum monopole 1"5:

action takes the form (32) predicted by

Smit and Sijs.?® The simulation of the - .
monopole action is in progress. 1(; S R 110 o,
3.4. The string tension and monopoles b (10~3 (Lambda) 1)

: :4),5) . -
Shiba and Suzuki have shown Fig. 4. Coupling constants f1 and f2 versus b.

NI | -El ectronic Library Service



Publication O fice, Progress of Theoretical Physics

Monopoles and Quark Confinement 15

furthermore that monopoles alone can reproduce the full value of the string tension in
SU(2) QCD. Let us show an abelian Wilson loop operator is rewritten by a product
of monopole and photon contributions. Here we take into account only a simple
Wilson loop, say, of size IXJ. Then such an abelian Wilson loop operator is
expressed as

W=exp{i2Ju(s)0.(s)}, (34)

where J.(s) is an external current taking =1 along the Wilson loop. Since Ju(s) is
conserved, it is rewritten for such a simple Wilson loop in terms of an antisymmetric
variable M.(s) as J.(s)=0iMu(s). Mu(s) takes +1 on a surface with the Wilson
loop boundary. Although we can choose any surface of such a type, we adopt a
minimal surface here. We get

W:exp{mé-ZMW(s) Ms)} . (35)

The gauge plaguette variable can be decomposed into Gu(s)= 0u(s)+27n.(s) as (22).
Since M..(s) and 7w (s) are integers, the latter does not contribute to Eq. (35). Hence
0w (s) in Eq. (35) is replaced by Ou(s). Using a decomposition rule

Mo(s)=—S"D(s— s’)[a;(aﬂMw — Ma)(s") +—%~eamemaa;aa,Mm(sﬂ ,

we get
W=WW,,
Wi=exp{—722040(s)D(s—s")].(s)}

T M L M 4 M T

o siring tensions N
3000 |
o L 4 f |
§ .
= - .
Z 2000 % %
% = -
% {1000F ° o @ .
- 13monopoka .
o 13photon
Or % ®
P S
2.4 2.5 2.6 2.7
BETA

Fig. 5. String tensions from monopoles {cross) and photons (diamond) in comparison with those from
abelian (circle) and full (square) Wilson loops on 24* lattice.
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Wa= exp{ZmEkﬂ(s)D(s—s) eaﬁpo‘aaMpo‘(S)} (36)

D(s) is the lattice Coulomb propagator. Since 9, 60..(s) contains only the photon field,
Wi(Ws) is the photon (the monopole) contribution to the Wilson loop. To study the
features of both contributions, we evaluate the expectation values <W:> and < W
separately and compare them with those of W. The string tensions evaluated from
monopole and photon contributions are plotted in Fig. 5. The string tensmn is
reproduced only from the monopole contribution.

3.5.  Polyakov loops and monopoles

An abelian Polyakov loop P which is written in terms of abelian link fields alone
N4 N ~
P:Re[exp{igﬂ(s+(z’-1)4)64(s+(z'—1)4)}] (37)

is given by a product of contributions from Dirac strings of monopoles and from
photons. Here Ju(s) is an external current taking +1 along the straight line in the
fourth direction. Using the definition of a plaquette variable Gu(s)=238.0.(s)— 8,8.(s)
where 0. is a forward difference, we get

Oi(s)=— ED(S —)[000,4(s") + 04(0,6,(s))] . (38)

Since 0:i/4(s)=0, the second term on the right-hand side of (38) does not contribute to
the abelian Polyakov loop (37). Hence we get

P—Relexp{— i 2} /u(s+ (i~ DDZD(s + (i~ 1 —)d%0uu(s))] . (39)
We get

P=Re[ P~ P], (40)

Pi=exp{— Z’§f4(s+(z'~—1)21):2D(s+(z'——1)@ —57)3,0u(s)} (41)

Pr=expl— 27 2 /(s + (i— DD ZD(s + (i~ VA=) 0ma()} (42)

We observe the photon (7,) and the Dirac-string (P») contributions separately:
Pp:Re[P1] and Pm:Re[Pz] . (43)

It has been found'”'® that the characteristic features of the Polyakov loops as an
order parameter of the deconfinement transition are due to the Dirac string contribu-
tions alone. In Fig. 6, the SU(2) data in MA gauge are plotted. The abelian
Polyakov loops vanish in the confinement phase whereas they begin to rise for A
larger than the critical temperature 8.=2.298. The Dirac string contribution shows
similar behaviors more drastically. The photon part has a finite contribution for
both phases and it changes only slightly. The fact that monopoles are responsible for
the essential feature of the Polyakov loop is found also in U(1) and in SU(3) in MA
gauge.
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1T v T v Y v ; . T T v T " T v T v T
| SU2: MA GAUGE ®1 0.4} SU2: POLYAKOV GAUGE ]
| o total ¢ _
o photon ® I g @EB ® = 1
- ©monopole ] @
b 8 <
. mad = o | o total ]
| = o ] o photon
0.2} ¢ monopole 4
®
é(h
®
" o
¢ @ I
¢ o0 o ¢
&%
oo * 1 o ¢ % .
i I} —, 1 L i 4 1
2.2 .
Fig. 6. Monopole Dirac string and photon contri- Fig. 7. Monopole Dirac string and photon contri-
butions to Polyakov loops in MA gauge in butions to Polyakov loops in the Polyakov
SU(2) QCD on 16° x4 lattice. Total means the gauge.

abelian Poyakov loops.

In addition, a remarkable result has been found. The behavior of the abelian
Polyakov loops as an order parameter and the monopole responsibility are seen also
in other gauges like unitary ones.!® See Fig. 7. This is the first phenomenon suggest-
ing gauge independence of the 't Hooft conjecture.

3.6. Summary of Monte Carlo studies of abelian projection

1. Monopole condensation seems to be the confinement mechanism at least in MA
gauge of SU(2) QCD.

2. Indication of gauge independence of the picture is found.

3. Construction of the effective monopole action in SU(3) QCD and in full QCD is
highly expected.

§4. An infrared effective field theory of QCD

4.1. Dual abelian effective theory of QCD

The monopole action derived above may be interpreted as a monopole Coulomb
gas with the running coupling constant and the bare mass. (fi(6)—In7) is the free
energy per unit monopole-loop length which is regarded as a chemical potential. The
other interaction terms may be interpreted as a bond-bond interaction due to the
Coulomb potential in the continuum limit. Using the technique developed by
Samuel,?” such a system is described by an abelian Higgs model (also see Ref. 28)):

S= [a'z]

S Ar 2 oL _ 2
Guxﬂg(b)Cux 7apd 4(8,‘@ aucﬂ)},
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where g2oc(A(b)—In7) and C. is a dual photon. In addition, there must exist a x*
term which stabilizes the vacuum for #*<0.

The field theoretical form of the action thus obtained is just equal to a Ginzburg-
Landau type theory of confinement. [ derived earlier theoretically from QCD on the
assumption of abelian dominance.’® In SU(2) QCD, it is given by

L ==L HH (80t i0C) 2 M2l = o, (44)
where
H/w: (%Cu— E)UCu + EﬂuAd/dL!y%A(%“ a)_l(l' _y)]gx(y) . (45)

Here we have introduced an external (color) electric U(1) current j&% and ¢ is the
magnetic charge. The equations of motion are given by

(= 0:0:+g*CiCo)x +24(x*—v*) =0 (46)
and
—0;H ;i +2g*x2Ci=0. (47)
The SU(3) case is obtained as follows:

3
L= _“_i_ (HHU>2+ ,?::1{‘(8#"‘ igéa ° C#)XaIZ_/l(bCalz—' 7)2)2} ’ (48>
where e, is the root vector: e=(1,0), &=(—1/2, —,/3/2) and e=(—1/2,./3/2) and
Huu:aﬂCu‘ auC/l+ 6/41//15/@743/7’/1(% ° a)~1<x7y)jgx . (49>

Here we have used the vector notation with respect to U(1)X U(1), e.g., C.=(C,?,
C.%). Adopting the unitary gauge Im(x.)=0, we have the following equations:

0u0" 20— 9*(€a* Cu)(€a> C*)3ta+ 222" — ") %e=0. (a=1,2,3) (50)
3
apH#U+2gz‘;2;1€a(@a° C")x?=0. (51)

4.2. Applications to low energy hadron physics

We have applied the model to various low energy hadron physics. The follow-
ings are the short review of them.

4.2.1. Static meson potential
Static meson potential is evaluated introducing an external current due to a static
quark antiquark pair:"*®

7= Q8@ 8( 2~ )~ 8(z+5)} (52)
where @=(Q° Q*)=(—¢/2, —e/2,/3). Here e is related to g by the Dirac quantiza-

tion condition eg=47. Solving the equation of motions (46), (47), (50) and (51), we
have gotten the static meson potentials for SU(2) and SU(3) QCD. They are expres-
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Fig. 8. Minimum string configurations.
sed as linear plus Yukawa terms:

QZ e—m‘r

V=or— 4w 7

(53)

That the linear potential can be derived naturally is the promising point of the model.

4.2.2. Static baryon potential
One can evaluate a static baryon potential also by solving the equation of motions
(50) and (51) with static three quark sources'”

j&=g° @z + 3 R)o(y+ )

+ Qza(x—'—/zg—@a(y +~§—)+ Qg&(x)é‘(y—R)}S(z) , (54)

where @:=(—e/2, —e/2/3), @:=(e/2, —e/2./3) and @:=(0, ¢//3). The static baryon
potential obtained is given as

—mMTik

e
i<k ¥Vir

2
V=0 X (minimum string length)— ZZyr , (55)

where the minimum string length is the minimum of the sum of the strings between
static quarks. There are two types of the minimum configurations corresponding to
the type of the three quark triangle. When all angles of the triangle are less than /3,
then the minimum configuration corresponds to three straight strings all angles
between which are equal (#/3). If the angle at a quark is larger than z/3, then two
straight strings between the quark and the others are the minimum configuration.
See Fig. 8. It is stressed that the real three point interaction appears in the potential.

4.2.3. Meson-meson interaction

It hadron-hadron interactions are evaluated assuming two-body linear interac-
tions between quarks and anti-quarks, a long-range Van der Waals force would
appear between hadrons. But it is not consistent with experimental results. Let us
study meson-meson interactions for the simplest two quark plus two anti-quark
configuration in the framework of our model.”® We introduced the following static
currents:
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Fig. 9. Meson-meson interaction for the simplest configuration.

i&=0"0{5@)o(y— D)o == F) - a@)o(y—L)o( e+ )

~5()8(y —%)a(w-é@ﬁ a<x)a(y +§)a<z+§>} , (56)

Solving the equations of motion with the static source, we evaluated the four point
potential. Subtracting two times the quark-antiquark potential, we got the genuine
meson-meson interaction as shown in Fig. 9. No long-range force between the
mesons appears as expected. The interaction works only when both distances R and
D are approximately equal. This is qualitatively in agreement with the string flip
model® and the Monte Carlo results.®”

4.24. Deconfinement transition in finite-temperature QCD
Confinement-deconfinement transition at finite temperature is investigated by
evaluating the effective potential using the imaginary time formalism on the basis of
the above infrared effective dual QCD model realizing quark confinement at zero
temperature.'®
Making the high temperature expansion and adopting terms of up to 7°% order, we
obtain the effective potential Ves in SU(2) QCD:

2 T4 2
%ff:-mzpzuf;z‘iﬂw— ”lg +%{4a(22—02)+3g2x2} . (57)

The vacuum expectation value {x> of the monopole field is determined by the relation

a Veff

Tz
_ 93,2 2 2|
e —<x>{ 2007+ L (8A+6g)+/1<x>} 0. (58)

xX=<x>

Then
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< >__ 0’ T>Tc,
Y =3 T2, T<T.,

where the critical temperature 7. is determined when the coefficient of %2 is zero:

T 24 9)?

-—m . (59)

The value of {x> disappears at T = T, continuously. The second-order phase transi-
tion occurs in the pure SU(2) case in agreement with the Monte Carlo data.®”

In the infrared effective Lagrangian in pure SU(3) QCD (48), we considered the
simplest self-interactions of the monopole fields. But there are two other U(1) X U(1)
invariant renormalizable interactions which we should consider in general. It is
necessary to consider all types of possible interactions to study the order of the phase
transition. Here the following self-interacticns are discussed in place of those in (48):

3 3 3
12 23 2t + et sas + ol 28 18 — M 2 a2l — 2o 2 (et )*
The final effective potential is

Veu=—g (24 2+ T°5%) +-5- (21371 27)

137°7T* n LT

A /o 2 1 o 2\2
+ 4 (JC1 +X2> 90 4 3 (60)
@ 1
=3 5 g~2:—8‘ (3g*+8A+44s) ,
F=—g, X=94+3k.
7

Here we defined xe=(xa+ixez)//2 and make the shift Y= Ywit+ Ze. Also we
assumed that the symmetry under the discrete 27/3 rotation (Weyl symmetry) is not
spontaneously broken:

Xn={a=Xa1=X1, X12=}Xn=X2=X2.
The vacuum expectation values are determined by the following two relations:

a Veff _ O a I/Yeff

afl x_:<x>_~ ’ 67)22 x‘:(pz (61)

They have three types of solutions that are transformed each other under the Z(3)
transformations in (<x1), {x2>) space. We analyse only the case <x2>=0. When {x2)
=0, the vacuum expectation value <{y1> which gives the minimum potential is

0, T>T.,

= ~/z—~e(/?)J/?22—Z41<ﬂZ+T252), T< T

(62)

and

NI | -El ectronic Library Service



Publication O fice, Progress of Theoretical Physics

22 T. Suzuki

_1 [
TC_ g— 9/1

A typical first-order phase transition is seen. The infrared effective model repro-
duces successfully the behavior which is consistent with the Monte Carlo data.*” The
existence of the cubic interaction term is essential for the first-order transition.

§5. Conclusion and remarks

The idea that monopole condensation is the color confinement mechanism is very
promising. All results of Monte Carlo simulations and the dual effective QCD model
obtained so far are supporting the idea. It is remarked that the dual effective QCD
model respects chiral symmetry keeping the confinement mechanism unaltered when
two or three massless dynamical quarks are introduced. To study confinement and
dynamical chiral symmetry breaking is very important.*”

Acknowledgements

The author is thankful to Y. Matsubara, S. Kitahara, H. Shiba, S. Ejiri and
O. Miyamura for collaboration and fruitful discussions. This work is financially
supported by JSPS Grant-in Aid for Scientific Research (B) (No. 06452028).

References

1) G.t' Hooft, Nucl. Phys. B190 (1981), 455.

2)  T. Suzuki and I. Yotsuyanagi, Phys. Rev. D42 (1990), 4257; Nucl. Phys. B (Proc. Suppl.) 20 (1991), 236.
3) T. Suzuki, Nucl. Phys. B (Proc. Suppl.) 36 (1993), 176 and references therein.

4) H. Shiba and T. Suzuki, Nucl. Phys. B (Proc. Suppl.) 34 (1994), 182.

5) H. Shiba and T. Suzuki, Phys. Lett. B333 (1994), 461.

6) H. Shiba and T. Suzuki, Phys. Lett. B343 (1995), 315.

7) H. Shiba and T. Suzuki, Phys. Lett. B351 (1995), 519.

8) S. Ejiri, S. Kitahara, Y. Matsubara and T. Suzuki, Phys. Lett. B343 (1995), 304.

9) S. Ejiri, S. Kitahara, Y. Matsubara and T. Suzuki, Nucl. Phys. B (Proc. Suppl.) 42 (1995), 481.
10) T. Suzuki et al., Phys. Lett. B347 (1995), 375.

11) T. Suzuki and H. Shiba, Nucl. Phys. B (Proc. Suppl.) 42 (1995), 282.

12) Y. Matsubara et al., Nucl. Phys. B (Proc. Suppl.) 42 (1995), 529.

13) S. Kitahara et al., Prog. Theor. Phys. 93 (1995), 1.
14) T. Suzuki, Prog. Theor. Phys. 81 (1989), 752.

S. Maedan and T. Suzuki, Prog. Theor. Phys. 81 (1989), 229.

15)  S. Maedan, Y. Matsubara and T. Suzuki, Prog. Theor. Phys. 84 (1990), 130.

16) H. Monden et al., Phys. Lett. B294 (1992), 100.

17) S. Kamizawa et al., Nucl. Phys. B389 (1993), 563.

18) H. Kodama et al., in preparation.

19) J. Arafune et al., J. Math. Phys. 16 (1975), 433.
20) T. A. DeGrand and D. Toussaint, Phys. Rev. D22 (1980), 2478.
21) A. S. Kronfeld et al,, Phys. Lett. B198 (1987), 516.

A. S. Kronfeld et al., Nucl. Phys. B293 (1987), 461.

22) J. Villain, J. Phys. (Paris) 36 (1975), 581.
23) T. L. Ivanenko et al., Phys. Lett. B252 (1990), 631.
24) R. H. Swendsen, Phys. Rev. Lett. 52 (1984), 1165; Phys. Rev. B30 (1984), 3866, 3875.

NI | -El ectronic Library Service



Publication O fice, Progress of Theoretical Physics

Monopoles and Quark Confinement 23

25) T. Banks et al., Nucl. Phys. B129 (1977), 493.

26) J. Smit and A. J. van der Sijs, Nucl. Phys. B355 (1991), 603.

27) S. Samuel, Nucl. Phys. B154 (1979), 62.

28) M. Stone and P. R. Thomas, Phys. Rev. Lett. 41 (1978), 351.

29) K. Yazaki, Nucl. Phys. A416 (1984), 87c.

30) A. M. Green et al., University of Helsinki Report HU-TFT-94-7 and LTH330, heplat/9404004.
31) For a review, see B. Svetitsky, Phys. Rep. 132 (1986), 1.

32) H. Suganuma et al., Report RIKEN-AF-NP-164.

NI | -El ectronic Library Service



