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Monopoles  and  Qua]rk Confianement

Tsuneo  SIJZUKI

Dopartment  of Rl2ysics, Kkena2awa Utiiversdy, Kana2awa 920-11, 1tzPan

  I review  the studies  of quark  confinement  

'based
 on  the dual Meissner effect due to

rrionopele  condensation  after  abel[an  projection irL QCD. The  first part is about  Monte  Carlo

simulations  of  abelian  projection and  the  role  of  monopo!es  in lattice QCD. Abelian  projec-
tion  in the  maximally  abelian  gauge  is found  very  interesting. The  menopole  part alone  is

responsible  for confinement.  A  block spin  transfonnation  on  the  dual lattice and  energy-

entropy  balance of  the monopole  loops suggest  tliat lattice SU(2) QCD  is alvvays  (for all  fi)
in the monopole  condensed  phase  and  $o  in the confinement  phase  in the infinite volume  Iimit.
Abelian Polyakov loops in various  gauges  suggest  gauge  independence of  the picture  of  the

monopole  conclensation.  The  effective  field theory  composed  of  a clual photon  and  a

monopole  field based on  the  monopole  condensation  after  abeHan  projection is shortly

reviewed  in the  next  part.

Sg. gntroductiom

   It has been evident  from Monte Carlo simulations  of  lattice QCD  that quarks  are

confined.  However  why  and  how  quarks  are  confined  is not  yet/ known.  It is crucial
to understand  the mechanism  of  quark  confinement  in order  to explain  hadron physics
out  of  QCD. The 

't
 Hooft idea of  abelian  projection of  QCD  is interesting,') The

abelian  projection is to fix the  gauge  in such  a way  that the maximal  
'torus

 group
remains  unbroken.  After the abelian  projectgon, monopoles  appear  as  a topological

quantity in the residual  abelian  channel,  QCI]) is reduced  to an  abelian  theory  with

electric  charges  and  monopoles.  If the monopoles  make  Bose  condensation,  charged

quarks  and  gluons are  confined  due to the  dual Meissner effect. Namely,  color

confinement  can  be regarded  as  abelian  charge  confinement  caused  by  the  monopole

condensation.

   On the basis of  this standpoint,  the present  author  and  his collaborators  have
studied  color  confinement  mechanism  and  hadron physics adopting  two  approaches.

The first approach  is Monte Carlo simulations  of  abelian  projectien  in lattice

QCD.2)dii3) The  aim  of  the study  is to ascertai,n  correctness  of the picture, that is, to
check  if monopole  condensation  really  occurs  and  if it is the confinement  mechanism

in QCD. The  second  approach  is to construct  an  infrared  effective  Lagrangian

directly from QCD  on  the assumption  of  the above  picture  and  to explain  low  energy

hadron physics from  the effective  theory.i4>'"iB> The  purpose  of  
`Lhis

 report  is to review

the results  of  these studies  compactly.

   In the next  section,  what  is abelian  projection  is shortly  explained.  Section 3
reviews  the results  of  the Monte  Carlo simulations  of  abelian  projection. Section 4
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is the short  surrimary  of  Lhe studies  based on  the infrared

Final sectlon  is devoted to concluding  remarks.

                        S .2,, 1±}.ll)elimrm gerojectiom

effective  theoi'y of  QCI).

2.1. Abelian P7fzr'ection in the continuzam  QCID

   Abelian projec"L'ion of  QCD  is done  as  follows. Choose an  operator  X(dipm) which

it's transformed non-trivially  under  SU(3)  ".'i"ansformatien:

     A.(x) .  A-.(,x)=r:-:- V(a;')A.(x) Y'(de')--!-Oit V(x')V"(x) ,
 (1)

                                  9

     gb(,x). ¢ (x)-V(::)cb(v). (2)
Al]elian projection  is to choose  V(x)  so  that  X(x)  is diagonalized as

     x(.)-1(.)===(
Ri(oX)

 A,(x) ,,Y,,)) (3)

Y(,x) is fixed up  to t,hc diagonal element  d(x) of  SU(3), where

     d(x):=(
eXP(Z8'(X))

 exp(za2(x))  ,.p(,Ode(,)))cS(yi(3),  tg.,ai(x)=0 (4)

{d(x)} is the maxirnum  torus group  ･of Sif(3), which  is the residual  U(1) × U(1) gauge
symmetry.

   We  look at  QCD  at  this stage  without  further fixin.cr the gauge  ot" the residual

symmetry.  Fir･ st, we  explore  how  the fields after  the nbelian  projection transform

itnder  an  arbip'var.･y S(J(Y gnzqge t7unshrmation  Wr(,x). Since X(,x') is a  functional of

(gauge) fields and  so  ite transforms  under  

'W(x),
 Hence V(,x) also  transforms non-

trivially, Let us  fix the /form  o'f V(x)  such  that all dia.cronal components  of  the

exponent  of  V(x) are  zero.  This i･salways possiblei/f one  uses  the residual  syrnme-

try, Then  V(x)  is found to transform  under  W(c) as

     V(x) -!V-･ V["(,x･)==d'"(L.)V(x) I･l"'(c). (5)

Vur(,x) di'agonalizes an  opera.tor  which  is transfonned  from  X(x)  under  P81([rc).

dva(x) is necessary  for Vur(,z') to take  the fixed form.

   The gauge  field after  the abelian  projection, Aft(x), transforms  zander  I}Y(x) as

     AN.(x) 
"'>

 AA',,W(:i;･)-d'V(x)A",,(x)dW'(x)----(-a.d"(x)d"'(,x), (6)
                                      g

After the abelian  projection, Ap(x) trans'forms only  under  the diagonai matrix  d 
'V(x').

Since the last term  ef  (6) is composed  of  the diagonal part  alone,  the diagonal part of

Apt(x) tran$forms  like a  photon.  The  off  diagonal part of  Aii(x') transforms  like a

charged  mattcr.  The  quark  field transforms  under  W'(x) as

     gb-(x) 
W>

 di-W(v)==clVV(x)diN(Jc). (7)

NII-Electronic  
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It is important that ¢ ;(,x)ipi(x)") and  dii(x){b2(x)ip3(x) are  neutral  and  at the same

time  invariant under  any  SU(3) transformation VV(x). Color co2er7nement  is regard-

ed  as  abelian  cha7ge  coutnement  cdifer  abelian  Projection.
   The  most  interesting fact of  abelian  projection  is that monopoles  appear  in the
residual  abelian  channel.  We  treat SU(2) QCD  for simplicity.  After abelian  projec-
tion, we  define an  abelian  field strength  as

     .Etv(x) ='  o"ptA.3(x)-O.A,!3(,x).  (8)
The abelian  field A"3(x) written  in terms  of  the  original  field is

     A.3(x) 
=--

 9"(x)Apa(x)--l;- l+  ",(xraab Va(x) 0" 9b(x), (9)

where  Y(,x)= V'(x)G3  V(,x)'=- Y"(x)cra･ Y"(s,-) obeys

     9a(x) ]?'a(x)-1. 
'
 (lo)

j9iv(x) can  be rewritten  in the form

     fhuCx)-- Og( 9a(,x)Av"(,x))- Ob( 9a(x)Ai,Ct(x))- 
1
 e.b,?a(x)O.  Fb(x)o. 9c(x)

                                         g

                                                               (11)

in terms  of  the original  field. A  current

     k"(･x)=-ieFupdO'f"cr(x), (12)

         ==  21g 
E"upcreabcO"Va(x)O"9b(x)0d)'/'C(x)  a3)

is always  zero  if V(x) is fixed. However,  at a point x  where  the eigenvalue  of  the

diagonalized operator  X(x) is degenerate, V(x)  is not  well  defined and  kpt(x) does not
vanish  there. We  calculate  the  charge  in the three dimensional volume  9  around  x:i9}

          gm =:  .Llko(x)d3,x ==  
'21g

 l] Eo vpcreabcO"  ?"(fic)O" 9b(x)od9c(i:)d3ar , (14)

                      ='t/-g  Y l, ei,,heabc l}"(x) ai l}b( c)Dk l}C(x)d2o,, (ls)

                        4rrn
                      

==

 g･  (16)

where  n  is an  integer. n  is a  topological  number  corresponding  to a  mapping

between  the sphere  (10) in the parameter  space  and  the sphere  09  of  S?. Because  this

equation  represents  the Dirac quantizaiL'io/fi condition,  gm  can  be interpreted as  a

magnetic  charge.  The  monopole  current  k"(x) is a topologically  conserved  current

0"fe"(x);O. Abelian Profected QCrD can  be regarded  as  an  abelian'  theo7:y, with  electn'c

 
*}

 Each di1'(,x)diVi(x) (i---1-･-3) is S[J(3) invariant, The  surn  2?･g-b;(x)g-}i(x) is the lowest color  siiiglet  as

   seen  from  2:･ dii (x> ip i(x)=2?-b;･  (x) dii(x), Other  t/wo are  excited  singlet  states  composed  of  quarks  and

   gluons.
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cha7g'es  and  monopoles.  
't

 ffooft･O conjectured  if the monopoles  condense,  abelian

charges  are  confincd  due to the dual Meissner effect. This means  coler  confinement.

2.2. Abelian Projection on  a  lattice

   We  can  perform  abelian  projection  on  a  lattice similarly.  Choose  an  operator

X'(s) in, for simplicity,  Slf(2) QCD. The  gauge  transformation  on  a  lattice is

     U(s, /-i')- V(s) U(s, fi)VKs+fl), (17)

where  U(s, 1-t) represents  a  link fieid correspcmding  to a  gauge  field in the  continuum

theory. After abelian  projection  is over,  abelian  link fields can  be separated  from
SU(2)  link fields as  foTIows:

     0(s･p-)-:("E-.(k

'

f2)")2 v･I-flllS,1';lillip)(

e'1
"`S'

 .-Pe.(.])J (is)

           -C(s,  fl)za(s, fZ), (19)

u(s,  "A) transforms  iike a  photon  and  C(s, fi) transforms  like a  charged  matter  unde]r

the residual  U(1) gauge  symmetry.  The  abelian  field strength  is defined as  a  pla-

quette variable

     e,.(s) ==-  o.(s)･･1- o.(s I- fi)- a,,(s+ p')- e.(s). (2o)

The  monopole  current  is defined2e) as

     k"(s)=L'SE"vpd6vnpa(s+fi,), (21)

where  0) is a  forward  derivative on  a  lattice and  i7ttv(s) is decomposed into

     epsv(s)=ff"y(s)+2nn,.v(s), 
-z<

 e-･(s)S.z, (22)
npy(s)  is an  integer corresponding  to the number  of  the Dirac string  through  the

plaquette. The monopole  currents  are  conserved  topologically

     o",',k" 
'-'O,

 , (23)

where  0fi is a  backward  derivative on  a lattice. The monopole  curren'ts  make  closed

loops on  the four dimensional lattice.

        S 3. Moente ¢ amllo  studi}r  of  nheEgapm  pffojectgen i･,zz Gnttgce Q ¢ ew

   Our  procedure  is as  
'follows:

1. Vacuum  configurations  of  link variables  {U(s, pa)} are  generated with  the  "[ilson

  actlon.

2. VLre perform  an  abelian  projection  and  then separate  abelian  link variables  ze(s,  ")

  as  in (19) to obtain  an  ensembie  of  {u(s, pt)}.

3. We  construct  monopole  curents  following the DeGrand-Teussaint  method  as  in

  (21).2e)
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4. We  measure  expectation  values  of  U(1) × U(1) invariant operators  O(u(s, pt)) and

  operators  composed  of  monopole  currents  O(le"(s)).

3,1. Abelian dominance  in MA  gazrge

   There  are  infinite ways  of  abelian  projection extracting  such  an  abelian  theory

out  of  QCD, It seems  important to find a  good  gauge  at  least in the studies  on  a  small

lattice. I show  in the following, if one  adopts  a  gauge  called  maximally  abelian

gauge,2i)'2)'3) the 
't
 Hooft conjecture  is beautifully reali.zed  at  least in SU(2) QCD,

   Define a  matrix

     X(s) =::  Z[ U(s, ") c,b Ut(s, ")+  U,  (s --", pt)ob U(s  
--

 k  ")]
           pt

         -Xl(s)ai+M(s)a2+Xk(s)ob.

Then  a  gauge  satisfying  Xl(s)==' X}(s) ==O  is the maximally  abelian  gauge  which  tends

to a  U(1)-convariant gauge  (0"± igA,te)A± "==O
 in the continuurri  limit.

   Gauge-fixed 
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monopole  loop length is approximated  by (A-ln 7), If A<ln 7, the entropy  domi-
nates  over  the energy,  which  means  condensation  of  monopoles.  In Fig. 3, fi versus
B for various  extended  rnonopoles  on  24  ̀ lattice is shown  in comparison  with  the

entropy  va?ue  ln 7. Each  extended  rnonopele  has its own  
,B

 region  where  the condi-

ttion fi <in  7 is satisfied, When  the extendedness  is bigger, larger B i-s included in such

a region.  Larger extended  monopoles  are  more  importaat in determining the  phase
transltlon polnt.

   The  behaviors of  tbe coupling  constants  are  differe.nt for different extended

rnonopoles.  Nowever,  if we  plet them  ver･ sus  b=n × a(ff),  we  get a  unique  curve  as

in Fig. 4. The  ceupling  constankLs  seern  to depend only  on  b, not  on  the extendedness

nor  B. There  is a  crit'ical  bc corresponding  te critical  Bc", i.e., bc=-na(Bc,n). The

monopole  action  may  be fitted by

     Slk] ==  E] mo  bkpt(s)k,a(s) +t(  g4( 
ffb))2:h.(s)D(s-s')k"(s')

 , (32)

where  g(b)  is the S(J(2) running  coupling  constant

     g(b)"2 ='22i.2  in( b2iA2)+ 427.2'in 
ln( b2h2')t (33)

D(s) is a  modified  lattice Coulornb propngator,  This form  o'f the ac`L'ion  is predicted
theoreticaliy by Srnit and  Sijs,26} The  solid  line is the prediction  given  by  the action

xitTith the pararneters  written  in Fig. 4.

   Now  we  can  derive important conclusions.  Suppose  the effective  monopole

action  remains  the same  for any  exteiided  .monopoles  larger than 43 in the infinite

velume  lirnit. Then  the finiteness of  bc== na(Bcn)  suggests  Bc" becomes infinite when

the extendedlless  n  goes  to infinit'y, S{J(2) lattice QCD  is always  (for all  gfi) in the

monepole  condensed  and  tht'n in the celor  confinement  phnse.i) This is one  ef  what

one  wants  to prove  in the framework o/tt

lattice QCD.
   Notice again  that  considering

extended  monopoles  correspond  to per- 2.5
iCorming  a  block spin  transformatt･ ion on

the dual lattice. The  above  factt that

the effective  actions  for al] extended

monopoles  considered  are  the same  for 
.ma
 2

fixed b rneans  that  the action  rnay  be th' e

renormalized  trajectory oii which  ene

can  take  the continuum  1･imk'. Our
                                  1.5
results  suggest  the continuum  menopole

action  takes  the forrri (32) predicted  by

Smit and  Sijs.26) The  sirnulation  o/f the

monopole  actioll  is in progress.
                                   s
                                    (p)
3.rfx. 7-7ze stn-ng  tension and  maonopoles

   Shibu and  Suzuki`)'5) have  shown
                                   Fig. 4.

---.TMML

s

      s eo
    b (lo-3 (Larnbda)L-1)

Coupling consZants  fi and  fi versus  b.
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furthermore that  monopoles  alone  can  reproduce  the t'ull value  of  the string  tension  in

SU(2) QCD. Let us  show  an  abelian  Wilson  ioop operator  is rewritten  by a product

of  monopole  and  photon  contributions.  Here  we  take  into account  only  a simple

Wilson loop, say,  of  size  IXI,  Then  such  an  abelian  Wilson  loop operator  is

expressed  as

     W-=iexp{iZf.(s)ept(s)}, (34)

where  llt(s) is an  external  current  taking 
'j:1

 along  t.he Wilson  loop. Since ll(s) is
conserved,  it is rewritten  for such  a simple  Wilson loop in terms  of  an  antisymmetric

variable  Mltv(s) as  Jv(s)=-:-Ofifi4"v(s). env(s) takes  ± IL on  a  surface  with  the IVilson
loop boundary, Although  we  can  choose  any  surface  of  such  a type, we  adopt  a

minimal  surface  here. We  get

w-exp[-･tt"':M..(s)  oyp(s)) . (35)

The  gauge  plaquette  variable  can  be decomposed into 0"u(s) ;  b'#u(s) +2  rrnptu(s)  as  (22).
Since A`Ltv(s) and  nst.(s) are  integers, the latt.er does not  contribute  to Eq. (35). }Ience

0".(s) in Eq. (35) is replaced  by OTgev(s). Using a decomposition rule

tau(s) =  L  ZD(s -s')[OE(O"1lfav nv' OvMag)(s') +  5 e･ap"yeatepo3aOa･i"lfhct(s')]  ,

we  get

VV=  Vi71e M)S ,

MFI-exp{-i:OPO-..(s)D(s---sr)f.(si)}

ouggeS$$
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Fig. 5. String tensions from tnonopoles  (eross) and  photonEs (diamond) in comparisen  with  those  frum

  abelian  (circle) and  full (square) Wilson  loops on  24  ̀ lattice.
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Fig. 6. Monopole  Dirac string  and  photon  contri･

  butions to Polyakov  leops in MA  gauge  in

  SU(2) QCD  on  16S× 4 lattice. Tota] rmeans  the

  abelian  Poyakov  loops.
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Fig. 7. Monopole Dirac string  ancl  photon  contri-

  butions to Pojyakev  loops in the  1'olyakov

  gauge,

   In addition,  a  remarkable  result  has been found. The  behavior of  the abelian

Polyakov loops as  an  order  parameter  and  the monopole  responsibility  are  seen  also

in other  giitrges like zanita7pJ ones.i"} See Fig. 7, This is the first phenomenon  suggest-

ing gauge  independence of  the  
't
 Hooft  conjecture,

3.6.L

2.3.

 Summa7:y of Monte Carlo stzadies of abelian  Projection

Monopole  condensation  seems  to be  the cenfinement  mechanism  at  least in MA

gauge  of  SU(2)  QCD.
Indication of  gauge  independence of  the picture is found,

Construction of  the etifective monopole  action  in SU(3) QCD  and  in full QCD  is

highly expected,

g4. An  infrared effeetive  
'fieldi

 tkeory  of  QCI)

4.1, Dual  abegian  diective theo7rv of QCD
   The  monopole  action  derived above  may  be interpreted as  a monopole  Coulemb

gas with  the runnjng  coupling  constant  and  
'the

 bare mass.  (A(b)--ln 7) is the free
energy  per unit  monopole-loop  length which  

'is
 regarded  as  a chemical  potential. The

other  interaction terms  may  be  interpreted. as  a  bond-bond interaction due  to the

Coulomb  potential in the continuum  limlt. Using  the technique  developed by

Samuel,2'> such  a  system  is described by  an  abelian  Higgs  model  (also see  Ref. 28)):

s=  fd`x( o"x -  i g4(-Z) 
Cnx2-Ii21]fI2l4- (SllC. 

--
 O.c.)2] ,
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where  xt2oc(fi(b)-- in 7) and  C" is a  duai photon. In additien,  there  must  exist  a  x`

term  which  stabilizes  the vacuum  for pa2<O.

   The  field theoretical form  of  the action  thus  obtained  is just equal  to a  Ginzburg-

Landau  type  theory of  confmement.  I derived earlier  theoretically 'from  QCI]) on  the

assumption  of  abelian  dominance.i`) In SU(2) QCD, it is given by

     .Zr==-21Lt.es""+(O,,+z'gC,)x2--A(Ix2-v2)2,  (44)
          -

where

     ff"p =-  o""Cy-OyC"  
-L
 e,tbAayin4ynA(noe)-i(x-y)J',g..(y)  , (45)

H.ere we  have introduced an  externa]  (color) electric  U(1) current  ieax and  g is the
magnetic  charge.  The  equations  of  rnotion  are  given by

     (-0i6itg2CiCi)x+2A(2r2-v2)x=O (46)

and

     -&H}i+2g2x2
 Ci --0.  (47)

   The  SU(3) case  is obtained  as  follews:

     f=='[' -  a (esiv)2+ 
.:3..,{KO,t+

 iyeae ()?t)xal2-A(Ix.12-vZ)2} , (4s)

where  dia is the root  vector:  ei=(1,  O), en='(-112,  
-Vll/2)

 and  e3=(-1!2,  VIi12) and

     Iiir}Jy=OpCp-0vC"+.c".ldju4ynA(n･O)-i(ar-y)3"ecrx. (49)

I-Iere we  have used  the vector  notation  with  respect  to U(1)X U(1), e.g,, ¢ ,,==(Ci

Cpt8). Adopting  the unitary  gauge  Im(xa)='O, we  have  the following equations:

     6pte'ixa-g2(eaeCu)(eauC")xa+2A(xevZ'v2)xa=-'e. (a--1,Z3) (50)
              3

     SptW""+2g2Zfia(easC")xa2=O. (51)
              atl

4.2. Amplications to lozv eneqgy  hadronPdysics

   We  have applied  the model  to various  low energy  hadron physics. The follow-
ings are  the short  review  of  them.

4.2.1. Static meson  potential

   Static meson  potential is evaluated  introducing an  external  current  due to a  static

quark  antiquark  pair:i`},i5)

     fg.(r) -  Qg"06(x)6(y)(6(z -- -R2-) -' s(z  +'5)),  (s2)

where  Q=(Q3, QS)=4'(-e12, 
-e12ts).

 }Iere e  is related  to g by the Dirac quantiza-
tion condition  eg=-:,4rr, Solving the equation  of  motions  (46), (47), (50) and  (51'), we

have  gotten  the static  meson  potentials for S(yT(2) and  SU(3) QCI]). They  are  expres-
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          tO･ T>  71r,

     
<X>=IJIiv2-(4+3g2za)T2!12,

 T<11:,

where  the critical  temperature  I'h is deterrnined when  the coefacient  of  xA2 is zero:

       2rr  24v2
                 , (59)     au
        

"4+3g2za

The  value  of  <x> disappears at  T=,- 7} continuously.  The second-order  phase  transi-

tion occurs  in the  pure SU(2) case  in agreement  with  the Monte  Carlo data.3i)

   In the infrared effective  Lagrangian  in pure  SU(3) QCD  (48), we  considered  the

simplest  self-interactions  of  the monopole  fields. But there are  two  other  U(1) × U(1)
invariant renormalizable  interactions which  we  should  consider  in general. It is

necessary  to consider  all types of  possible interactions to study  the order  of  the phase
transition, Here the following self-interactiens  are  discussed in piace of  those in (48):
        3 3 3

     lt2 Z  Xaxa* +  K(xiz2x3  +  xi" x2*] i") wu Ai( Z  xaza* )2 -  A2 2  (xaza")2 .
       avl  a=L  a==1

   The final effective  potential is

      Lt{,,,= ; (x-,2+ x-,2){P2+ T2 g-2}+-/t (x"'i3-3x-ix"'22)

          +f}  (xA,2+ xt',2)zm 
13
 11i;mT` +  

P`24Tl,
 (6o)

     x"iv2 =r3  
X2`2,

 g'-2== k (3g2+8Ai+4A2),
         3
                 Ah -- 9A,+ 3A, .
     

K-
 
--
 J2"'

Here we  defined xa=(x.i+ixaz)!Vll  and  make  the shift  xai-,xai--x"ai. Also we

assumed  that the symmetry  under  the discrete 2rr!3 rotation  (Weyl symmetry)  is not
spontaneously  broken:

     Xll=  X21 
J=

 X31 ==  Xl , X12=  X22 
=-7

 X32=  X2 .

   The  vacuum  expectation  values  are  determined by the following two  relations:

      
Ooli-Il,ff

 
,---,,,"=e7

 
2orrIit"k't{i'

 
i--,,,""O-

 (6D

They  have three types of  solutions  that are  transformed each  other  under  the Z(3)

transformations in (<xi), <x2>) space.  We  analyse  only  the case  <x2>==O. When  <x2>
=
 O, the vacuurn  expectation  va}ue  <xi> which  gives  the  minimum  potential is

          te, T>  T},

     
<zi>

 
==

i-B- 
e(
 
rc'-)
 

rc'-
 
22-A.4

 
A-(
 
ptrv2+

 
T2
 
g2)1,

 T<  7} (62)

and
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Tc=-1-..
    g

A  typical first-order phase transition is seen.  The  infrared effective  model  repro-

duces successfully  the behavior which  is ¢ onsistent  with  the  Monte  Carlo data.3i) The

existence  of  the cubic  interaction term  is essential  for the first-order transition.

g sW).(]cmcll-sgom and  
.scegrgarks

   The idea that monopole  condensation  is the color  coiptnement  vezechanisfn  is very

promising.  All results  of  Monte Carlc) sirnulations  and  the dual effective  QCD  model

ebtained  so  far are  supporting  the idea, It is rernarked  that the dual effective  QCD
rnodel  respects  chiral  symmetry  keeping the confinement  mechanism  unaltered  when

two  or  three rnassless  dynarnical quarks are  introduced. To  study  confinernent  and

dynamical chiral  symmetry  breaking is very  important.32)
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