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The attractive force between metallic surfaces, predicted by Casimir
in 1948, seems to indicate the physical existence and measurability of the
quantized electromagnetic field’s zero-point energy. It is shown in this
article, that Casimir’s derivation depends essentially on a misleading ide-
alization. When that idealization is replaced by a realistic assumption,
Casimir’s argument turns to the exact opposite: The observed Casimir
force does positively prove, that the electromagnetic field’s zero-point en-
ergy does not exert forces onto metallic surfaces.

PACS numbers: 03.70.+k

1. Is the Zero-Point Energy of Quantized Fields Observable?

When Heisenberg discovered quantum mechanics in 1925 [1], harmonic
and anharmonic oscillators were the first systems, to which he applied his
novel formalism. His equations led to the quantized energy-spectrum

E =
(
n+

1

2

)
hν with n = 0, 1, 2, 3, . . . (1)

The zero-point energy hν/2 per degree of freedom had been established ex-
perimentally already before due to the analysis of the vibrational spectra
of molecules [2]. Further experimental evidence for the physical existence of
zero-point energy arose in the following years for example from the scatter-
ing of X-rays by crystals at low temperature [3] and from the observation
that 4He stays liquid at normal pressure even near T = 0 [4]. Thus the phys-
ical existence of zero-point energy in systems with a finite number of degrees
of freedom was well established already in the early years of quantum theory
both experimentally and theoretically.

(1)
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In contrast, there were at that time — and still are by today — severe
doubts regarding the physical existence of the infinitely large zero-point en-
ergy resulting from the quantization of continuous fields. It was not only
the infinitely large value of the energy, which caused concern; that could be
reduced to finite values by some appropriate regularization method. But
there were simply no positive indications of it’s existence known from ob-
servations. Quite the contrary: Zero-point energy, like any form of energy,
should gravitate and thus, due to it’s huge value, result in observable cur-
vature of the intergalactic space, provided that General Relativity Theory
is correct. Pauli made an estimation of the curvature of space, which was
to be expected due to the electromagnetic field’s zero-point energy. “The
result was, that the radius of the universe (if short wavelengths are cut-
off at the classical electron radius) ‘would not even reach to the moon’.” [5,
page 842]

In an 1928 article on the quantization of the electromagnetic field, Jor-
dan and Pauli concluded (my translation): “It seems to us, that several
considerations are indicating, that — in contrast to the eigen-oscillations
in the crystal grid (where both theoretical and empirical reasons are indi-
cating the existence of a zero-point energy) — no reality can be assigned
to that ‘zero-point energy’ hν/2 per degree of freedom in case of the eigen-
oscillations of the radiation. As one is dealing with regard to the latter with
strictly harmonic oscillators, and as that ‘zero-point radiation’ can neither
be absorbed nor scattered nor reflected, it seems to elude, including it’s
energy or mass, any method of detection. Therefore it may be the simplest
and most satisfactory conception, that in case of the electromagnetic field
that zero-point radiation does not exist at all.” [6, page 154]

By a publication of Casimir [7] in 1948, the opinion of Jordan and Pauli
seemed to be refuted. According to Casimir’s computation (on which we
will dwell below), the quantized electromagnetic field’s zero-point energy
does cause an attractive force

FCasimir = − π
2h̄c

240

XY

D4
= −1.3 · 10−9N · XY/mm2

D4/µm4
(2)

between two parallel metallic plates with area XY , which are separated
by a gap of width D. Hence the zero-point energy would be physically
measurable and testable, after all. Since then, the Casimir-force has many
times been observed experimentally, and the — at least approximate —
correctness of equation (2) has been confirmed [8].

The debate about the existence and effectiveness of the zero-point en-
ergy of quantum fields was however still not definitely settled by the positive
results of the experiments measuring the Casimir-force, because some years
after Casimir’s publication an alternative explanation for that force was
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found: Lifshitz [9] and Dzyaloshinskii, Lifshitz, und Pitaevskii [10] derived a
formula for the long-range van der Waals-forces, which are acting between
two infinitely extended half-spaces with relative dielectric constants ε1 and
ε3, which are separated by a gap filled with a material with relative di-
electric constant ε2. Schwinger, DeRaad, and Milton [11] reproduced and
confirmed the results of Lifshitz et al. by means of an other method. They
also considered the limit ε1 = ε3 → ∞, ε2 → 1, i.e. the limit of two metal
plates with infinite conductivity, separated by a vacuum gap. It turned out
that the formula of Lifshitz simplifies in this limit to the Casimir-force (2).

The conclusiveness of (2) as a proof of the measurable effectiveness of
zero-point energy was considerably delimited by Lifshitz’ alternative the-
ory. The measured forces could always as well be interpreted as van der
Waals forces. But only “as well”. Many researchers in the field sticked
to the point of view, that the Casimir force is to be considered as a direct
macroscopic manifestation of the electromagnetic quantum field’s zero-point
energy. Should not the fact, that the observed forces could be interpreted
as well as an action of zero-point energy, at least be acknowledged as a dis-
tinct indication of the physically observable existence of zero-point energy?
Should it really be nothing than an odd coincidence, that Casimir’s compu-
tation of the effectiveness of zero-point energy, and Lifshitz’s computation
of van der Waals-forces, had led to the identical result (2)?

The answer on these questions, which will be justified below, is sur-
prising: Casimir’s formula (2) is absolutely conclusive. But it’s experimen-
tal confirmation does prove — exactly opposite to Casimir’s intention —
that the electromagnetic field’s zero-point energy does not exert forces onto
metallic plates, i.e. that the observed forces by no means are related to the
electromagnetic field’s zero-point energy.

2. Casimir’s Computation

Casimir considered a resonator as sketched in figure 1. The rectangular
cavity’s size is X × Y × (Z + P ). Inside the cavity there is a plate of
thickness P , which is aligned parallel to the cavity’s XY -face and movable
in Z-direction. The plate’s area is only minimally smaller than X×Y . The
plate’s distance from one side wall of the cavity is D, it’s distance from the
opposite side wall is Z −D.

We firstly consider the left cavity. At temperature T , it’s walls and the
plate are in thermodynamic equilibrium with the electromagnetic blackbody
radiation within the cavity. The spectrum of the radiation’s wave numbers
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Fig. 1. Cavity resonator with movable plate

is discrete:

krst =
2π

λrst
=

√(rπ
X

)2
+
(sπ
Y

)2
+
( tπ
D

)2
with r, s, t ∈ N (3)

There are 2 modes each with r, s, t = 1, 2, 3, . . . and 1 mode
each with one of the indices 0 and the both other indices
1, 2, 3, . . . [12, chap. D.II.2.b.].

λrst are the wavelengths of the possible radiation modes. This equation does
not hold for arbitrary wave numbers, because any metal becomes transpar-
ent for radiation of sufficiently high frequency. The transparency of metals
at very high frequency is a basic condition for Casimir’s derivation of for-
mula (2). Casimir was well aware of this condition, which he emphasized
in his publication. He introduced “a function f(krst/kM), which is unity for
krst � kM but tends to zero sufficiently rapidly for krst →∞”. But he did
not specify the concrete form of f(krst/kM) explicitly.

To design f(krst/kM) as realistic as possible, we assume the cavity and
the plate to be made of copper. The reflectivity R (i.e. the ratio of reflected
radiation intensity versus incoming intensity) as a function of wave number
is quite complicated, see [13, fig. 1b]. For the purpose of our investigation,
the rough approximation

R = exp{− krst/kM} with kM = 38 · 106m−1 (4)

for the reflectivity of copper is completely sufficient. (kM is about 0.8× the
plasma-wavenumber of copper [13] according to the Drude-model.)

At temperature T = 0, only the zero-point oscillations of the electro-
magnetic field are excited. The energy per mode then is h̄ckrst/2, and the
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zero-point energy enclosed within the cavity is

U0 = 2

∞∑
r,s,t=0

′ h̄ckrst
2

exp{−krst/kM} =

∞∑
r,s,t=0

′ h̄c ·

·
√(rπ

X

)2
+
(sπ
Y

)2
+
( tπ
D

)2
exp

{
− 1

kM

√(rπ
X

)2
+
(sπ
Y

)2
+
( tπ
D

)2}
. (5)

The prime′ at the summation symbol is a reminder, that the multiplicity of
polarizations, as indicated in (3), has to be considered. At most one of the
numbers r, s, t of an oscillation mode can be zero, and terms with one zero
index get a factor 1/2.

Once U0 is known as a function of D, the force

F = −d

dD

(
U0(D) + U0(Z −D)

)
(6)

can be computed, which is exerted by the electromagnetic field’s zero-point
energy onto the movable plate. Which result is to be expected? When D
is increased, then the energy of each mode in the left cavity, and thus the
overall energy in the left cavity, will become lower. On the other hand,
some high-energy modes, which have been only poorly reflected before, now
are better reflected due to their reduced energy, thus increasing the energy
content of the left cavity. Just the opposite is happening in the right cavity.
Furthermore, the density of modes in the large right cavity is higher than
in the small left cavity, which has some further impact onto the result. The
net effect of all these different factors is not easy to guess, and a detailed
computation of the force acting onto the plate is necessary.

For that computation, we consider — like Casimir — the limit X →∞
and Y → ∞. Thus the sums over the discrete indices r and s may be
replaced by integrals. Only the sum over t is still considered discrete. It
has been elaborated elsewhere [14, sect. 4] in very detail, how (5) then can
be transformed into

U0 =
π2h̄cXY

2

(
6Dk4M
π4

− 1

360D3
+
∞∑
j=6

Bj

j!

(j2 − 5j + 6)πj−4

kj−4M Dj−1

)
. (7)

The coefficients Bj are the Bernoulli-numbers

B0 = 1 , Bj = −
j−1∑
n=0

j!

n!(j − n+ 1)!
Bn for j > 0 . (8)
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The expansion, which led to the series with the Bernoulli coefficients does
converge only for

D >
1

2kM

(4)
= 13.2 nm . (9)

For smaller distance D between the movable plate and the cavity wall, (7)
is not valid.

(7) is the zero-point energy enclosed within the left cavity of figure 1.
To find the energy within the right cavity, Casimir replaced D everywhere
by Z − D. Thus the total zero-point energy within both cavities of the
resonator becomes

U0,total =
π2h̄cXY

2

(
6Zk4M
π4

− 1

360D3
− 1

360 (Z −D)3
+

+
∞∑
j=6

Bj

j!

(j2 − 5j + 6)

kj−4M π4−j

( 1

Dj−1 +
1

(Z −D)j−1

))
. (10)

With the approximation ( D

Z −D

)4
� 1 , (11)

which is well justified for all experimental evaluations of the Casimir force,
the force acting onto the movable plate between the both cavities assumes
the simple form

FCasimir = −
dU0,total

dD
= −π

2h̄cXY

2

(
1

120D4
+

+

∞∑
j=6

Bj

j!

(−j3 + 6j2 − 11j + 6)

kj−4M π4−jDj

)
. (12)

Casimir considered the limit kM → ∞, which immediately led to his for-
mula (2). This last simplification is superfluous, because the series with the
coefficients Bj is converging rapidly: Inserting kM

(4)
= 38 · 106m−1, it adds for

D > 0.2µm less than 5 % and for D > 0.5µm even less than 1 % to the
overall force.

3. Inserting Realistic Parameters

The assumption, due to which Casimir’s computation lost contact to
reality, was not the superfluous simplification of (12). It happened already
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in (10). The Casimir-force is the tiny difference of two huge forces. We
should more clearly discern kM,left and kM,right, and write (10) in the form

U0,total =
π2h̄cXY

2

(
6Dk4

M,left

π4
+

6(Z −D)k4
M,right

π4
− 1

360D3
−

− 1

360 (Z −D)3
+

∞∑
j=6

Bj

j!

(j2 − 5j + 6)

kj−4M π4−j

( 1

Dj−1 +
1

(Z −D)j−1

))
. (13)

With the approximation (11), the force exerted by the zero-point energy
onto the movable plate then reads

FZPE = −
dU0,total

dD
= −π

2h̄cXY

2

(
6(k4

M,left − k4M,right)

π4
+

1

120D4
+

+

∞∑
j=6

Bj

j!

(−j3 + 6j2 − 11j + 6)

kj−4M π4−jDj

)
, (14)

where the index ZPE stands for zero-point energy.
The term 6(k4

M,left − k4M,right)/π
4, which Casimir simply dropped due to

the idealizing assumption kM,left = kM,right, is describing the fragile balance
of two forces, which are tremendous in comparison to the Casimir-force.
Under the realistic assumption kM

(4)
= 38 · 106m−1, the ratio of these forces is

6k4M/π
4

1/(120D4)
≈


2.5 · 104 for D = 0.2µm

1.5 · 107 for D = 1.0µm

9.6 · 109 for D = 5.0µm

(15)

Only with excellent, and actually not realistic match of reflectivities of the
both sides of the plate, the Casimir force can become visible. For D = 1µm,
the ratio of the forces is

kM,right

kM,left

FCasimir = (12)

FZPE = (14)

1− 10−4 =⇒ 1.6 · 10−4

1− 10−5 =⇒ 1.6 · 10−3

1− 10−6 =⇒ 1.6 · 10−2

1− 10−7 =⇒ 1.4 · 10−1

1− 10−8 =⇒ 6.2 · 10−1

(16)

Actually, the experimentalists don’t even try to achieve good matching sur-
face conditions on the both sides of the movable plate. For example in
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the Purdue experiment [15] [16], the wall of the cavity is replaced by an
Au-coated sphere, and the movable plate is replaced by a 3µm thick silicon
plate, which is Cu- or Au-coated on it’s side facing the sphere, but un-coated
bare Si on it’s rear side. In a Yale experiment [17], the cavity wall again is
replaced by an Au-coated sphere, while the movable plate is replaced by a
SiN membrane, which is Au-coated on it’s side facing the sphere, but un-
coated bare SiN on it’s rear side.

Still these experiments — like all other experiments, which as well don’t
pay attention to the surface conditions of their movable plate’s rear sides
— are seeing the Casimir-force (2), but not the force FZPE = (14) caused
by zero-point energy.

If the zero-point energy would exert forces onto metallic surfaces, then
the term k4

M,left− k4M,right would dominate the observed forces in all of these

experiments, making the tiny ∼ D−4 Casimir-force invisible. FZPE does not
depend on D, and it can — depending on the relative reflectivities of the
two sides of the movable plate — be attractive or repulsive. No force with
that signature has ever been reported from any Casimir-force experiment.

Thus the experimental observations of the Casimir-force (2) (which ob-
viously is the van der Waals-force, and nothing else) do stringently prove,
that the force FZPE (caused by zero-point energy) does not exist.

4. How shall we dispose of that Zero-Point Energy?

With the force exerted onto metallic surfaces, allegedly being the direct
macroscopic manifestation of the electromagnetic quantum field’s zero-point
energy, the only, and anyway faint indication for the measurable existence of
a quantum field’s zero-point energy is lost. On the other hand, the powerful
counter-argument against the existence of that energy, i.e. the absence of
it’s gravitational effect, is persisting. Therefore one might be inclined to
abandon the zero-point energy of quantum fields without further discussion.
Still the advise from Jordan and Pauli — “it may be the simplest and most
satisfactory conception, that in case of the electromagnetic field that zero-
point radiation does not exist at all” — may be acceptable for the moment
being, but it does not at all seem “satisfactory” to me.

To make this point clear, consider these three Feynman-diagrams, which
are encountered — besides many others — in second order QED perturba-
tion theory of the scattering cross section of two fermions:

The first two diagrams are called “connected”, because all of their structures
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are directly or indirectly connected to the incoming and outgoing lines. All
of the impressive achievements of QED like Lamb-shift, electron g-factor,
hydrogen hyperfine-splitting, and so on, are described and computed by
connected diagrams. The third diagram is “unconnected”, because the vac-
uum bubble is not connected to the in- and outgoing lines. Such diagrams
are rarely drawn and almost never computed, because we know upfront that
all vacuum bubbles will eventually cancel in all orders of QED perturbation
theory.

The essential point is, that we do not need to wait for somebody coming
around and tell us that we should consider the vacuum bubbles as not
existing. We even don’t need feed-back from experiments to find out that
the bubbles will cancel. It’s a built-in feature of QED, that vacuum bubbles
automatically cancel. Thus we would just spent unnecessary work if we
started to compute them, but in the end we would arrive at the correct
result anyway.

However it’s not a built-in feature of any quantum field theory, that
vacuum bubbles don’t gravitate. This information must come from outside,
and must somehow be fit in “by hand”. This situation certainly can not be
considered “satisfactory”.
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