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QED between parallel mirrors: light signals faster than c, 
or amplified by the vacuum 

G Barton?$ and K Schamhorst$ll 
t Physics and Astronomy Division, University of Sussex, Brighton BN1 9QH, UK 
$ INTSEM and Fachbereich Physik, University of Leipzig, Augustusplatz IO, D-0-7010 
Leipzig, Federal Republic of Germany 

Received 29 September 1992 

Abstract. Because it is scattered by the zero-point oscillations of the quantized fields, light 
of frequency w travelling normally to two parallel mirrors experiences the vacuum between 
them as a dispersive medium with refractive index n ( w ) .  Our earlier low-frequency result 
that n(0) C 1 is combined with the Kramers-Kronig dispersion relation for n and with thc 
classic Sommedeld-Brillouin argument to show (under certain physically reasonable 
assumptions) that either n(m) c 1, in which case the signal velocity c/n(m) exceeds c; or 
that the imaginary pari of n is negative at least for some ranges of frequency, in which 
case the vacuum between the mirrors fails to respond to a light probe like a normal passive 
medium. Furlher, the optical theorem suggests that n exhibits no dispersion to order e4, 
i.e. that n(m) = n(0) up to corrections of order e6 at most. 

1. Introduction and conclusions 

Consider the Maxwell field at absolute zero temperature in the region between two 
plane-parallel mirrors a distance L apart. We idealize by taking them to be indefinitely 
extended, and perfectly conducting at all frequencies however high; these idealizations 
define an instructive model, and here we shall not question them further. The boundary 
conditions at the mirrors (Eli = 0 = €3,) constrain the normal modes of the field, and 
when the field is quantized, its vacuum structure differs from that in unbounded space. 
Different in particular are the vacuum (zero-point) expectation values of the squared 
field components and of the energy density; the latter is lowered, as witnessed by the 
Casimir effect (for a recent review see, e.g., Mostepanenko and Trunov 1988). 

It is well known too that (even in the absence of mirrors) the zero-point motions 
of the electron-positron (Dirac) field profoundly alter the properties of the vacuum 
in (fully interacting) QED relative to those in classical physics: for instance, they induce 
nonlineanties in Maxwell's equations and a consequent scattering of light by light. 
These nonlinearities, jointly with the mirror-induced changes in the zero-point Maxwell 
field, then cause the speed of light between (and normal to) the mirrors to differ from 
and possibly to exceed c Though the differences are too small by many orders of 
magnitude ever to be observed in practice, we think that they raise interesting matters 
of principle, and study them in this paper without undue diffidence. 
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We stress that such a speed greater than c between mirrors does not in any way 
contradict or  pose any conceptual threats to special relativity, though admittedly it 
can prove eye-catching because at first sight one might think that it does. The presence 
of the mirrors breaks Lorentz invariance along the mirror normal (the mirrors define 
a preferred inertial frame), which obviates the arguments used in special relativity to 
prove that no signals can travel faster than light does in unbounded (Lorentz-invariant) 
space. By contrast, Lorentz invariance is unbroken parallel to the mirrors, and the 
light speed in these directions naturally must, and does, remain unchanged. 

There is no need, at the outset, to ask what if any boundary conditions are to be 
imposed on the Dirac field at the mirrors. Such conditions can have consequences of 
two kinds, local and global. Locally, they alter the fermion propagators, but these 
changes decrease exponentially with distance from the mirrors (on a scale set by the 
Compton wavelength), and here we shall ignore them altogether. The global effects 
bear on the selection rules, i.e. on the question whether a suaciently energetic photon 
(excitation of a Maxwell normal-mode between the mirrors) can or cannot, to order 
e', decay spontaneously to an electron-positron pair. We shall return to this question 
only when it becomes acute, in section 5. Meanwhile, readers preferring to have a 
specific model might like to think of the Dirac field as subject to periodic boundary 
conditions, which forbid decays of the kind just described. 

At frequencies w << m well below the electron mass m, and for field strengths well 
helow m2/et ,  the nonlinear corrections to Maxwell's equations are summarized by 
the Euler-Heisenberg effective Lagrangean density (Berestetskii et a1 1982, sections 
127, 129; Barton 1991) 

(1) 

A 2  is the basis of the only explicit calculations to date (Scharnhorst 1990a. Barton 
1990), which show, for propagation normal to the mirrors, that at such non-relativistic 
frequencies the effective refractive index n of the vacuum between two mirrors is 
constant and less than 1, whence the phase and group velocities are equal, and greater 
than c. These results and their limitations are summarized in section 2. 

At higher frequencies w 3 m, explicit calculations would have to use the full armoury 
of relativistic QED, adapted to mirrors as regards the Casimir effect for instance by 
Bordag et a1 (1985). Regarding the propagation of light such explicit calculations are 
likely to prove extraordinarily awkward, and none have been done to date. Section 3 
spells out some of the difficulties, due mainly to  the unreliability of perturbation theory 
at high frequencies. The present paper aims to sidestep this awkwardness by deriving 
some conclusions through simple but very general arguments, based on local causality 
as embodied in the dispersion relation for n ( w ) .  Section 4 writes down the dispersion 
relation and discusses its status. If one then assumes in the orthodox way that the 
imaginary part of n is non-negative, then it follows at once that n < 1 at infinite (as 
weU as at zero) frequency; and consequently that the true signal velocity normal to 
the mirrors, c/n(m), exceeds c just as the low-frequency phase and group velocities 
do. One can escape this conclusion only if Im n is negative at least for some ranges 
of frequency, which would mean that the vacuum can amplify a light signal, i.e. that 
its response to a probe beam is quite unlike that of any normal passive medium. 

1 e4 
2'3'5.~1~ m4 A 2 = -  - {(E2-BZ)2+7(E.B)z}. 

7 We use natural units h = 1 = e ,  and unrationalized Gaussian units for the Maxwell field. Thus the 
fine-structure " a n t  is e'-&. 
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We believe that in strict logic the choice between these two alternatives remains 
open; indeed, subjectively the two present writers probably incline to opposite choices. 
On the one hand, it is a matter of observation that the consequences of n ( W )  < 1 
continue to shock most physicists, however weakly such a reaction might be rooted in 
physics. On the other hand, we know of no explicitly sustainable models with the 
alternative property of negative Im n, which is counterindicated in at least two ways. 
First, section 5 outlines some arguments about likely mechanisms responsible for Im n, 
which suggest that it vanishes to order e4. If so, then, up to correction of order e' at 
most, n is the same real constant less than 1 (by an amount of order e') at aN frequencies. 
(The reason why we do not regard this argument as final proof of Im n > 0 is just that 
it is perturbative, and as such may fail at high frequency.) The second counterindication 
to negative Im n is the sheer perversity of the immediate implication that the vacuum 
between the mirrors amplifies a weak incident probe beam. Subject to energy conserva- 
tion, it would then seem that the probe must be triggering a pre-existent instability; 
the no-photon state in Fock space would turn out to have been a false vacuum; and 
perturbation theory would fail through its incapacity to describe the subsequent 
collapse. 

2. The low-frequency refractive index: phase and group velocities exceeding e 

Between the mirrors, the propagation of (say) a plane-wave probe is modified, with 
respect to unbounded space, by the fermion-induced coupling of the probe fields 
(treated as extemal fields) to the zero-point oscillations of the quantized Maxwell field. 
Astudy of the effective Maxwell action between mirrors in the regime UJ << m govemed 
by (1) showed (Scharnhorst 1990a) that, to leading order, the operative refractive index 
for propagation normal to the mirrors becomes 

By contrast, for propagation parallel to the mirrors the refractive index remains unity 
as in unbounded space, and as dictated by the surviving mirror-compatible Lorentz 
invariance under boosts in these directionst. 

The reduction of n below 1 is related to the reduction of the zero-point energy- 
density below its value in unbounded space$, and thereby to the Casimir effect. It 
should perhaps be stressed that the position-independent shift Sn = :(Se + 8p) results 
from shifts S&(Sp) in the dielectric constant (magnetic susceptibility) that do vary with 
position. Taken separately they diverge at each mirror, whence equation (2) cannot 
be applied closer to the mirrors than a Compton wavelength or so. Elsewhere, SE and 
Sp vary on a scale of L, whence the local refractive index n suffices to describe light 
propagation in the geometric-optics (WKB) regime, i.e. with wavelengths well below L 
(Barton 1990). 

t Though derived for ideal mirrors, these refractive indices apply equally with real mirrors that bewme 
transparent above some frequency cool provided o,L>> 1. 
$By rem-point effects we always mean the appropriate quantity evaluated in the presence of the mirrors, 
with the wrresponding mirrors-absent quantity subtracted. Such renormalization supplies finite and 
mathematically sensible answers to all physically sensible questions, even for perfect mirrors: i.e. divergences 
are eliminated without appealing to the transparency of real mirrors at high frequencies. (At least this is 
the case for plane.parallel geometry, and here we consider no other.) 
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Equation (2) shows that (as long as occ  m)  n is frequency-independent and less 
than 1. Hence the phase and group velocities normal to the mirrors are equal and both 
greater than 1: 

As already stressed in section 1, 6n is too small to measure in practice. Moreover, on 
a single traverse the low-frequency prediction (2) cannot be verified even in principle, 
because any wavegroup narrow enough to afford the requisite accuracy must include 
significant high-frequency components to which the effective coupling (1) and therefore 
(2) no longer apply. To see this, note that to determine Se=-Sn directly as a 
velocity-change one would need a wavepacket of width Sx, where Sx/LfSc/c- 16n1, 
so that 1/6x3 l/LISn[. But the wavenumber width Sk ofsuch a packet obeys S k a  1/6x, 
whence it must include components with 

This has been pointed out by Ben-Menahem (1990). Milonni and Svozil (1990) give 
an argument to the same effect, but based on the switch-on times and the durations 
of light signals available from excited atoms. 

Clearly, such considerations are not specific to the effect we are studying. What 
they show, equally for quantum and for classical waves, is that in confined geometries 
a single measurement on a single traverse can determine the speed of light having 
limited frequencies only with limited accuracyf: under such conditions the operational 
significance of any ultimate speed is apt to remain somewhat nebulous. (As so often 
when applying the indeterminacy relations, one could argue that the statistically 
analysed average of many measurements does make it possible, in principle, to deter- 
mine shifts well below the mean-square deviations, and thus to verify effects that more 
cursory considerations of single measurements sometimes describe as undetectable. 
However, this is not the place to pursue such very wide questions relating to measure- 
ment theory in general.) 

3. Signal speed and the high-frequency refractive index 

In order to determine the true signal speed, i.e. the speed of a sharp wavefront advancing 
into an initially undisturbed medium, one needs to consider the propagation of, say, 
the electric field of such a wavegroup. Careful reasoning initiated by Sommerfeld 
establishes (se e.g. Brillouin (1960), and for a lucid textbook treatment Jackson (1975)) 
that this may be written as 

m 

E ( t , z ) =  dwa(w)exp{-iot( l -n(w)z/t)]  (5 )  I_, 
t We do not know whether repeated traverses could do the trick. The difficulty is that every extra traverse 
involves an extra reflection, with the light crossing the narrow region next to the mirror where (2) is unreliable. 
This in turn might well entail a time delay (or advance) 7, which we cannot calculate. 'Thus, without some 
reason to suppose that Itla LfSc-Ll6nl for practicable L, multiple traverses offer no demonstrated 
advantage. Alternatively, one might try to construct a measurement scenario on the perhaps plausible 
assumption that I (like the singulaxities of Se and 6w right next to the mir") is independent of L; but 
such attempls soon become uncomfortably far-fetched. 
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where a(w)  is analytic in the upper-half complex w plane; and that the signal speedt 
is l/(Ren(o+m)). But n(m) is a quantity not accessible from the low-frequency 
coupling (l), whose consequence (2) we shall henceforth write as n(0) .  

& at high frequency, we 
reason as follows. Since the geometric-optics (WKB) approximation (in terms of a local 
refractive index) suffices to describe the propagation of a probe beam even in the 
low-frequency regime as soon as w >> 1/L, it seems clear on physical grounds that this 
approximation can only improve as one enters the high-frequency regime w 3 m >> 1/L. 
Likewise it seems clear that n will remain independent of position (except within a 
few Compton wavelengths from the mirrors). 

Unfortunately, as far as we know no-one as yet has calculated n(m). The situation 
is the same in some other problems of light-propagation, e.g. in gravitational back- 
ground fields (Drummond and Hathrell 1980, Dolgov and Khriplovich 1983); in 
external electromagnetic fields (Bialynicka-Birula and Bialynicki-Birula 1970, Adler 
1971, Ternov et al (1982), and at finite temperature (Barton 1990, 1991). All these 
problems have been investigated at roughly the same level of technical and conceptual 
rigour as ours. What is calculated in every case is only the behaviour of n in the 
appropriate low-frequency regime; the central technical difficulty too is essentially 
common to all cases, and we spell it out only for ours. The point is that for o<c m 
and mL>> 1 one can convince oneself without too much trouble that the two-loop 
contribution (2) dominates all higher loops; therefore the calculation of n(0)  is under 
proper control, and a credible result can be evaluated to leading (fourth) order in e. 
By contrast, as w’m, there is no reason to neglect the contributions of loops of 
arbitrarily high order. To calculate n(m) is therefore a truly non-perturbative task: 
improvements on (2) by means of perturbation theory cannot yield definitive infonna- 
tion about the signal velocity of light between mirrors. Accordingly, in the next section 
we fall back on simple and general arguments from a few basic physical principles, 
in preference to speculating about technicalities in a way that (short of a complete 
calculation) can carry little conviction. 

Another point of view has been put by Ben-Menahem (1990), who notes that the 
signal speed cannot exceed c unless commutators of the Maxwell fields (response 
functions) can cease to vanish beyond the original unperturbed (mirrors-absent) light 
cone; and that to amve at such an outcome through a perturbative calculation, the 
true QED interaction (between the Maxwell and the Dirac fields) would in effect have 
to introduce suitable delta-function derivatives into the commutators on that cone$. 
Further, he draws a largely verbal sketch of a calculation which his final paragraph 
then cites as grounds for believing that this cannot happen, and that wavefronts between 
mirrors consequently do travel exactly at the speed c. However, we have been unable 
to discern mathematical evidence for his sketch, and will not therefore elaborate 
technical reservations about ways in which one might conceivably try to formalize it. 
This does not of course mean that the conclusion is necessarily wrong. In our view, 
it means only that for the present the question (whether or not n ( a )  is unity) remains 
open, and that it can be settled only by actually calculating the commutators; this in 

t As pointed out by Ben-Menahem (1990), one of us (Barton 1990) failed, earlier, to distinguish properly 
between group and signal velocity. 
$ Fmm a canonical viewpoint it may be worih noting that there is no proven need for the equal-lime 
commutation rula to change even if the signal speed were to exceed c In that case the effective light-cane 
is distorted between the minors, but ‘causality’ in the sense commonly associated with the existence of a 
light cone would continue to apply, provided one makes due kinematic allowance for the distortion. 

Regarding the relevance to wave propagation of n 
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tum will need demonstrably adequate approximations to the requisite high-frequency 
dynamicsf. If, by whatever means, it were eventually established that n(m) = 1, then, 
as explained in the introduction, one would be driven to the second alternative, namely 
to negative Im n, which is discussed further in section 5 below. 

G Barton and K Schamhorst 

4. The alternatives allowed by the Kramers-Kronig relation 

Our purpose here is not to debate whether n(m) equals unity, but merely to connect 
n(m) with the undisputed result O <  n(0) < 1 through the standard 'Kramers-Kronig' 
dispersion relation for n(w)S,  which is the only secure non-perturbative relation 
available. (It makes no difference whether we work with n or EFL= nZ.) This connection 
will show that one must accept at least one of two equally unorthodox possibilities: 
either n(oo)< 1, so that the true signal velocity, too, exceeds e; or the conventional 
no-photon vacuum between the (fixed!) mirrors amplifies a probe beam. In the second 
case the vacuum would fail to act as a passive medium; though such failure is often 
associated with instability, we prefer to label this scenario through the lack of passivity, 
in order not to prejudice the argument through other meanings that are sometimes 
associated with 'unstable vacua'. We revert to the physical implications in the last 
paragraph of this section. 

For the real part of n, the dispersion relation reads (see, e.g., Newton 1982) 

w'Imn(w') 
w # 2 - w 2  

Re 

assuming only that n converges at infinity (see point (iv) below); more precisely, 
Im n ( w  +m) needs to vanish. Before exploiting (6) we add some comments to clarify 
its status. 

( i )  The relation stems directly from the analyticity of n ( w )  for Im w > 0; this in 
turn follows via Titchmarsh's (1948) theorem from local causality, i.e. from the fact, 
quite unrelated to the speed of light, that at a given point there can be no polarization 
before there is a polarizing fields. 

(ii) A monochromatic plane wave would be proportional to the exponential in the 
integrand of (5). A passive medium, since it can absorb but not amplify, must have 
Im n ( o )  2 0 for all W. Some explicit observations about Im n are made in section 5 
below. 

t In fact, explicit calculation (Schamhorst 1990b) shows that any dynamics that ultimately entails n(m) < 1 
does also, at the proper stage, automatically deliver the delta-derivatives that Ben-Menahem claims can 
never occur. 
$Though the frequency spectrum of the normal modes between and propagating perpendicularly to the 
mirrors is wholly discrete, this fact does not at all prevent one from defining and (in principle) determining 
the response (described by n ( o ) )  of the inter-mirrors vacuum to probes of arbitrary (continuously variable) 
frequency. The crucial mathematical point is that the probe beams originate from sources (of freely variable 
frequency), whence they satisfy the inhomogeneous rather than the homogeneous wave equation. For an 
explicit discussion see Barton (1989). 
8 Regarding ordinary media with both spatial and temporal dispersion (i.e. where the wavenumber k is not 
dictated by the frequency 0). it is quite a delicate matter to decide whether the properly causal response 
functions (to which the dispersion relations apply) are the e(*, k) and p(u, h ) ,  or their inverses. (For a 
good review see Kinhnitr (1989).) Fortunately our archetypal disperison relation for n (or equivalently for 
the forward scattering-amplitude of light) is immune to such subtleties. 
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(iii) For a conventionally granular dilute medium (number density p )  the Rayleigh 
construction (see, e.g., Ditchburn 1976) yields 

n=1+2?rpf lo2 .  ( 7 )  

Im n ( o )  = 27rp Im f ( w ) / w ' =  pu(w) /20 .  (8)  

The optical theorem then entails 

Herej' is the coherent forward scattering amplitude and U the total cross section from 
a single isolated target particle. Heuristically, it is tempting to try to adapt this 
construction to our problem by identifying the target particles with the zero-point 
photons between the mirrors (see the second footnote on page 2039). Unfortunately, 
though at non-relativistic frequencies it works, we have found that attempts to quantify 
this approach at high frequencies are fraught with unresolved though fascinating 
difficulties (Barton 1992). Meanwhile, all that we can safely assert is that, in ( 7 ) ,  (S), 
a properly implemented field-theory calculation would replace pf by F, and pu by Z, 
where F is the total coherent forward photon scattering amplitude from unit volume 
between the mirrors, and X the corresponding total cross section. 

(iv) We have no conclusive proof that Re n converges and Im n vanishes as w 3 00, 

because, as pointed out in section 3, their asymptotics are quite likely to be governed 
by non-perturbative effects that we cannot calculate. Nevertheless it is very plausible 
that n does behave in this way, especially in the light of the analogy suggested by the 
Rayleigh construction (cf comment (iii) above). To bring this to bear, we first need 
some photon-photon kinematics. Consider the collision, in the mirror-fixed frame, 
between a photon from the probe beam, travelling in the z-direction (along the mirror 
normal) with frequency U, and a zero-point photon with frequency wh and wavevector 
having polar angle Oh. Denote the photon frequencies in the centre-of-momentum 
frame by U'. Then w' and the usual Mandelstam s-variable read s = 4 0 ' ~ =  
200* (1  -cos @A). 

It follows directly from (8) that Im n could remain non-zero only if the total cross 
section for a photon propagating between (and normally to) the mirrors were to grow 
at least linearly with w, which is very hard to imagine. By contrast, the total light-light 
cross section to order e4 behaves like l / s ,  while the exact cross section (to all orders) 
is thought to approach a constant (Berestetskii er a1 1982, sections 127, 134); if so, 
then the kinematics above entail Im n - 1 / 0 2  and Im n - l / o  respectively. (For com- 
parison, the Froissart bound on two-particle scattering admits only total cross sections 
growing no faster than log2 (s).) 

In any case, it will become evident that the conclusions in this section remain 
conveniently immune to non-perturbative effects, as long as these do not cause the 
dispersion relation (6) to diverge; such immunity follows simply because perturbation 
theory does suffice to determine n(0) .  On the other hand, if ( 6 )  did diverge, then our 
conclusions would certainly have to be reconsidered using subtracted dispersion 
relations (Nussenzveig 1972). 

We are now in a position to exhibit our central alternative, simply by evaluating 
(6) at zero frequency. With n(0)  and n(m) real, we may write 

From ( 2 )  we know that n ( 0 )  < 1. If the vacuum between the mirrors is passive, then 
Im n>O, whence the integral is non-negative, n ( a )  like n(0) is less than I ,  and the 
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true signal speed exceeds e. Conversely, if the true signal speed is e, i.e. if n(m) = 1, 
then Im n must be negative at least in some ranges of frequency, whence the vacuum 
between the mirrors cannot behave passively at all frequencies. 

Between these two possibly uncomfortable alternatives we do not here propose a 
definitive choice. That the first is perfectly compatible with relativity theory properly 
understood has already been spelt out in section 1. If nevertheless one wished to avoid 
it, then Im n would have to be capable of assuming negative values without physically 
unacceptable implications. 

Such a scenario has been proposed for light propagation through gravitational 
background fields, where the vacuum hears some resemblance to the vacuum between 
mirrors (Birrell and Davies 1982, Fulling 1989), though the latter is much clearer 
conceptually and much easier to handle. The gravitational case has been studied by 
Drummond and Hathrell(1980), who took account of quantum corrections and, long 
before us, encountered a refractive index n(0) < 1. Since this situation too lacks Lorentz 
invariance, there would not, in our view, be anything necessarily wrong about a signal 
velocity exceeding e. Nevertheless, Dolgov and Khriplovich (1983), rather than enter- 
tain this possibility, seek to escape it by observing that even an impeccably orthodox 
Im n can turn negative, provided the medium is inhomogeneous in a way that can 
focus the beam (and thus lead to a local increase in amplitude without any global 
creation of photons). While their observation is undoubtedly correct, it does not apply 
to our case, where, as explained in section 2, the refractive index is independent of 
position. Under such conditions Im n t O  would signify induced generation of real 
photons, with the vacuum between the mirrors behaving as an active medium; prima 
facie this would seem to entail energy creation out of nothing, a scenario for which it 
might prove difficult to devize a physically reasonable interpretation (see e.g. the last 
sentence of section 1). 

G Barton and K Scharnhorst 

5. Absorption and dispersion between mirrors 

In considering Im n, which determines n via the Kramers-Kronig relation (6), it is 
probably hest to disregard the weight of implications piled onto the outcome by section 
4, and to proceed as straightforwardly as possible from first principles. In such an 
approach pursued by perturbation theory it is automatic that Im n is governed by the 
mechanisms available to absorb photons, which cannot make Im n negative. 

We start by adopting a version of QED where fermions as well as photons are strictly 
confined to a slab of width L: then fermion momenta too are quantized in the 
z-direction. In slab-space QED?, essentially the same kinematic selection rule as in 
unbounded space prevents a photon from decaying into an electron-positron pair at 
a rate of order e2. Further, energy-momentum conservation prevents the decay of a 
single initial photon into any final state via tree diagrams alone. However, no reason 

t The chief advanlage of slab-space QED is that it is mathematically well defined and physically clean even 
though somewhat artificial. If photons are aonfined to the slab while fermions are not, then the conservation 
rules allow all sorts of peculiar processes, with peculiar consequences, for which physical interpretations 
are fanciful at best. For instance. a photon between the mirrors (whose z.momentum is quantized) could 
then decay spontaneously into an electron-positron pair (whose z-momenta are not quantized), even to 
order e’, entailing for instance Im n - e’(@ -Zm)/Lm2just above threshold, and Im n - e ’ / h  when w n m 
(Barton 1992). Here we ignore such oddities, and models that admit them. (The reader will realize that 
mirrors reflecting photons with U m are pretty odd anyway.) 
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is apparent why a photon with o > 2m should not decay spontaneously into a pair via 
closed-loop mechanisms involving zero-point photons (i.e. photon propagators) which 
supply momentum but no energy; in other words, the mirrors absorb the recoil. (One 
might expect that in the main such decays originate close to the mirrors.) 

Some elaboration of these arguments leads directly to certain remarkable con- 
clusions about absorption and dispersion as described by n ( w ) .  The imaginary part 
of n is proportional to the imaginary part of the forward scattering amplitude F 
introduced at the end of comment (iii) in section 4. Thence, using the field-theory 
version of the optical theorem (see, e.g., Itzykson and Zuber 1980), one can convince 
oneself that Im F and Im n vanish not only to order e2 as already mentioned, but also 
to order e4. 

TO see this, consider the two 2-loop diagrams contributing to f i  shown in the figure; 
we disregard the 1-loop photon polarization diagram, which is clearly irrelevant. 
Adapting the Cutkosky rules to slab-space QED, one can cut these diagrams arbitrarily, 
and thus obtain Im F. The crucial point is that in every case at least one of the two 
pieces of the cut diagram stands for a kinematically forbidden process, whose amplitude 
therefore vanishes. Thus, by virtue of the optical theorem, Im F and thereby Im n 
vanish in slab-space QED to order e4. The dispersion relation then entails that the real 
part of the refractive index is constant to order e4: to this order we have n ( w )  = n(0)  = 
n(m)t. Absorption and dispersion start only to order e6. 

Flgure. Two-loop diagrams contributing to F and hence to the refractive index n. 
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