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1Centre for Engineered Quantum Systems, School of Mathematics and Physics,
The University of Queensland, St Lucia, QLD 4072, Australia

2ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
3Department of Physics, Harvard University, Cambridge, MA 02138, USA

4Vienna Center for Quantum Science and Technology (VCQ),
University of Vienna, Faculty of Physics,

Boltzmanngasse 5, A-1090 Vienna, Austria
5Institute for Quantum Optics and Quantum Information (IQOQI),

Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria

Time has a fundamentally different character in quantum mechanics and in general rel-
ativity. In quantum theory events unfold in a fixed time order while in general relativity
temporal order is influenced by the distribution of matter. When the distribution of matter
requires a quantum description, temporal order is expected to become non-classical – a sce-
nario beyond the scope of current theories. Here we provide a direct description of such
a scenario. We consider a massive body in a spatial superposition and show how it leads
to “entanglement” of temporal orders between time-like events in the resulting space-time.
This entanglement enables accomplishing a task, violation of a Bell inequality, that is impos-
sible under classical temporal order. Violation of the inequality means that temporal order
becomes non-classical – it cannot be described by locally defined classical variables. Our
approach provides a quantitative method for investigating quantum aspects of space-time
and gravity.

I. INTRODUCTION

Quantum mechanics forces us to question the view that physical quantities (such as spin,
positions or energy) have predefined values: Bell’s theorem shows that if observable quanti-
ties were determined by some locally-defined classical variables, it would be impossible to
accomplish certain tasks – such as the violation of Bell’s inequalities – whereas such tasks are
possible according to quantum mechanics [1, 2] and have been realised in experiments [3–6].
However, the causal relations between events remain fixed in quantum theory: whether an
event A is in the past, in the future, or space-like separated from another event B is pre-
defined by the location of such events in space-time [7, 8]. In contrast, in general relativity,
space-time itself is dynamical: the presence of massive objects affects local clocks and thus
causal relations between events defined with respect to them. Nonetheless, the dynamical
causal structure of general relativity is still classically predefined: the causal relation be-
tween any pair of events is uniquely determined by the distribution of matter-energy degrees
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of freedom in their past light-cone. In other words, causal relations are always determined
by local classical variables. The picture is expected to change if we consider quantum states
of gravitating degrees of freedom: if a massive system is prepared in a superposition of two
distinct states, each yielding an observably different causal structure for future events, would
it be possible to observe causal relations which display genuine quantum features? This
work provides a direct example that this is the case: We show how temporal order between
time-like events can become superposed or even entangled. To quantify the non-classicality
of these causal relations we formulate a Bell-type theorem for temporal order: We define
a task that cannot be accomplished if the time order between the events was predetermined
by local variables, while the task becomes possible if the events are in a space-time region
affected by the gravitational field of a massive object in a specific quantum state.

II. COORDINATE SYSTEMS AND GRAVITATIONAL TIME DILATION

In general relativity an event is an operationally defined point in space-time [9]: An event
can only be meaningfully specified in relation to a physical system, e.g. it can be defined in
terms of the time and location of a physical clock. The presence of massive bodies in general
alters the relative rates at which different clocks tick. For example, in a weak field limit, a

clock in a gravitational potential Φ will run slower by a factor
√

1 + 2 Φ
c2

than an identical
clock far away from the mass, where gravitational potential effectively vanishes. In classical
physics, this leads to the well-tested time dilation [10, 11] and redshift effects [12]. When the
clocks are described as quantum systems, new effects arise from the combination of quantum
and general relativistic theories. For a clock in superposition of different distances to the
mass, its proper time becomes entangled to the clock’s position [13–15]. This entanglement
implies a universal decoherence mechanism for generic macroscopic systems under time
dilation [16, 17]. The regime of low-energy quantum systems in curved space-time can be
described within a framework of general-relativistic composite quantum particles [18]. Here
we additionally exploit the fact that only the distance between a clock and a mass has physical
significance and due to linearity of quantum theory this must hold also for a superposition of
different distances1.

Consider two agents, a and b, with two initially synchronised clocks, each following
a fixed world-line (defined by a third, far-way agent). A massive body is brought in the
vicinity of the two agents to induce time dilation between them. The position of the mass is
decided by a third agent, who chooses between two configurations: KA≺B and KB≺A. For
the choice KA≺B, the massive body is positioned such that the event A, defined by the clock
of agent a showing proper time ta = τ ∗, will be in the past light cone of the event B, which
is defined in an analogous way: by the clock of agent b showing proper time tb = τ ∗. If
KB≺A is chosen, the mass is prepared in a different configuration, such that event B ends up
in the past of event A.

A possible way to realise configuration KA≺B is to place an approximately point-like
body of mass M closer to b than to a, see Fig. 1. The light-cone structure of the re-
1 There is no difference in the relative ticking rates of two clocks whether we think that the clocks are being

positioned at different distances – possibly in a superposition – from the mass, or that the mass is positioned

at different distances from the clocks.
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FIG. 1: Causal relations between space-time space can be “engineered” by preparing different mass configura-

tions. Initially synchronised clocks a and b are positioned at fixed distances from a far-away agent whose time

coordinate is t. Event A (B) is defined by the clock at a (b) showing proper time τ∗. In configuration KA≺B

(left) a mass is placed closer to b than to a. Due to gravitational time dilation, event A can end up in a causal

past of event B: for a sufficiently large τ∗ the time difference between the clocks becomes greater than it takes

light to travel between them. Light emitted at eventA reaches clock b before the eventB occurs. Configuration

KB≺A (right) is fully analogous to KA≺B : the mass is placed closer to clock a and the event B can end up up

in the causal past of the event A.

sulting space-time is fully determined by the metric tensor gµν , for which we adopt the
sign convention (−,+,+,+). Using Schwarzschild coordinates, in the first-order post-
Newtonian expansion, the relevant components of the metric are g00(r) = −

(
1 + 2Φ(r)

c2

)
and grr(r) =

(
1 + 2Φ(r)

c2

)−1

, where r is the radial coordinate (centred at the massive body’s

position) and Φ(r) = −GM
r

is the gravitational potential [19]. Assuming that a and b are at
fixed coordinate distances from the mass, ra and rb = ra − h respectively, we want to find
the parameters for which event A ends up in the past light-cone of B for KA≺B (and vice
versa for KB≺A). An infinitesimal proper time element along a world line at a fixed distance
r from the mass is given by dτ(r) =

√
−g00(r)dt, where t is the coordinate time, and a

photon travelling in the radial direction from ra reaches rb after an elapsed coordinate time

Tc = 1
c

∫ ra
rb
dr′
√
−grr(r′)
g00(r′)

. Thus, if the photon is emitted at the local time ta = τ ∗, it reaches

rb when b’s local time is t̄b =
√
−g00(rb)(

τ∗√
−g00(ra)

+Tc), assuming that the local clocks are

synchronised so that ta = 0 and tb = 0 coincide with the coordinate time t = 0. For

τ ∗ > Tc

√
−g00(rb)

1−
√

g00(rb)
g00(ra)

(1)

we have t̄b ≤ τ ∗, which means that there is enough time for a not-faster-than-light signal
emitted at event A (defined by ta = τ ∗) to travel the distance h and reach agent b at event B
(defined by tb = τ ∗). This means that event A is in the causal past of event B as required.
For example, for h � ra the condition (1) is satisfied for τ ∗ > 2r2ac

GM
. Configuration KB≺A

can be arranged analogously, by placing the mass closer to a than to b. Then, the condition
τ ∗ >

2r2b c

GM
, for h� rb, ensures that B is in the causal past of A.
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The example above simply illustrates that in general relativity causal structure is dynam-
ical and depends on the stress-energy tensor of the matter degrees of freedom. Preparing
different matter distributions on a space-like hypersurface can result in different causal rela-
tions between events in the causal future of the preparation event.

III. QUANTUM CONTROL OF TEMPORAL ORDER

When A is in the past light-cone of B, a physical system can in principle be transferred
from A to B. Consider a quantum system S initially prepared in state |ψ〉S which undergoes
a unitary UA at event A (at the space-time location where the clock of agent a marks proper
time τ ∗) and a unitary UB at event B. (We ignore a possible additional time evolution be-
tween the two events for simplicity.) Such ordered events A,B can therefore result in the
following state of S:

|ψ̃1〉S = UBUA|ψ〉S. (2)

If, however, B is before A and S is prepared in the same initial state, the final state of S is

|ψ̃2〉S = UAUB|ψ〉S. (3)

A situation can therefore be arranged such that state (2) is produced for configuration KA≺B
and (3) is produced for KB≺A. Different mass configurations can result in different temporal
orders of local operations both in quantum and in classical theory. However, if quantum the-
ory applies to massive objects, the two mass configurations can be assigned quantum states
|KA≺B〉, |KB≺A〉. These two states will be orthogonal, if the corresponding mass configura-
tions are macroscopically distinguishable. Furthermore, in quantum theory a superposition
of two physical states is also a valid state of the system. Thus, at least in principle, a superpo-
sition state |K+〉 := 1√

2
(|KA≺B〉+ |KB≺A〉) also represents a physical mass configuration.

By a straightforward application of the superposition principle, the final state of the mass M
and of the system S then reads

|ψsup〉MS =
1√
2

(
|KA≺B〉MUBUA|ψ〉S + |KB≺A〉MUAUB|ψ〉S

)
. (4)

The state above is the result of a process wherein the order of operations on a ‘target’ system
(S) is determined by the quantum state of a ‘control’ system (M ). Such a process is known
as a quantum switch [20] and has been studied as a possible quantum-information resource
[21–27]. The state |ψsup〉MS is a superposition of two amplitudes corresponding to different
predefined, classical orders between events A and B. Note that, if the control system is
discarded, the reduced state of S is

1

2

(
|ψ̃1〉〈ψ̃1|S + |ψ̃2〉〈ψ̃2|S

)
, (5)

which is indistinguishable from a probabilistic mixture of |ψ̃1〉 and |ψ̃2〉. The state in Eq. (5)
can be interpreted as arising from events A and B with a classical, albeit unknown, temporal
order. Therefore, any protocol aimed at testing operationally quantum features of temporal
order necessarily requires a measurement of the control system.
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IV. BELL’S THEOREM FOR TEMPORAL ORDER

The above example shows that superpositions of massive objects can result in a coherent
quantum control of temporal order between events. This conclusion relies on the assumption
that quantum formalism is valid. The question thus arises if it is possible to probe the nature
of temporal order irrespective of the validity of quantum theory? To achieve this a theory
independent argument would be needed – which does not rely on the quantum framework
(e.g. since quantum mechanics may need to be modified in a complete quantum-gravity
theory). Below we provide such an argument, which could exclude the very possibility of
explaining data from a hypothetical experiment in terms of a definite temporal order, with no
assumption about the validity of quantum mechanics.

We introduce a task that allows refuting definite temporal order in conjunction with a
few additional, physically plausible assumptions. Our formulation is analogous to Bell’s
theorem for local hidden variables, and we thus refer to the theorem below as Bell’s theorem
for temporal order of events. The core of the argument is simple: Given a bipartite system
prepared in a separable state, it is not possible to violate any bipartite Bell inequality by
performing local operations (transformations and measurements) on the two parts, as long
as the local operations are applied in a definite order.

The theorem we formulate is theory independent, but not fully device-independent, as it
refers to the notions of a “physical state” and a “physical transformation”, in addition to the
measured probability distributions. See Appendix A for a discussion of the present work
in the context of the theory-dependent framework of causally non-separable quantum pro-
cesses [28–30] and the fully theory- and device-independent approach of causal inequalities
[28, 31].

A. Framework

We consider a sufficiently broad framework to describe physical systems that can undergo
transformations and measurements, similar to generalised probabilistic theories [32–34]. In
this framework, a state ω is a complete specification of the probabilities P (o|i, ω) for ob-
serving outcome o given that a measurement with setting i is performed on the system. We
are interested in situations where a system can be split up in subsystems, say S1 and S2, with
space-like separated agents performing independent operations on S1 and S2. We say ω is
a product state, and write ω = ω1 ⊗ ω2, if probabilities for local measurements factorise as
P (o1, o2|i1, i2, ω) = P (o1|i1, ω1)P (o2|i2, ω2). If state ωf1 is prepared for system S1 and state
ωf2 is prepared for system S2, according to a probability distribution P (f) for some variable
f , we write ω =

∫
df P (f)ωf1⊗ω

f
2 and say the state is separable. Probabilities are then given

by the corresponding mixture: P (o1, o2|i1, i2, ω) =
∫
dfP (o1|i1, ωf1 )P (o2|i2, ωf2 )P (f). Note

that for such a decomposition Bell inequalities cannot be violated [1, 35].
A physical transformation of the system is represented by a function ω 7→ T (ω). To

make our arguments precise we will need a notion of local transformations, namely, realised
at the time and location defined by a local clock. If S1 is the subsystem on which a local
transformation T1 acts, and S2 labels the degrees of freedom space-like separated from T1,
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then, by definition, T1 transforms product states as ω1 ⊗ ω2 7→ T1(ω1) ⊗ ω2 and separable
states by convex extension2. We further need to define how different local transformations
combine. This depends on their relative spatio-temporal locations: If transformations T1, T2

are space-like separated they combine as (T1 ⊗ T2)(ω1 ⊗ ω2) = T1(ω1) ⊗ T2(ω2), which
follows from the definition above; if T1 is in the future of T2, we define their combination as
T1 ◦T2(ω) = T1 (T2(ω)). (For simplicity, we omit possible additional transformations taking
place between the specified events, as they are of no consequence for our argument).

B. Bell’s theorem for temporal order

The scenario for which the theorem is formulated involves a bipartite system with subsys-
tems S1 and S2 and a system M that can influence the temporal order of events. For j = 1, 2,
each system Sj undergoes two transformations, TAj and TBj , at space-time events Aj , Bj ,
respectively. Each system is then measured at an event Cj according to some measurement
setting ij , producing a measurement outcome oj . Additionally, M is measured at an event
D, space-like separated from both C1 and C2, producing an outcome z, see Fig. 2. We now

FIG. 2: Bell’s theorem for temporal order. A bipartite system, made of subsystems S1 and S2, is sent to

two groups of agents. Operations on S1 (S2) are performed at events A1, B1 (A2, B2). At event C1 (C2), a

measurement with setting i1 (i2) and outcome o1 (o2) is performed. Events A1, B1 are space-like separated

from A2, B2 and C1 is space-like to C2; light cones are marked by dashed yellow lines. The order of events

Aj , Bj , j = 1, 2, is described by a variable λ defined by a system M . The system M is measured at event D,

producing an output bit z. If the initial state of the systems S1, S2,M is separable, and λ is a classical variable

(possibly dynamical and probabilistic), the resulting bipartite statistics of the outcomes o1, o2 cannot violate

any Bell inequality, even if conditioned on z.

define the notion of classical order between events:
2 How local operations act on general, non-separable states can depend on the particular physical theory;

however, action on separable states will suffice for our purposes.
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Definition 1. A set of events is classically ordered if, for each pair of events A and B, there
exist a space-like surface and a classical variable λ defined on it that determines the causal
relation between A and B: for each given λ, either A � B (A in the past causal cone of B),
B � A (A in the past causal cone of B), or A||B (A and B space-like separated).

Notice that classically ordered events do not necessarily form a partially ordered set: clas-
sical order can be dynamical (the order between two events can depend on some operation
performed in the past, i.e. some agent can “prepare” λ) and stochastic (the variable λ might
be distributed according to some probability, and not specified deterministically) [30, 36].

The assumption of classical order is sufficient to derive causal inequalities [28, 31]: tasks
that, without any further assumptions, cannot be performed on a classical causal structure.
However, it is not possible to violate causal inequalities using quantum control of order [29,
30], this is why we need additional assumptions in the present context. It is an open question
whether a gravitational realisation/implementation of a scenario that does allow a violation
of causal inequalities is possible.

Bell’s theorem for temporal order. No states, set of transformations and measurements
which obey assumptions 1—5 below can result in a violation of the Bell inequalities.

1) Local state: The initial state ω of S1, S2 and M is separable (as defined in Sec. IV A).

2) Local operations: All transformations performed on the systems are local (as defined in
Sec. IV A).

3) Classical order: The events at which operations (transformations and measurements) are
performed are classically ordered.

4) Space-like separation: Events (A1, B1) are space-like separated from events (A2, B2);
C1, C2, and D are pair-wise space-like separated.

5) Free-choice: The measurement choices in the Bell measurement are independent of the
rest of the experiment (This is a standard assumption necessary in Bell-like theorems).

More formally, let us denote by T = (TA1 , TB1 , TA2 , TB2) the set of all local transforma-
tions irrespective of their order. The thesis of the theorem can be rephrased as: the condi-
tional probability

P (o1, o2|i1, i2, z,T, ω) (6)

produced under assumptions 1–5 does not violate Bell’s inequalities for any value of z.

Proof. Assumption (1) says that there is a random variable f determining the local states
ωf1 , ωf2 of systems S1, S2, respectively. Assumption (3) says there is a random variable λ
that determines the order of events. In general, the two variables can be correlated by some
joint probability distribution P (λ, f). By assumption (4), events labelled A1, B1 are space-
like separated from events A2, B2 and the order between events within each set (Aj, Bj),
j = 1, 2 can be defined by a permutation σj . Most generally, there is a probability P (σj|λ)

that the permutation σj is realised for a given λ. By assumption (2), for each given order the
system undergoes a transformation T σ1 ⊗ T σ2 , where T σ1 is the transformation obtained by
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composing TA1 and TB1 in the order corresponding to the permutation σ1 and similarly for
T σ2 . (For example, if σ1 corresponds to the order A1 ≺ B1, then T σ1 = TB1 ◦ TA1 .) Fur-
thermore, at event D an outcome z is obtained with a probability P (z|λ, f, σ1, σ2). Finally,
using assumption (1), we write the probabilities for all outcomes as

P (o1, o2, z|i1, i2,T, ω) =∑
σ1σ2

∫
dλ dfP (o1|i1, T σ1(ωf1 ))P (o2|i2, T σ2(ωf2 ))P (σ1|λ)P (σ2|λ)P (z|λ, f, σ1, σ2)P (λ, f),

(7)

A simple Bayesian inversion P (σ1|λ)P (σ2|λ)P (z|λ, f, σ1, σ2)P (λ, f) = P (λ, f, σ1, σ2|z)P (z),
where we used P (σj|λ) = P (σj|λ, f), gives the desired probabilities

P (o1, o2|i1, i2, z,T, ω) =∑
σ1σ2

∫
dλ dfP (o1|i1, T σ1(ωf1 ))P (o2|i2, T σ2(ωf2 ))P (λ, f, σ1, σ2|z) =∫

df̃P (o1|i1, T σ1)P (o2|i2, T σ2)P (f̃ |z), (8)

where f̃ is a short-hand for the variables λ, f, σ1, σ2 The above probability distribution sat-
isfies the hypothesis of Bell’s theorem and thus cannot violate any Bell inequality.

C. Violation of Bell inequalities for temporal order

Here we show how gravitational quantum control of temporal order, Sec. III, can result
in events whose temporal order is “entangled”. We devise a quantum protocol where local
operations are performed on an initially separable system, such that assumptions 1, 2, 4 and
5 are respected, but Bell’s inequalities are nonetheless violated.

A bipartite quantum system, initially in a product state |ψ1〉S1|ψ2〉S2 , is sent to two differ-
ent regions of space such that a1, b1, and c1 only interact with S1, while a2, b2, and c2 only
interact with S2. Agents a1, a2 perform respectively the unitaries UA1 , UA2 at the events A1,
A2, while agents b1, b2, perform the unitaries UB1 , UB2 at the events B1, B2. Finally, c1 and
c2 measure S1 and S2 at events C1 and C2, respectively, see Fig. 3. Assume that a massive
system can be prepared in two configurations, KA≺B and KB≺A, such that A1 ≺ B1 ≺ C1

(A1 in the past light-cone of B1, etc) and A2 ≺ B2 ≺ C2 for KA≺B, while B1 ≺ A1 ≺ C1

and B2 ≺ A2 ≺ C2 for KB≺A; and such that the events are space-like separated as per
assumption 4, which can always be achieved by having the groups sufficiently separated. If
the mass is prepared in superposition 1√

2
(|KA≺B〉+ |KB≺A〉), the joint state of the mass and

the systems after the application of the unitaries is

1√
2

(
|KA≺B〉MUB1UA1|ψ1〉S1UB2UA2|ψ2〉S2 + |KB≺A〉MUA1UB1|ψ1〉S1UA2UB2|ψ2〉S2

)
.

(9)
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FIG. 3: Schematics of a protocol for a violation of Bell’s inequalities for temporal order. Systems S1, S2 are

prepared in a product state |ψ1〉S1 |ψ2〉S2 and sent to space-like separated regions. One pair of agents performs

unitary operations UA1
, UB1

on S1 at the correspondingly marked space-time events; another pair acts on S2

with unitary operations UA2 and UB2 . Each operation is applied only once, at an event defined by the specific

proper time of the local clock of the agent. A massive body is prepared in a superposition of two configurations

|KA≺B〉 and |KB≺A〉which define different causal structures for future events. For the amplitude |KA≺B〉, the

operations UAi
i = 1, 2 applied on Si are in the causal past of the operations UBi

(orange dots); and vice versa

for |KB≺A〉 (blue dots). The operations can be chosen such that UAiUBi |ψi〉Si is orthogonal to UBiUAi |ψi〉Si

(for both i = 1 and i = 2), resulting in a maximally entangled final state. Bell measurements are performed

at events C1 and C2 on S1 and S2, respectively. At event D the mass is measured in a superposition basis.

Conditioned on the outcome this measurement, the results of the measurements atC1, C2 can maximally violate

Bell’s inequalities, which would not be possible if the order of events was classical (even if probabilistic).

Agent d at the eventDmeasures the mass in the superposition basis |±〉 = 1√
2

(|KA≺B〉 ± |KB≺A〉).
Conditioned on the outcome, the joint state of S1 and S2 reads

1√
2

(
UB1UA1|ψ1〉S1UB2UA2|ψ2〉S2 ± UA1UB1|ψ1〉S1UA2UB2|ψ2〉S2

)
. (10)

If the states UB1UA1|ψ1〉S1 , UB2UA2|ψ2〉S2 are orthogonal to UA1UB1|ψ1〉S1 , UA2UB2|ψ2〉S2 ,
respectively, then the state (10) is maximally entangled. Local measurements can thus be
performed on subsystems S1, S2 whose outcomes will violate Bell inequalities, conditioned
on the measurement outcome at D (see Appendix B for an example).

D. Physical realisation

To achieve large time dilation between a pair of clocks one can use a very heavy object or,
alternatively, any mass M dense enough to put one of the clocks close to its Schwarzschild
radiusRS := 2GM

c2
. The ticking rate of a clock atRS+εwith ε� RS differs from the ticking

rate of an identical clock at RS + l, l > ε, by a factor approximately
√

RS
ε

(1 + 2φ(RS+l)
c2

),
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which becomes arbitrarily large for a small ε. One thus needs a dense but not necessarily a
heavy object. Laboratory realisation of the protocol outlined above will nevertheless pose a
formidable challenge, but it is in principle possible. Below we give an example.

Consider the mass configurations KA≺B, KB≺A realised using an effectively point-like
body with a fixed mass. The distance between agents bi, i = 1, 2 and the mass is the same
for bothKA≺B andKB≺A, while agents ai are closer to the mass in configurationKB≺A than
in KA≺B, as illustrated in Fig. 4 a). The subsystems Si can be realised as two identically

FIG. 4: A protocol for a violation of Bell’s inequalities for temporal order. a) Mass configurations

KA≺B ,KB≺A and location of the agents ai, bi, i = 1, 2. bi are at a distance rb from both configurations,

while ai are at a distance ra from KB≺A and r′a > ra from KA≺B . b) Space-time diagram of the protocol.

Systems S1, S2 are implemented in the polarisation of two photons, initially in a product state |ψ1〉S1 |ψ2〉S2 .

Green lines are the photons’ world lines; green dotted lines are world lines of the agents. Orange (blue) dots

mark events when agents ai apply unitaries UAi
for the configuration KA≺B (KB≺A); black dots mark events

when bi apply UBi
. The photons bounce twice between the agents, but each operation is applied on the photon

only once – when the local clocks of the agents show proper time τ∗. Due to time dilation induced by the mass,

UAi
are applied before UBi

for configuration KA≺B (and the events Ai coincide with the photons reaching

ai for the first time) – and are applied after UBi
for configuration KB≺A (and the events Ai coincide with the

photons reaching ai for the second time).

prepared, uncorrelated photons and the local operations can be performed on their polarisa-
tion degrees of freedom (DOF). The photon source is equally distant from KA≺B and KB≺A,
(equidistant to the extent that the local clock of the source remains sufficiently uncorrelated
with the mass). All clocks involved in the protocol are initially synchronised with the clock
of the source.

At a pre-defined time Ts according to the clock at the source, the source emits the photon
pair – the emission time is thus uncorrelated with the mass configuration. Photon Si is
directed towards agent ai, then to bi, again to ai, back to bi, and exits towards agent ci (or ci
simply replaces ai), see Fig. 4 b). The agents interact with the relevant DOF of the photon
only once, at the time τ ∗ as measured by their local clocks. The unitary transformations are
assumed to be independent of the mass configuration (or other aspects of the experiment).
As discussed in sec. II, the emission time Ts of the photons can be chosen such that event Ai
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(at which UAi is applied) is before the event Bi (at which UBi is applied) and so that event Ai
coincides with the photon reaching ai for the first time for configuration KA≺B, and when
the photon reaches ai for the second time for KB≺A. The photon reaches ai twice, before
or after τ ∗ – depending on the mass configuration, at which no operation is performed: The
photon is reflected with no transformation on the polarisation. The event when the operation
UBi is applied always coincides with the photon reaching bi for the first time, since agents bi
are at the same distances to the mass for both configurations.

In general, the travel time of the photon can depend on the mass configuration due to the
Shapiro delay [37, 38]. In order to mitigate this effect, after the emission time Ts – sufficient
to induce the required time dilation between the clocks – the mass can be (coherently) moved
such that it is at the same distance from each agent (for both KA≺B and KB≺A), or such that
it is sufficiently far away from both. Moreover, in order to de-correlate the time-dilated
clocks from the systems Si, the amplitudes of the mass can be swapped and the mass can
be measured by the agent d after a time interval equal to Ts – when the clocks of ai and bi
become synchronised again. Appendix C provides details of a protocol that provides both:
suppression of the Shapiro effect and decorrelation of the clocks. In Appendix D we also
discuss a quantum field realisation of the protocol.

Our examples show that it is in principle possible to prepare events with entangled tem-
poral order in a protocol that satisfies assumptions 1, 2, 4 and 5. It is therefore in principle
possible to prove existence of this entanglement by the violation of the Bell inequality for
temporal order.

V. RESOURCE FOR THE VIOLATIONS

Time dilation induced by the mass results in correlations between the order in which local
operations are applied on the subsystems. A way to see this is to use a time coordinate that
is independent of the location of the mass (e.g. the local time of a far-away agent, coordinate
t in Fig. 1): the superposition state of the massive body induces correlations between the
proper times of different clocks, corresponding to the same time coordinate.

These correlations are transferred to the subsystems when agents apply their operations
at a fixed proper time of their local clock. Moreover, if the state of the mass is described
in terms of number states in spatial modes, the violation can be explained as due to “entan-
glement swapping” from the mass to the two subsystems – since in this approach a spatial
superposition is described as an entangled state of the corresponding modes. Independently
of the description of the mass and the used coordinates, the violation of the inequalities is due
to the correlations between the space-time metric and the mass. The key differences between
the gravitational and other methods for a quantum control of temporal order are discussed in
Appendix E.

VI. DISCUSSION

The non-classical causal structures discussed in this work arise in a semi-classical, albeit
non-perturbative, regime where no explicit quantisation of the gravitational field is needed
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(which is complementary to the regime of most quantum gravity frameworks [39]). Our
approach shows that classical general relativity and standard quantum mechanics are suf-
ficient to analyse scenarios involving superpositions of macroscopically different classical
backgrounds. Not only is there no tension between the two frameworks, but there is also no
ambiguity in the prediction of physical effects that arise: For each probability amplitude the
time-dilation effects introduced by the mass can be treated classically. The considered pro-
cesses involve a simple superposition of such amplitudes and the final probability amplitude
is given by the usual Feynman sum.

A realisation of the Bell-test for time order is very challenging, but we note that exper-
iments to prepare superposition states of massive objects and test their gravitational inter-
actions are already under development [40–44]. However, assuming that the violation is
fundamentally impossible would have far reaching consequences: it would imply that time
could be described with a classical parameter even in space-times originating from a quan-
tum state of a massive object – with no need to invoke any other mechanism that would
decohere such quantum states, such as [45–49] (see also Appendix F). On the other hand,
since these mechanisms postulate a specific decoherence time of spatial superpositions of
massive bodies, one could think that they preclude the preparation of non-classical causal
structures. This is not the case: the time required to complete our protocol can be shorter
than the decoherence time postulated by these models (see the last two paragraphs in Ap-
pendix C). Thus, contrary to some motivations [47, 49], these models do not enforce classical
space-time with a fixed causal structure.

VII. CONCLUSION

We have shown how non-classical causal structures can be engineered by exploiting time
dilation from a massive body in a quantum state. This non-classicality can be quantified
independently of whether the quantum formalism is trusted – by the violation of the Bell-like
inequality for temporal order. Our analysis exposed a close connection between the abstract
framework of process matrices, the quantum switch, and joint effects of quantum mechanics
and general relativity. The work thus opens a new route for exploring quantum aspects of
space-time and gravity. Our results show that classical notions of time and temporal order
are untenable in the light of the basic principles of quantum theory and general relativity.
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ence. New Journal of Physics 19, 025011 (2017).



14

[18] Zych, M. Quantum Systems under Gravitational Time Dilation. Springer Theses (Springer
International Publishing, 2017).

[19] Weinberg, S. Gravitation and cosmology: Principle and applications of general theory of rela-
tivity (John Wiley and Sons, Inc., New York, 1972).

[20] Chiribella, G., D?Ariano, G. M., Perinotti, P. & Valiron, B. Quantum computations without
definite causal structure. Physical Review A 88, 022318 (2013).

[21] Chiribella, G. Perfect discrimination of no-signalling channels via quantum superposition of
causal structures. Physical Review A 86, 040301 (2012).

[22] Colnaghi, T., D?Ariano, G. M., Facchini, S. & Perinotti, P. Quantum computation with pro-
grammable connections between gates. Physics Letters A 376, 2940–2943 (2012).
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[44] Schmöle, J., Dragosits, M., Hepach, H. & Aspelmeyer, M. A micromechanical proof-of-
principle experiment for measuring the gravitational force of milligram masses. Classical and
Quantum Gravity 33, 125031 (2016).

[45] Karolyhazy, F. Gravitation and quantum mechanics of macroscopic objects. Il Nuovo Cimento
A 42, 390–402 (1966).

[46] Diosi, L. Models for universal reduction of macroscopic quantum fluctuations. Physical Review
A 40, 1165 (1989).

[47] Penrose, R. On gravity’s role in quantum state reduction. General Relativity and Gravitation
28, 581–600 (1996).

[48] Stamp, P. C. E. Environmental decoherence versus intrinsic decoherence. Phil. Trans. R. Soc. A
370, 4429–4453 (2012).

[49] Penrose, R. On the gravitization of quantum mechanics 1: Quantum state reduction. Founda-
tions of Physics 44, 557–575 (2014).

[50] Bahrami, M., Smirne, A. & Bassi, A. Role of gravity in the collapse of a wave function: A
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Appendix A: Causally non-separable quantum processes

Non-classical causal relations can be studied within a recent framework for quantum me-
chanics with no pre-defined causal structure introduced in ref. [28]. The starting point of
the framework is the notion of local events that take place in local regions, with spatial and
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temporal boundaries of the region defined by local clocks. An event is identified with an op-
eration performed in the local region (for example a unitary transformation, or a projection
on a given state obtained as the result of a measurement). A physical scenario, comprising
the space-time geometry in which the local regions are embedded, the initial state, and the
dynamics connecting the regions, is compactly represented by a process—a specification of
the probabilities for any possible event/local operation to take place in each region.

At a formal level, a local regionX is defined by an input Hilbert spaceHXI and an output
Hilbert space HXO , identified with the quantum degrees of freedom on space-like surfaces
on the past and future of X , respectively. Quantum operations are represented as operators
MXIXO ∈ L(HXI ) ⊗ L(HXO), where L(H) is the space of linear operators on the Hilbert
spaceH. Probabilities for events in regions A, B,. . . are then given by a generalisation of the
Born rule:

P (MAIAO ,MBIBO , . . . ) = Tr
[(
MAIAO ⊗MBIBO ⊗ . . .

)
·WAIAOBIBO...

]
, (A1)

where WAIAOBIBO... ∈ L(HAI )⊗ L(HAO)⊗ L(HBI )⊗ L(HBO) is the process matrix.
In this formalism, causal relations between local regions are encoded in the process ma-

trix. For example, the process matrix

WAIAOBIBO =ρAI ⊗ [[11]]AOBI ⊗ 11BO , where (A2)

[[11]]AOBI :=|11〉〉〈〈11|AOBI and (A3)

|11〉〉AOBI :=
∑
j

|j〉AO |j〉BI , (A4)

represents a situation where an agent atA receives a state ρ, while the output ofA’s operation
is sent to B through the identity channel. Such a process is only compatible with the order
of events A � B; more general processes compatible with an order of events given by a
permutation σ are denoted W σ. If the order is determined by a classical variable λ, defined
in some region in the past of all events, the process matrix has the form

W =

∫
dλW σλP (λ) (A5)

for some probability distribution P (λ).
The question of whether a certain quantum scenario can be embedded in a classical space-

time, with a classical order of events, thus reduces to the question whether the corresponding
process matrix can be decomposed in a mixture of the form (A5), which we call causally
separable3. The quantum switch, described in the section “Quantum control of temporal
order” is represented by the process matrix

W = |ω〉〈ω| (A6)

|ω〉 =
1√
2

(
|KA≺B〉MI |ABC〉+ |KB≺A〉MI |BAC〉

)
, (A7)

|ABC〉 = |ψ〉AI |11〉〉AOBI |11〉〉BOCI , |BAC〉 = |ψ〉BI |11〉〉BOAI |11〉〉AOCI , (A8)

3 A more general definition [28] where the order of future events can depend on past events, is not necessary

for our analysis.
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where M labels the control system and C is the region where the system is measured after
the operations in regions A, B are performed. As shown in ref. [29], it is possible to find an
experimental procedure, namely a set of operations and measurements for A, B, C, M , that
allows proving the causal non-separability of the switch. However, such a causal witness
is both device and theory dependent, namely it relies on the quantum description of the
operations performed. Causal inequalities[28, 31] on the other hand, provide a device and
theory independent test for causal order; however, no quantum-control of causal order can
violate causal inequalities, as proven in refs. [29, 30] and it is an open question whether any
physically realisable process can.

The process matrix corresponding to the scenario with “entangled orders”, introduced in
the main text is

W = |$〉〈$| (A9)

|$〉 =
1√
2

(
|KA≺B〉MI |A1B1C1〉|A2B2C2〉+ |KB≺A〉MI |B1A1C1〉|B2A2C2〉

)
, (A10)

using definitions similar to (A8). Just as for the switch, it is easy to prove that process (A9)
is not causally separable4. However, a process of this type cannot be used to violate causal
inequalities, see e.g. ref. [29]. The procedure described in the main text can nonetheless
prove the causal non-separability of process (A9) in a theory-independent, albeit device-
dependent, way.

Appendix B: State and measurements for the CHSH inequality violation

Consider a two-qubit system in an initial state |ψ1〉S1 ⊗ |ψ2〉S2 ≡ |z+〉S1 ⊗ |z+〉S2 . As
local unitaries we can choose

UA1 = UA2 ≡ UA =
11 + iσx√

2
, UB1 = UB2 ≡ UB = σz, (B1)

where σx and σz are the usual Pauli matrices. Notice that UAUB = σz+σy√
2

, while UBUA =
σz−σy√

2
. The final state (10) is in this case

1√
2

(
|x+〉S1|x+〉S2 ± |x−〉S1|x−〉S2

)
, (B2)

where the sign depends on the outcome |±〉 of the measurement on the massive system. In
order to violate Bell inequalities, the agent c1 measures the observable C0

1 = σy−σz√
2

for the
setting i1 = 0 and the observable C1

1 = σy+σz√
2

for i1 = 1, while c2 measures C0
2 = σy for

i2 = 0 and C1
2 = σz for i2 = 1. With these measurement choices, the expectation value of

the CHSH quantity is

〈CHSH〉± =
〈
C0

1 ⊗ C0
2 + C0

1 ⊗ C1
2 + C1

1 ⊗ C0
2 − C1

1 ⊗ C1
2

〉
± = ∓2

√
2, (B3)

4 As it is a rank-one projector, it cannot be decomposed as a non-trivial mixture of orders. Yet it does not

describe a process with a definite order, because the signalling relations between parties do not define a

partial order.
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for the two outcomes z = ±1 of the measurement at D. Thus, conditioned on the outcome
z, the measurements at C1 and C2 violate the CHSH inequality |〈CHSH〉| ≤ 2. Notice that
the measurement settings at C1 and C2 are independent of z and thus the three measurements
can be performed at space-like separation. The violation of the inequality is recovered when
all the data are compared.

Appendix C: Disentangling clocks from the mass

The protocol allowing for the violation of Bell’s inequalities for temporal order exploits
correlations between the clocks of the agents a1, b1 and the agents a2, b2, created due to time
dilation induced by the mass. It should be noted that the protocol allows maximal violation
of the Bell inequality if the joint state of the systems S1 and S2 is pure (and maximally
entangled) when the Bell measurements are realised. Thus, for a maximal violation, the
clocks need to decorrelate from the mass after the application of the unitaries. Below we
sketch a scenario that can achieve this.

The space-time arrangement of the mass and the agents in this example is presented in
Figure 5. It can be realised in one spatial dimension: agents acting on the system S1 are
located at distance h from each other, and the mass is placed at distance r (configuration
KB≺A) or r+L (configuration KA≺B) from agent a1. Agents acting on system S2 are placed
symmetrically on the opposite side of the mass, such that the mass is at a distance r + L

from a2 in configuration KB≺A and r in configuration KA≺B. Here, events Aj are defined
by the local time τa that differs from the local time τb defining Bj , j = 1, 2. In such a case,
even though the mass is always closer to aj than to bj , the two mass configurations can lead
to different event orders – as they induce different relative time dilations. (Equivalently, one
can introduce an initial offset in the synchronisation of the clocks.) Note that the time orders
between the two groups are here “anti-correlated”: A1 ≺ B1 and B2 ≺ A2 for KA≺B, and
vice versa for KB≺A. Since otherwise the scenario is the same for S1 and S2, we focus on
the events and operations performed on S1. The key observation is that swapping the mass
distribution, as depicted in Figure 5, will eventually disentangle the clocks from the mass,
and since the clocks must be suitably time-dilated when the operations are performed, the
operations must not take place in the future light cone of the swapped mass state.

The proper time τa that has to elapse for the clock of a1 such that the order of events is
A1 ≺ B1 for |KA≺B〉 and B1 ≺ A1 for |KB≺A〉 for the present case reads

τa =
√
−g00(r)

Tc(r, h) + Tc(r + L, h)
√

g00(r+L+h)
g00(r+h)

1−
√

g00(r)g00(r+L+h)
g00(r+h)g00(r+L)

,

where Tc(r, L/2) is the coordinate travel time of light between radial distances r and r+L/2

from the mass. The coordinate time corresponding to τa is Ta = τa/
√
−g00(r). The proper
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FIG. 5: Space-time diagram of a protocol for disentangling the clocks from the mass. In configuration

KA≺B the mass is at a distance r + L from a1, and at r + L + h from b1. In KB≺A – it is at r from a1 and

at r + h from b1. The opposite holds for a2, b2. The initial mass superposition is swapped (after sufficient

time to prepare the clocks in the correlated state) so that they finally show the same time. At the local time

τa of a1 (at event A1) the agent applies UA1 on S1. At the local time τb of b1 the agent applies UB1 on S1.

For the mass configuration KA≺B A1 is before B1 (orange-coloured events), while for KB≺A event B1 is

before A1 (blue-colored events). The opposite order holds for events A2, B2 occurring on the opposite side of

the mass, where agents a2, b2 act on S2. Unitary operations should be applied in the future light-cone of the

event where the clocks get correlated and outside the future light cone of the event when the mass amplitudes

are swapped, Bell measurements (at C1, C2) should be made when the clocks become disentangled (at future

light-like events to when the mass amplitudes are brought together), and the measurement at event D should be

space-like to C1, C2; dashed yellow lines represent the relevant light-cones.

time of event B1 is then defined as5:

τb =
√
−g00(r + L+ h)(

τa√
−g00(r + L)

+ Tc(r + L, h)).

The coordinate time required for the application of the operations can be estimated as twice
the travel time of light between the agents, To = 2Tc(r + L/2, h).

The world lines of the mass can be arranged such that: a) the mass is moving slow so
that the two amplitudes of the mass are swapped in a time interval longer than To; b) during
the application of the operations the distance of each agent to the mass is approximately the
same for both mass configurations (as in Figure 5). The first guarantees that there is enough
time to apply the operations after the clocks get correlated, the second – that the Shapiro
delay (see Sec. IV D) can be neglected.

The coordinate-time duration of the entire protocol can be estimated as Tp = 2Ta+4L/2c,
where L/2c is the minimal time required to put the mass in superposition of amplitudes
separated by the distance L/2. Taking as an example r = 1010RS , L = 5r, h = r and
M = 1mg where RS ≈ 10−30m, the protocol from Figure 5 takes Tp ≈ 7× 10−18s.

Within some approaches a spatial superposition state of a mass, such as used in our pro-
tocol, is postulated to decohere [45–49]. Different motivations were given for this deco-

5 It can directly be checked that when the mass is placed in configuration KA≺B – at a distance r + L from

a1– the event A1 defined by local clock of a1 showing proper time τa is in the past light cone of event B1,

which is defined by the local clock of b1 showing proper time τb. When the mass is placed in configuration

KB≺A, event B1 ends up in the past of the event A1.
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herence, e.g. that space-time should be compatible with a classical description (global field
of time-like vectors), or that some process must enforce irreversibility of the quantum time
evolution to explain observation of definite measurement outcomes (solve the “measure-
ment problem”). However, even if endorsed, these models do not preclude realisation of our
protocol: the decoherence time scale from these models is the Diosi-Penrose time [46, 47]
TDP = 2δ3~

G(mL)2
, where δ is a free parameter. For every value of δ one can find the mass and the

relevant distances (M, r, L, h) so that the duration of our entire protocol is shorter than TDP .
For example, following the recent ref. [50] and taking δ = 10−7m, for our specific example
above one gets TDP ≈ 0.5s. Taking instead originally proposed value δ = 10−15m [46],
the desired regime is achieved e.g. for M = 0.1µg, r = 107RS , L = 5 × 105r, h = 105r;
with Tp ∼ 10−23s and TDP ∼ 10−13s. Since the above decoherence models allow for the
preparation of events with entangled temporal order, they do not enforce the classicality of
the causal structure of space-time.

We conclude that it is in principle possible to achieve the required entanglement of orders,
swap the mass distribution so as to finally disentangle the clocks form the mass, and satisfy
the locality conditions on the events.

Appendix D: Field theory realisation of the protocol

Here we discuss another possibility for the realisation of the protocol. The mass distri-

FIG. 6: Protocol for the violation of Bell’s inequalities for temporal order with quantum fields. a) Mass

configurations: In configuration KA≺B the mass is at the same distance rb from both bi and at a distance

ra > rb from both ai. For the configuration KB≺A the mass is at ra from both bi, and at rb from both ai.

b) Space-time diagram. Systems Si are implemented in two regions of an electromagnetic field, prepared in a

vacuum state. Agents apply coarse-grained operations UAi , UBi (in the subspace spanned by the vacuum and

a single-photon state) locally on the field at correspondingly marked events. For configuration KA≺B (KB≺A)

only orange (blue) events occur, and the final state of the field is represented in orange (blue).

bution is such that for KA≺B the mass is closer to b1 than to a1 and for KB≺A the relative
distances are reversed. The same holds for agents a2, b2 who are placed symmetrically to
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agents a1, b1 with respect to the mass; see Figure 6 a).
The local operations can be performed in the Fock space of a photon field, more precisely

in the two-level subspace spanned by the vacuum and a single-photon state of a chosen field
mode. The field is prepared in some mode α at event A1, and in mode β at event B1. The
modes are chosen such, that the two final states of the field at event C1 – obtained depending
on the order between events A1, B1 – are distinguishable. The situation for the agents a2, b2

is the same and they prepare the modes α, β, at the events A2, B2, respectively, see Figure 6
b).

One needs to note, that the vacuum state of a relativistic quantum field is entangled with
respect to the local subsystems [51–53]. However, this entanglement is effectively inacces-
sible under coarse-grained operations [54]. Thus, if the operations performed by the agents
are sufficiently coarse-grained, the initial state consisting of the local regions of a vacuum of
a quantum field is effectively separable and does not violate the assumptions of the protocol.
This implementation differs from the example given in the main text in that it does not need
a source that would produce a state at a specific time, and distribute it to the agents.

Appendix E: Gravitation vs other methods for a quantum control of temporal order

The superposition or entanglement of temporal orders was discussed here in the context
of “relativistic quantum engineering”: a far away agent prepares a quantum state of a massive
system which due to relativistic gravity effects yields a desired quantum causal structure for
future events. Control over temporal order of applying operations on a system can also be
achieved when agents control the positions of clocks that define when the operations are
applied. For example, by placing clock A closer and B further away from a fixed mass in
superposition withB closer andA further, proper times of the clocks become entangled as in
the gravitational switch. Quantum control of the time order can also be achieved without any
use of gravitational interaction, e.g. in the extended model of a quantum circuit: Quantum
gates can be applied on a system in different orders in a superposition [20–23] The latter
has already been practically implemented using an interferometer to route a photon through
two gates (acting on its polarisation) in different orders [24, 27]. The key difference to the
gravitational scheme presented in this work is that in both the above alternatives the events
would be embedded in a classical space-time: In the example of an entangled clock pair, only
these specific clocks could be used to label events for which temporal order is non-classical,
while any other nearby clock would define classically order events. In the example of an
extended quantum circuit, only the photon that went through a beam splitter will undergo
different transformations in a non-classical order. In contrast, in the scenario considered in
this work any local system in the spacetime region “affected” by the superposition state of
the mass will have classically undefined proper time. Thus, any two pairs of clocks in this
region will define events with an entangled order.

The above can be highlighted by considering the scenario leading to the violation of the
Bell-like inequality for temporal order in a coordinate system defined by the massive body,
which is here in superposition. (We note, however, that there is no complete theory of such
“quantum coordinate transformations”). Space-time coordinates of the events would then be
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defined with respect to the position of the mass and a local clock at its location – rather than
with respect to the positions and proper times of the clocks of the agents. By definition, in
these coordinates the location of the mass is fixed. As a result, all local operations performed
in the local regions of the agents would appear to be embedded in a fixed space-time metric
but performed at different space-time events in superposition – such that the orders of events
in different space-time regions are always entangled.

Moreover, in the gravitational scenario introduced in this work, all operations are per-
formed at fixed local times, independently of the event order. No local time measurement
can reveal whether a given agent is acting first or second. Furthermore, the mass distribu-
tions can be prepared such that the same force is exerted at various events but the potential is
different, e.g. by using spherical shells of matter of different radii [55] (instead of point-like
mass distributions). In that case no local measurement can reveal which of the two mass
configurations was prepared, and thus what the event order was. This is different in both the
above scenarios, where local non-demolition measurements of the positions of the clocks or
the photon’s time of arrival to a gate in a circuit, would reveal the event order, and alter the
outcomes of the protocol.

The above shows that there is a fundamental difference between the gravitational control
of temporal order discussed here and other methods. Although the final state of a system un-
dergoing some transformations in a non-classical order is independent of how the order was
controlled, only when the mass controls temporal relations is the effect universal – apply-
ing to all events in some space-time region. Thus, only in the gravitational case one would
conclude that non-classical temporal order indicates non-classicality of space-time.

Appendix F: What if it is fundamentally not possible to violate the Bell inequality for time
order?

Since a test of Bell’s inequalities for temporal order has never been performed and would
be very challenging, one can also ask what if it is not possible even in principle to violate the
corresponding Bell’s inequalities, or if it is fundamentally not possible to satisfy assumptions
of the theorem other than 3?

If that were the case, a classical description of temporal order could always be given,
e.g. in terms of the classical variable λ (introduced in Definition 1) – even in space-times
originating from a quantum state of a massive body. Moreover, the classical variable de-
scribing temporal order of events could be used to define a classical time parameter accord-
ing to which the systems evolve, even in scenarios involving macroscopic masses in quantum
superposition states. Interestingly, this would imply that models forbidding spatial superpo-
sitions of large masses on the ground that it is not possible to define time evolution in the
resulting space-time, such as refs [45–49] are redundant: Time would be compatible with a
classical description (in terms of a hidden variable) even in the presence of quantum states
of massive bodies.
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