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Abstract. The present state of mathematically rigorous results about Bell's inequalities in rela- 
tivistic quantum field theory is reviewed. In addition, the nature of the statistical independence 
of algebras of observables associated to spacelike separated spacetime regions is discussed. 

I. I N T R O D U C T I O N .  

Motivated by the desire to bring into the realm of testable hypotheses at least some 

of the important matters concerning the interpretation of quantum mechanics that were 

evoked in the controversy surrounding the Einstein-Podolsky-Rosen paradox [11,26], Bell 

discovered the first version [9,10] of a series of related inequalities that are now generally 

called Bell's inequalities and that have received a great deal of attention (for reviews see 

[16,7]). These inequalities provide an upper bound on the strength of con'elations between 

systems that are no longer interacting but have interacted in their past. 

The class of correlation experiments involved in these inequalities can be described 

briefly. A source provides an ensemble of identically prepared systems, one after another, 

and, as part of the preparation, splits each system into two subsystems, directing these 

to separate arms of the experiment. At one arm the arriving subsystem is subjected to a 

measuring device chosen from a class .A of suitable devices, and at the other arm the incident 

subsystem interacts with a measuring device from a class B. In the simplest situations, .A 

and B each consists of two devices. For each device A E Jt and each B E B with possible 
A A A 

outcome sets A and B, the relative frequencies p(a,/3) of the measurement of a E A on one 
A 

arm and/3 E B on the other arm are determined. An operational condition of independence 

of the two arms of the experiment is required: 

--- 

must be independent of the choice of B E B, and 

Z )  --- p ( / 3 )  
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must be independent of the choice of A E ,4. If there are [,41 devices in ,4 and 113[ devices 

in B, the one must carry out l,4l" IBI correlation experiments to obtain the necessary data. 

Bell's inequality, in the form of Clauser and Home [15], is: 

P((]~I, 81) + P(Ot:l, 82) + P(O~2, 81) -- P(Ct'2, 82) --< P(O~I) + P(81), (1.1) 

A A 
for all ai E Ai, 8j E B j, Ai E `4, B j  E 13. Bell's theorem (and the many generalizations that 

followed) is a metatheoretical theorem that states that all theories of a certain class that 

describe such a correlation experiment must provide predictions satisfying (1.1). Hence, if 

in a real experiment correlation probabilities are measured that violate (1.1), then one must 

conclude that there are real physical processes that cannot be described by any theory in 

the said class. If a theory predicts a violation of (1.1), then Bell's theorem implies that not 

all predictions of this theory can be reproduced by any theory in the said class. 

What  is the class of theories that must produce only correlation probabilities satis- 

fying (1.1)? The details of the answer to this question depend on the particular set of 

hypotheses used to prove Bell's inequality, and Bell's theorem appears in many forms in the 

literature. Because it is not the object of this paper to review this multitude of theorems, let 

it suffice simply to say that  most, versions assume, explicitly or tacitly, that the theories in 

this class are "classical" and "local". Roughly speaking, this means that  all the correlation 

probabilities are given by a single classical measure (the significance of this assumption was 

particularly emphasized in [52]; see also [53]) and the theory treats the two subsystems 

as independent of each other (independence is unfortunately a theory-dependent concept, 

hence it cannot be further specified here without entering into metatheoretic terrain). We 

refer to the review [16] for a detailed discussion of some of these "Bell's theorems" and to 

[44] for a very general approach to Bell's inequalities that enters more into the metatheoretic 

considerations that are necessary. 

In this paper we are concerned with what standard theories, particularly quantum 

field theory, predict about the violation of (1.1). We first recall, in order to fix notation, 

how such theories model the experimental situation described above. There is a C*-algebra 

C (with identity 1) of observables for the system and a pair (,4,/3) of mutually commut- 

ing subalgebras of C (each containing 1) for the algebra of observables of the independent 

subsystems. The possible outcomes a ,  8 are modelled by basic observables .4 E , 4 , / )  E /3 

satisfying 0 _< A = .4" < 1, 0 _< /) = /)* _< 1 (projections are examples of such basic 

observables). To each device A, resp. B, there corresponds a collection {Ai}, resp. {/)j}, of 

such basic observables such that  EAi = 1, resp. E/) j  = 1. Corresponding to the preparation 

of the ensemble of systems there is a state ~, a positive, normalized, linear functional on C. 

Then the correlation probabilities p(a,  8) are given by $(,4/?). Built into this model are the 
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relations 

= , = 

j i 

for all devices {-~i}, {/~j}. Hence the operational condition of independence of the two 

subsystems is an integral part of the model. 

Making the obvious substitutions into (1.1), one obtains Bell's inequality for the 

standard theories. For the sake of convenience, we rewrite this as: 

- 1  _< ¢(A1B1) + ¢(A1B2) + ¢(A2B1) - ¢(A2B2) _< 1, (1.2) 

with - 1 <  A~ =A~' < 1, - 1  < B j  = B ~  < 1, Ai E ,4 ,  Bj  El3. Note that 2 _ ~ -1  = A  

is a selfadjoint contraction if and only if ,4 is a basic observable. Bell's inequality for the 

standard theories is thus the requirement that (1.2) is satisfied for all pairs {A1, A2} C `4, 

{B1, B2} C B of selfadjoint contractions. We therefore make the following definition. 

Definition 1.t: The maximM Bell correlation of the pair (`4, B) of commuting subalgebras of 

the C*-algebra C in the state ¢ E C* is 

1 B fl(¢,`4, B) = sup ~¢(A1( 1 + B~) + A2(B1 - B2)), 

where the supremum is taken over all selfadjoint contractions Ai E `4, Bj  E 13. (Note 

that ~(¢,`4, B) is a convex functional in ¢ and if `41 C `4, B1 C B, then 13(¢, ̀ 41, B1) 

~(¢,`4, B).) 

Bell's inequality (1.2) can thus be expressed as 

Z ( ¢ , ` 4 ,  B )  _< 1. 

We recall the following result. 

(1.3) 

Proposition 1.2 [14,43,45,30]: For any C*-algebra C, commuting subMgebras A and B and 

state ¢ on C, 

~(¢, `4, B) < v~. (1.4) 

Hence, in standard theories the maximal Bell correlation is never greater than v~. A mea- 

sured violation of (1.4) could serve to exclude all theories providing C*-algebras as models, 

just as a violation of (1.3) excludes "classical, local" theories. (For further information on 

this point, see [14,32].) However, here we are working within the standard theories. 

Definition 1.3: The pair (A,B) of commuting subalgebras of a C*-algebra C maximally 

violates Bell's inequality in the state ¢ if ~(¢, `4, B) = V~. 
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Of course, 13(¢, "4,/3) > 1 already entails violation of Bell 's inequality. The  following theorem 

collects a number  of general situations where Bell 's inequality must  be  satisfied in s tandard 

theories. 

Theorem 1.4 [45]: Let ( '4,/3) be a pair  of commuting subalgebras of a C*-algebra C. 

a) If ¢]'4 V/3, the restriction of ¢ to the C*-algebra generated by "4 and 

/3, is a convex sum of product  states over (.4,/3), then/3(¢ ,  .4,/3) = 1. 

b) I f  . 4  o r  /3 i s  a b e l i a n ,  t h e n  / 3 ( ¢ , . 4 ,  B )  = l ,  f o r  a l l  s t a t e s  ¢ .  

c) If ¢1.4 or ¢1/3 is a pure state,  then 13(¢, .4,/3) = 1. 

Par t  (a) asserts tha t  if the prepara t ion  of the subsystems is such tha t  the s tate  is a 

( sum of) product  s ta te  over (.4, B), i.e. ¢ (AB)  = ¢ (A)¢(B)  for all A E .4, B E /3, then 

the correlations between the observables of the subsystems in this s tate are weak enough 

to satisfy Bell 's inequality. From (b) we learn tha t  if at least one of the two subsystems is 

classical, i.e. all observables commute,  then Bell's inequality is satisfied in every state. And 

in (c) the pur i ty  of the restriction to one of the subsystems entails weak Bell correlations. 

It  has been known for some t ime [9,10] tha t  quan tum mecharfcs ,  to s ta te  the mat te r  

in our language, predicts the existence of (,4,/3) and ¢ such tha t  13(¢, "4,/3) = v~ .  We state 

and prove this fact. 

Theorem 1.5: Let "4 and /3 be mutual ly  commuting copies of the two by two complex 

matr ices M2(C) acting on the Hilbert space ~ .  Then there exists a normal  s tate  ¢ on/3(7-/), 

the algebra of all bounded,  linear operators  on 7-/, such that  13(¢, "4,/3) = v~ .  

Proof: In "4, resp./3, there is a copy {a~, au, a ,} ,  resp. ' t {crz, ~ry, atz} of the Pauli spin matrices. 
t l Let ~5+, resp. ~ ,  satisfy crz~+ = -t-~2+, resp. c~zq~:t: = ~ : ,  and le t /~  be  the four-dimensional 

Hilbert  subspaee of 7-/generated by {~+,  ~5~_}. Furthermore,  let T~ be the C*-algebra gen- 

erated by {a~, a~, a~} U {a~, a~, a~}. Then K is unitari ly equivalent to C 2 ® C 2 and :D[K: is 

unitari ly equivalent to B(CZ)®B(C 2) -- M2(C)®M2(C) .  Let X+ = (10) e C 2, X-  -- (~) e C 2, 
A 

and similarly for X~:. Define @ = 2-~/2(X + ® X ~_ - X-  ® X~-) E C 2 ® C 2. If x, z A are the 
^ A 

obvious unit  vectors in It 3 and ~ - c o s a z  + s i n a x ,  then a • ~ = c o s a a z  + s inaa~ .  A 

straightforward calculation yields 

A A A 

< 9, (~ .  2~) ® (~ .  13)~ >=  - ~ .  13. 

Using the mentioned uni tary  equivalence, this can be unders tood to obtain  for some q E 

K~ C ~ .  Choosing ~ z,̂  ~ '  ^ fl = cos 7r^ 7rA4x, = x, ~ z  + sin and 5 '  3~r^ . 3~r^ = - = c o s  - ~ - z  + s m  - ~ - z ,  a n d  

A t A ~ !  A A 
a l s o  A 1  = a • a , A 2  -= "~ . a ,  B 1 = . t3, B 2  = o h a t  . 131, then one sees tha t  if ¢ denotes 

the vector  s tate  on/3(7"/) generated by @, ¢(AI(B1 + B2) + A 2 ( B 1  - B 2 ) )  = v ~ . [ : ]  
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Hence, if two commuting algebras ,4,/3 contain copies of M2(C) on a Hilbert  space 7/, they 

maximal ly  violate Bell 's inequalities in some normal  state on /3(7/). Landau  showed the 

following result. 

Theorem 1.6 [30]: Let ( ,4, /3)  be a pair  of commuting von Neumarm algebras on a Hilbert 

space 7 / such  tha t  if A E ,4, B E/3 and AB = 0, then either A = 0 or B = 0. Then  if neither 

,4 nor /3  is abelian, there exists a normal  state ¢ on/3(7/)  such tha t  ~(¢, ,4,/3) = 45 .  

Sketch of vroof: For any projection P ,  2 P  - 1 is a selfadjoint contraction. Let Pi E ,4, 

Qj E/3 be project ions.and Ai = 2Pi - 1, Bj  = 2Qj - 1. Then  

llAI(B1 + B2) + A2(B1 - B2)]] = 2~/1 + 4 11 [P1, P2][Q1, Q2] tl- 

One can find a normal  s ta te  ¢ on/3(7-/) such tha t  

1 
: ]¢(AI(B1 + B2) + A2(B1 - B2))I = x/1 + 4 1] [P1, P2][Q1, Q2] II- 
2 

The  condition tha t  A E ,4, B E /3 and AB = 0 imply either A = 0 or B = 0 entails that  

II [P1,P2][Q1,Q2] II = II [P1,P2] II II [Q1,Q2] II [38]. Since in any nonabel ian von Neumann 
1 

algebra 34 two projections P1, P2 E 34 can be found such tha t  I] [P1, P2] I] = ~, the theorem s 

claim follows. [] 

Hence, one has only two possible situations. Either  ,4 o r / 3  is abelian, so from Theorem 

1.4 (b) Bell 's inequality is satisfied in all states,  or bo th  are nonabel ian and (up to the 

additional hypothesis in Theorem 1.6) there exists a normal  state in which Bell 's inequality 

is maximal ly  violated. The  next result establishes the interesting fact that  only copies of 

the Pauli spin matr ices provide maximal  violation. 

Proposi t ion 1.7 [45]: Let (`4, B) be a pair  of commuting subalgebras of a C*-algebra C and 

let Ai E `4, Bj E B be selfadjoint contractions such tha t  for a s tate  ¢ on C with ¢IA and 

¢113 faithful, 

I ¢ ( A I ( B 1  + B2) + A2(B1 - B2)) = 45. 

i 
Then  Ai 2 = 1 and A1A2 + A2A1 = 0 (similarly for Bj), so A~, A2 and A3 - - ~ [ A ~ ,  A2] form 

a realization of the Pauli spin matrices in A (similarly for By in/3).  (Moreover, A1, A2, Aa, 

resp. B1, B2, B3, are contained in the centralizer of A in ¢, resp. centralizer of /3 in ¢). 

Sketch of proof: Under  the s ta ted assumptions,  we may  identify A and B with a pair of 

commuting yon Neumann  algebras on a Hilbert space 7-( with ¢ realized as a vector state 
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by 4) E ~ ,  where ft is cyclic and separat ing for ~t and/3.  Let Ai E ,4, Bj  E 13 be selfadjoint 

contractions such that  

1 
< ft, (AI(B1 + B2) + A2(B1 - B2))ft > =  x/2, 

1 1 
and let fi~ = ~(A1 + iA2),/~ -- ~ - ~ ( B 1  + B2 + i(B1 + B2)). Then AO = Bft ,  .4*ft = B*ft,  

and 
1 

< ft, (A~ 2 + A22)ft > = < ft, (.4*ft. + .4A*)ft > =  1. 

Hence A~ft = ft and (A*.4 + .4A*)ft = ft. Therefore, for any A E .A, ¢(AA~) = 

< ft, AA~¢ > = ¢(A),  ¢(A(A1 +iA2))  = 2 < ft, A.4ft > = 2 < ft, A/~ft > = 2 < /~*f t ,  Aft) > 

= 2 < fi.*ft, Aft  > = ¢((A1 + iA2)A), and (A1A2 + A2A1)ft = -2i(-42 - 2~*2)ft = -2 i ( /~  2 - 

 ,2)ft = ( B 1  _ B )ft = 0. [ ]  

Therefore,  if one is designing an experiment to test violation of Bell 's inequalities, 

one should only choose observables (like particle spins, polarizations, etc.) tha t  can be 

modelled in s tandard  theories by Pauli spin matrices. This is, in fact, what  was done in 

the experiments  carded out to date [6, 7, 8, 16], and to an extremely high accuracy, the 

prediction of a Bell correlation equal to vf2 was verified. A natural  question now is: what 

does quan tum field theory predict about  Bell's inequalities? 

This question has been examined in a mathemat ica l ly  rigorous manner  ill very few 

publications, the first such paper  appear ing as late as 1985 [43]. Presently the papers that  

directly address the topic of Bell's inequalities and quan tum field theory are [43, 44, 45, 46, 

47, 30, 31, 48, 33]. The  main  results of these papers are reviewed in the next section. We 

provide a brief overview of these papers.  

Paper [43] was an announcement of some of the main results from [44, 45, 46], where 

it was first proven that any free quantum field theory predicts that Bell's inequalities are 

maximally violated in the vacuum. In other words, already the vacuum fluctuations in any 

noninteracting quantum field model entail correlations (for spacelike separated and thus 

commuting observables) that maximally violate Bell's inequalities. This result indicated 

that maximal violation of Bell's inequalities had nothing to do with interaction or with 

special preparation of the system. In [30] it was emphasized that already the nonabelian 

character of the local algebras of observables sufficed to conclude maximal violation in some 

(unspecified) state,  and the nonclassical nature  of the vacuum state  was re-established in 

[31] (however, not by showing that  Bell's inequalities were maximal ly  violated in the vacuum 

- see Theorem 2.1). In the paper  [47] (the generality of which was significantly extended 

in [48]) it was shown that ,  in fact, the axioms of quantum field theory actually entailed 

tha t  Bell 's inequalities were maximally  violated in every (normal)  s ta te  in essentially every 
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quantum field model. This is a result that is not true in nonrelativistic quantum mechanics. 

Finall~q in  paper [33] Landau exhibited, using the construction of [46], (exponentials of) 

quadratic expressions in free quantum field operators which violate Bell's inequality (not 

maximally) in thermal states for all sufficiently low temperatures and which have a physical 

interpretation as 'local' charges associated with symmetry transformations. In Section III 

we briefly discuss Bell's inequalities and quantum field theory in the more general context 

of statistical independence. 

I I .  Q U A N T U M  F I E L D  T H E O R Y .  

Ordinary quantum field theory on Minkowski space, formalized in the Wightman 

axioms [41], provides models of the type considered in the previous section. It is known that 

up to minor technical assumptions (see e.g. [25]) quantum field theories provide nets of C*- 

algebras assigning to each open region O of Minkowski space a C*-algebra .4(0)  such that the 

net {A(O)} satisfies certain standard axioms [3, 29] (isotony, locality, Poincar4 covariance, 

and the existence of a Poincar@-covariant representation with positive energy satisfying the 

relativistic spectrum condition) that were naturally motivated by the interpretation of each 

.4(0)  as the algebra generated by all the observables that can be measured in the spacetime 

region O. In a certain teclmical sense [25], the quantum field operators smeared with test 

functions having support in O generate the algebra A(O). Since in this section all results 

refer to normal states, we may consider {.4(0)} to be a net of yon Neumann algebras in 

a Hilbert space ~ satisfying the mentioned axioms. In this section the algebra C is the 

C*-algebra generated by all the algebras in the net {.4(0)}. 

By the locality axiom, if O1 x 02, i.e. if all points in O1 are spacelike separated from 

all points in 02, then ,4(O1) C .4(O2)', the commutant of .4(02) in B(T/). Hence (.4(01), 
.4(02)) is a pair of commuting C*-algebras as in the previous section. Since at this level of 

generality we can only consider spacelike separated regions, we have in mind only correlation 

experiments where the measurements on the two arms are performed far enough apart and 

in a short enough time that they are spacelike separated (as in [8]). 

Since local algebras ,4(0) in quantum field theories are very nonabelian, it is dear 

from Theorems 1.5 and 1.6 that there are going to be many states in which Bell's inequalities 

are maxima~y violated. In fact, typical local algebras contain an infinite product of copies 

of M2(C) [5,2,47,48], so that by Theorem 1.5 whenever O1 x O2 there are infinitely many 

normal states ¢ such that fl(¢, .4(O1),.4(O2)) = V"2. Landau demonstrated the following 

proposition using Theorem 1.6. The region O1 is said to be strictly spacelike separated from 

02 if there exists a neighborhood A/" of the origin in R 4 such that O1 + A/" x 02. (This 

relation is symmetric.) 

Theorem 2.1 [30,31]: Let {,4(0)} be a net of local algebras in a physical representation with 
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a unique vacuum vector fL 

a) For any strictly spacelike separated regions O1,O2 and any Ai E A(01), Bj E 

al(O2) selfadjoint contractions such that [A1, A2] ¢ 0 and [B1, B2] ¢ 0, there exists a normal 

state ¢ such that 

¢(Al(B1 + B2) + A2(B1 - B2)) > 1. 

b) If f~ is cyclic for all .A(O), O ~ 0, and Oa, O2, O3 are any three mutually strictly 

separated spacetime regions, there exists a dense set 8 of normal states on/~(7-() (containing 

all states with bounded energy with respect to the vacuum) such that for any selfadjoint 

contractions Ai E A(O1), Bj E A(02) satisfying [A1,A2] ¢ 0 and [B1,B2] ~ 0 there is a 

projection P E A(O3) and a translation x C R 4, depending on ¢ E S, so that the translates 

Al(x),  A2(x), Ba(x), B2(x) and P(z)  do not have a joint classical distribution in the state 

¢. 

Remarks: (1) If the regions Oi above are not very pathological, for example if both are 

bounded and O~ ~ = Oi, then they need only be spacelike separated from each other. 

(2) The conclusion in (b) is weaker than that in (a), but it also illustrates an aspect 

of the nonclassical behavior of quantum field theory. Note that because the vacuum state 

is translation invariant, the assertion in part  (b) simplifies somewhat for the vacuum. Since 

this paper is about Bell's inequalities, we shall sketch only the proof of part  (a). 

Proof of Theorem 2.1 (a): Under the stated assumptions, it is known [39] that A C ,4(01), 

B E A(O2) and AB = 0 imply A = 0 or B = 0. Hence part  (a) is a direct corollary of the 

proof to Theorem 1.6. Note that if O~ ~ = Oi and O1 is spacelike separated from 02 (and 

not necessarily strictly spacelike separated) then it follows from Theorem 3.5 in [20] that 

AB = 0 if and only if A = 0 or B = 0, so that Theorem 1.6 may be applied once again to 

yield the claim in Remark (1).[5] 

Although a few natural questions remain open here, it is now clear that quantum field 

theory predicts the violation of Bell's inequalities in many states for any pair of algebras 

associated to spacelike separated spacetime regions, no matter  how far apart  the regions 

are. If, however, the spacelike separated regions are tangent, then we shall see below that 

the corresponding algebras of observables maximally violate Bell's inequalities in all normal 

states. Tangent spacetime regions are spacelike separated regions whose closures intersect, 

and we shall consider two classes of such regions in this section. 

Let WR = {x E A4[xl > Ix01} denote the "right wedge". Then ~V, the collection of 

all "wedge" regions, is the set of all Poincar6 transforms of WR. If O is a spacetime region, 

O t denotes the interior of its causal complement (the set of all points spacelike separated 

from O). Then for any W E kV, one has W t E }/V. Moreover, the pair (O, O I) is always 
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tangent  for ordinary regions. The  set/C of double cones is described as follows. Let x, y • R 4 

be timelike separated with x in y 's  future  light cone. Then a double cone is obtained as 

the interior of  the intersection of x ' s  past  light cone with y 's  future light cone. Taking all 

such x, y one generates all double cones. Note tha t  double cones are bounded regions, while 

wedges are not. For both  classes of regions, O -- O". 

Since we are examining situations in which Bell 's inequalities axe maximal ly  violated 

in all normal  states,  we make the following definition. 

Definition 2.2: A pair  (.A, B) of commuting subaigebras of a W*-algebra  C is called maximally 

correlated if for any normal  s ta te  ¢ on ,4 V B, one has/3(¢,  ,4,/3) = x/~. 

Theorem 2.3 [47]: a) In any vacuum sector, in any superselection sector of a global gauge 

group, in any massive particle representation,  ( .A(W),  .A(W) ' )  is maximal ly  correlated, for 

all W • IV. Hence, if .A(W) is weakly associated to a Wigh tman  field in the sense of [25], 

(.A(W), .A(W'))  is maximal ly  correlated for all W E IV. 

b) In any free field theory, in any local Fock field theory (e.g. P(¢)2 [28], Yukawa2 

[40], etc.) and in any dilatation-invariant theory, (A(01), A ( 0 2 ) )  is maximal ly  correlated 

for any pair  (O1, O~) of tangent double cones. 

The  three cases tha t  enter  into the hypothesis in par t  (a) above - vacuum sectors 

(a physical representat ion with at least one cyclic vacuum vector),  superselection sectors 

[18], and massive particle representations [13] - include all physically interesting situations 

except for the charged sectors of a gauge theory with local gauge group and a massless 

particle (like quan tum electrodynamics).  This lat ter  type  of physical setting is not included 

in this theorem because it is still not known how to describe such a sector rigorously in 

te rms of algebras of observables, not because the theorem is false in such a sector. In par t  

(b) more restrictive conditions are assumed for technical reasons arising from limitations in 

the me thod  of proof, not because the conclusion is believed to be false more generally. In 

fact,  at  the end of this section we shall describe our conjecture on the generality of the result 

in par t  (b). But  first we shall sketch some aspects of the proof  of this theorem in order to 

give the reader a sense of the ideas behind such results. However, we axe obliged to refer 

the reader to the original papers  for complete details. We begin with a discussion of some 

abs t rac t  s t ructure  properties.  

Definition 2.4: Let al be a C*-algebra with unit 1. Then  N E .A is called a I2-generator if 

N 2 = 0 and N N *  + N * N  = 1. 

Let VA denote the set of I2-generators in .A. Clearly, if N is contained in VA, then 

N * N  and N N *  are nonzero complementary  projections, i.e. their  sum is I and their product 
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is 0, and the C*-algebra generated by N is isomorphic to M2(C) and contains the unit 1 

of A. Conversely, if A contains a copy of M2(C) containing 1, then  VA # 0. Note that  

if Ai E .A satisfies A~ = Ai, A,? = 1 and A1A2 + A2A1 = 0 (which is the case if A1, A2 

are maximal  violators of Bell's inequalities in some faitlfful s ta te  on ,4 (Prop. 1.7)), then 
1 

N - ~(A1 + iA2) is an element of V~t. We introduce some s tandard  definitions. 

Definition 2.5: A v o n  Neumann algebra A is said to have the proper ty  Lx (resp. Lk) with 

n of E [0, 1/2] if for every e > 0 and any normal state ¢ E .A* (resp. finite family {¢i} i = 1 

normal  states on M), there exists an N EVA such tha t  for any A E .A, 

[~¢(AN) - ( 1 - ~ ) ¢ ( N A ) ]  _< eHAll 

(resp. for any A E Jt  and i = 1 , . . .  ,n  

(2.1) 

IA¢~(AN) -- (1--A)¢~(NA)I ~ ~IIAII. 

Definition 2.6: The  asymptot ic  ratio set roo(.A) of a yon Neumann  algebra .A is the set of 

all a E [0, 1] such that  .A is W*-isomorphic to .A @ T~ ,  where {TC~}oe[0,1] is the family of 

hyperfinite factors constructed by Powers [35]. 

It is known tha t  proper ty  L 4 is strictly stronger than  proper ty  Lx [4], tha t  property 

L 4 implies proper ty  L~l/2 [4,5], and that  proper ty  L 4 for ~l is equivalent to ~/1 - ~ E roo(~4) 

[4]. Using Prop. 1.7 one easily sees that  if A1,A2 E A are maximal  violators of Bell's 
1 

inequalities in the normal  s tate  ¢ on .A V/3, where /3  C .A', then N - ~(A1 + iA2) EVA 
satisfies (2.1) with e = 0 and A = 1/2. 

These propert ies are int imately related to the occurrence of ~(¢,  ,4, .A') = v~.  

Theorem 2.7 [47,48]: For a yon Neumann algebra A with a cyclic and separat ing vector in 

a separable Hilbert  space T/, the following conditions are equivalent. 

(a) ,4 ~ ~4 ® ~1 ,  i.e. A has proper ty  L~/2. 

(b) The  pair (.4, ,4') is maximal ly  correlated. 

(c) There  exist sequences of selfadjoint contractions {AI,o}~eN, {A2,~}~eN 
1 

C ,4, {BI,~}~¢N, {B2,~}~eN C A'  such tha t  T,~ - -~(AI,,~(BI,o, + 

B2,a) + A2,a(BI,~ - B2, ga)) converges to Y'2" 1 in the a-weak operator  

topology on 13(H) as a --* oo. 

Also the following conditions are equivalent. 

(d) .A has the proper ty  LU2. 

(e) For any vector s tate  w(A) = <  ~,  A ~  >,  fl E 7-(, one has ~(w, ,4, A ' )  = 
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Remark: Condition (c) means that there exists a sequence of admissible observables that in 

the limit maximally violate Bell's inequalities in all normal states at once. Note also that 

T~I is an infinite product of copies of ~I2(C) [5]. 

Contained in Theorem 2.7 is a characterization of yon Neumann algebras `4 such that 

(`4,`4~) is maximally correlated. If `4 and B C `4~ are von Neumann algebras, then (A, 13) 

maximally correlated implies that (`4, `4') and (B, B') are both maximally correlated. The 

converse is false [48], so we mention a characterization of maximally correlated pairs of yon 

Neumarm algebras (`4, B). 

Theorem 2.8 [48]: Let (`4, B) be a pair of commuting von Neumann algebras acting on a 

separable Hilbert space 7"/. Then the pair (,4, B) is maximally correlated if and only if there 

exists a type I factor M C `4 V B such that `4 VIM and B VIM are (spatially) isomorphic to 

T~I and are relative commutants of each other in M.  

Now that the connection between maximal violation of Bell's inequalities and struc- 

ture properties of the algebras is somewhat clearer, we can proceed to the situation in 

quantum field theory. 

Theorem 2.~ [48]: Let {`4(0)} be a net of observable algebras in an irreducible vacuum 

representation such that [oUjc`4(O)] fl is dense in the representation space ~ ,  where fl is 

the (up to a factor) unique vacuum vector. Then for each W E W, `4(W) is a type 1Ii1 
factor that has property Lk for all A E [0,1/2]. 

Proof: Under the above assumptions each wedge algebra `4(W) is nontrivial [24] and must 

be a type 1111 factor [20]. Let {V(t)},eR denote the strongly continuous unitary group on 

7-I implementing the velocity transformation subgroup of the Poincar6 group that leaves W 

invariant. Then ~ is the (up to a factor) unique V(R)-invariant vector in 7-I and 

w-lim V(a)AV(a) -1 = <  ~, AF~ > .1 
lal--.~ (2.2) 

for every A E `4 (Prop. 1.1.6 in [22]). 

By [17], because `4(W) is a type III1 factor, for any ~ > 0 and ~ e [0,1/2] there exists 

a I2-generator N E `4(W) such that for every A E `4(W), 

I,k < ~, ANf~ > - ( l - A )  < ~, N A ~  > ! < e{IAII. 

Since f~ is invariant under V(R) and since 

v ( a )  ` 4 ( w ) v ( a )  -1  - = ` 4 ( w )  

11 
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for all a E R, one also has 

[A < ft, Aaa(Y)gt > - ( l - A )  < gt, aa(N)A~t >]  _< e[[A[[, (2.3) 

n be a finite family of normal states on A(W).  for all A E A(W) and a C R. Let {wi}i = 1 

Again by [17] there exist unitaries U~, i = 1 , . . . ,  n, in A(W)  such that 

I < Ft, ViAV~12 > -wi(A)[ _< eIIAH, (2.4) 

for all A E A(W), i -- 1, . . .  ,n. Choosing b E R such that 

[l[ab(N), Ui]a[] < e (2.5) 

and 

II[~b(N), U~*]~[I ~ e (2.6) 

which is possible by (2.2), locality and the cyclicity of f / f o r  .A(W) (see, e.g. the proof of 

(A) in [211), one has 

lAwi( Aab( N ) ) - ( 1 -  A )~i( ab( N )A )[ 

<_ A]wi(Ao~b(N)l- < ~, U, A ab(N) U*f~ > I 

÷ A[ < ~, UiAab(N) U~f~ > - < fl, U,A U* otb(N)~ > [ 

+ ]A < ~,UiAU*ab(N)('I > --(l--A) < ~ ,ab(N)UiAU*~ > [ 

+ ( l -A) [  < fl, ab(N)UiAU*f~ > - < ~, UIab(N)AU*YI > [ 

+ (1--A)l < f'/, Uiab(g)A U~t  > -wi(ab(g)A)[ 

< 5ellA[I, 

for all A e A ( W )  and i = 1, . . .  , n, using (2.3) - (2.6). Since a~ (g )  e V.a(w), the theorem 

is proved.[] 

Remarks: (1) The above proof is a modification of an argument sketched by Testard in [50]. 

(2) By using methods of [24], the assumption that the vacuum vector is unique 

can be dropped and one can still conclude that for each W E ),V .A(W) is type III and has 

property L~ for all A E [0, 1/2]. (See [48]) 

Since the property L~, A E [0, 1/2], is an isomorphic invariant, the above theorem is 

also true for nets of local algebras in representations such as those occuring in the Doplicher, 

Haag, Roberts theory of superselection structure [18] and also the massive single particle 

representations of Buchholz and Fredenhagen [13], which include, in principle, charged sec- 

tors of theories like quantum chromodynamics. Hence by evoking Theorem 2.7 we have 

finished the sketch of the proof of part (a) of Theorem 2.3. 
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We commence the discussion of part (b) of Theorem 2.3 by proving the following 

result for dilatation-invariant theories. The dilatation invariance of a theory with unique 

vacuum is expressed by the existence of a strongly continuous, unitary representation D(R+) 

of the dilatation group on R d acting such that 

5~,(.4(0)) - D()`) .4(0) D(A)-I  = .4(AO), A > 0. 

where )`O - {)`x]x E O} and D(A)~ = ~ for any A E R+ ( f / i s  the unique vacuum vector of 

the theory). 

Theorem 2.10 [4S]: Let {.4(0)} be a net of local yon Neumann algebras in an irreducible 

vacuum representation of a dilatation-invariant theory such that the wedge algebras are 

locally generated [24] and .4(W)' = .4(W') for each W E 142 (both of which are true if the 

net is locally associated to a Wightman field in the sense of [25]). Then for any tangent 

double cones O1, 02 the pair (.4(O1), .4(02)) is maximally correlated and thus all double 

cone algebras have property L'I/2. 

Proof: It is known [37] that  under the given assumptions, for any A E C, 6x(A) converges 

weakly to ¢0(A) • 1 as )` .L 0, where ¢0 = ¢0 o 6~ is the vacuum state on C. Thus, for any 

locally normal state ¢ E B(7/)*, ¢ o 6~ ~ ¢0 pointwise on C as )` .L 0. Without loss of 

generality, it maybe assumed that the point of tangency for O1 and 02 is the origin and 

that  O1 C WR, 02 C W' R. 

A(WR) is a type III1 factor [20, 21]. Since type III1 factors have property L1/2 

[17, 47], it follows from Theorem 2.7 that #(¢, A(Wn), A(W'R) ) = v ~  for every vector 

state ¢ on B(7-/). In particular, #(¢0, A(WR), A(W'R) ) = V~. Let e > 0 be arbitrary 

and pick selfadjoint contractions Ai E A(WR), Bj E A(W'R), i , j  = 1,2, such that with 

T~ - 2(AI(B1 + B2) + A2(B1 - B2)) one has ¢0(T,) > x / ~ -  e. Let also 8 > 0 be arbitrary 
, I  

A A A 

and pick two sufficiently large tangent double cones O1, 02 (with O1 C O1 C WR and 
A A A A A 

02 C 02 C W~) such that  there exist selfadjoint contractions Ai E A(O1), B 1 E A(02) 
A A 1 A A A A A A 

satisfying I¢0(T~ - T,,s)l < 5, where T~,s - ~(AI(B1 + B2) + A2(B1 - B2)) (this is possible 

by Kaplansky's density theorem and the assumption that the wedge algebras are locally 

generated). 

Then for any locally normal state ¢ E B('H)*, 

A A 

¢ o 6~,(T¢,~) ~ o  ¢0(T¢,~) _> v ~  - e - 6. 

A A A A 

But for every A E R+, one has g~,(Ai) E A(AO1) and 6~(Bj) E A()`O2), and there exists 
A A 

a )`0 > 0 such that ),01 C 01 and )`02 C 02 for all )` < )`o- Hence the assertion of the 

theorem follows at once.V] 
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Because the scaling limit of the models mentioned in part  (b) of Theorem 2.3 is the 

massless, free field, which is dilatation-invariaxit, one can extend the result of Theorem 2.10 

to include such models as well. Let f ( x )  ~ f x ( x )  ~ f ( ) , - l z )  be the induced action of the 

dilatation group on the test function space s ( R d ) .  It is well known that  there exists a scaling 

function g ( ~ )  (monotone, nonnegative for ~ > 0) such that  for all f~, f2 E s ( R d ) ,  

lim :v(~) 2 w.)2~(f~,~, f~,~) = Wo ¢~(fl, f~), 
),--*0 

where Win(2)(.,.) is the two-point Wightman function of the free field with mass rn. 

Sufficient conditions in terms of test functions have been given in [46] that insure 

that  Bell's inequalities axe maximally violated in the vacuum state by any free field algebras 

containing the spectral projections of field operators smeared with test functions satisfying 

said conditions. It is shown in [48] that with the above scaling one can insure that for any 

pair of tangent double cones (O1,02) one can find test functions with appropriate support 

satisfying the said conditions. The proof of maximal correlation is then completed by the 

following theorem. 

Theorem 2.11 [48]: Let (A, B) be a pair of commuting von Neumann algebras acting on a 

separable Hilbert space. Then the following axe equivalent. 

(a) (.A,/~) is maximally correlated. 

(b) There exists a faithful state w E (.4 V 13). such that fl(w, ,4, B) = v/2. 

Proof: The implication (a) ~ (b) is trivial. To verify the other implication, first note that 

for a faithful state w E (,4 V B).  and an arbitrary normal state ¢ E (.4 V B),,  ¢ can be 

arbitrarily well approximated in norm by elements of the set of all states ¢ E (A V B). 

such that  there is some A > 0 with ¢ < Aw (see the proof of Theorem 2.1 in [48]). Let 

{A1 (n), A2 (n), B1 ('*), B2(n)}neN be a sequence of selfadjoint contractions with Ai (n) E A, 

Bi(") E B, i , j  = 1,2, n E N, satisfying 

l w ( A I ( n ) ( B I ( ' ~ )  + Be  (~)) + A2(") (B1 (n) - B2("))) v~ 

as n ~ co, and let ¢ E (A V B). be a state with ¢ < Aw for some A > 0. Then with 

T.  - v ~  - ½(AI(")(B1 (") + B2 (n)) + A~(")(BI(") - B2("))) >_ 0 

(by Prop. 1.2) one has ¢(Tn) _< Aw(Tn)  --~ 0 as n --+ co. Since such states ¢ E (.4 V B). are 

norm dense in the normal states on (.4 V B), the desired implication follows. [] 

Thus, to verify that (.A, B) is maximally correlated, it suffices to check that fl(w, .A, B) 

= v ~  for one, conveniently chosen faithful state w E (.AVB).. In particular, since in quantum 
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field theory the vacuum state ¢0 is typically faithful on the local algebras of observables, it 

follows that  if already the vacuum fluctuations are such that Bell's inequalities are maximally 

violated, then all other preparations of the system will lead to violation of Bell's inequalities, 

as well. 

It is worth emphasizing that the above scaling arguments show that the spacetime 

supports of the observables that  give a Bell correlation converging to v ~  converge to the 

point of tangency of the pair (O1,02). 

We expect that the following conjecture is true. Let {.A(O)} be a net of local ob- 

servable von Neumann algebras in a vacuum representation to which is locally associated 

a quantum field in the sense of [25] and for which assumption (A) below holds. Then 

(.A(O1), .A(O2)) is maximally correlated for any tangent double cones O1,02 E AS. 

(A) There exists a scaling function N(A) (monotone, nonnegative for A > O) such 

that for all test functions fi 

and 

lim N(A)¢0(:(fA)) -- WoO)(f) (= 0), 
A---*0 

lira N(A)2¢0(qo(fl,x) qo(f~,x)) = W0(2)(fl, f2), 

lira N()~)4¢o(~(fl,A)cp(f2,A)w(f3,A)tp(f4,A)) = W 0 ( 4 ) ( f l ,  f2 ,  f3 ,  f4 ) ,  
A---+0 

where {W0(J)}j=l,2,4 are the Wightman functions corresponding to the vacuum state of the 

free, massless field. 

Condition (A) is known to be true in most of the quantum field models that have 

been constructed. It is a weak, rigorous way of saying that the theory has a well-defined 

Gell-Mann-Low limit. 

If we may briefly summarize: The results above show that in relativistic quantum field 

theory, how ever the field has been prepared and no matter  what the particular dynamics of 

the field may be, there are observables associated to spacelike tangent regions that maximally 

violate Bell's inequalities. The maximal violation of Bell's inequalities in every normal state 

is a consequence of the most basic axioms of quantum field theory. The same axioms imply 

that  though it is true that pairs of algebras of observables associated with regions that are 

spacelike separated by an arbitrary nonzero distance will have many states satisfying Bell's 

inequalities, nonetheless even in that case there are (infinitely) many states on the same 

pairs in which Bell's inequalities are maximally violated. 
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III.  MAXIMAL CORRELATION, SPLIT PROPERTY AND STATISTICAL 

INDEPENDENCE 

In this section we shall briefly contrast maximal correlation with the split property 

and place them both in the context of statistical independence. For a more complete dis- 

cussion, see [54]. Having stated maximal correlation as a property of a pair of commuting 

algebras, we shall do the same for the split property (but see [12, 19]). 

Definition 3.1: Let (,4, B) be a pair of commuting yon Neumann algebras on a Hilbert space 

T/. The pair (.A, B) is split if there exists a type I factor M such that .A C M C B ~. 

As we shall recall below more formally, (A, B) is split if and only if there are many 

normal product states across the algebra MV/3. Hence by Theorem 1.4(a), the split property 

and maximal correlation of (A,B) are mutually exclusive, indeed they are each other's 

opposite, in a sense that  we want to indicate in this section. However, we first weave the 

thread of independence of algebras of observables into the discussion. 

In quantum mechanics if the algebras of observables A, B of two systems mutually 

commute, they are viewed as independent, insofar as all measurements on one system are 

compatible with all measurements on the other system. However, there are stronger condi- 

tions of independence that are also of interest. 

Definition 3.2: A pair (,4, B) of commuting subalgebras of a C*-algebra C is said to be C*- 

independent if for each state ¢1 E A* and each state ¢2 E B* there exists a state ¢ E C* 

such that  ¢IA = ¢1 and ¢IB = ¢2. 

Hence two systems with associated algebras of observables .A, B that  are C*- inde- 

pendent can each be prepared in any state independently of the state of the other system. 

Roos showed [38] that in fact a pair (A, B) of commuting C*-algebras is C*-independent if 

and only if any pair of states ¢1 E ,4*, ¢2 E B* has a common extension ¢ that is a p r o d u c t  

state across .4 V B. This is entailed if, for example, .A V B is naturally isomorphic to the 

tensor product of .A with B. One has the following result in quantum field theory. 

Theorem 3.3 [39, 20, 38, 49]: In an irreducible vacuum representation, for any strictly 

spacelike separated regions O1, 02, (A(O1), .4(02)) is C*-independent. For any tangent 

double cones O1, 02 e IC, resp. any wedge W E F¢, the pair (.A(O1), .A(O2)), resp. 

(Jt(W), .A(W')) ,  is C*-independent. 

So C*-independence is typical in quantum field theory. There is a yet stronger condition of 

independence. 
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Definition 3.4: Let .4 and 13 be commuting subalgebras of a W*-algebra C. The pair (A, B) 

is said to be W*-independent (in the product sense) if for every normal state ¢1 E `4. 

and every normal state ¢2 E 13. there exists a product normal state ¢ E C* such that 

¢I(AB) = ¢ffA)C2(B) for all A E `4 and B E B 

It is known [39, 49] that if (`4,13) is W*-independent, then (,4, B) is C*-independent. We 

collect the following characterizations of W*-independence. 

Theorem 3.5 [12, 1, 2, 51, 49]: In an irreducible vacuum representation for which the vacuum 

vector is cyclic for all local algebras, the following are equivalent for any two spacelike 

separated double cones or wedges O1,02. 

(1) Local preparability of all normal states: for every normal state ¢0 

there is a normal positive map T : /3(~) --~ B(9/) such that T(A) = 

¢0(A)T(1) for all A E A(O1) and T(B) = T(1)B for B E A(O2). 

(2) (.4(O1), `4(02)) is W*-independent (in the product sense). 

(3) (.4(O1), `4(02)) is split. 

(4) .A(O1) V v~(O2) ~ .A(O1) @ ,A(O2). 

By Theorem 1.4(a), the pair (`4(O1), .4(02)) of algebras associated to the tangent 

spacetime regions considered in Theorem 2.3 are not W*-independent, even though, by 

Theorem 3.3, they are C*-independent. On the other hand, strictly spacelike separated 

pairs of double cones are known in many cases [12, 42, 2] to be split, hence W*-independent. 

(`4(O1), `4(02)) maximally correlated implies (A(01), .,1(O2)) is very badly nonsplit. Being 

nonsplit is a property that is strictly weaker than being maximally correlated [48]. It is 

known that algebras of observables associated to tangent, spacelike separated spacetime 

regions are not split, in general. We mention only the following result. 

Theorem 3.6 [48]: Let O1 and 02 be (Poincar6 transforms of) tangent spacelike separated 

spacetime regions for which there exists a ~0 > 0 such that .XOi C Oi for all 0 < ), < A0, 

i = 1, 2. And let {`4(0))} be a net of local von Neumann algebras in an irreducible vacuum 

representation, to which is locally associated a quantum field in the sense of [25]. With 

assumption (A) at the end of the previous section, then is no (locally) normal state ¢ on C 

such that ¢(AB) = ¢(A)¢(B) for all A E A(01), B E `4(02). 

So we see that very generally, tangent spacetime regions have associated to them 

nonsplit algebras; however, it is known [49] that for a class of such regions O1,02, one has 

/3(¢, A(O1), `4(02) < x /~-e  for all normal states ¢, where e depends on geometric properties 

of the regions at the point of tangency. Hence they are nonsplit but not maximally correlated. 
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We summarize: If ¢ is a product state over (04(O,), 04(02)) then/~(¢, 04(O1), 04(02)) 

= 1. Hence, if/~(¢,04(O1),04(O2)) > 1 then ¢ is not a product state over (04(O1),04(O2)). 

The larger the number/3(¢, 04(O1), A(O2)) the stronger the correlations between 04(O1) and 

04(02) in the state ¢ and the less "product-like"¢ is across (04(O1), 04(02)). If/~(¢, 04(O1), 04(02)) = |  

x/~, the correlation between 04(O1) and 04(02) is the maximum possible. In the case of some 

tangent spacetime regions one has/~(¢, 04(01), A(O2)) = v ~  for all normal states, whereas 

in the same situation ~(¢,04(0]),04(02)) = 1 for many nonnormal states. The ultraviolet 

effect that is responsible for the maximal violation of Bell's inequalities in all normal states 

over tangent spacetime regions entails that tangent spacetime regions are quantitatively ( as 

measured by/~(¢, A(01), 04(02))) and maximally far from W*-independence while remain- 

ing C*-independent. 
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