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Beables in Algebraic Quantum Mechanics ∗

Rob Clifton†

November 1997

Michael Redhead is one of the foremost advocates of the tenability of
scientific realism in the domain of quantum theory. Particularly inspiring
is his deep physical knowledge and intuition, combined with the uncanny
ability he has to tease out the essence of a conceptual problem in physics
from amidst the often bewildering and mathematically daunting literature.
It is a pleasure to be able to offer this piece in honour of the (self-described)
‘Cantabridgian dinosaur’s’ retirement, and to express my desire that he not
become extinct just yet!

1 Beables versus ‘Observables’

A good deal of Michael’s work has focussed on articulating the pitfalls of
adopting a ‘simple realism of possessed values’ in quantum mechanics, which
is put under pressure by the no-go theorems of Kochen-Specker and Bell.
While I suspect Michael’s views on the matter are still tentative and ex-
ploratory, in his recent book From Physics to Metaphysics (1995a, Ch. 3)
Michael appears to favour van Fraassen’s (1973) idea of securing determinate
values for all observables by ‘ontologically contextualizing’ physical magni-
tudes. The idea is to let any given degenerate self-adjoint operator on a
system’s Hilbert space represent more than one magnitude of the system.
Each magnitude is distinguished from the others by the functional relations
its values have to different complete commuting sets of self-adjoint opera-
tors of which the given self-adjoint operator is a member. Thus, to pick
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out a physical magnitude it is not enough to know that its statistics are
represented by tracing the density operator of the system with some partic-
ular self-adjoint operator; for the degenerate operators, one must also pick
a context of definition for the magnitude being measured, specified by some
complete commuting set.

Formally, this is enough to prevent Kochen-Specker contradictions. But
for Michael the real payoff is that it yields a novel holistic interpretation of
quantum nonlocality (1995a, pp. 86-7). Take the example of two correlated
spin-1 particles in the entangled singlet state

− 3−
1
2 [|S1x = 0〉|S2x = 0〉 − |S1y = 0〉|S2y = 0〉 + |S1z = 0〉|S2z = 0〉] (1)

for which Michael and a former student were able to supply the first purely
algebraic proof of Bell’s theorem (Heywood and Redhead 1983). Since the
self-adjoint operator S2

1n pertaining to any (squared) spin component of par-
ticle 1 is represented by the degenerate operator S2

1n ⊗ I2 on 1 + 2’s Hilbert
space, ontological contextualism blocks the conclusion (which would other-
wise be forced by the Heywood-Redhead argument) that the outcome of a
measurement of S2

1n must causally depend upon measurements performed
on particle 2. This conclusion is blocked because the very definition of the
spin magnitude being measured rests on which complete commuting set of
self-adjoint operators of the composite 1 + 2 system the values of S2

1n ⊗ I2
are referred to. If we cannot specify a subsystem’s properties independently
of properties relating to the whole combined system, then the question of
whether properties intrinsic to a subsystem causally depend on measurements
undertaken on spacelike-separated systems cannot even be raised. Michael
calls this consequence of ontological contextualism ‘ontological nonlocality’
to contrast it with ‘environmental nonlocality’ that would involve an explicit
spacelike causal dependence of local properties on distant measurements in
apparent conflict with relativity theory.

Despite the lure of this route to peaceful coexistence between relativity
and quantum nonlocality, it is hard to be totally at ease with an ontology
that entertains the existence of large numbers of distinct physical magni-
tudes which are in principle statistically indistinguishable. And since it’s not
obvious how failing to classify quantum nonlocality as a causal connection
improves the chances of securing a Lorentz invariant realist interpretation
of the theory, it is surely worth seeking an alternative, simpler realism of
possessed values that takes the functional relations between self-adjoint op-
erators just as seriously.
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In fact, one doesn’t have to look very far. The key lies in rejecting an
assumption that is necessary to prove the Kochen-Specker theorem which
Michael dubs the ‘Reality Principle’ in Incompleteness, Nonlocality and Re-
alism (1987):

If there is an operationally defined number associated with the self-
adjoint operator Q̂ (i.e. distributed probabilistically according to the sta-
tistical algorithm of QM for Q̂), then there exists an element of reality
. . . associated with that number and measured by it (1987, p. 133-4).

Michael considers (and rightly rejects) only one way to deny the Reality Prin-
ciple. Faced with incompatible ways to measure a degenerate self-adjoint op-
erator Q̂—depending on which complete commuting set it is measured along
with—one could say that only one way reveals Q̂’s true value and the others
‘produce numbers which just “hang in the air” and do not measure anything
of ontological significance’ (1987, p. 136). But this is not the most natural
way to deny the Reality Principle. The most natural way is to regard the
measurement of certain self-adjoint operators as yielding results without on-
tological significance however they are ‘measured’—the paradigm example
being the measurement of ‘spin’ in Bohm’s theory.1 This is not at all to
renounce the realist demand for an explanation of measurement results, but
only to abandon the particular form of explanation demanded by the Reality
Principle, which dictates that each self-adjoint operator needs to be thought
of as having its measurement results determined by a pre-existing element of
reality unique to that operator. (In Bohm’s theory, by contrast, all measure-
ment results are grounded in the pre-existing position of the particle together
with its initial wavefunction.) Jettisoning this part of the Reality Principle
clears the way for an interpretive programme in quantum mechanics which
has received concrete expression recently in various ‘modal’ interpretations
of quantum mechanics,2 and has figured prominently in the writings of John
Bell (1987, Chs. 5, 7, 19).

For Bell, a self-adjoint operator is just a mathematical device which,
when traced with the system’s density operator, generates the empirically
correct statistics in an experiment on the system which orthodox quantum
mechanics would loosely call a ‘measurement’ of the ‘observable’ represented
by the operator (1987, p. 52). Out of the ‘observables’ of the orthodox
interpretation Bell seeks to isolate some subset, the ‘beables’ of a system,

1See Pagonis and Clifton (1995) and Dürr et al. (1996) for further discussion.
2See Clifton (1996) and references therein.
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which can be ascribed determinate values and about which orthodoxy’s loose
talk is perfectly precise:

Many people must have thought along the following lines. Could one
not just promote some of the ’observables’ of the present quantum theory
to the status of beables? The beables would then be represented by linear
operators in the state space. The values which they are allowed to be would
be the eigenvalues of those operators. For the general state the probability
of a beable being a particular value would be calculated just as was formerly
calculated the probability of observing that value (1987, p. 41).

Bell’s thinking is the exact opposite of Michael’s in From Physics to Meta-
physics. While Michael entertains the possibility that there are far more
beables than self-adjoint operators, Bell is content with there being far less.
Elsewhere, Bell explains how one can get away with this:

Not all ‘observables’ can be given beable status, for they do not all have
simultaneous eigenvalues, i.e. do not all commute. It is important to realize
therefore that most of these ‘observables’ are entirely redundant. What is
essential is to be able to define the positions of things, including the positions
of instrument pointers or (the modern equivalent) of ink on computer output
(1987, p. 175).

‘Observables’ must be made, somehow, out of beables. The theory of local
beables should contain, and give precise physical meaning to, the algebra of
local observables (1987, p. 52).

In this last passage we see a further contrast with Michael’s thinking. While
his ontological nonlocality countenances locally measurable but nonlocally
defined beables, Bell restricts his considerations to beables that are both
locally measurable and locally defined.3 And in at least one other place
(1987, p. 42), Bell again expresses his interest in modelling a theory of
local beables after Haag’s (1992) algebras of local observables in relativistic
quantum field theory.

I find this aspect of Bell’s thinking particularly intriguing. But given the
C⋆-algebraic formulation of Haag’s theory, it would be of interest to have
a purely algebraic characterization of sets of (bounded) observables which
are viable candidates for representing the beables of a quantum-mechanical
system—be it a spin-1 particle in the singlet state or a bounded open region
of spacetime. This is the main aim of the present paper.

3See also pgs. 42 and 53 of Bell’s (1987).
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I begin in Section 2. by considering what subsets of the self-adjoint part
of the C⋆-algebra U of a quantum system should be candidates for beable
status. No doubt this is partly a matter of taste. But a natural requirement
to impose is that sets of beables be closed under the taking of any continuous
self-adjoint function of their members. As we shall see, such sets have their
own characteristic algebraic structure, and I call them ‘Segalgebras’ because
they conform to the general postulates for algebraic systems of observables
laid down and studied by Segal (1947). It turns out that a subset of self-
adjoint elements in U forms a Segalgebra exactly when it is the self-adjoint
part of some C⋆-subalgebra of U . This is satisfying insofar as there is no
reason to expect that a set of beables should have an algebraic structure
any different from the full set of observables of the system out of which it is
distinguished. And the fact that Segalgebras are none other than the self-
adjoint parts of C⋆-algebras allows us to carry over facts about C⋆-algebras
to their Segalgebras.

In Section 3. I discuss what is going to count as an acceptable way of
assigning values to beables in a Segalgebra. Again this is partly a matter
of taste, and has been hotly debated ever since von Neumann proved his
infamous no-hidden-variables theorem. Nevertheless I shall argue that while
von Neumann’s conception of values as given by linear functionals on the
Segalgebra of ‘observables’ of a system is utterly inappropriate if their as-
signed ‘values’ are only defined dispositionally or counterfactually (so I agree
wholeheartedly with Bell 1987, Ch. 1), there is no reason not to require the
categorically possessed values of beables to be given by linear functionals,
regardless of whether they commute. This will not lead in the direction of
an algebraic analogue of von Neumann’s no-go theorem, such as is proved by
Misra (1967), simply because I shall not be supposing that all ‘observables’
have beable status!

In line with the approach to value definiteness taken by modal interpre-
tations, I will also not be requiring that the beables of a quantum system be
the same from one quantum state of the system to another. In the second
passage from Bell (1987) quoted above he implies that the self-adjoint oper-
ators corresponding to beables must all commute. It will turn out that this
only follows (at least in nonrelativistic quantum mechanics) if one requires
the beables of a system to be the same for all its quantum states. However,
even if that requirement is dropped, we shall see that a Segalgebra of beables
still has to be ‘almost commutative’.

In Section 4. I shall introduce the new notion of a quasicommutative
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Segalgebra to make this idea precise. In Section 5. I go on to show that qua-
sicommutative Segalgebras are both necessary and sufficient for representing
the measurement statistics prescribed by a quantum state as an average over
the actual values of the beables in the algebra4—in line with the first pas-
sage from Bell (1987) quoted above. I also discuss two concrete examples of
noncommuting Segalgebras of beables employed by the orthodox (Dirac-von
Neumann) interpretation of nonrelativistic quantum mechanics and modal
interpretations thereof. Section 6. then discusses the question of how ‘big’
(and noncommutative) a Segalgebra of beables can be consistent with satis-
fying the statistics of some quantum state. There is a simple characterization
of the Segalgebras of beables on a finite-dimensional Hilbert space that are
maximal in this sense, but the infinite-dimensional case remains open.

Finally, in Section 7. I discuss two ways one can argue for entertaining
only commutative Segalgebras of beables. The first way (as I’ve already
mentioned) is to require that the beables of a system be the same for all its
quantum states, or at least for a ‘full set’ thereof (we’ll see that the former
demand is too strong on physical grounds). The second way arises in the
context of algebraic relativistic quantum field theory, where it turns out that
Segalgebras of local beables must be fully commutative if they are to satisfy
the measurement statistics dictated by a state of the field with bounded
energy.

2 Segalgebras of Beables

A C⋆-algebra is a normed algebra U over the complex numbers which is
complete in the metric topology induced by the norm | · | and equipped with
an involution ⋆ that, together with the norm, satisfies the C⋆-norm property,5

|A⋆A| = |A|2, for all A ∈ U . (2)

We will hardly ever need to suppose that our C⋆-algebras are concrete alge-
bras of bounded operators acting on some Hilbert space, but for convenience

4This result generalizes results obtained by Bub and Clifton (1996) and Zimba and
Clifton (forthcoming) in two directions. First and most importantly, I shall not need to
restrict myself to sets of beables with discrete spectra. And, second, I shall not need to
assume anything about the projection operators with beable status (such as: that they
form an ortholattice); indeed, a C⋆-algebra need have no nontrivial projections.

5Note that this property, together with the triangle inequality and product inequality
|AB| ≤ |A||B|, entails that |A| = |A⋆| for any A ∈ U .
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I’ll still refer to the elements of U as operators. Of course, for a quantum sys-
tem represented by some U , the operators in U ’s self-adjoint part—consisting
of all A ∈ U such that A = A⋆—represent the bounded observables of the
system. For simplicity, I set aside the possibility of superselection rules and
take the term ‘observable’ to be synonomous with ‘self-adjoint operator’. Our
task, then, is to lay down some natural guidelines for granting observables in
U beable status.

It seems reasonable to require that a quantum system be such that its
beables combine algebraicly to yield other beables, the idea being that if a set
of observables have definite values, any self-adjoint function of them ought
to have a definite value as well. Thus a set of beables should at least form a
real vector space. And, starting with any single beable, one should be able to
form polynomials over the reals in that beable which are also beables of the
system. If we are going to allow these polynomials to have a constant term,
we had better also require that the identity operator I be a beable.6 Finally,
it seems reasonable to require that sets of beables not just be closed under
polynomial functions of their members, but all continuous functions thereof.
Thus if an observable A is a beable, then sinA, eA and (if the spectrum of
A consists only of nonnegative values)

√
A should all have beable status too.

There is only one way to define a nonpolynomial continuous function of a
bounded observable A, viz. as the norm limit of a sequence of polynomials
in A by analogy with the Weierstrass approximation theorem from ordinary
analysis.7 Thus sets of beables will need to be closed in norm.8

Of course we cannot require sets of beables to be closed under products,
since the product of two observables is an observable only if they commute.
However, we can always introduce a new symmetric product on U by

A ◦B ≡ 1/4[(A+B)2 − (A−B)2] = 1/2[A,B]+, (3)

which is manifestly such that if both A and B are self-adjoint A ◦B will be
too. Since the symmetric product of two self-adjoint operators is expressible,
as above, in terms of real linear combinations and squares, it follows from

6Not all C⋆-algebras have an identity, but one can always be ‘adjoined’ to any C⋆-
algebra—see Bratteli and Robinson 1987, Prop. 2.1.5.

7Geroch (1985, Ch. 52) contains a complete discussion.
8This is consistent with our beables remaining self-adjoint, since the limit of a sequence

of self-adjoint operators must itself be self-adjoint due to the continuity of the adjoint
operation (which follows from |A⋆ − B⋆| = |(A − B)⋆| = |A − B|).
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our requirements on sets of beables that they are closed under the symmetric
product.

It is easy to see that the symmetric product on U is homogeneous (i.e.
r(A◦B) = (rA)◦B = A◦(rB)) and distributive over addition. Moreover, the
symmetric product will be associative on any triple of elements A,B,C ∈ U
if they mutually commute in the C⋆ product (for in that case ◦ just reduces
to the C⋆ product, which of course is associative by definition). However, if a
triple of elements do not mutually commute, the symmetric product cannot
be assumed associative. A simple example is provided by the C⋆-algebra
U(H2) of all Hermitian operators on complex two-dimensional Hilbert space.
If we consider the Pauli spin operators σx and σy, then since they anti-
commute we have σx ◦ σy = 0, thus σx ◦ (σx ◦ σy) = 0; yet (σx ◦ σx) ◦ σy =
σ2
x ◦ σy = I ◦ σy = σy.

Since raising elements in U to any desired C⋆ power can be re-expressed
in terms of the symmetric product as

An = A ◦ A ◦ · · · ◦ A︸ ︷︷ ︸
n times

, (4)

we can dispense with reference to the C⋆ product in our requirements on
beable sets. Thus what we have required, so far, is that any set of beables
be a real closed linear subspace of observables taken from U which forms a
(not necessarily associative!) algebra with respect to the symmetric product.
This is an instance of the sort of algebraic structure studied by Segal (1947),
and a simple concrete example is given by

{aσx + bσy + cI ∈ U(H2)|a, b, c ∈ R}. (5)

There is one last requirement I need to impose on beable sets. We can
also introduce on U an antisymmetric product by

A •B ≡ i/2[A,B]−, (6)

which also has the property that if both A and B are self-adjoint so is A•B.
This product is again homogeneous and distributive by not necessarily asso-
ciative (e.g. σx • (σx • σy) = −σy, while (σx • σx) • σy = 0). If we are serious
about wanting sets of beables to contain all continuous self-adjoint functions
of their members, then they ought to be closed under the antisymmetric
product too (its continuity is proven using the triangle and product inequal-
ities). With closure under both the symmetric and antisymmetric products,
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we then get closure under self-adjoint polynomials in two beables, like

cAB + c∗BA = 2ℜ(c)A ◦B + 2ℑ(c)A •B. (7)

It must be admitted, though, that closure under • is a strong assumption;
for example, the set in Eqn. 5 is now ruled out, since it fails to contain
σx • σy = −σz . It might be of interest to investigate what portion of my
conclusions can be recovered without assuming sets of beables are closed
under •, but I shall not do so here.

To summarize, our candidate beable sets are to be real closed linear sub-
spaces of observables in U that contain the identity and are closed under
the (generally nonassociative) symmetric and antisymmetric products. Such
structures I call Segalgebras to distinguish them within the class of Segal’s
own algebras, which need not admit an antisymmetric product.9 Virtually
everything about Segalgebras follows from the fact that they are simply the
self-adjoint parts of C⋆-subalgebras of the C⋆-algebras from which their ele-
ments are drawn.

To see this, recall that a subalgebra of a C⋆-algebra U is a subset of
the algebra (possibly not containing the identity) that is closed under the
relevant operations, i.e. a complex norm closed subspace of U closed under
the taking of C⋆ products and adjoints. For T any set of observables in U ,
define

T + iT = {A ∈ U|A = X + iY, with X, Y ∈ T}. (8)

Then we have:

Theorem 1 A subset T of the observables in a C⋆-algebra U is a real closed
linear subspace of U closed under the symmetric and antisymmetric products
if and only if T + iT is a C⋆-subalgebra of U .

Proof. ‘If’. Assuming T + iT is a subalgebra of U , it is automatic that T is a
real linear subspace. Moreover, since any Cauchy sequence {An} ⊆ T must
at least converge to an element A ∈ T + iT , and the limit of a sequence of
self-adjoint elements must itself be self-adjoint, A must lie in the self-adjoint
part of T + iT , which is obviously T . Thus T is closed. Now recall that if D
is an element in a C⋆-algebra, it has unique real and imaginery parts given
by

ℜ(D) =
1

2
(D +D⋆), ℑ(D) =

1

2
(−iD + iD⋆). (9)

9Neither does Segal’s (1947) symmetric product (which he calls ‘formal product’) have
to be homogeneous or distributive!

9



To prove T is closed under symmetric and antisymmetric products, suppose
A,B ∈ T . Then A,B ∈ T + iT , and since T + iT is a subalgebra of U ,
AB ∈ T + iT has unique real and imaginery parts. Using Eqns. 9, those
parts are just A ◦B and −A •B and the conclusion follows.

‘Only if’. Given that T is a real subspace of U , it is routine to check that
T+iT is a complex subspace closed under ⋆ . Next, suppose {An} ⊆ T+iT is
a Cauchy sequence, i.e. |An−Am| → 0. From Eqns. 9, the triangle inequality
and the fact that |D| = |D⋆| for anyD ∈ U , we see that |ℜ(D)|, |ℑ(D)| ≤ |D|.
Therefore,

|ℜ(An) − ℜ(Am)| = |ℜ(An −Am)| ≤ |An − Am| → 0, (10)

and, similarly, |ℑ(An) − ℑ(Am)| → 0. So both {ℜ(An)} and {ℑ(An)} must
be Cauchy sequences in T . Letting their respective limits be A1, A2 ∈ T ,
further use of the triangle inequality establishes that A1 + iA2 is the limit in
U of {An}. Hence T + iT is norm closed. Finally, for closure of T + iT under
C⋆-products, let A,B ∈ T + iT , so

A = X + iY and B = X ′ + iY ′ with X, Y,X ′, Y ′ ∈ T. (11)

A simple calculation yields

ℜ(AB) = X ◦X ′ +X • Y ′ + Y •X ′ − Y ◦ Y ′, (12)

ℑ(AB) = −X •X ′ +X ◦ Y ′ + Y ◦X ′ + Y • Y ′. (13)

Therefore, since T is a real linear subspace closed under both the symmetric
and antisymmetric products, AB ∈ T + iT . QED.

Thm. 1 tells us that a subset of U is a Segalgebra exactly when it is the
self-adjoint part of some subalgebra of U containing the identity. As a first
example of how this makes the ‘theory’ of Segalgebras parasitic upon facts
about the C⋆-algebras they generate, consider the maps that preserve these
structures. Recall that a mapping of C⋆-algebras ψ : U → U ′ is called a
⋆-homomorphism if it preserves the identity, linear combinations, products
and adjoints. It is a theorem that ⋆-homomorphisms are continuous,10 so in
fact they preserve all the relevant structure of a C⋆-algebra. Analogously,
call a mapping of Segalgebras φ : S → S ′ a homomorphism if it preserves the

10Bratteli and Robinson (1987), Prop. 2.3.1.
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identity, linear combinations, and symmetric and antisymmetric products.
There is an obvious bijective correspondence between ⋆-homomorphisms and
homomorphisms. If ψ : U → U ′ is a ⋆-homomorphism, the restriction of
ψ to U ’s Segalgebra is a homomorphism into U ′’s. Conversely, if φ : S →
S ′ is a homomorphism, the (unique) linear extension of φ to S + iS given
by ψ(A) = φ(ℜ(A)) + iφ(ℑ(A)) is a ⋆-homomorphism into S ′ + iS ′. (To
check that ψ preserves C⋆ products, use Eqns. 11–13.) Due to this bijective
correspondence, we learn ‘for free’ that homomorphisms of Segalgebras must
also be continuous.11

3 Statistical States and Value States

Having decided that our sets of beables will have the algebraic structure of
Segalgebras, the next step is to decide how to assign values to beables. For
this, we first need to recall the algebraic definition of a quantum state.

An operator A in a C⋆-algebra U is called positive if it is self-adjoint and
has a non-negative spectrum. It is useful to have on hand two alternative
equivalent definitions: A is positive if it is the square of a self-adjoint operator
in U , or if there is a B ∈ U such that A = B⋆B.12 A state on a C⋆-algebra
U is a (complex-valued) linear functional on U that maps positive operators
to nonnegative numbers and the identity to 1. It is a theorem that states, so
defined, are continuous.13

We can define a state on a Segalgebra S in essentially the same way, as a
(this time, real-valued) linear functional on S that maps squares to nonnega-
tive numbers and I to 1. Again, there is the obvious bijective correspondence
between states on Segalgebras and on the C⋆-algebras they generate, so that
Segalgebra states are continuous too. In general, a state on a Segalgebra is

11It is natural to ask whether one could define Segalgebras independently of C⋆-algebras
(not assuming, as I have, that their elements are drawn from a C⋆-algebra), and then
prove that every Segalgebra (abstractly defined) is isomorphic to the self-adjoint part of a
C⋆-algebra. (Never mind the fact that were I to have taken such a route, my observations
about Segalgebras—such as that their homomorphisms are continuous—would no longer
come for free!) I recently learned from Klaas Landsman that the answer is in fact Yes,
and that the abstract counterpart of a Segalgebra is called a Jordan-Lie-Banach algebra
(◦ is the Jordan product, • the Lie product)—see Landsman (forthcoming), Ch. 1 for a
complete discussion and references.

12See Bratteli and Robinson (1987), Props. 2.2.10 and 2.2.12 respectively.
13Bratteli and Robinson (1987), Prop. 2.3.11.
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merely statistical and specifies only the expectation values of the observables
the state acts upon. If we want to interpret those expectation values as av-
erages of the actual values of beables, we need a specification of the allowed
valuations.

Certainly a valuation on the beables in a Segalgebra should itself be a
real-valued function on it. Moreover, valuations ought to assign nonnegative
numbers to observables with nonnegative spectra! And valuations should
map I to 1, if only because if some ‘deviant’ set of valuations did not, then
since all the states whose statistics we want to recover with our valuations
map I to 1, we would have to assign that deviant set measure-zero anyway.
But should a valuation of the beables in a Segalgebra S be a linear function
on S? That is, should a valuation just be a special kind of state, in the
technical sense above, that gives the actual values of beables rather than just
their expectations? I believe that the assumption of linearity is defensible,
yet I completely agree with Bell’s (1987, Ch. 1) critique of von Neumann’s
no-hidden-variables theorem (!). Let me explain.

What Bell objects to in both von Neumann’s and Kochen-Specker’s no-go
theorems is arbitrary assumptions about how the results of measurements un-
dertaken with incompatible experimental arrangements would turn out. For
von Neumann, it is the assumption that if an observable C is actually mea-
sured, where C = A+B and [A,B] 6= 0, then had A instead been measured,
or B, their results would have been such as to sum to the value actually
obtained for C. For Kochen-Specker, who adopt von Neumann’s linearity
requirement only when [A,B] = 0, it is the assumption that the results of
measuring C would be the same independent of whether C is measured along
with A and B or in the context of measuring some other pair of compatible
observables A′ and B′ such that C = A′+B′. What makes these assumptions
arbitrary is that the results of measuring observables A,B,C, . . . might not
reveal separate pre-existing values for them (contra Michael’s Reality Prin-
ciple), but rather realize dispositions of the system to produce those results
in the context of the specific experimental arrangements they are obtained
in. In other words, the ‘observables’ at issue need not all be beables in the
hidden-variables interpretations the no-go theorems seek to rule out.

Some commentators place undue emphasis on the fact that, in his criti-
cism of von Neumann’s linearity assumption, Bell points out that it is mathe-
matically possible for the measurement results dictated by hidden-variables in
individual cases to violate linearity for noncommuting observables even while
linearity of their expectation values is preserved after averaging over those
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variables. But it is wrong to portray Bell’s critique as turning on a mathe-
matical possibility, and it misses the reason why, for Bell, the theorems of von
Neumann and Kochen-Specker stand or fall together. For having established
the mathematical point beyond doubt using a simple toy hidden-variables
model, Bell goes on to remark: ‘At first sight the required additivity of ex-
pectation values seems very reasonable, and it is rather the non-additivity of
allowed values (eigenvalues) which requires explanation’ (1991, p. 4). Bell
then backs up this remark by giving a positive physical explanation for the
non-additivity, in terms of measurement results displaying dispositions of the
system in different experimental contexts rather than pre-existing values for
the ‘observables’ measured.

Now while arbitrary assumptions about the results of measuring ‘observ-
ables’ are certainly to be avoided, it seems to me that there is no good
physical reason (short of reintroducing some form of ontological contextual-
ity) to reject linearity as a requirement on the categorically possessed values
of beables. Of course, linearity for the values of noncommuting beables with
discrete spectra is not going to be easy to satisfy, since the sum of any two
eigenvalues for A and B needn’t even be an eigenvalue for C = A + B.14

But rather than assign an eigenvalue to beable C in such cases that floats
freely of the values assigned to beables A and B (yet on averaging linearity of
expectation values is miraculously restored), it would be better not to have
promoted ‘observables’ A and B to beable status in the first place!15 That is
what I take the lesson of Bell’s critique of the no-hidden-variables theorems
to be.

There is one last requirement to impose on our beable valuations. The
value assigned to the square of any beable should equal the square of the
value assigned to that beable. It appears that Bohm’s (1952) theory con-
tradicts this by predicting that a particle confined to a box in a stationary
state with energy (1/2m)(nh/L)2 will possess zero momentum, so that its
energy could not possibly be proportional to the square of the value of its

14The standard example is A = σx, B = σy.
15One could avoid this conclusion by only withholding beable status from C—thereby

rejecting my assumption that beable sets form real vector spaces. But it would be hard to
find principled reasons for that rejection. For example, the kinetic and potential energies
of a particle in a potential well don’t commute, but if both were assumed to have pre-
existing possessed values it would be difficult to comprehend the particle’s total energy
not having a possessed value too.
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momentum.16 However, Bohm’s theory also predicts that if the momentum
of the particle is measured, it will be found to have nonzero values ±nh/L
with equal probability. It follows that momentum in the Bohm theory is
not a beable in Bell’s sense, since the probability of finding a certain value
for momentum is not the same as the probability that the particle has that
momentum.

So we are requiring our beable value states to be, in the well-known jargon,
dispersion-free states. A state ω on a Segalgebra S is called dispersion-free on
an observable A ∈ S if ω(A2) = (ω(A))2, and a state is called dispersion-free
on S if it is dispersion-free on all observables of S. It is time now to develop
some of the consequences of our assumption that valuations on Segalgebras
of beables are given by dispersion-free states.

Obviously every homomorphism of S into the Segalgebra of real numbers
R is a dispersion-free state on S. (In R the symmetric product is the usual
product, the antisymmetric product of any two real numbers is 0, and the
norm of an element is its absolute value.) Conversely, every dispersion-free
state on S is a homomorphism into R. In fact, somewhat more is true, as a
consequence of the following theorem.17

Theorem 2 Let ω be a state on a Segalgebra S that is dispersion-free on
some A ∈ S. Then ω(A) lies in the spectrum of A and for any B ∈ S,
ω(A ◦B) = ω(A)ω(B) and ω(A •B) = 0.

Proof. Extend ω to a state τ on the C⋆-algebra S + iS by defining τ(C) =
ω(ℜ(C)) + iω(ℑ(C)). The map which sends each pair of elements C,D ∈
S + iS to τ(C⋆D) defines a positive semi-definite inner product 〈C|D〉 on
S + iS. Therefore, we can derive (in the usual way) the Schwartz inequality

|τ(C⋆D)| ≤
√
τ(C⋆C)

√
τ(D⋆D), for any C,D ∈ S + iS. (14)

Now since τ is dispersion-free on A, τ([A − τ(A)I]2) = 0. Replacing C
by A− τ(A)I in the Schwartz inequality above (and remembering that A is
self-adjoint), it follows that τ([A−τ(A)I]D) = 0 for every D ∈ S + iS. Thus
τ(A) = ω(A) must lie in the spectrum of A; for were A − τ(A)I invertible

16Bohm (1952, Sec. 5).
17This result is a modification of standard arguments for C⋆-algebras given in Kadison

(1975, pp. 105-6).
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in S + iS, we could set D equal to the inverse of A − τ(A)I and derive the
contradiction τ(I) = 0.18

Continuing, since τ([A − τ(A)I]D) = 0 for every D ∈ S + iS, it follows
that τ(AD) = τ(A)τ(D) for every such D. Using the same argument, we can
replace D by A− τ(A)I and C by D⋆ in Eqn. 14 to get τ(DA) = τ(D)τ(A)
for every D ∈ S + iS. Therefore, since τ agrees with ω on S, for any B ∈ S
we have

ω(A ◦B) = τ(1/2[AB +BA]) (15)

= 1/2[τ(AB) + τ(BA)] (16)

= 1/2[τ(A)τ(B) + τ(B)τ(A)] (17)

= 1/2[ω(A)ω(B) + ω(B)ω(A)] (18)

= ω(A)ω(B) (19)

and

ω(A •B) = τ(i/2[AB −BA]) (20)

= i/2[τ(AB) − τ(BA)] (21)

= i/2[τ(A)τ(B) − τ(B)τ(A)] = 0. (22)

QED.

Thm. 2 is a mixed blessing. On the one hand, we only required from the
outset that value states assign nonnegative values to beables with nonneg-
ative spectra, so it is reassuring to now see that the value assigned to any
beable must lie within its spectrum. On the other hand, the theorem shows
that asking for a Segalgebra of noncommuting beables with decently behaved
valuations is a tall order. For suppose [A,B]− 6= 0, so that A •B 6= 0. Then
since the spectrum of A•B must include ±|A•B|,19 A•B must have at least
one nonzero spectral value; yet Thm. 2 tells us that antisymmetric products
of beables are always mapped to 0 by dispersion-free states!

It is exactly this sort of observation that leads Misra (1967, pp. 856-
7) to conclude that hidden-variables in algebraic quantum mechanics are
impossible. Working in the more general context of Segal’s algebras, Misra

18Since invertibility in S+ iS is equivalent to invertibility in any C⋆-algebra with S+ iS
as a subalgebra (Bratteli and Robinson 1987, Prop. 2.2.7), this argument does not assume
that S is the entire self-adjoint part of the C⋆-algebra describing some system.

19Cf. Geroch (1985, Thm. 60).
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introduces the idea of a derivation on the algebra which is a linear mapping
D from the algebra onto itself that satisfies the Leibniz rule with respect to
the symmetric product:

D(A ◦B) = A ◦ D(B) + D(A) ◦B. (23)

Misra does not assume the Segal algebras he works with form the self-adjoint
parts of C⋆-algebras—that they are Segalgebras in my sense—though he does
need to assume that every observable in the algebra is the difference of two
positive observables in the algebra.20 With that assumption, Misra (1967,
Thm. 4) shows dispersion-free states map derivations to zero: for any A in
the algebra, any derivation D, and any dispersion-free state 〈·〉, 〈D(A)〉 =
0. Since the antisymmetric product of any observable in a Segalgebra S
with some given observable defines a derivation on S, Misra’s result entails
Thm. 2’s result that dispersion-free states on Segalgebras map antisymmetric
products to zero. But, as we shall see explicitly in the final section of this
paper, Misra’s conclusion that the result ‘excludes hidden variables in the
general algebraic setting of quantum mechanics’ (p. 857) is based upon a
failure to distinguish ‘observables’ from beables. Indeed, we shall shortly see
that noncommuting Segalgebras of beables have not been excluded.

4 Quasicommutative Segalgebras

Clearly a Segalgebra S is commutative if its antisymmetric product is trivial,
i.e. S • S = {0}. In this section I introduce the idea of a quasicommutative
Segalgebra which we will see in the next section captures the precise extent
to which beables can fail to commute. To adequately motivate and char-
acterize ‘quasicommutativity’ from a formal point of view, I’ll first need an
alternative characterization of commutativity and then I’ll need to discuss
quotient Segalgebras.

There is a famous representation theorem for commutative C⋆-algebras
from which an analogous result for commutative Segalgebras can be ex-
tracted. Recall that an archetypal example of a C⋆-algebra is the algebra
C(X) of all complex-valued continuous functions on a compact Hausdorff
space X (e.g. the interval [0, 1]). In C(X) linear combinations and products

20This is true for C⋆-algebras, and therefore Segalgebras—see Prop. 2.2.11 of Bratteli
and Robinson (1987).
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of functions are defined in the obvious (pointwise) way, the adjoint of a func-
tion is its complex conjugate, and the norm of a function is the maximum
absolute value it takes over X.21 The point about commutative C⋆-algebras
is that they all arise in this way. Every commutative C⋆-algebra (with iden-
tity) is ⋆-isomorphic to C(X) for some compact Hausdorff space X.22 Since
a ⋆-isomorphism of C⋆-algebras induces an isomorphism between their Segal-
gebras, it follows that every commutative Segalgebra S is isomorphic to the
Segalgebra of all real -valued continuous functions C(X) on some compact
Hausdorff space X.23

Now call a set of states Ω on a Segalgebra S full if Ω ‘separates the points
of S’ in the sense that for any two distinct elements of S there is a state in
Ω mapping them to different expectation values—or, equivalently (by the
linearity of states), if for any nonzero A ∈ S there is a state ω ∈ Ω such that
ω(A) 6= 0. Then the alternative characterization of commutativity I need is
the following.24

Theorem 3 A Segalgebra is commutative if and only if it has a full set of
dispersion-free states.

Proof. ‘Only if’. If S is commutative it is isomorphic to the set of real-valued
functions C(X) on some compact Hausdorff space X. Suppose A 6= 0. Then
A(x), the isomorphic image of A in C(X), cannot be the zero function (since
the isomorphism can only map the zero operator to that function). So there
is at least one point x0 ∈ X such that A(x0) 6= 0. It is easy to see that the
map defined by 〈B〉 = B(x0) for all B ∈ S is a dispersion-free state on S
satisfying 〈A〉 6= 0.

‘If’. Consider any pair A,B ∈ S and their antisymmetric product A •B.
If A•B 6= 0, then by hypothesis there is a dispersion-free state 〈·〉 on S such
that 〈A •B〉 6= 0. But this contradicts Thm. 2, therefore A •B = 0. QED.

In light of this result, the natural way to define quasicommutivity of a Segal-
gebra is in terms of it admitting a ‘nearly full’ set of dispersion-free states that
only separate the points of S modulo some ideal in the algebra. It will turn

21C(X) is closed since the uniform limit of a sequence of (necessarily bounded) contin-
uous functions on a compact X is itself a continuous function on X—see Simmons (1963,
pp. 80-85).

22Bratteli and Robinson (1987, Prop. 2.1.11A).
23See also Segal (1947, Thm. 1).
24This result is just a variation on Segal’s (1947, Thm. 3).
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out that factoring out the ideal yields a quotient Segalgebra that is (fully)
commutative—which is what one might expect if the original (unfactored)
Segalgebra were already ‘close to being commutative’.

I’ll introduce the idea of ideals and quotients for Segalgebras by again
recalling their C⋆-algebra counterparts first. A (two-sided) ideal in U is a
subspace I of U which is invariant under multiplication on the left or right
by any A ∈ U , i.e. UI ⊆ I and IU ⊆ I. We shall be interested only in
closed ⋆-ideals, i.e. ideals closed in norm and under the taking of adjoints.
(An example is the collection of all functions in C(X) which vanish at some
point of X.) Clearly such an ideal is a subalgebra of U . The idea is to ‘factor
out’ this subalgebra so that what remains is again a C⋆-algebra. So as not
to be left with something completely trivial, we will also require that I be
proper, i.e. that it be a proper subset of S, which is equivalent to requiring
that I not contain the identity.

Each proper closed ⋆-ideal I in U determines an equivalence relation ∼=I

on U defined by
A ∼=I B if and only if A−B ∈ I. (24)

The equivalence classes of ∼=I form a C⋆-algebra called the quotient C⋆-
algebra U/I by the ideal I. To see how, let Â denote the equivalence class in
which A lies, and similarly for B̂, Ĉ, etc. Now define the relevant operations
in U/I by

cÂ = ĉA, Â+ B̂ = ̂A +B, ÂB̂ = ÂB, Â⋆ = Â⋆. (25)

noting that Î is the identity in U/I and 0̂ the zero element. (The factoring has
been implemented by ‘collapsing’ everything in I into 0̂ ∈ U/I.) Because
I is a ⋆-ideal, the definitions in Eqn. 25 are well-defined independent of
the representatives chosen for the equivalence classes that appear in them.
(For example, ÂB̂ = ÂB is well-defined only if A ∼=I A′ and B ∼=I B′

imply AB ∼=I A
′B′. But assuming the former, (A − A′)(B + B′) ∈ I and

(A+ A′)(B −B′) ∈ I, therefore

1

2
[(A− A′)(B +B′) + (A+ A′)(B − B′)] = AB −A′B′ ∈ I.) (26)

If we define
|Â| = inf

B∼=IA
|B|, (27)
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an elementary argument in the theory of Banach algebras establishes that
U/I is a complete normed algebra, and a not so elementary argument estab-
lishes the C⋆-norm property.25

The analogue of all this for Segalgebras may now be obvious. A proper
closed ideal in S is a closed subspace I of S not containing the identity
which is invariant under symmetric and antisymmetric multiplication, i.e.
S ◦ I ⊆ I and S • I ⊆ I. (Clearly we do not need to distinguish left from
right multiplication.) By an argument virtually identical to the ‘Only if’ part
of Thm. 1’s proof, I extends to a proper closed ⋆-ideal I + iI in S + iS. So
we can take the quotient Segalgebra S/I by the ideal I to be the Segalgebra
part of (S + iS)/(I + iI). It is easy to see that for A ∈ S, Â ∈ S/I and that
A,B ∈ S lie in the same equivalence class of S/I, i.e. Â = B̂, if and only
if A ∼=I B. Furthermore, using Eqns. 25 it is easy to verify that the map
which sends A ∈ S to Â ∈ S/I is a homomorphism, and this homomorphism
is surjective since Â ∈ S/I is the image of ℜ(A) ∈ S.

We have now assembled all the necessary machinery to fulfill my promise
to introduce a reasonable notion of quasicommutativity.

Theorem 4 Let S be a Segalgebra with proper closed ideal I. Then the
following are equivalent:

1. S/I is commutative.

2. For any A 6∈ I there is a dispersion-free state 〈·〉 on S such that 〈A〉 6=
0.

3. S • S ⊆ I.

Proof. 1. ⇒ 2. If A 6∈ I, then Â 6= 0̂. Since S/I is commutative (by
hypothesis), it has a full set of dispersion-free states (Thm. 3). So there is
a dispersion-free state {·} on S/I such that {Â} 6= 0. Defining 〈B〉 = {B̂}
for all B ∈ S, the map 〈·〉—being the composition two homomorphisms, the
second into R—is a dispersion-free state on S satisfying 〈A〉 6= 0.

2. ⇒ 3. Identical to the ‘If’ part of Thm. 3 with I now playing the role
of {0}.

3.⇒ 1. Let Â, B̂ ∈ S/I. Since S • S ⊆ I (by hypothesis) and Î = 0̂, we
have Â • B̂ = ̂A •B = 0̂, whence S/I is commutative. QED.

25See Simmons (1963, Thm. 69D) and Bratteli and Robinson (1987, Prop. 2.2.19),
respectively.
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In the case I = {0}, Parts 1. and 3. of Thm. 4 just assert that S itself is
commutative and Part 2. that S has a full set of dispersion-free states. So
Thm. 4 generalizes Thm. 3 by relaxing its requirement of full commutativity.
Motivated by this, call a Segalgebra I-quasicommutative whenever it satisfies
the equivalent conditions of Thm. 4.26 Notice from 3. of Thm. 4 that if
S is I-quasicommutative and J is another proper ideal in S containing I,
then S is J -quasicommutative as well. In particular, if S is commutative,
it is automatically I-quasicommutative with respect to any proper ideal I ∈
S. Since the converse fails, quasicommutativity is genuinely weaker than
commutativity.

5 Beable Subalgebras

It is high time I spelled out the connection between quasicommutativity and
the problem of beables in quantum mechanics. For a Segalgebra of beables
to satisfy the statistics prescribed by some quantum state, we must be able
to interpret the state’s expectation values as averages over the actual values
of the beables in the algebra. In other words, the quantum state must be a
mixture of dispersion-free states on the algebra.

Let x be a variable in a measure space X, µ a positive measure on X
such that µ(X) = 1, and ωx (x ∈ X) a collection of states on a Segalgebra
S. Then the mapping defined by

ω(A) =
∫

X
ωx(A)dµ(x), for any A ∈ S, (28)

will also be a state on S. A state ω is called mixed if it can be represented,
in the above way, as a weighted average of two or more (distinct) states with
respect to some positive normalized measure; if it cannot, then ω is called
pure. A subalgebra B of S will be said to have beable status for the state ω
if ω|B—the restriction of ω to B—is either a mixture of dispersion-free states
on B or itself dispersion-free. As a check on the adequacy of this definition,
we get the following intuitively expected result.27

26This idea deliberately parallels the idea of a ‘quasidistributive lattice’ introduced in
Bell and Clifton (1995, Thm. 1). I should also note that results similar to 1. ⇔ 2. of Thm.
4 have been proven by Misra (1967, Thm. 1) and Plymen (1968, Thm. 4.2) in the context
of C⋆- and von Neumann algebras, respectively.

27Here, I follow Segal’s (1947, p. 933) argument almost to the letter.

20



Theorem 5 Every commutative subalgebra of S has beable status for every
state on S.

Proof. Let C be a commutative subalgebra of S and ω any of S’s states. Since
C is commutative, it is isomorphic to the set of real-valued functions C(X)
on some compact Hausdorff space X. Defining φ(A(x)) = ω(A) for every
A ∈ C, φ is a state on C(X). By the Riesz-Markov representation theorem,28

φ must take the form

φ(A(x)) =
∫

X
A(x)dµφ(x), for any A(x) ∈ C(X), (29)

where µφ is some positive normalized (completely additive) measure on X.
But since for any x ∈ X the map 〈A〉x = A(x) defines a dispersion-free state
on C, Eqn. 29 exhibits ω|C as a mixture of dispersion-free states on C (if ω|C
is not already one of those states itself, which would correspond to the case
where the complement of some point in X has µφ-measure zero). QED.

At this point, it is instructive to look at Bohm’s (1952) theory which
supplies a concrete example of a commutative subalgebra with beable sta-
tus for every state. For simplicity, consider the space of states of a single
spinless particle in one-dimension given by the Hilbert space L2(R) of all
(measurable) square-integrable, complex-valued functions on R. The posi-
tion x̂ of the particle and all self-adjoint functions thereof are the only true
beables in Bohm’s theory. Of course, Segalgebras cannot contain unbounded
observables. But any assignment of a value to some unbounded self-adjoint
operator which is a function of position, such as x̂ itself, is equivalent to
assigning a corresponding set of values to self-adjoint operators which are
bounded functions of x̂, such as its spectral projections. Thus, we lose no
generality by characterizing Bohm’s theory as granting beable status to all
bounded self-adjoint operator-valued functions of x̂.

Such functions form a commutative Segalgebra with beable status for ev-
ery wavefunction in L2(R). To see this, let f be any (measurable) essentially
bounded, complex-valued function on R and define the bounded self-adjoint
operator Ôf by

Ôf(ψ(x)) = f(x)ψ(x) for each ψ(x) ∈ L2(R). (30)

28See Rudin (1974, Thm. 2.14).

21



The set of all such operators is obviously commutative, and it is well-known
that they form a C⋆-subalgebra of the C⋆-algebra of all bounded operators
on L2(R).29 If f is some bounded function of x, Ôf is the corresponding

operator-valued function of x̂. In fact, the operators {Ôf} capture all the
bounded operators which are functions of x̂, since any such function would
have to commute with all the Ôf ’s, and it is known that they form a maximal

commutative set of bounded operators on L2(R).30 The subset of {Ôf}
where the f ’s are real-valued functions (almost everywhere) is therefore the
commutative sub-Segalgebra Sx̂ of all bounded observables that are functions
of x̂. (In particular, the spectral projections of x̂ correspond to characteristic
functions whose characteristic sets in R have nonzero measure.)

Now for every Ôf ∈ Sx̂, define δr(Ôf) = f(r)—so δr is the Dirac delta dis-
tribution at the point r. Clearly δr qualifies as a state on Sx̂ (note how liberal
the algebraic definition of a state is!) and is dispersion-free. Furthermore,
for any ψ(x) ∈ L2(R) and any Ôf ∈ Sx̂ we have

∫

R
ψ∗(x)Ôfψ(x)dx =

∫

R
f(x)|ψ(x)|2dx =

∫

R
δx(Ôf)dρψ(x), (31)

so that every state of L2(R) is indeed a mixture of dispersion-free (Dirac)
states on Sx̂.

To show that it is not necessary that subalgebras with beable status
for some state be commutative, I need the following result about the ideals
determined by states on Segalgebras.31

Theorem 6 If ω is a state on a Segalgebra S, the set

Iω = {A ∈ S|ω(A2) = 0} (32)

is a proper closed ideal in S on which ω is dispersion-free.

Proof. As in the proof of Thm. 2, extend ω to a state τ on the C⋆-algebra
S + iS. Fix an arbitrary A ∈ Iω, so ω(A2) = 0. Replacing C by A in the
Schwartz inequality (Eqn. 14) yields τ(AD) = 0 for all D ∈ S + iS. In
particular, with D replaced by I we see that τ(A) = ω(A) = 0, so that ω is
dispersion-free on the set Iω.

29See Geroch (1985, Ch. 49) and Kadison and Ringrose (1983, Sec. 4.1).
30Kadison and Ringrose (1983, p. 308).
31Once again, this result just adapts standard C⋆-algebraic arguments to the present

Segalgebraic context—see Kadison (1975, pp. 103-4).
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Now let B be any element of S. We need to show that both A◦B and A•B
lie in Iω. With D replaced by B2A in the argument above, τ(AB2A) = 0
and therefore ω(ℜ(AB2A)) = 0. Using Eqns. 9 and the properties of the
symmetric and antisymmetric product,

ℜ([AB][BA]) = [AB] ◦ [BA] (33)

= [A ◦B − i(A •B)] ◦ [B ◦ A− i(B • A)] (34)

= [A ◦B − i(A •B)] ◦ [A ◦B + i(A •B)] (35)

= (A ◦B)2 + (A •B)2. (36)

Therefore since ω acts positively on squares, ω((A ◦B)2) = ω((A •B)2) = 0,
as required.

Finally, note that Iω is a real closed linear subspace of S not containing
the identity. For example, to get closure under vector sums, assuming A,B ∈
Iω implies

ω([A+B]2) = ω([A+B] ◦ [A +B]) (37)

= ω(A2) + ω(B2) + 2ω(A ◦B) (38)

= 2ω(A)ω(B) = 0 (39)

using the fact that ω is dispersion-free on A and B and Thm. 2. QED.

If one wants to include some pair of noncommuting observables A and
B in a subalgebra with beable status for some state ω, the ‘trick’ is simply
to make sure A • B lies inside the ideal Iω determined by that state. If so,
then it won’t matter that dispersion-free states map antisymmetric products
of noncommuting observables to zero, because A • B will also get assigned
value zero in the state ω! In short, to have beable status in some state it
is enough for a subalgebra to be quasicommutative with respect to the ideal
determined by the state. It is also necessary, as shown by the following
theorem.

Theorem 7 Let B be a subalgebra of a Segalgebra S and ω a state on S.
Then B has beable status for ω if and only if B is Iω|B-quasicommutative.

Proof. ‘Only if’. B’s Iω|B-quasicommutativity is easily inferred from 2. of
Thm. 4. Thus if A ∈ B with A 6∈ Iω|B , then ω|B(A2) 6= 0. But by hypothesis,
there is a collection of dispersion-free states {〈·〉x|x ∈ X} on B of which ω|B
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is a mixture. Therefore, for at least one x0 ∈ X, 〈A2〉x0 6= 0 and 〈A〉x0 6= 0
as required.

‘If’. By 1. of Thm. 4, B/Iω|B is commutative. Define the map

φ : B/Iω|B → R by φ(Â) = ω|B(A). (40)

Since the ‘hat’ map is surjective, this defines φ on all of B/Iω|B , and it
is easy to check that φ is indeed well -defined. Furthermore, since the hat
map is a homomorphism, φ is a state on B/Iω|B . By the commutativity of
B/Iω|B and Thm. 5, φ is a mixture of dispersion-free states 〈·〉x (x ∈ X) on
B/Iω|B . But for any 〈·〉x on B/Iω|B , 〈̂·〉x is a dispersion-free state on B. So
since ω|B(·) = φ(̂·) (Eqn. 40), ω|B is a mixture of dispersion-free states 〈̂·〉x
(x ∈ X) on B. QED.

The examples of noncommutative subalgebras of beables that I shall con-
sider make use of the following result.

Theorem 8 For any state ω on a Segalgebra S, the definite set of ω defined
by

Dω = {A ∈ S|ω(A2) = (ω(A))2} (41)

has beable status for ω.

Proof. To see that Dω is a subalgebra of S, it is easiest to use the fact that
A ∈ Dω if and only if A − ω(A)I ∈ Iω and invoke the properties of closed
ideals. To illustrate, let A,B ∈ Dω. Then (A− ω(A)I) ◦ (B + ω(B)I) ∈ Iω
and (A + ω(A)I) ◦ (B − ω(B)I) ∈ Iω, thus

1

2
[(A− ω(A)I) ◦ (B + ω(B)I) + (A+ ω(A)I) ◦ (B − ω(B)I)] (42)

= A ◦B − ω(A)ω(B)I ∈ Iω. (43)

But since ω(A)ω(B) = ω(A ◦B) by Thm. 2, this means A ◦B ∈ Dω.
The beable status of Dω for ω follows trivially from 2. of Thm. 4 and

Thm. 7. Thus if A lies in Dω but not in Iω, then of course there is a
dispersion-free state on Dω mapping A to a nonzero value—ω itself! QED.

In the case where ω is represented by a state vector |v〉 in a Hilbert space
representation of the Segalgebra S (so ω(A) = 〈v|A|v〉 for all A ∈ S), ω’s def-
inite set consists of all those (bounded) self-adjoint operators on the Hilbert
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space that share the eigenstate |v〉—a highly noncommutative set if the space
has more than two dimensions. This is the orthodox (Dirac-von Neumann)
‘eigenstate-eigenvalue link’ approach to assigning definite values to observ-
ables.

Definite sets can be used to build subalgebras with beable status for a
state ω that are not just subalgebras of ω’s own definite set. The next result
specifies a general class of examples of this sort, containing Thm. 8 as a
degenerate case (when ω = ωx for all x ∈ X).

Theorem 9 Let S be a Segalgebra, ω a state on S and ωx (x ∈ X) any family
of states satisfying

⋂
x∈X Iωx

⊆ Iω. Then B{ωx} =
⋂
x∈X Dωx

has beable status
for ω.

Proof. Since B{ωx} is the intersection of a collection of subalgebras of S (Thm.
8), it is itself a subalgebra. To establish beable status for ω, all we need to
show (by 3. of Thm. 4 and Thm. 7) is that B{ωx} • B{ωx} ⊆ Iømega. So
suppose A,B ∈ B{ωx}. Then both A and B lie in the definite sets of all the
ωx’s. This is equivalent to both A−ωx(A)I and B−ωx(B)I lying in Iωx

for
all x ∈ X, which implies

(A− ωx(A)I) • (B − ωx(B)I) = A •B ∈ Iωx
(44)

for all x ∈ X. But by hypothesis,
⋂
x∈X Iωx

⊆ Iω, therefore A • B ⊆ Iω.
QED.

To get a concrete example of Thm. 9, consider again the case where ω
is represented by a state vector |v〉 in a Hilbert space representation H .
Let R be any bounded self-adjoint operator on H with discrete spectrum
and eigenprojections {Ri} (counting only those for which ω(Ri) > 0), and
consider the (renormalized) orthogonal projections {|vRi

〉} of the state vector
|v〉 onto the eigenspaces of R. Since any observable with eigenvalue 0 in all
the states {|vRi

〉} must have eigenvalue 0 in the state |v〉 (the latter lying in
the span of the former), the conditions of Thm. 9 are satisfied so that B{|vRi

〉}

has beable status in the state |v〉. This is the modal (i.e. state-dependent)
method adopted by Bub (1997)32 for building a set of beables out of the
state of a system and a ‘preferred observable’ R.33 It is easy to see that a

32See also Bub and Clifton (1996).
33Bub’s method turns out to include the Kochen-Dieks modal interpretation (discussed

in Clifton 1995) as a special case—see Bub 1997, Sec. 6.3 for the argument.
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‘Bub-definite’ subalgebra B{|vRi
〉} will not be a subalgebra of D|v〉 unless |v〉 is

an eigenstate of R; in fact, the Bub-definite subalgebra in that case coincides
with the definite set of |v〉. Also Bub-definite subalgebras will not generally
be commutative: the main exceptions are when H is two-dimensional, and
when R is nondegenerate with all its eigenvalues given nonzero probability
by |v〉.

6 Maximal Beable Subalgebras

Bub-definite subalgebras have the extra feature that their projections form
a maximal determinate sublattice of the ortholattice of projections on H .
This means that any enlargement of the projection lattice of a Bub-definite
subalgebra B{|vRi

〉} generates an ortholattice from which it is impossible to
recover the probabilities prescribed by |v〉 as a measure over the two-valued
homomorphisms on the enlarged lattice.34 Since I have stopped short of
making any a priori assumptions about the lattice structure of the projections
in Segalgebras, it is natural to ask whether Bub-definite subalgebras are
still maximal as Segalgebras. Indeed, the general question of when (if ever)
Segalgebras of beables are ‘as big as one can possibly get’ for a given state
is philosophically interesting in its own right, since an answer would seem
to set a limit on how far a simple realism of possessed values in quantum
mechanics can be pushed.

Call a subalgebra B of S with beable status for a state ω a maximal beable
subalgebra for ω if it is not properly contained in any other subalgebra of S
with beable status for ω. An easy application of Zorn’s lemma shows that
a maximal beable subalgebra for any given state always exists. The follow-
ing result gives an explicit (but not completely general) characterization of
maximal beable subalgebras that covers the case of Bub-definite subalgebras.

Theorem 10 Let S(H) be the Segalgebra of all bounded self-adjoint opera-
tors on a Hilbert space H and let |v〉 be any state vector in H. Then if |vx〉
(x ∈ X) is any family of vectors in H satisfying:

1. the members of {|vx〉} are mutually orthonormal,

2. |v〉 is in the closed span of {|vx〉}, and

34Bub (1997, Sec. 4.3).
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3. |v〉 is not orthogonal to any member of {|vx〉},

B{|vx〉} is a maximal beable subalgebra of S(H) for the state |v〉. If H is finite-
dimensional, the converse also holds, i.e. if B ⊆ S(Hn) is a maximal beable
subalgebra for |v〉 ∈ Hn, then there exists a family of vectors |vx〉 (x ∈ X)
in Hn satisfying 1.–3. such that B = B{|vx〉} (and this family is unique up to
phases).

Proof. For the first claim, assuming 2. the beable status of B{|vx〉} for |v〉
follows exactly as discussed for Bub-definite subalgebras at the end of the
last section. So all that remains is to prove maximality. Note first that
because the members of {|vx〉} are mutually orthogonal by 1., each is an
eigenvector (with eigenvalue 0 or 1) of all the one-dimensional projection
operators P|vx〉 (x ∈ X). Consequently, the set {P|vx〉} is contained in B{|vx〉}.
Now consider the subalgebra T generated by B{|vx〉} and any A 6∈ B{|vx〉}.
Our task is to show that T cannot have beable status for |v〉—so suppose
(for reductio ad absurdem) that T does. Then for any x ∈ X, A • P|vx〉 ∈ T
and so beable status for |v〉 requires A • P|vx〉 ∈ I|v〉, i.e. A • P|vx〉|v〉 = |0〉
(Thms. 4, 7). Since P|vx〉|v〉 = c|vx〉 (with c 6= 0, by 3.), using the definition
of the antisymmetric product (Eqn. 6) yields

cA|vx〉 = P|vx〉(A|v〉) (= c′|vx〉, for some c′) (45)

which shows that A has |vx〉 as an eigenvector. Since this is true for any
x ∈ X, A lies in the definite sets of all the states {|vx〉}, and therefore
A ∈ B{|vx〉} contrary to hypothesis.

For the converse claim, suppose B ⊆ S(Hn) is a maximal beable subalge-
bra for the state |v〉 ∈ Hn. Consider the subspace of Hn given by

S = {|w〉 ∈ Hn : (A •B)|w〉 = |0〉 for all A,B ∈ B} (46)

which is nontrivial since B’s beable status for |v〉 requires that |v〉 ∈ S. We
first show that S is invariant under B, i.e. |w〉 ∈ S implies C|w〉 ∈ S for
any C ∈ B. (In fact, for this part of the argument the dimension of the
Hilbert space needn’t be finite.) To establish this, we need to show that
if |w〉 ∈ S, then (A • B)(C|w〉) = |0〉 for any A,B ∈ B. Using the fact
that the C⋆ product of two operators X and Y is expressible as XY =
X ◦ Y − iX • Y (see the remarks following Eqn. 9), together with the
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supposition that antisymmetric products formed in B map |w〉 to zero and
the definition of the symmetric product (Eqn. 3), one calculates

(A •B)C|w〉 = ((A •B) ◦ C)|w〉 − i((A •B) • C)|w〉 (47)

= ((A •B) ◦ C)|w〉 (48)

= 1/2(A •B)C|w〉 + 1/2C(A •B)|w〉 (49)

= 1/2(A •B)C|w〉. (50)

But Eqns. 47 and 50 are consistent only if (A •B)(C|w〉) = |0〉, as required.
Now, by the definition of S, all the operators in B commute on S. And

since S is invariant under B, restricting the action of any self-adjoint operator
in B to S induces a self-adjoint operator on the subspace S. Since Hn—
and thus S—is finite-dimensional, it follows by a well-known result that the
operators in B share at least one complete set of common eigenvectors {|vy〉}
(y ∈ Y ) on the subspace S. The set {|vy〉} clearly satisfies 1., and also 2.
since |v〉 lies in S. We can also arrange for 3. to be satisfied—while preserving
satisfaction of 1. and 2.—by just dropping from the set {|vy〉} any vectors
orthogonal to |v〉. So we can conclude, then, that there is at least one set
of vectors {|vx〉} (x ∈ X) satisfying 1.–3. which are common eigenvectors of
all the beables in B. If so, then clearly B ⊆ B{|vx〉}, and the hypothesis that
B is maximal for |v〉 delivers the required conclusion that B = B{|vx〉} for
some set satisfying 1.-3. (For uniqueness of this set, it is easy to see that if
B{|vx〉} = B{|vy〉} for two sets of vectors satisfying 1.–3., then those sets must
in fact generate the same rays in Hn.) QED.

For finite-dimensional H , Thm. 10 yields a complete picture of maximal
subalgebras for any pure state on S: they simply correspond 1-1 with sets
of vectors satisfying 1.–3. of the theorem, which then end up being common
eigenvectors for all the elements of the algebra. If the set contains only a
single vector, we get the orthodox subalgebra; if the set is a basis for the
Hilbert space, we get a commutative subalgebra; and if the set falls between
these two extremes we get a subalgebra of Bub-definite type.

For infinite-dimensional H , the converse part of Thm. 10 proof breaks
down at the point where the existence of a complete set of commuting eigen-
vectors on the finite-dimensional subspace S is invoked. For if S could no
longer be assumed finite-dimensional, some of the elements of B might then
have no eigenvectors in S, much less any common ones. However, I conjec-
ture that in that case there still exists a family {ρx} of singular pure states
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on S(H) satisfying 1.-3. with respect to |v〉, where by that I mean states that
are not representable by vectors in H , such as the Dirac states I invoked in
the last section.35 Furthermore, I suspect that if 1.–3. are satisfied by singu-
lar pure states {ρx}, B{ρx} is a maximal beable subalgebra for |v〉—though
obviously Thm. 10’s maximality proof no longer works since it relies on as-
suming that the pure states satisfying 1.–3. are vector states in the ranges of
one-dimensional projection operators.

I end this section with one last (rather suggestive) result that illustrates
the possibility of a maximality argument without assuming the state is a
vector state.

Theorem 11 The definite set of a singular pure state ρ on S(H) is a max-
imal beable subalgebra for ρ.

Proof. I need a nontrivial result due to Kadison and Singer (1959, Thm. 4).
They show that the definite set of any pure state ρ on the C⋆-algebra U(H) of
all bounded operators on a Hilbert space (defined as the set of all self-adjoint
operators on H on which ρ is dispersion-free) is not properly contained in
the definite set of any other state on U(H). It is not difficult to see that a
state is pure on a Segalgebra S exactly when its extension to the C⋆-algebra
generated by S is pure. So the Kadison-Singer maximality result also holds
for the pure states on S(H), and in particular the singular pure states.

Now consider the definite set Dρ of a singular pure state ρ on S(H). To
show Dρ is a maximal beable subalgebra for ρ, let Q denote the subalgebra
generated by Dρ together with any element A 6∈ Dρ. Note that I − A 6∈ Dρ,
and either A or I −A must lie outside of Iρ (otherwise both would get value
0 in state ρ, yet their values must sum to 1). So there is a B ∈ Q such that
B 6∈ Dρ and B 6∈ Iρ. Now suppose Q has beable status for ρ. Then Thm.
4 (Part 2.) and Thm. 7 dictate that there is a dispersion-free state 〈·〉 on
Q such that 〈B〉 6= 0. Using a Hahn-Banach-type argument, one can show
that any state of a sub-Segalgebra extends to a state on the whole algebra.36

Therefore, 〈·〉 extends to a state on S(H) that has a definite set properly
containing ρ’s—contradicting the Kadison-Singer maximality result. QED.

35Note that 1.-3. make sense for families of states on S(H) whether or not they are
singular. For orthogonality of two algebraic states is equivalent to the norm of their
difference (as a linear functional) being 2 (Sakai 1971, p. 31), and 2. is equivalent to the
assertion that any state orthogonal to all the ρx’s is orthogonal to |v〉 (thanks to Laura
Reutsche for this point).

36See Segal (1947, Lemma 2.2) or Kadison and Ringrose (1983, Thm. 4.3.13).
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7 From Quasicommutative to Commutative

In this final section, I want to point out two ways of arguing for the commuta-
tivity of beables. The first way depends on rejecting the modal idea of letting
a system’s beables vary from one of its quantum states to the next, and the
second way depends on the Reeh-Schlieder theorem of algebraic relativistic
quantum field theory.

First, suppose one had reasons to demand that a quantum system possess
a fixed set of beables for all its quantum states. For example, one could
think that the idea of a physical magnitude having a definite value at one
time but not at another is conceptually incoherent (though modalists would
dispute this). Or one could think that the extra flexibility of having a state-
dependent set of beables is not necessary; in particular, not needed to solve
the measurement problem, since all measurement outcomes can be ensured
simply by granting beable status to (essentially) a single observable, like
position.37

Now it would be unreasonable to require a fixed set of beables to satisfy
the statistics of all states, since they may not all be realizable in nature. An
example is provided by Dirac delta states, which we saw a few sections back
qualify as algebraic states. Obviously to actually prepare such a state would
require infinite energy on pain of violating the uncertainty relation.38 How-
ever, even without committing to definitive necessary and sufficient condi-
tions for a state to count as physical, it seems reasonable to expect a system’s
physical states to make up a full set of states on the system’s Segalgebra, as
do the vector states of S(H).39 Assuming this, we have the following converse
to Thm. 5 establishing commutativity for nonmodal interpreters who want
a state-independent ontology of a system’s properties (as in Bohm’s theory).

Theorem 12 If a subalgebra of a Segalgebra S has beable status for every
state in a full set of states on S, then it is commutative.

37This is a view Bell seems to have held—cf. the second quotation of Section 1.
38A more sophisticated example of the fact that not all algebraicly defined states are

necessarily physical is found in algebraic quantum field theory on curved spacetime. There,
the expectation value of the stress-energy tensor is not defined for all algebraic states of
the field, but only for the so-called ‘Hadamard’ states; see Wald (1994, Sec. 4.6).

39For the Hadamard states referred to in the previous note, Thm. 2.1 of Fulling et al.
(1981) establishes that they are dense in any Hilbert space representation of a globally
hyperbolic spacetime’s Segalgebra of observables, from which it follows by an elementary
argument that the set of Hadamard states is full too.
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Proof. Let B be a subalgebra of S and Ω a full set of states on S. If B
has beable status for every state in Ω, Thms. 4 (Part 3.) and 7 dictate that
B • B ⊆ Iω for all ω ∈ Ω. But since Ω is a full set, it is easy to see that⋂
ω∈Ω Iω = {0}, which forces B to be commutative. QED.

Thm. 12 also allows us to diagnose exactly what goes wrong in Misra’s
(1967) argument against hidden-variables (in fulfillment of a promise I made
a few sections back). Without distinguishing ‘observables’ whose measure-
ment outcomes are determined by hidden-variables from those which corre-
spond to true beables of the system, Misra demands that the outcome of any
measurement be determined by a dispersion-free state on the algebra of all
observables of a system (1967, p. 856), which we’ve seen is only reasonable
if all ‘observables’ are beables of the system. Misra also assumes that the
hidden-variables must be adequate for recovering (after averaging) the expec-
tation values of at least the physical states of a system, which he too assumes
will be a full set. That this is a lethal combination of assumptions should be
clear. If all ‘observables’ are treated as beables, and they are forced to sat-
isfy the statistics of a full set of states of the system, then Thm. 12 dictates
that all the observables of the system have to commute—which is absurd!
Far from delivering a no-go theorem, this is simply one more confirmation of
Bell’s point that not all ‘observables’ can have beable status.

A second way to argue that beables must be commutative arises out of
the algebraic approach to relativistic quantum field theory. In that approach,
one associates with each bounded open region O in Minkowski spacetime M
a C⋆-algebra U(O) whose Segalgebra represents all observables measurable
in region O. In the ‘concrete’ approach, the algebras {U(O)}O⊆M are taken
to be von Neumann algebras of operators acting on some common Hilbert
space consisting of states of the entire field on M . If the collection of al-
gebras {U(O)}O⊆M satisfies a number of very general assumptions involving
locality, covariance, etc. (the details of which need not detain us here), then
it becomes possible to prove the Reeh-Schlieder theorem whose main con-
sequence is that every state vector of the field with bounded energy is a
separating vector for all the local algebras {U(O)}O⊆M . This means that no
nonzero operator A in any local algebra U(O) can annihilate such a state
vector.40

Now consider this result in the context of my analysis of beable subal-

40Haag (1992, Sec. II.5.3); see also Redhead (1995b) for an elementary discussion.
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gebras of the observables of a system. Here the role of the system is played
by the quantum field in some bounded open region O of spacetime, and the
question is which of the observables in U(O)’s Segalgebra can be granted
beable status. As we’ve seen, a subalgebra B(O) will have beable status for
a state ω of the field if and only if B(O) is Iω|B(O)

-quasicommutative. But
if ω corresponds to a state vector |v〉 with bounded energy, then since that
vector is separating for U(O), we have

A ∈ Iω|B(O)
⇔ 〈v|A2|v〉 = 0 ⇔ 〈Av|Av〉 = 0 ⇔ A|v〉 = |0〉 ⇔ A = 0. (51)

It follows that:

Theorem 13 Subalgebras of local beables selected from the Segalgebras of
local observables in relativistic quantum field theory must be commutative in
any state of the field with bounded energy.

Notice that the orthodox approach to value definiteness reduces to ab-
surdity in this context: since ω is dispersion-free on A ∈ U(O) exactly when

A− ω(A)I ∈ Iω|B(O)
= {0}, (52)

taking B(O) to be the definite set of ω|B(O) yields only multiples of the identity
operator as beables! Of course, there is still plenty of room left for the realist
to propose beable status for other more satisfactory sets of commuting local
observables.
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