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Abstract

Quantum coherence is an essential feature of quantum mechanics and is an
important physical resource in quantum information. Recently, the resource
theory of quantum coherence has been established parallel with that of entan-
glement. In the resource theory, a resource can be well defined if given three
ingredients: the free states, the resource, the (restricted) free operations. In
this paper, we study the resource theory of coherence in a different light,
that is, we consider the total coherence defined by the basis-free coherence
maximized among all potential basis. We define the distillable total coher-
ence and the total coherence cost and in both the asymptotic regime and
the single-copy regime show the reversible transformation between a state
with certain total coherence and the state with the unit reference total co-
herence. Extensively, we demonstrate that the total coherence can also be
completely converted to the total correlation with the equal amount by the
free operations. We also provide the alternative understanding of the total
coherence, respectively, based on the entanglement and the total correlation
in a different way.

Keywords: operational resource theory, total quantum coherence,
transformation between states

1. Introduction

Quantum coherence is the essence of the interference phenomena and is
the most fundamental feature in quantum mechanics. It is closely related to
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almost all the intriguing quantum phenomena especially including the most
notable quantum entanglement [1] and quantum discord [2, 3]. Quantum
coherence has been found to be an important physical resource that can be
exploited to achieve various tasks in many areas such as quantum biology
[4–9], quantum thermal engine [10–14], quantum transport [15, 16] and so
on. Thus similar to the quantitative theory of entanglement [17–20] and
other nonclassical resources [21–25], a mathematically rigorous fashion (i.e.,
the resource theory of coherence) needs to be established for quantifying the
resource character of coherence. Recently, the resource theory of coherence
has been proposed in Ref. [26, 27] and the relevant researches have attracted
the increasing interest [28–55]. In particular, Ref. [27] pointed out that a
good coherence measure should satisfy three properties: (i) the incoherent
states have no coherence; (ii) the average coherence isn’t increased under
the incoherent operations; (iii) the coherence is convex under the mixing of
density matrices. Ref. [25] showed the coherence in a state can be com-
pletely converted to the entanglement with the equal amount and Ref. [56]
pointed out that the coherence can also be converted to the quantum discord.
The operational resource theory of coherence was systematically described
in Ref. [57] which showed the optimal conversion rates between the states
with different coherence in the asymptotic regime.

In fact, the resource theory is developed far beyond entanglement and co-
herence. A resource can be well defined so long as the three ingredients: the
free states, the resource and the (restricted) free operations are clearly char-
acterized. For example, Ref. [58] studied the resource theory of coherence by
addressing different sets of incoherent operations, such as the maximal inco-
herent operations (IO), the strictly IO and the dephasing covariant IO, etc.
A general discussion of the resource theory was presented in Ref. [59]. One
can note that all the mentioned coherence are the basis-dependent, which is
consistent with our usual understanding of the coherence. This means that
the coherence of a given state could be different under different basis. So a
natural question is what the maximal coherence is in a state with all poten-
tial basis taken into account. This leads us to define the total coherence in
a state [60], which is obviously basis-independent. From the resource the-
ory point of view, this actually redefines the free operations as done in Ref.
[58]. Physically, this treatment is also quite practical because the change of
basis (e.g. rotating the plate for the photon state) isn’t a problem at all in
experiment.

In this paper, we consider the total coherence as a resource and establish
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its resource theory paralleling with the resource theory of the basis-dependent
coherence [57]. We define the distillable total coherence and the total coher-
ence cost, revealing the transformational relation between the state with the
resource (total coherence) and the state with the unit reference total coher-
ence in both the single-copy regime and the asymptotic regime. In addition,
we also show that the total coherence can be completely converted to the
equal amount of the total correlation by the defined the incoherent operations
assisted by the incoherent state. Finally, we give the alternative operational
meanings based on the pure-state entanglement and the total correlation.
This paper is organized as follows. We first briefly review the properties of
the total coherence, present the clear definitions of the distillable total co-
herence and the total coherence cost and show the transformational relation
between the state with the certain total coherence and the state with unit
reference total coherence. Then we proved that the total coherence can be
completely converted to the equal amount of total correlation and discuss
some potential link with entanglement. Finally we present the operational
meanings of the total coherence and summarize the paper.

2. Operational resource theory for the total coherence

To begin with, we review the total quantum coherence as well as its
property. The total coherence as mentioned previously is defined as the
maximal coherence by optimizing among all potential basis. In Ref. [60]
we have presented several good measures of the total coherence. However,
in this paper we would like to employ the total coherence measure in terms
of the relative entropy [60]. That is, the total quantum coherence of an n

-dimensional quantum state ρ is quantified by

CR(ρ) = logn− S(ρ), (1)

where S(ρ) = −Trρlogρ is the von Neumann entropy of ρ.
Within the framework of the total coherence, we have shown that CR(ρ)

has the following properties [60].
(1) The maximally mixed state ρI = In

n
is the unique incoherent state,

i.e., CR(ρI) = 0.
(2) The average total coherence doesn’t change under the selective inco-

herent operation defined in the Kraus representation as $I = {Ui :
∑

i piU
†
i Ui =

In} where pi denotes the probability corresponding to the unitary operator
Ui.
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(2’) The total coherence of the post-operation state doesn’t increase un-
der the incoherent operation $I . In particular, for any ρ one can find an
incoherent operation $̃I leading ρ to complete decoherence, i.e, $̃I(ρ) = ρI .

(3) CR is convex under the classical mixture of density matrices.
(4) All the pure states in the same state space have the same maximal

total coherence.
It is obvious that the state ρI = In

n
is the free state, the operation $I

defines the (restricted) free operations. From all the properties one can find
that the purity acts as the resource. In addition, one can find that (2) corre-
sponds to the strong monotonicity and (2’) corresponds to the monotonicity
compared with the resource theory of the basis-dependent coherence. It is
implied that the relative entropy given in Eq. (1) is a good measure of the
total coherence. In addition, based on the property of the logarithm and the
von Neumann entropy, one can easily find that the above total coherence
measure is additive, that is,

(5) CR(ρ⊗ σ) = CR(ρ) + CR(σ) for any two states ρ and σ.
With these good properties, we can develop an operational resource the-

ory for the total coherence. We would like to begin with the transformation
between the states with only a single copy as follows.

Theorem 1.-For the two d -dimensional states ρ and σ, if ρ can be trans-
formed to σ by the incoherent operation $I , then CR(ρ) ≥ CR(σ).

Proof. It has been shown in Ref. [61] that for the two d -dimensional
states ρ and σ, ρ can be transformed to σ by the incoherent operation $I
if and only if ρ ≻ σ. Due to the concavity of S(ρ), we have S(ρ) ≤ S(σ),
that is, CR(ρ) ≥ CR(σ) according to Eq. (1). To sum up, one can find our
theorem is valid. �

In our theoretic framework, one can find that all the pure states in the
same state space have the same maximal coherence. Here we fix the qubit
pure states as the unit reference, and then consider the optimal rate of the
asymptotic transformations between any given state and the unit reference
(qubit pure states) by utilizing our incoherent operation $I . The transfor-
mation process can be summarized as follows [62].

(Distillable total coherence.-)Consider the asymptotic transformation from
the n copies of the state ρ to the m copies of some given qubit state |ψ〉 〈ψ|.
However, such a transformation is not generally exact even if n tends to infin-
ity. But it is possible to obtain a state σn(|ψ〉 〈ψ|) which will asymptotically
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converge to |ψ〉 〈ψ|⊗m. So the process can be formally formulated as

ρ⊗n
$I→ σn(|ψ〉 〈ψ|) ≈ |ψ〉 〈ψ|⊗m (2)

such that
lim
n→∞

∥

∥σn(|ψ〉 〈ψ|)− |ψ〉 〈ψ|⊗m
∥

∥

tr
= 0 (3)

with ‖·‖tr denoting the trace norm. Since this process describes how much
unit total coherence (qubit-pure-state coherence) can be asymptotically ex-
tracted from give states, the distillable total coherence CD

R (ρ) similar to the
distillable entanglement can be defined as follows.

Definition 1.- The distillable total coherence CD
R (ρ) is defined by the

optimal asymptotic transformation rate as

CD
R (ρ) = R(ρ→ |ψ〉 〈ψ|) = sup

P
lim
n→∞

m

n
, (4)

where the supremum is optimized among all the potential transformation
protocols P with respect to the accuracy condition Eq. (3) and R(ρ →
|ψ〉 〈ψ|) denotes the optimal transformation rate.

(Total coherence cost.-)The converse process can also dually and similarly
be formulated as which has been shown in Ref. [62] that

|ψ〉 〈ψ|⊗m
$I→ σm(ρ) ≈ ρ⊗n (5)

such that
lim
n→∞

∥

∥σm(ρ)− ρ⊗n
∥

∥

tr
= 0. (6)

This process characterizes how much unit coherence is spent to prepare the
given state, so the total coherence cost CC

R (ρ), similar to the entanglement
cost, can be well defined.

Definition 2.-The total coherence cost CC
R (ρ) is defined by the optimal

asymptotic transformation rate R(|ψ〉 〈ψ| → ρ) as

CC
R (ρ) = R(|ψ〉 〈ψ| → ρ) = inf

P
lim
n→∞

m

n
, (7)

With the above definitions, we can present our second theorem.
Theorem 2.- For a state ρ, both the distillable total coherence and the

total coherence cost are the total coherence of ρ, that is,

CC
R (ρ) = CD

R (ρ) = CR(ρ). (8)
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Proof. This is actually an obvious conclusion obtained from Ref. [62]
where the authors show that a pure state of qubit |ψ〉 can be asymptotically
and reversibly transformed to a d -dimensional state ρ with the optimal
transformation rate R(ρ ⇋ |ψ〉 〈ψ|) = log d − S(ρ) which is just the total
coherence CR(ρ) given by Eq. (1). �

Finally, we would like to emphasize that, since the total coherence is
additive as given in Property (5), both the distillable total coherence and
the total coherence cost are additive, i.e., CK

R (ρ ⊗ σ) = CK
R (ρ) + CK

R (σ) for
any two states ρ and σ with K representing C and D.

In addition, one could consider the similarities between the total coher-
ence of formation and the entanglement of formation. We have to empha-
size that the total coherence is different from entanglement as well as the
basis-dependent coherence. Suppose we formally define the total coherence
of formation C

f
R(ρ) for a d -dimensional state ρ by the minimal average

total coherence among all potential decomposition of a density matrix as
ρ =

∑

k pk |φk〉 〈φk|. However, one will find that Cf
R(ρ) = log d since all the

pure states has the same total coherence log d. In addition, if one extends the
pure-state decomposition to any form of decomposition (it could be mean-
ingless), one can find the minimal total coherence is just the total coherence
of ρ, i.e., CR(ρ) due to the convexity of CR(ρ).

Converting total coherence to total correlation

The resource theory as mentioned above essentially shows some quantum
features as a resource, on the one hand, can be concentrated or diluted,
and on the other hand, is implied to be spent on realizing some particular
tasks or being converted to other forms. For example, quantum discord was
shown to be converted to the distillable entanglement with the equal amount.
In particular, recently it has been found that both quantum entanglement
[25] can be obtained by the equal amount of basis-dependent coherence by
the incoherent operations assisted by the auxiliary incoherent states. And
quantum discord [56] can also (may unequally) be obtained by the similar
process. However, in what follows we will show that the total coherence can
also be converted to the equal amount of total correlation by our defined
incoherent operations with the assistance of the unique incoherent state.

To proceed, let’s first introduce the total correlation in terms of the rel-
ative entropy. Let P denotes the set of all the product states, then the
total correlation of a (d1⊗ d2) -dimensional quantum state ρAB is defined by
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the distance between the state ρAB and the set P. According to the rela-
tive entropy, the total correlation denoted by I(ρAB) is actually the mutual
information of ρAB, that is,

I(ρAB) = min
σ∈P

S (ρ||σ) (9)

= S(ρA) + S(ρB)− S(ρAB), (10)

where S (ρ||σ) = Tr {ρ log ρ− ρ log σ} denotes the relative entropy and S(·)
is the von Neumann entropy. Thus, we can present our theorems as follows.

Theorem 3.- Given an n -dimensional state ρS, it can be converted to

a composite state ρSA = $I

[

ρS ⊗ I
A
m

m

]

by the incoherent operation $I given

in Property (2) with the assistance of the incoherent state I
A
m

m
. But the total

correlation of ρSA is restricted by the total coherence of ρS as

I

(

$I

[

ρS ⊗
Im

m

])

≤ CR
(

ρS
)

. (11)

In particular, there exists a unitary transformation $oI such that the upper
bound can be achieved.

Proof. Based on the definition of the total coherence given in Eq. (1),
we can write

CR(ρ
S) = S

(

ρS‖
In

n

)

= S

(

ρS ⊗
Im

m
‖
In

n
⊗

Im

m

)

≥ S

(

$I

[

ρS ⊗
Im

m

]

‖$I

[

In

n
⊗

Im

m

])

(12)

≥ min
σ∈P

S

(

$I

[

ρS ⊗
Im

m

]

‖σ

)

(13)

= I

(

$I

[

ρS ⊗
Im

m

])

, (14)

where Eq. (12) comes from the contractibility of the relative entropy, Eq.
(13) is derived from the fact $I

[

In

n
⊗ Im

m

]

= Inm

nm
∈ P and Eq. (14) is due to

the definition of the total correlation (i.e., Eqs. (9) and (10)). So Eq. (11)
is satisfied. In particular, we have shown that inequality in Eq. (11) can be
saturated in Appendix. This completes the proof. �
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3. Relations with other quantum features

The above the resource theory has provided a direct operational meaning
for the total coherence, that is, the total coherence serves as the reversibly
transformational rate between the resource state and the target state. In
fact, the resource theory as a quantification of quantum feature also provides
a way for us to understand one kind of quantum feature through another
one. The most remarkable example is the monogamy of entanglement in
a pure state of three qubits |ψ〉ABC which shows that 3-tangle τ (|ψ〉ABC)
can be understood by the residual entanglement as (r1) [63] τ (|ψ〉ABC) =
C2
(

ρA(BC)

)

− C2 (ρAB) − C2 (ρAC) or (r2) [64] τ (|ψ〉ABC) = C2
a (ρAB) −

C2 (ρAB) where ρABC = |ψ〉ABC 〈ψ|, ρAB and ρAC denote the reduced density
matrices and C (·) represents the bipartite concurrence of qubits and Ca (ρAB)
denotes the localized (assisted) coherence defined by the average concurrence
maximizing among all potential pure-state decomposition of ρAB. So Ref.
[29] considered the similar question for basis-dependent coherence and found
that the similar understanding of the basis-dependent coherence only holds
for (2 ⊗ d) -dimensional system based on the l1-norm coherence measure.
The similar relations of the types (r1) and (r2) could be obtained by the
l2-norm coherence measure for any bipartite pure state, but l2 norm is not a
good coherence measure. Here we will show that the total coherence can be
understood by the relations of both the types (r1) and (r2).

At first, we would like to say that the total coherence inherited all the
properties of the von Neumann entropy, since it can be directly written by
the von Neumann entropy, so it could have many interesting implications.
Consider the sub-additivity of von Neumann entropy, one can easily find that
CR(ρAB) ≥ CR(ρA) + CR(ρB) for any bipartite state ρAB with its reduced
density matrices ρA/B. Thus we can see that

I(ρAB) = CR(ρAB)− CR(ρA)− CR(ρB). (15)

It is obvious that the total correlation I(ρAB) is just the residual total coher-
ence between the nonlocal total coherence of a bipartite state and the two
local coherences, which has just the similar form of type (r1). In particular,
Eq. (15) holds for both pure and mixed state ρAB.

In addition, according to the strong sub-additivity of the von Neumann
entropy, one can find that CR(ρABC) ≥ CR(ρAB) + CR(ρBC) − CR(ρB) for
a tripartite state ρABC and the reduced density matrices ρAB, ρBC and ρB.
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These could provide the important reference for the distribution of coherence
among multiple subsystems.

Now, let’s consider a simple scheme between Alice and Bob who share a
pure state |ψ〉AB of two qudits. Suppose Bob is allowed to perform any local
operation on his qudit, the aim is to evaluate the average total coherence of
Alice’s qudit assisted by the classical communication with Bob. Since any
operation could be performed by Bob, this is equivalent to that at Alice’s
side, she can obtain all the potential decomposition of her density matrix
ρA = TrB {|ψ〉AB 〈ψ|}. Therefore, a trivial case is that Bob does nothing or a
trivial identity operation. Alice’s total coherence is just the total coherence of
the reduced density matrix ρA, i.e., CR(ρA) = log n− S(ρA) with n denoting
the dimension of her qudit. Due to the convexity of the total coherence, in
this case Alice obtains the minimal average total coherence. On the contrary,
Bob can apply a general positive-operator-valued-measure on his side such
that Alice always obtains a pure state with some probability. Then Alice’s
average total coherence will reach the maximal value Ca

R(ρA) = log n with the
superscript a representing the maximal value. Thus the discrepancy between
Alice’s maximal and minimal total coherence is give by

E(|ψ〉AB) = Ca
R(ρA)− CR(ρA) (16)

with E(|ψ〉AB) = S(ρA) being the von-Neumann-entropy entanglement of
|ψ〉AB. It is obvious that Eq. (16) has the same form as (r2). In addition,
one can easily find that for a mixed state ρAB, Eq. (16) can lead to

E(ρAB) ≤ Ca
R(ρA)− CR(ρA). (17)

where E(ρAB) = min{pi,|ψi〉}

∑

i piE(|ψi〉) with ρAB =
∑

i pi |ψi〉 〈ψi| is the
mixed-state entanglement. This can be easily proven as follows. Let’s con-
sider a purification state |ψ〉ABC such that ρAB = TrC |ψ〉ABC 〈ψ|, based on
Eq. (16), we have E(|ψ〉A(BC)) = Ca

R(ρA)− CR(ρA). Since the entanglement
isn’t increased by the local operations, tracing over subsystem C will decrease
the entanglement, i.e., E(|ψ〉AB) ≤ E(|ψ〉A(BC)) which directly leads to Eq.
(17).

4. Discussion

Since it has been shown that entanglement and quantum discord can be
obtained from the basis-dependent coherence by the corresponding incoher-
ent operation. One could wonder whether the total correlation could be
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converted to the entanglement (or quantum discord) by the incoherent op-
eration assisted by the incoherent state IN

N
. In fact, one can find that there

exist some incoherent operations to realize the conversion, but in general the
total coherence could not be completely converted to entanglement. In other
words, some total coherence could be converted to the classical correlation,
so that the total coherence can be completely converted to the total correla-
tion instead of the quantum correlation. A simple example can demonstrate
this. Suppose we employ a unitary transformation to convert a pure state to a
composite entangled state with the assistance of a maximally mixed state IN

N
.

As we know, the pure states have the maximal total coherence, so one could
expect to obtain a maximally entangled state through the above conversion.
However, one can note that the pre-conversion state is a mixed product state,
but the fact is that a unitary transformation will never transform a mixed
state to a pure state which possesses the maximal entanglement. One could
intend to employ the general incoherent operation $I , however, the convexity
of a valid entanglement measure implies that $I will lead to the less entan-
glement than the unitary operation. Thus this shows that the maximal total
coherence cannot be completely converted to the entanglement.

However, from a general application point of view, i.e., beyond the re-
source theory restricted by our Properties (1-5), it is trivial to find that the
nonzero total coherence can be completely converted to the entanglement or
quantum discord. This is implied in the definition of the total coherence.
That is, one can always find a suitable reference framework (basis) to make
the considered state has the equal amount of coherence with respect to the
reference framework. So in this framework, one can employ the scheme in
Ref. [25] to convert the coherence to the equal amount of entanglement.

5. Conclusion

We have established the operational resource theory for the total coher-
ence by showing the reversible transformation between the resource state
(pure state) and any given state by the defined incoherent operations both
in the single-copy regime and the asymptotic regime. In addition, we exten-
sively find that the total coherence can be converted to the equal amount
of total correlation by the incoherent operations assisted by the maximally
mixed state. Finally we find that the total correlation of a bipartite state can
be understood by the residual total coherence between the nonlocal total co-
herence of a bipartite state and the two local total coherence, which is also an
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operational meaning of the total coherence. In addition, we also show that
the pure-state entanglement can be understood by the discrepancy of the
maximal and the minimal local total coherence, which is another interesting
understanding of the total coherence.
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6. Appendix

Proof of the equality of theorem 3: In the proof of theorem 3, we have
shown that the inequality is satisfied. Here we will prove the inequality in Eq.
(11) can be saturated. Let’s consider the state ρS again. The total coherence
of ρS is a basis-free coherence measure and quantify the maximal (basis-
dependent) coherence with all potential basis taken into account. So one
can also select an incoherent operation Ũ (i.e., the unitary transformation)
to transform ρS into ρ̃S = ŨρSŨ † =

∑

ij ρ̃ij |i〉 〈j| with ρ̃ij denoting the
matrix entries in the {|i〉} representation, the basis-dependent coherence in
this representation is just equal to the total coherence. It is obvious that
in this representation the diagonal entries of ρ̃S is uniform, i.e., ρ̃ii = 1

n
.

Thus one can consider another incoherent operation on a composite system
(denoted, respectively, by S and A) defined as ΛI [ρSA] = UρSAU

† with

U =

n−1
∑

i=0

m−1
∑

j=0

|i〉 〈i|S ⊗ |mod (i+ j,m)〉 〈j|A (18)

This unitary operation U is actually the generalized Controlled-NOT gate in
a high dimensional system. With this unitary operation, for the state ρ̃S and
any orthonormal basis {|k〉} in a m -dimensional subsystem A, one can find
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that

ΛI

[

ρ̃S ⊗
I
A
m

m

]

=
1

m

∑

k

ΛI
[

ρ̃S ⊗ |k〉 〈k|A
]

=

m−1
∑

k

n−1
∑

i1,i2=0

ρ̃i1i2
m

|i1〉 〈i2|S ⊗ |i1 ⊕ k〉A 〈i2 ⊕ k| . (19)

With the unitary operation Controlled-NOT gate, for the state ρ̃S and
any orthonormal basis {|k〉} in a m -dimensional subsystem A, we have

ΛI

[

ρ̃S ⊗
I
A
m

m

]

=
1

m

∑

k

ΛI
[

ρ̃S ⊗ |k〉 〈k|A
]

=
∑

k

U
ρ̃S

m
⊗ |k〉A 〈k|U †

=

m−1
∑

k=0

(

n−1
∑

i=0

m−1
∑

j=0

|i〉S 〈i| ⊗ |mod (i+ j,m)〉A 〈j|

)

(20)

∑

i,j

ρ̃ij

m
|i〉S 〈j| ⊗ |k〉A 〈k|

(

n−1
∑

i=0

m−1
∑

j=0

|i〉S 〈i| ⊗ |j〉A 〈mod (i+ j,m)|

)

=

m−1
∑

k

n−1
∑

i1=0

n−1
∑

i2=0

(

|i1〉S 〈i1|
∑

i,j

ρ̃ij

m
|i〉S 〈j| · |i2〉S 〈i2|

)

⊗

(

m−1
∑

j1=0

|mod (i1 + j1, m)〉A 〈j1| · |k〉A 〈k|

m−1
∑

j2=0

|j2〉A 〈mod (i2 + j2, m)|

)

=

m−1
∑

k

n−1
∑

i1,i2=0

ρ̃i1i2
m

|i1〉 〈i2|S ⊗ |i1 ⊕ k〉A 〈i2 ⊕ k| . (21)

From Eq. (19), one can find that the reduced matrices of ΛI

[

ρ̃S ⊗ I
A
m

m

]

can be given by







σS = TrAΛI

[

ρ̃S ⊗ I
A
m

m

]

= In

n
,

σA = TrSΛI

[

ρ̃S ⊗ I
A
m

m

]

= Im

m
,

(22)

where we consider the fact that we have made ρ̃ii = 1
n
for all i’s. Thus

the total correlation (i.e., the mutual information) of ΛI

[

ρ̃S ⊗ I
A
m

m

]

can be
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calculated as

I

(

ΛI

[

ρ̃S ⊗
I
A
m

m

])

= S (σS) + S (σA)− S

(

ΛI

[

ρ̃S ⊗
I
A
m

m

])

= logn+ logm− S

(

ρ̃S ⊗
I
A
m

m

)

(23)

= logn− S
(

ρ̃S
)

= CR
(

ρS
)

. (24)

Eq. (23) holds because the von Neumann entropy S(ρS) doesn’t change
under the unitary transformation ρ̃S = ŨρSŨ † and Eq. (24) holds due to
the additivity of von Neumann entropy for product states. Thus we show
that there exists a unitary transformation UT = UŨ such that Eq. (11) is
satisfied, which completes the proof. �
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