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1 Introdu
tion. . . the an
ients (as we are told by Pappus) esteemed the s
ien
e of me
hani
sof greatest importan
e in the investigation of natural things, and the moderns,reje
ting substantial forms and o

ult qualities, have endeavored to subje
t thephenomena of nature to the laws of mathemati
s . . .Isaa
 Newton, 1686 [30℄Renormalized quantum ele
trodynami
s is by far the most su

essful theorywe have today. This very impressive fa
t, however, does not make the wholesituation less strange. We start out from equations whi
h do not make sense.We apply 
ertain pres
riptions to their solutions and end up with a powerseries of whi
h we do not know that it makes sense. The �rst few terms ofthis series, however, give the best predi
tions we know.Res Jost, 1965 [16℄In the more than 300 years that passed sin
e Newton wrote this in his Prin
ipia Mathe-mati
a, the moderns have been very su

essful at the endeavor to subje
t the phenomenaof nature to the laws of mathemati
s { with ex
eption of quantum �eld theory. As these
ond quote (whi
h 
ould have as well been written in 2002) shows, quantum �eldtheory so far resisted a quantitative, mathemati
ally rigorous foundation.In the present paper, an axiomati
 approa
h is outlined that, I believe, provides foun-dations on whi
h quantum �eld theory 
an be given a rigorous mathemati
al treatment.The present paper gives the elementary part and exhibits the 
onne
tions to the tradi-tional settings. A deeper study of the 
onsequen
es and use of the 
on
epts presentedhere will be given elsewhere.In the new approa
h, ea
h (
lassi
al or quantum) 
onservative physi
al system is 
har-a
terized by two Hermitian quantities: a density and an a
tion. A generalized Liouvilleequation de�nes the dynami
s and implies Ehrenfest equations for expe
tations.For a 
lassi
al (but not a quantum) �eld theory, the Ehrenfest equations in a symple
ti
Poisson algebra imply the traditional �eld equations by the stationary a
tion prin
iple.In parti
ular, all traditional systems derivable from the stationary a
tion prin
iple 
an bemodelled in our setting. In a similar way, one 
an get from suitable Lie-Poisson algebrasrelativisti
 and nonrelativisti
 Euler equations, Vlasov-Maxwell, Vlasov-Einstein, andEuler-Poin
ar�e equations.A new phase spa
e quantization prin
iple (generalizing the Wigner transform) allowsthe simple quantization of arbitrary Poisson algebras, with a good 
lassi
al limit.A large 
lass of Poin
ar�e invariant a
tions on spa
es with a redu
ible representation ofthe Poin
ar�e group is exhibited. Sin
e it is manifestly 
ovariant but possesses a Hamil-2



tonian nonrelativisti
 limit, it appears to be well-suited for phenomenologi
al modelingof relativisti
 few-parti
le dynami
s.In parti
ular, we obtain a Lorentz-
ovariant phenomenologi
al multiparti
le quantumdynami
s for ele
tromagneti
 and gravitational intera
tion whi
h redu
es in the non-relativisti
 limit to the traditional Hamiltonian multiparti
le des
ription with standardNewton and Coulomb for
es. The key that allows us to over
ome the traditional prob-lems in 
anoni
al quantization is the fa
t that we use the algebra of linear operators ona spa
e of wave fun
tions slightly bigger than traditional Fo
k spa
es.For a quantum system, if the a
tion is translation invariant, one 
an �nd pure statesof given mass des
ribing isolated systems in a rest frame by solving a 
onstrainedS
hr�odinger equation. This opens a 
onstru
tive spe
tral approa
h to �nding physi
alstates both in relativisti
 quantum �eld theories and in phenomenologi
al few-parti
leapproximation.While I have already 
he
ked mu
h of what is needed to get the many known results as
onsequen
es of the present setting, I am not yet 
ompletely sure about the adequa
yof the new theory for all aspe
ts of traditional �eld theory. Thus I'd like to apologize(as Newton did in the prefa
e of [30℄) and \heartily beg that what I have here done maybe read with forbearan
e; and that my labors in a subje
t so diÆ
ult may be examined,not so mu
h with the view to 
ensure, as to remedy their defe
ts."2 Prelude: Covariant transmutationDo not imagine, any more than I 
an bring myself to imagine, that I shouldbe right in undertaking so great and diÆ
ult a task. Remembering whatI said at �rst about probability, I will do my best to give as probable anexplanation as any other { or rather, more probable; and I will �rst goba
k to the beginning and try to speak of ea
h thing and of all.Plato, 
a. 367 B.C. [32℄We begin with traditional nonrelativisti
 quantum me
hani
s of a multiparti
le systemand rewrite it in a formally 
ovariant way that foreshadows the axiomati
 setup devel-oped afterwards. (This se
tion serves as a heuristi
 motivation only, without any 
laimsto rigor.)Let H be a translation invariant and time-independent Hamiltonian, p the 3-momentumoperator, the generator of the spatial translations,  the energy eigenstate in the restframe of a system with energy E > 0 and total mass m. The S
hr�odinger equation givesH = E , and the 
ondition that the system is in a rest frame says p = 0.3



To make these statements 
ovariant, we extend wave fun
tions by an additional argu-ment E. Then we may 
onsider the energy E as an operator a
ting on fun
tions  (E; x)by multipli
ation with E, with time t = i�h�=�E as 
onjugate operator. By introdu
ingthe operator L := E �H; (1)we may write the S
hr�odinger equation together with the rest frame 
ondition in theform L = 0; p = 0:We now introdu
e a 4-momentum ve
tor p = �p0p�, where p0 is related to the energy Eby the relation E = p0
�m
2: (2)On writing p2 = p20 � p2 (where p2 = p � p) for the Lorentz square of a 4-ve
tor, andapplying a Lorentz transform, we see that this is equivalent with the 
onditionL = 0; p = k for a pure momentum state  with de�nite 4-momentum k > 0 (in the forward 
one,i.e., k0 > jkj) and energy E = 
pk2 �m
2:A general pure state is a superposition  = R dk k of (unnormalized) momentum stateswith 4-momentum k, hen
e any nonzero  withL = 0; i.e.,  2 H := kerL:A general mixed state is a mixture � = Z d�(�) � �� of pure states  � weighted bya nonnegative measure d�(�). Thus L� = �L = 0. In parti
ular, with the standardexpe
tation hfi� := tr �f;of linear operators f on fun
tions  (E; x) we have[L; �℄ = 0; hLi� = 0: (3)The equations (3) will be the starting point for our axiomati
 setting. Slightly gener-alized, they will allow us to formulate not only nonrelativisti
 quantum me
hani
s, butalso 
lassi
al me
hani
s, 
lassi
al �eld theory, and quantum �eld theory.
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3 Axiomati
 physi
sDas Streben na
h Strenge zwingt uns eben zur AuÆndung einfa
herer S
hlu�-weisen; au
h bahnt es uns h�au�g den Weg zu Methoden, die entwi
kelungsf�ahigersind als die alten Methoden von geringerer Strenge. [...℄Dur
h die Untersu
hungen �uber die Grundlagen der Geometrie wird uns dieAufgabe nahe gelegt, na
h diesem Vorbilde diejenigen Disziplinen axiomatis
h zubehandeln, in denen s
hon heute die Mathematik eine hervorragende Rolle spielt;dies sind in erster Linie die Wahrs
heinli
hkeitsre
hnung und die Me
hanik.David Hilbert, 1900 [14℄We now begin the axiomati
 treatment; from now on, all 
on
epts have a pre
ise, un-ambiguous meaning. Here we 
on
entrate on the 
onservative, (
lassi
al and quantum)me
hani
s part of Hilbert's 6th problem, quoted above; for the probability part, viewedin the present 
ontext, see Neumaier [29℄. In this paper, we only give the outlinesand general 
avor of the theory. A mu
h more extensive version with full details, and atreatment of the dissipative 
ase are in preparation.The quantities of interest are elements of a Eu
lidean Poisson algebra E 
ontainingthe 
omplex numbers as 
onstants. Apart from an asso
iative produ
t (
ommutativeonly in the 
lassi
al 
ase) one has an involution � redu
ing on the 
onstants to 
omplex
onjugation, a 
omplex-valued integral R de�ned on a subalgebra IE of integrablequantities, and a Lie produ
t (or bra
ket) q . The subalgebra BE of boundedquantities 
onsists of all f 2 E with f �f � �2 for some � 2 R. Quantities f withf � = f are 
alled Hermitian. (For reasons given in Neumaier [29℄, we avoid usingthe 
ustomary word `observables', and follow instead the International System of Units(SI) [43℄ in our terminology.)Apart from the standard rules for �-algebras and the linearity of the integral and theLie produ
t, one assumes the following axioms. (The produ
t has priority over the Lieprodu
t, and both have priority over the integral. The partial order is de�ned by f � 0i� f � = f and R g�fg � 0 for all g 2 IE , and the monotoni
 limit is de�ned by fl # 0i�, for every g 2 IE , the sequen
e (or net) R g�flg 
onsists of real numbers 
onvergingmonotoni
ally to zero.)Axioms for a Eu
lidean �-algebra:(E1) f 2 BE ; g 2 IE ) g�; fg; gf 2 IE(E2) (R g)� = R g�; R fg = R gf(E3) R g�g > 0 if g 6= 0(E4) R g�fg = 0 for all g 2 IE ) f = 0 (nondegenera
y)(E5) R g�l gl ! 0 ) R fgl ! 0, R g�l fgl ! 0(E6) gl # 0 ) inf R gl = 0 (Dini property)5



Additional axioms for a Eu
lidean Poisson algebra:(P1) (f q g)� = f � q g�(P2) f q g = �g q f (anti
ommutativity)(P3) f q (g q h) = (f q g) q h+ g q (f q h) (Ja
obi identity)(P4) f q gh = (f q g)h+ g(f q h) (Leibniz identity)(P5) f �f = 0 ) f = 0 (nondegenera
y)(P6) f 2 IE ; g 2 E ) f q g 2 IE ,(P7) R f q g = 0 if f 2 IE (partial integration)As a 
onsequen
e,(P8) R f(g q h) = R (f q g)h.Note that (E3) implies the Cau
hy-S
hwarz inequalityR (fg)�(fg) � R f �f R g�g;whi
h implies thast IE is 
ontained in BE .The present de�nition of a Eu
lidean Poisson algebra is a modi�
ation of the 
on
ept ofa Poisson algebra as dis
ussed in Vaisman [45℄ and da Silva & Weinstein [5℄ in that
ommutativity is dropped but integration requirements imposing a Eu
lidean stru
tureare added. This modi�
ation enables us to treat 
lassi
al and quantum physi
s on thesame footing. (For a related attempt in this dire
tion, see Landsman [21℄.) Moreover,we introdu
ed the symbol q (an inverted stylized L, read 'Lie') to repla
e the Poissonbra
ket notation, whi
h would be mu
h more 
umbersome if used extensively (as in asyet unpublished work).In the present, elementary paper, we make use only of some of the above axioms (mainlythose not involving limits). However, as will be shown elsewhere, all are needed for thedeeper analysis of our 
on
eptual basis.To show that the axioms are ri
h in 
ontents, we des
ribe two basi
 realizations of them.The quantum Poisson algebra. Let H be a Eu
lidean (= pre-Hilbert) spa
e. Wede�ne the 
ommutator [f; g℄ := fg � gf , and let � := i=�h with a positive real number �h
alled Plan
k's 
onstant. Then the algebra E = Lin H of 
ontinuous linear operatorson H is a Poisson algebra with quantum bra
ketf q g = �[f; g℄;and Eu
lidean with quantum integralR f = tr f;6



Integrable quantities are the operators f 2 E for whi
h all gfh with g; h 2 E are tra
e
lass. (This in
ludes all operators of �nite rank.) The axioms are easily veri�ed.Nonrelativisti
 quantum me
hani
s. Nonrelativisti
 quantum physi
s is usuallydes
ribed by a rigged Hilbert spa
e (see, e.g., Bohm [2℄), if one wants to have dire
ta

ess to the unbounded operators. Hen
e let H 0 be a Eu
lidean spa
e (the nu
lear partof the rigged Hilbert spa
e) with nu
lear topology; we put H = C1(R; H 0). For thestandard position representation and p0 = i�h�t=
, q0 = 
t, we havep� q q� = ��� for �; � = 0; 1; : : : ; (4)with the metri
 � = Diag(1;�1; : : : ;�1):Restri
ted to E 0 = Lin H 0 , this gives the setting of traditional quantum me
hani
s.Nonrelativisti
 
lassi
al me
hani
s. As dis
ussed, e.g., inMarsden & Ratiu [24℄,
lassi
al physi
s 
an be most 
onveniently des
ribed in terms of a Poisson manifold 
.Let f�; �g be the asso
iated Poisson bra
ket on the algebra E 0 := C1(
) of in�nitelydi�erentiable 
omplex-valued fun
tions on 
. Then E = C1(R2 ; E 0) (de�ned as inKriegl & Mi
hor [19℄) is a Poisson algebra with 
lassi
al bra
ketf q g := �f�t �g�E � �f�E �g�t + ff; ggfor f = f(t; E), g = g(t; E), and Eu
lidean with 
lassi
al integralR f = Z dt dE Z
 f(t; E)(where R
 is the Liouville measure). Integrable quantities are the S
hwartz fun
tions onE . (Thus integrability in the present sense is mu
h stronger than Lebesgue integrability.This is due to our requirement (E1) whi
h implies that IE must be an ideal in E .) Again,the axioms are easily veri�ed. With p0 = E=
, q0 = 
t and the standard symple
ti
Poisson bra
ket, we get again (4).
7



4 Physi
al systems . . . da� die �ubli
he Quantisierungsvors
hrift si
h dur
heine andere Forderung ersetzen l�a�t [...℄Die neue Au�assung ist verallgemeinerungsf�ahig undr�uhrt, wie i
h glaube, sehr tief an das wahre Wesen derQuantenvors
hriften.Erwin S
hr�odinger, 1926 [38℄Motivated by the prelude, and 
onsistent with the introdu
tory remark in the seminalpaper \Quantisierung als Eigenwertproblem" (\Quantization as eigenvalue problem")by S
hr�odinger [38℄, we generalize the S
hr�odinger pi
ture of traditional quantumme
hani
s as follows. A physi
al system is 
hara
terized by a Hermitian density� 2 IE with � � 0. The density, or any set of parameters from whi
h the density 
anbe uniquely re
onstru
ted by a well-de�ned re
ipe, is referred to as the state of thesystem. A physi
al system with density � de�nes expe
tationshfi := R �f = R f�: (5)The 
entralizer E (S) of a quantity S (or a ve
tor of Lie 
ommuting quantities) is theset of all quantities Lie 
ommuting with (all 
omponents of) S,E (S) = ff 2 E j S q f = 0g:Clearly, E (S) is again a Poisson algebra. For a quantity f 2 E (S), the 
onditionalexpe
tation at a �xed value s of S is de�ned byhfiS=s = hfÆ(S � s)i=hÆ(S � s)i;de�ned via a limit of integrable fun
tions approa
hing the delta fun
tion. For example,if S is Hermitian with real spe
trum thenhfiS=0 = lim"#0 h(S � i")�1f(S + i")�1i=h(S2 + "2)�1i:By 
onstru
tion, 
onditional expe
tations always satisfy h1iS=s = 1; they satisfy theaxioms for an ensemble given in Neumaier [29℄.Dynami
al predi
tions are possible only in a system with a well-
ontrolled environment.For a system in intera
tion with an arbitrary environment, the expe
tation satis�es adynami
s determined by the Ehrenfest equationshDffgi = 0 for all f 2 BE (6)8



with a forward derivation D, i.e, a 
ontinuous linear mapping Df�g : E ! E mappingbounded quantities to bounded quantities and satisfyingDffg� = Dff �g; Dff �fg � Dff �gf + f �Dffgfor all f 2 E . Physi
al systems with the same forward derivation (but in general di�erentdensities) are said to follow the same physi
al law. Written in terms of the density,(6) be
omes the generalized Liouville equationD�f�g = 0 (7)with the Liouville operator D� de�ned (uniquely by (E4)) byRD�f�gf = R �Dffg:We shall dis
uss general physi
al systems and their (dissipative) properties elsewhere.Here we 
onsider isolated systems only, where the physi
al law is 
hara
terized by aHermitian a
tion L 2 E whi
h determines the forward derivation. A physi
al systemwith density � is 
alled isolated (and � is 
alled a 
onservative density) ifhLi = RL� = 0and the generalized Liouville equation L q � = 0 (8)holds. Sin
e hL q fi = R �(L q f) = R (� q L)f = �R (L q �)f = 0;expe
tations in isolated systems satisfy the Ehrenfest equationshL q fi = 0 for all f 2 IE :The axioms for a Eu
lidean expe
tation algebra imply thatD�ffg = �L q f is a forwardderivation for both signs; as dis
ussed elsewhere, this re
e
ts the reversible, 
onservativenature of isolated systems.If � is a 
onservative density and f 2 E (L) then�f := f�f � (9)is also a 
onservative density. Thus a large 
lass of 
onservative densities 
an be 
on-stru
ted from a single one if some quantities fl in the 
entralizer E (L) are known, sin
ewe may apply (9) with any polynomial 
onstru
ted from the fl. This generalizes thetraditional 
onstru
tion of states from the va
uum by means of 
reation operators. Itis appli
able even where { su
h as for intera
ting quantum �elds in 4 dimensions { nopre
ise mathemati
al meaning 
an be given to the latter 
onstru
tion.9



5 Hamiltonian systemsOur axioms 
over the traditional physi
s of Hamiltonian systems. The a
tion 
orre-sponding to an arbitrary time-dependent Hamiltonian H(t) is de�ned asL = p0 �H(t);where p0 = E in the 
lassi
al 
ase and p0 = i�h�t in the quantum 
ase. In both 
ases,p0 q f = � _f :(Stri
tly speaking, the name 'a
tion' �ts tradition only for �eld theories. For multi-parti
le systems, the above expression for L is unrelated to traditional a
tion prin
iples.But applying the same ma
hinery whi
h gives the �eld equations of �eld theory to thisunorthodox a
tion happens to produ
e the 
orre
t multi-parti
le dynami
s.)For 
onservative quantum systems, L q � = 0 implies for L = p0 �H:_� = �p0 q � = �(L +H) q � = �H q �;and we get the standard quantum Liouville equationi�h _� = [H; �℄ (10)for a 
onservative nonrelativisti
 quantum system with Hamiltonian H. The Ehrenfestequations redu
e to their traditional formi�h ddthfi = h[f;H℄i;showing that expe
tations follow a deterministi
 law. For 
onservative 
lassi
al systems,exa
tly the same derivation applies, and we get the 
lassi
al Liouville equation_� = fH; �g: (11)6 Pure statesPure states are the limiting situation (in a suitable 
ompletion of the spa
e of integrablequantities) of densities extremal with respe
t to the natural order relation. They areof mathemati
al interest sin
e any density 
an be written as a 
onvex 
ombination ofpure states, and of physi
al interest for few-parti
le systems, where states 
an often be
onsidered as approximately pure. (However, states at positive temperature are never10



pure, and the de
omposition into pure states is, in the quantum 
ase, not unique. Thuspure states des
ribe idealized situations only.)Pure 
lassi
al states. Here extreme states are distributional limits of densities; the ex-pe
tations are algebra homomorphisms into C (i.e., 
hara
ters of the algebra) satisfyinghLi = 0. For nonrelativisti
 
lassi
al physi
s with phase spa
e variable z,hfi = f(t; E; z);and the 
ondition hLi = 0 �xes the value of E to E = H(t; z). Hen
e we may assume fto be independent of E.Thus pure states of a 
lassi
al nonrelativisti
 system are 
hara
terized by a pair (t; z)
onsisting of a time t and the phase spa
e lo
ation z of the system at this time. TheEhrenfest equations redu
e in the limit of pure states to the Hamiltonian dynami
s_f = ff;Hg:Pure quantum states. Extreme states are limiting rank 1 densities� =   �;  2 H � :The equation L q � = 0 implies that  is a generalized eigenve
tor of L. (See, e.g.,Maurin [25℄ for a mathemati
al treatment in terms of nu
lear spa
es.) The 
onditionhLi = 0 then implies that the eigenvalue vanishes. Note that, sin
e generalized eigen-ve
tors need not be in H , not all expe
tations need to exist in a pure state; the latterare to be regarded only as idealized limits of physi
al states.Thus pure states of an isolated quantum system are 
hara
terized by a generalizedS
hr�odinger equation L = 0;  2 H � : (12)We 
all solutions of (12) pure 
onservative quantum states.As dis
ussed in the prelude, if the a
tion L is translation invariant and p is the gen-erator of the translations, one 
an �nd pure 
onservative quantum states of de�nite4-momentum k by solving the equations.p0 = m
 ; p = k : (13)In parti
ular, pure states of massm in a rest frame 
an be found by solving the eigenvalueproblem p0 = m
 ; p = 0; L = 0:11



This is a 
onstrained S
hr�odinger equation, 
f. Se
tion 13 below.The pure 
onservative quantum states form a ve
tor spa
e H 
ons on whi
h the 
entralizerE (L) a
ts sin
e f 2 E (L) and  2 H 
ons imply Lf = fL = f0 = 0. In thequantum 
ase, f 2 E (L) i� f 
ommutes with L; thus quantities in E (L) 
an be found,e.g., by solving the eigenvalue problem for L. Thus we 
an 
reate from any parti
ular
onservative quantum state a large 
lass of other 
onservative quantum states providedwe know enough quantities 
ommuting with L.7 Classi
al �eldsWe dis
uss here only boson �elds. By using super Poisson algebras and super versionsof all 
on
epts, fermion �elds 
an be handled in an analogous fashion.Let H := S(R1;3) be the algebra of in�nitely di�erentiable, fast de
aying S
hwartz fun
-tions on Minkowski spa
e R1;3 , and let V be a �nite-dimensional symple
ti
 spa
e withsymple
ti
 form �. Then the �eld algebra E := C1pol(H 
 V �) of in�nitely di�erentiablefun
tions f of the �eld argument � 2 H with �nf 2 C1(H 
 V �; (H 
 V )
n) and atmost polynomial growth is a Poisson algebra withf q g = Z dx �� �f��(x) ; �g��(x)� :With expolynomial fun
tions (linear 
ombinations of produ
ts of polynomials with theexponential of a negative de�nite, quadrati
 polynomial) as integrable fun
tions, E isEu
lidean with an integral de�nable via in�nite-dimensional Gaussian measures.Pure 
lassi
al �eld states. A pure state over the �eld algebra E = C1pol(H 
 V �)assigns to ea
h f 2 E the value f(�) at a parti
ular �eld � 2 H 
 V �. The Ehrenfestequations redu
e in the limit of pure states over the �eld algebra to the equationsL q f = 0 for all f 2 E :Inserting the linear fun
tion f = a(�), wherea(�) := Z dx a(x)T�(x);into L q f = 0 we get �� �L��(x) ; a(x)� = 012



for a 2 H 
 V with 
ompa
t support. Sin
e � is nondegenerate, we 
on
lude�L��(x) = 0 for all x 2 R1;3 :This is the traditional stationary a
tion prin
iple. In the 
urrent setting, it is nota postulate but a 
onsequen
e of the Ehrenfest equations. (The equations for other
hoi
es of f are 
onsequen
es of this.)To get the traditional �eld theories, we simply need to �nd the right symple
ti
 stru
turefor ea
h type of �eld. The �eld 
omponents must appear in 
onjugate pairs, whi
h wearrange to two 
onjugate ve
tors � and �
 (in pla
e of the single � used before). Thenadequate 
ommutation relations area(�) q b(�) = a(�
) q b(�
) = 0;a(�
) q b(�) = (ajb) := Z dx a(x)T b(x);where �
 = �� for 
omplex �elds (whi
h 
ome in 
omplex 
onjugate pairs), while forreal �elds � and �
 are independent. For real �elds whi
h have no 
onjugate partnerin the Lagrangian, one adds additional 
onjugate partners to the algebra of quantities.These additional �elds are { like gauge degrees of freedom { unobservable and do nota�e
t the �eld equations for the original �elds.Hen
e the present framework allows a 
onsistent implementation of all 
lassi
al �eldequations derivable from the stationary a
tion prin
iple. (Note: If we apply this tothe ele
tromagneti
 4-ve
tor potential, we get, in 
ontrast to the approa
h in 
anoni
alquantization, a 
onjugate 4-ve
tor potential, with standard symple
ti
 Lie bra
ket forea
h 
omponent!)By extending the above framework to Eu
lidean super Poisson algebras, one 
an alsoin
orporate 
lassi
al fermion �elds. In parti
ular, we 
an implement a 
lassi
al versionof the standard model, in
luding gravitation within the present setting.If we use in pla
e of symple
ti
 Poisson algebras suitable Lie-Poison algebras, the Ehren-fest equations produ
e in the limit of pure 
lassi
al states for appropriate a
tions boththe relativisti
 [26℄ and nonrelativisti
 [27℄ Euler equations for perfe
t 
uids and theEuler-Poin
ar�e equations [24℄. Using suitable Lie-Poison algebras of fun
tions ofphase spa
e �elds, it is possible to de�ne natural a
tions for whi
h the Ehrenfest equa-tions produ
e in this way the Vlasov equations. In suitable tensor produ
ts one 
anthen form a
tions that de�ne Vlasov equations intera
ting with ele
tromagneti
 and/orgravitational �elds, giving Vlasov-Maxwell equations (
f., e.g., [34℄) and Vlasov-Einstein equations (
f., e.g., [1℄).Details will be given elsewhere. 13



8 Phase spa
e quantizationThere are many ways to quantize a 
lassi
al system. From the point of view of beingable to do analysis (i.e., error estimates), the mathemati
ally most developed formis deformation quantization (see, e.g., Rieffel [37℄), whi
h deforms a 
ommutativeprodu
t into a Moyal produ
t. In the following, we propose an alternative deformationapproa
h whi
h, instead, deforms the operators f 2 E by embedding E into Lin E ,identifying f 2 E with the multipli
ation mapping g ! fg. This 
an be done withsurprising ease.The superoperators Mf and Df de�ned byMffgg := fg; Dffgg := f q gbelongs to Lin E . For f 2 E , we de�ne the quantization bf of f bybf :=Mf � i�h2 Df 2 Lin E :The expe
tations h bfi = hfi � i�h2 hDfidi�er from those of f by a term of order O(�h), justifying an interpretation in terms of\deformation". In parti
ular, we automati
ally have a good 
lassi
al limit.To a
tually quantize a 
lassi
al theory, one may 
hoose a Lie algebra of relevant quanti-ties generating the Poisson algebra, quantizes its elements by the above rule, expressesthe 
lassi
al a
tion as a suitably ordered polynomial expression in the generators, anduses as quantum a
tion this expression with all generators repla
ed by their quantiza-tions.In general, the above re
ipe for phase spa
e quantization gives an approximate Poissonisomorphism, up to O(�h) terms. But Lie subalgebras are mapped into (perhaps slightlybigger) Lie algebras, and one gets a true isomorphism for all embedded Heisenberg Liealgebras, i.e., Lie algebras where all Lie produ
ts are multiples of a 
entral element 1.Quantization Theorem. If E is 
ommutative then the quantum bra
ketA q B = �[A;B℄ for A;B 2 Lin Esatis�es, for f; g 2 E , bf q bg =Mf q g � i�h4 Df q g = 12(Mf q g + df q g);14



Any Lie subalgebra L of E de�nes a Lie algebrabL = fMf q g + bh j f; g; h 2 Lgunder the quantum bra
ket. If L is a Heisenberg Lie algebra then b : L ! bL is a Lieisomorphism.The proof is not diÆ
ult but will be given elsewhere.In parti
ular, for the standard symple
ti
 Poisson algebra E = C1(Rn � Rn), phasespa
e quantization amounts to using the redu
ible representationbp = p� i�h2 �q; bq = q + i�h2 �pof the 
anoni
al 
ommutation rules on phase spa
e fun
tions instead of the traditionalirredu
ible representation ~p = �i�h�x; ~q = xon 
on�guration spa
e fun
tions. It will be shown elsewhere that these representationsare related by a Wigner transform (
f. Wigner [53℄).By quantizing in phase spa
e, one gives up irredu
ibility (and hen
e the des
riptionof a state by a unique density) but gains in simpli
ity. Perhaps this is 
omparable tothe situation in gauge theory, where the des
ription by gauge potentials introdu
es somearbitrariness with whi
h one pays for the more elegant formulation of the �eld equationsbut whi
h does not a�e
t the observable 
onsequen
es.9 Quantum �eld theoryA good many physi
ists are now working on the problemof trying to set up a quantum �eld theory independentlyof any Hamiltonian. [...℄I still think that in any future quantum theory therewill have to be something 
orresponding to Hamiltoniantheory, even if it is not in the same form as at present.Paul Dira
, 1964 [7℄A
tions for 
lassi
al or quantum �eld theories are based on representations of a symmetrygroup and 
orresponding invariant a
tions. In any fundamental theory, the symmetrygroup must 
ontain either the Galilei group (for nonrelativisti
 �elds) or the Poin
ar�egroup (for relativisti
 �elds); if gravitation is involved, the symmetry group must also
ontain the group of all di�eomorphisms of some spa
etime manifold.15



Having a symmetry group is equivalent with having nonuniqueness in the des
riptionof a physi
al system. Di�erent states providing equivalent des
riptions (satisfying thesame laws but in di�erent 
oordinates) are 
ommonly said to 
orrespond to di�erent
hoi
es of an inertial system. Changing the inertial system used to 
oordinatize a system
hanges the state and hen
e the expe
tations; for example, moving an inertial systemO (illustrated by an observing intelligent robot) in time produ
es a 
hange in observedexpe
tations whi
h O 
on
eives of as the intrinsi
 dynami
s of the environment, whilemoving (rotating or translating) the inertial system O in spa
e produ
es a 
hange inobserved expe
tations whi
h O 
on
eives of as the illusion of the spa
e moving aroundit 
aused by the motion of its moving head. We now formalize these 
onsiderations.Let L be the Lie algebra of the Galilei group, the Poin
ar�e group or any assumedsymmetry group 
ontaining one of these groups, with Lie produ
t q . Let p 2 L1;3 bethe generator of the translation subgroup in the 
anoni
al basis. Let J be a Poissonrepresentation of L in a Eu
lidean Poisson algebra E , de�ned byJ(Æ) q J(Æ0) = J(Æ q Æ0) for all Æ; Æ0 2 L: (14)P := J(p) (taken 
omponentwise) de�nes the (total) physi
al 4-momentum. Asmooth 
hange of the inertial system (modeling a virtual motion of the robots head)is des
ribed by an arbitrary 
ontinuously di�erentiable mapping Æ : [0; 1℄ ! L spe
ify-ing the in�nitesimal motions Æ(�) 2 L of the inertial systems at instant � 2 [0; 1℄. A
orresponding assignment of densities �(�) 2 IE at instant � is 
alled 
onsistent if itsatis�es the di�erential equationdd� �(�) = �(�) q J(Æ(�)): (15)In 
lassi
al physi
s, this des
ribes a 
anoni
al, in quantum physi
s a unitary transfor-mation representing a general element of the (
onne
ted part of the) symmetry group.In parti
ular, an observer moving in spa
e-time with uniform velo
ity u 2 R1;3 �nds thedensity 
hanging a

ording to the 
ovariant Liouville equationdd� �(�) = �(�) q J(u � p): (16)Thus we have a 
ovariant generalization of the nonrelativisti
 situation 
onsidered inSe
tion 5.Sin
e su
h a 
hange of inertial systems should not a�e
t the physi
s, we require thatquantities (and in parti
ular the a
tion L, i.e., the physi
al law) are una�e
ted by these
hanges, and that an isolated system remains isolated. The former 
ondition is simplythe requirement that we base our setting on the S
hr�odinger pi
ture, and the latter
ondition amounts to L q �(�) = 0 for all � (17)16



whenever L q �(0) = 0. To analyze this 
ondition, let �(0) be the density of an isolatedsystem, and put e(�) := L q �(�):Then e(0) = 0 anddd� e(�) = dd� (L q �(�)) = L q dd� �(�) = L q (�(�) q J(Æ(�)))= (L q �(�)) q J(Æ(�)) + �(�) q (L q J(Æ(�)))so that dd� e(�) = e(�) q J(Æ(�)) + �(�) q (L q J(Æ(�))): (18)If (17) holds then e(�) vanishes identi
ally, and this redu
es to �(�) q (L q J(Æ(�))) = 0.The requirement that this holds for arbitrary densities and arbitrary smooth 
hanges ofthe inertial system therefore demands thatL q J(Æ) 2 CE for all Æ 2 L; (19)where CE denotes the Lie 
enter of E , the algebra of quantities whi
h Lie 
ommutewith all quantities. An a
tion L satisfying (19) is 
alled L-invariant. Conversely, if thea
tion L is L-invariant, then (18) redu
es todd� e(�) = e(�) q J(Æ(�)):Under 
onditions whi
h guarantee the unique solvability of the initial value problem(18), we 
on
lude that e(�) = 0 for all � , proving (17). Thus the L-invarian
e of thea
tion is essentially equivalent to the requirement that being isolated is a 
ovariant
on
ept.In parti
ular, using in our setting a Poin
ar�e invariant a
tion L de�nes a relativisti
physi
al theory. As shown in Se
tions 4 and 6, we 
an use an arbitrary 
onservativedensity (resp. pure quantum state) and a set of quantities in the 
entralizer E (L) to
onstru
t a large 
lass of 
onservative densities (resp. pure quantum states) as possiblestates of an isolated physi
al system with given a
tion.Having phase spa
e quantization as a universal generalization of the Wigner transform,we 
an use it to quantize the basi
 �elds of any (Galilei or Poin
ar�e invariant) 
lassi
al�eld theory. This gives well-de�ned mathemati
al de�nitions of the various (nonrela-tivisti
 or relativisti
) quantum �eld theories in 
urrent physi
al usage.Using a Galilei invariant a
tion one gets nonrelativisti
 �eld theory. As explained non-rigorously in many textbooks (e.g., Umezawa et al. [44℄), nonrelativisti
 quantum �eld17



theory is in prin
iple equivalent to nonrelativisti
 quantum me
hani
s. Therefore, oneuses for nonrelativisti
 problems �eld theory only to des
ribe bulk matter, while s
at-tering and bound state problems are handled with the S
hr�odinger equation. This ismu
h simpler than solving the full operator dynami
s of �eld theory.In relativisti
 quantum �eld theory, there has been in the past no analogue of theS
hr�odinger equation that 
ould have been used for this purpose. Thus even simples
attering problems were formulated in a �eld theoreti
 language a

essible to a per-turbative treatment, and bound state problems (see, e.g., Weinberg [47℄) 
ould bedes
ribed only very indire
tly through poles in the S-matrix. For the latter, there isno sound mathemati
al basis sin
e in traditional quantum �eld theory, the S-matrix isonly de�ned perturbatively in terms of a presumably divergent (Dyson [8℄) asymptoti
expansion, so that, mathemati
ally, talking about its poles is nonsense.The results of the present paper show, however, that to ea
h quantum (�eld or parti-
le) theory there is a 
orresponding 
onstrained S
hr�odinger equation from whi
h one
an 
onstru
t pure 
onservative quantum states with de�nite momentum in 
ompleteanalogy to the nonrelativisti
 
ase, and without restri
tion to a parti
ular symmetrygroup. (Mathemati
ally, it is suspe
t if 
ertain te
hniques work for a parti
ular, highlynontrivial group but not for all groups. Already from this perspe
tive one 
ould see thatsomething was missing from 
urrent quantum �eld theory!)10 Wightman axiomsThe quantum theory of �elds never rea
hed a stage where one 
ouldsay with 
on�den
e that it was free from internal 
ontradi
tions { northe 
onverse. In fa
t, the Main Problem [...℄ turned out to be [...℄to show that the idealizations involved in the fundamental notions ofthe theory are in
ompatible in some physi
al sense, or to re
ast thetheory in su
h a form that it provides a pra
ti
al language for thedes
ription of elementary parti
le dynami
s.R.F. Streater and A.S. Wightman, 1963 [42℄Traditionally, mathemati
al physi
ists approa
h relativisti
 quantum �eld theory viaan axiomati
 approa
h dis
ussed in detail by Streater & Wightman [42℄. TheWightman axioms (Wightman [52℄) are an interpretation of �eld theory not in termsof �eld equations but in terms of 
orrelation fun
tions. Relations to the Lagrangianapproa
h have been la
king so far. But one would have su
h relations if one 
ould
ombine tradition with the present formulation of quantum �eld theory. Thus one wouldlike to realize the Wightman axioms by identifying the va
uum with a pure 
onservative18



quantum state  0 with zero momentum, i.e.,L 0 = 0; P 0 = 0; (20)and (in view of the remarks at the end of Se
tion 6) Wightman �eld operators by suitableHermitian quantities in the 
entralizer E (L).It is not 
lear whether the Wightman axioms des
ribe 
orre
tly the stru
ture of relativis-ti
 quantum states. Apart from generalized free �elds, no realization of the Wightmanaxioms in 4-dimensional spa
e-time is known (see, e.g., Rehren [33℄), and there areno-go theorems { stating, for example, that there is no natural intera
tion pi
ture [42,Theorem 4-16℄ { pointing to the possibility that these axioms are indeed too strong todes
ribe realisti
 theories.To prove that the assumptions de�ning a Wightman �eld 
an (or 
annot) be satis�edin the present 
ontext is therefore a highly nontrivial task. But at least it is embeddedinto a well-de�ned fun
tional analyti
 
ontext, where the Poin
ar�e representation isalready �xed. This might make it tra
table for systems like QED, whi
h are 
lose tononrelativisti
 quantum me
hani
s. Therefore, one might be able to adapt the insightsfrom nonrelativisti
 s
attering theory (whi
h provides a diagonalization of the a
tionand hen
e full 
ontrol over its 
entralizer) to the new situation.On the other hand, even without knowing the existen
e of Wightman �elds (and evenif one 
ould prove that they do not exist), the setting presented here makes sense andde�nes for arbitrary a
tions a good quantum �eld theory, 
losely related to physi
alpra
ti
e. In parti
ular, one 
an try to generalize to the new 
onstrained S
hr�odingerequations the supply of te
hniques available for ordinary S
hr�odinger equations, and inthis way 
omplement the 
urrent perturbative te
hniques of quantum �eld theory byte
hniques known from nonrelativisti
 quantum me
hani
s. A �rst step in this dire
tion{ the generalization of the proje
tion formalism { has been done already; see Neumaier[28℄. Work on s
attering theory is under way.11 Phenomenologi
al relativisti
 dynami
sIn spite of the a

eptan
e of �eld theories as a matter of prin
iple,most realisti
 dynami
al 
al
ulations in nu
lear physi
s, and many inparti
le physi
s, utilize the nonrelativisti
 S
hr�odinger equation. [...℄Relativisti
 dire
t intera
tion theories of parti
les lie between lo
al �eldtheoreti
al models and nonrelativisti
 quantum me
hani
al models.B.D. Keister and W.N. Polyzou, 1991 [18℄While �elds are usually used to des
ribe nature on a fundamental level, pra
ti
al work19



(espe
ially for bound states and resonan
es) requires phenomenologi
al few-parti
leequations, whi
h are frequently related only loosely to underlying �elds; see the ref-eren
es in the next se
tion. It is therefore interesting to see that a variety of 
ovariantphenomenologi
al few-parti
le equations 
an be easily built in the present framework.We do this by using Poin
ar�e invariant a
tions on Hilbert spa
es 
arrying a suitablePoin
ar�e representation without states of negative energy.The possible irredu
ible Poin
ar�e representations (modeling elementary parti
les) were
lassi�ed by Wigner [54℄. The representations of positive (relativisti
) energy taketheir simplest form in momentum spa
e; the momenta p are restri
ted to a mass shell
(~p) = fp 2 R1;3 j p2 = ~p2; p0 > 0g; (21)the orbit of a 4-ve
tor ~p under the Poin
ar�e group. It is possible to 
ombine theseirredu
ible Poin
ar�e representations in many ways to obtain redu
ible momentum spa
erepresentations for few-parti
le systems. Traditionally (see, e.g., Weinberg [48℄ forthe 
anoni
al �eld quantization approa
h and the review in Keister & Polyzou [18℄for the dire
t relativisti
 Hamiltonian few-body approa
h), this is done by breakingthe manifest invarian
e to a maximal subgroup of the Poin
ar�e group, with all theawkwardness this entails.The key that allows us to preserve a manifestly 
ovariant formalism, thus over
omingthe traditional problems in 
anoni
al quantization, is the fa
t that we use as algebraof quantities the linear operators on a spa
e of wave fun
tions slightly bigger thantraditional Fo
k spa
es. This is done in the following by adding a velo
ity ve
tor u as adynami
al parameter, whi
h allows us to deform the bare mass shell p2 = (m
)2 (where
 is the speed of light) to p2 = (mu)2, whi
h in turn permits the 
onservation of total4-momentum in intera
tions.A phenomenologi
al realization of a system of N massive s
alar parti
les with restmasses m1; : : : ; mN > 0 and 
harges Q1; : : : ; QN is now realized by wave fun
tions =  (u; p1:N) =  (u; p1; : : : ; pN)whose 
oordinates are a global 4-velo
ity ve
tor u with 0 < u 2 R1;3 and the parti
le4-momentum ve
tors pa in the dynami
 mass shells 
(mau) whose s
ale dependson u. The total 4-momentumP pa is required to be parallel to the 4-velo
ity u. Thusthe spa
e of wave fun
tions is H = C1(
N); (22)where 
N is the set of all tuples(u; p1:N) = (u; p1; : : : ; pN)20



with pa 2 
(mau) for a = 1; : : : ; N; 0 < u kX pa:The (not everywhere de�ned) Hermitian inner produ
t { from whi
h a Hilbert spa
e 
anbe 
onstru
ted by 
ompleting the spa
e of ve
tors of �nite norm { is given by�� := Z dm duDp1 : : :DpNÆ�mu�X pa��(u; p1:N) (u; p1:N);where Dp = dp Æ(p2 � (mu)2) = dp2p0 = dp2p(mu)2 + p2 (23)is the invariant measure on a dynami
 mass shell 
(mu). The one-parti
le operatorsare de�ned as J(f) :=Xa f(u;Qa; ma; pa;Ma);where the diagonal operator f = f(u;Q;m; p;M) is a fun
tion of 4-velo
ity u, 
hargeQ, mass m, 4-momentum p and 4-angular momentumM := p ^ ��p (24)with 
omponents M�� = p� ��p� � p� ��p� ;and the supers
ript a indi
ates appli
ation to the 
oordinates of the ath parti
le. (Notethat the global 4-velo
ity u 
arries no supers
ript; it is shared by all parti
les.) Sin
e thep� are the Poin
ar�e generators of translation in the dire
tion of the �-axis and the M��are the standard generators of the Lorentz transformations, it is easy to see that the total4-momentum J(p) and total 4-angular momentum J(M) de�ne a representation ofthe Poin
ar�e group without negative energy states. In the terminology of Dira
 [6℄, it isa representation in the point form. (It shares this property with the representations ofRuijgrok [36℄ whi
h are based on Lippmann-S
hwinger equations. But his translationgenerators are mu
h more 
ompli
ated than the present ones.)On the spa
e (22), one 
an now de�ne a
tions of the formL = L0 � V; (25)where the kineti
 a
tion L0 is a Poin
ar�e invariant one-parti
le operator, and theintera
tion V is a Poin
ar�e invariant integral operator.21



12 Poin
ar�e invariant multiparti
le intera
tionsFor s
alar parti
les, the simplest 
ovariant kineti
 a
tion isL0 = J�p2 � (m
)22m � = J�m2 (u2 � 
2)�; (26)with a 
onstant 
 > 0, the speed of light. However, more 
ompli
ated 
ovariantformulas with rational or analyti
 dependen
e on m and p2 are admissible, too, if theyvanish for p2 = (m
)2 and nowhere else. In this 
ase, the generalized S
hr�odingerequation L = 0 implies for nonintera
ting parti
les, where V = 0, the relation u2 = 
2,for
ing the dynami
 mass shells to equal the bare mass shells.To 
onstru
t a versatile 
lass of Poin
ar�e invariant intera
tions, we �rst note that theve
tor pm := p + u�p � u+p(p � u)2 � p2u2 + (mu2)2u2 (27)is in the dynami
 mass shell 
(mu). Indeed, it suÆ
es by 
ovarian
e to 
he
k the 
asewhere u = 0; then u0 > 0, u2 = u20, p � u = p0u0,(pm)0 = p0 + u0�p0u0 +pp2u20 + (mu20)2u20 =pp2 + (mu0)2 > 0;and sin
e pm = p, we �nd p2m = (mu0)2 = (mu)2. Thus the mapping p ! pm (thedependen
e on u is not written expli
itly) is a nonlinear proje
tion to the dynami
 massshell 
(mu).The simplest 
hoi
e for a nontrivial intera
tion is a sum of pair intera
tions,V =Xa<b V ab; (28)where V ab = V ba a
ts on the 
oordinates of parti
les a and b as(V ab )(u; pa; pb) = Z dq Æ(u � q)Uab(q) (u; (pa + q)ma; (pb � q)mb); (29)where the proje
tions are to be taken with respe
t to the 
ommon 4-velo
ity argumentu, and Uab(q) is also allowed to depend on mass, momentum and 
harge of the parti
les aand b. The delta fun
tion removes a redundan
y in the proje
tions, whi
h do no 
hangeif a multiple of u is added to q. The 
onstru
tion is su
h that V ab is automati
allytranslation invariant. In parti
ular, if all Uab are Hermitian and Lorentz invariant then22



V and hen
e the a
tion (25) is Hermitian and Poin
ar�e invariant. For example, this isthe 
ase in pair potentials of the formUab(q) = Re �S(mamb)2 + (�Vmamb + �QaQb)pa � pb + �T (pa � pb)2mamb(q2 + i") ; (30)where the limit " # 0 is to be taken in (29) to regularize the potential near q = 0.These potentials des
ribe relativisti
 ele
tromagneti
 and gravitational for
es; the 
ou-pling 
onstants � and �S; �V ; �T determine the strength of the ele
tromagneti
 andthe s
alar, ve
tor, and tensor gravitational intera
tion, respe
tively. (This will bejusti�ed in the next se
tion by 
onsidering the nonrelativisti
 limit.) By making these
oupling 
onstants q-dependent (running 
oupling 
onstants), one 
an also a

ount
ovariantly for phenomenologi
al self-energy 
ontributions; 
f. the dis
ussion in Peskin& S
hroeder [31, pp. 252{255℄.Note that after Fourier transform into spa
etime, we get { in 
ontrast to �eld theories{ a nonlo
al (but still Poin
ar�e invariant) a
tion.This basi
 setting 
an be extended in various ways. Parti
les with positive spin or withinternal symmetries are easily a

ommodated, espe
ially when using the representationsdis
ussed in Weinberg [48, 49℄. (They are of 
ourse equivalent to Wigner's represen-tations but 
omputationally more tra
table.) Parti
les with positive integral spin arehandled in exa
tly the same way, ex
ept that the wave fun
tions have additional indi
es,the angular momentum gets an additional intrinsi
 spin term operating on these indi
es,and the inner produ
t has a slightly di�erent form. It is easy to spe
ify L-invariant in-tera
tion terms similar to (30) for parti
les with positive spin and for parti
les withinner symmetries (and 
orresponding matrix-valued 
harges Qa); but su
h intera
tionsare now also restri
ted by Clebs
h-Gordan rules (
f. Weinberg [50℄).Fermion parti
les with half-integral spin are handled similarly, using spinor 
omponentsin the wave fun
tions and kineti
 a
tions su
h asL0 = J(p � 

�m
2): (31)The resulting 
onstrained S
hr�odinger equationsJ(p � 

�m
2) = V  ; p = k generalize the Dira
 equations to the multiparti
le 
ase. Details about the handling ofspin will be given elsewhere.Massless parti
les are handled in the same way, ex
ept that the kineti
 part of the a
tionis absent, sin
e these parti
les never go o�-shell in our phenomenologi
al setting.23



For indistinguishable parti
les, symmetrization and antisymmetrization 
an be done inthe standard way. Di�erent kinds of parti
les are handled by adding to the sum of theirself-a
tions another intera
tion. Few-parti
le systems in whi
h the parti
le number isnot 
onserved 
an be modelled by using a dire
t sum of Hilbert spa
es of the type (22)and 
ovariant intera
tions 
hanging the parti
le number. For example, we may modelthe emission and absorption of a photon of momentum p by a massive s
alar parti
le of
harge Qa with the Hermitian and Poin
ar�e invariant intera
tion proportional to(V  )(u; p; pa) = F (p)Qapama  (u; (pa + p)ma);(V  )(u; pa) = Z dp Æ(p2)F (p)Qapama �  (u; p; (pa � p)ma);where the form fa
tor F (p) is an arbitrary 
ovariant s
alar C1-fun
tion formed fromp, pa and u. (Note that the photon wave fun
tion has additional ve
tor 
omponents,with respe
t to whi
h the inner produ
t � is taken.) Previous 
ovariant few-parti
lemodels 
ould not handle this situation (Keister & Polyzou [18, p. 392℄).In a multiparti
le system, one 
an model in the same way the intera
tions 
orrespond-ing to Feynman diagrams with a single vertex of degree 3, and in a similar way alsointera
tions 
orresponding to more 
omplex verti
es. Note that be
ause momentumis 
onserved and all parti
le energies are positive, parti
les 
annot be 
reated from ava
uum state (with 0 parti
les), nor 
an parti
les be annihilated without 
reating (orpreserving) at least one parti
le. Thus the phenomenologi
al approa
h does not havethe problems whi
h �eld theories have with the presen
e of an intera
ting (`
u
tuating')va
uum.We see that the possibilities for the new a
tion-based relativisti
 models fully mat
h(and even ex
eed) the freedom available for nonrelativisti
 Hamiltonian systems. Sin
ethey are manifestly Poin
ar�e invariant, they are mu
h simpler than various relativis-ti
 Hamiltonian models that have been 
onstru
ted in the past (see, e.g., the reviewin Keister & Polyzou [18℄ for nu
lear physi
s, Crater et al. [4℄ for QED, andRuijgrok [36℄ for a Lippmann-S
hwinger based model), but have the same advantagesas the latter: 
onsisten
y with relativity theory, tra
table few-body 
al
ulations, easytreatment of bound states, resonan
es, and parti
le produ
tion, and easy �t to paramet-ri
 models. In addition, they 
an be used to give phenomenologi
al models of quantumsystems in whi
h the parti
le number is not preserved, or the spin is > 1.In time, su
h a
tion-based relativisti
 models may therefore repla
e the many nonrel-ativisti
 (e.g., Isgur [15℄, Karl [17℄), semirelativisti
 (e.g., Lu
ha et al. [22, 23℄)and relativisti
 (e.g., Keister & Polyzou [18℄) Hamiltonian approximations, and ap-proximations based on Bethe-Salpeter equations (e.g., Kummer & M�odri
h [20℄) or24



Dyson-S
hwinger equations (e.g., Roberts & Williams [35℄) now in vogue for thephenomenologi
al des
ription of quarks, mesons, baryons, and other relativisti
 matter.Sin
e our phenomenologi
al a
tions are easily made manifestly symmetri
 under the fullsymmetry group of a system, it may also give more workable low energy e�e
tive the-ories for the standard model, su
h as 
hiral perturbation theory (e.g., E
ker [10, 11℄)or quantum hadrodynami
s (e.g., Serot [39℄, Serot & Wale
ka [39, 40℄).The relation between the above a
tion-based relativisti
 multiparti
le models and the�eld-theoreti
 models dis
ussed earlier is not 
lear at present. It is expe
ted that theproje
tion te
hniques from Neumaier [28℄ relate the �eld theories from Se
tion 9 to
orresponding e�e
tive N -parti
le theories modeled as in the present se
tion. On theother hand, it is also 
on
eivable that the �eld theories should rather be regarded aslimits of N -parti
le theories in the thermodynami
 limit N !1. There are indi
ationsthat this might be the 
ase for QED (sin
e radiation phenomena are always dissipative)and for gravitation (sin
e bla
k hole thermodynami
s 
hanges pure states to mixedstates, 
f. Wald [46, pp. 180{185℄; the traditional 
oupling to a hydrodynami
 modelis also meaningful only in a thermodynami
 limit).13 Constrained S
hr�odinger equationsStates of �xed total 4-momentum J(p) 
an be obtained by solving (13). With a Lorentzboost, we may transform the system to a rest frame; the resulting 
onstraint J(p) = 0
an be imposed kinemati
ally by restri
ting the 4-velo
ity to u = 0. Sin
e 
 and J(m
2)are 
onstants, the wave fun
tion is an eigenstate of the rest frame energy J(p0
�m
2)(a shifted relativisti
 energy p0
, introdu
ed in analogy to the prelude), and we are leftwith the (still rotation invariant) 
onstrained S
hr�odinger equations = Æ(u) 0; L = 0; J(p0
�m
2) = E ; (32)the relativisti
 analogue of the nonrelativisti
 multiparti
le S
hr�odinger equation af-ter separation of the motion of the 
enter of mass. Thus our phenomenologi
al ap-proa
h is a 
ovariant version of the situation in the prelude: The mass shells form 3-dimensional manifolds, and the momenta pa 
an be 
onsidered as relativisti
 analoguesof 3-momentum ve
tors. Sin
e u = 0, the 4-velo
ity 
ontributes only one additionaldegree of freedom u0, whi
h repla
es the energy degree of freedom of the nonrelativisti
situation. Thus, in 
ontrast to the realizations of quantum �eld theory dis
ussed above,to traditional Bethe-Salpeter equations, and to proper time based relativisti
 multipar-ti
le dynami
s (see, e.g., Fan
hi [12℄), there are no super
uous degrees of freedom, butthe treatment is still manifestly 
ovariant.25



The delta fun
tion in the intera
tion (29) for
es q0 = 0. Dropping the redundant
oordinates u = 0, p0 = p(mU0)2 + p2 and q0 = 0 from the notation, the intera
tion
an be written as the 3-dimensional integral(V ab )(u0; pa; pb) = 
�1 Z dq Uab(q) (u0;pa + q;pb � q); (33)the prefa
tor 
omes from the delta fun
tion in (29). If we now Fourier transform inspa
e to get the position representation,b (u0;xa;xb) = Z dpadpbe�pa�xae�pb�xb (u0;pa;pb);we �nd [V ab (u0;xa;xb) =dUab(xb � xa) b (u0;xa;xb)with the spatial potential dUab(r) = 
�1 Z dq e�q�rUab(q): (34)This looks like a nonrelativisti
 formula, but the 
ovariant nature of the model is visiblein the form (29) of Uab(q) and also shows in the 
onstraint nature of (32). Compared tothe nonrelativisti
 
ase, this is now a general linear eigenvalue problem for the eigenvalueE, and its solution is slightly more demanding. But numeri
al methods are available;see, e.g., Golub & van Loan [13℄.The nonrelativisti
 limit. To deepen the analogy, we give a rough, heuristi
 deriva-tion of the nonrelativisti
 limit 
 ! 1; it would be interesting to have a rigorousversion of this from whi
h one 
an obtain error bounds. The equation L = 0 
anbe written (for bosons) as J(12m(u2 � 
2)) = V  . For small potential energies,V � J(m)
2 and small spatial momenta, p2 � (m
)2, this gives u2 = 
2 + O(1),hen
e p2 = (mu)2 = (m
)2 + O(1) and p0 =p(m
)2 + p2 = m
+O(
�1). Therefore,p20 � (m
)22m = (p0 �m
)p0 +m
2m = (p0 �m
)(
 +O(
�1)) = p0
�m
2 +O(
�2);L = J�p2 � (m
)22m � = J�p20 � (m
)22m �� J� p22m�� J(p0
�m
2)� J(p2=2m) = E � J(p2=2m)with the rest frame energy E = J(p0
�m
2). Thus, the 
onstraint S
hr�odinger equationredu
es in the nonrelativisti
 limit to the standard S
hr�odinger equation for a multipar-ti
le system with HamiltonianH = J(p2=2m) +Xa<b dUab(xb � xa):26



Arbitrary lo
al pair intera
tions 
an be obtained in the nonrelativisti
 limit by 
hoosingUab appropriately (and in a non-unique way). For larger kineti
 energies, the potentialin position spa
e a
quires additional, nonlo
al terms (that 
an be approximated usingderivatives in the intera
tion). Thus we have a 
exible 
ovariant theory with a goodnonrelativisti
 limit.In parti
ular, from the 
ovariant potential (28) with pair intera
tions of the form (30),we re
over in the nonrelativisti
 limit the standard nonrelativisti
 multiparti
ledynami
s in the presen
e of ele
tromagneti
 and gravitational for
es.14 Golden opportunitiesBehind it all is surely an idea so simple, so beautiful, that when{ in a de
ade, a 
entury, or a millennium { we grasp it, wewill all say to ea
h other, how 
ould it have been otherwise?John Ar
hibald Wheeler, 1987 [51℄Eine mathematis
he Theorie ist ni
ht eher als vollkommenanzusehen, als bis du sie so klar gema
ht hast, da� du sie demersten Manne erkl�aren k�onntest, den du auf der Stra�e tri�st.David Hilbert, 1900 [14℄I do not know whether the perfe
tion requested by Hilbert 
an be a
hieved in deeptheories. But, having dis
overed the unexpe
ted beauty of the present approa
h, I hopethat the insights presented will 
ontribute to the perfe
tion of quantum �eld theory.In 1972, Freeman Dyson [9℄ gave a le
ture 
alled \Missed opportunities", where hetalked \about the 
ontribution that mathemati
s ought to have made" to physi
s \butdid not". I believe the present 
ontribution widely opens the door for mathemati
ians to
ontribute to quantum �eld theory, and 
reates golden opportunities for those interestedin mathemati
al physi
s.The present setting gives a mathemati
ally 
onsistent point of view from whi
h to studythe laws of physi
s, whi
h 
omplements the point of view taken by past history. Onthe new basis, it is likely that s
ientists will resolve in the near future the most ba-si
 
hallenges 
urrent theoreti
al physi
s poses to mathemati
ians and mathemati
alphysi
ists:� the existen
e of QED and derivation of its properties,� bound states and resonan
es in quantum �eld theories,27



� a uni�ed quantum �eld theory of all for
es of nature,� the existen
e and mass gap in quantum Yang-Mills theory { one of seven Claymillenium prize problems [3℄, a golden opportunity in the most 
on
rete sense.15 ThanksIt is a great pleasure for me to be able to parti
ipate in the revelation of the lawsthe Creator has built into our universe. I want to thank God for the 
all, vision,open-mindedness, patien
e, persisten
e and joy I got (and needed) for going su

essfullythrough the journey in the platoni
 world of pre
ise ideas (that, for a long time, appearedto me all too foggy in the regions where quantum �eld theory is lo
ated) that lead tothe results presented here.I also want to thank the maintainers of (and the 
ontributors to) the Los Alamos Na-tional Laboratory e-Print ar
hive for this wonderful on-line sour
e 
ontaining mostphysi
s manus
ripts of the last few years. It saved me many hours of work by givingme qui
k a

ess to the many thousands of papers that I glan
ed at, leaved through, orread more thoroughly while sear
hing for the path to su

ess.I'd like to thank Dr. Hermann S
hi
hl (Wien) for many dis
ussions on various pie
es ofthe puzzle that helped me to 
larify my thoughts. Thanks also to Prof. Peter Mi
hor(Wien) who pointed me to the book by da Silva & Weinstein [5℄ on Poisson algebras,to Prof. Walter Thirring (Wien) for his treatise on mathemati
al physi
s whi
h I usedover and over again, to Prof. Gerhard E
ker (Wien) for useful dis
ussions on quantum�eld theory long ago, and to Prof. Hartmann R�omer (Freiburg), who introdu
ed memany years ago to the idea that an elementary parti
le `is' [41, p.149℄ an irredu
ibleunitary representation of the Poin
ar�e group.
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