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1 Introdution. . . the anients (as we are told by Pappus) esteemed the siene of mehanisof greatest importane in the investigation of natural things, and the moderns,rejeting substantial forms and oult qualities, have endeavored to subjet thephenomena of nature to the laws of mathematis . . .Isaa Newton, 1686 [30℄Renormalized quantum eletrodynamis is by far the most suessful theorywe have today. This very impressive fat, however, does not make the wholesituation less strange. We start out from equations whih do not make sense.We apply ertain presriptions to their solutions and end up with a powerseries of whih we do not know that it makes sense. The �rst few terms ofthis series, however, give the best preditions we know.Res Jost, 1965 [16℄In the more than 300 years that passed sine Newton wrote this in his Prinipia Mathe-matia, the moderns have been very suessful at the endeavor to subjet the phenomenaof nature to the laws of mathematis { with exeption of quantum �eld theory. As theseond quote (whih ould have as well been written in 2002) shows, quantum �eldtheory so far resisted a quantitative, mathematially rigorous foundation.In the present paper, an axiomati approah is outlined that, I believe, provides foun-dations on whih quantum �eld theory an be given a rigorous mathematial treatment.The present paper gives the elementary part and exhibits the onnetions to the tradi-tional settings. A deeper study of the onsequenes and use of the onepts presentedhere will be given elsewhere.In the new approah, eah (lassial or quantum) onservative physial system is har-aterized by two Hermitian quantities: a density and an ation. A generalized Liouvilleequation de�nes the dynamis and implies Ehrenfest equations for expetations.For a lassial (but not a quantum) �eld theory, the Ehrenfest equations in a sympletiPoisson algebra imply the traditional �eld equations by the stationary ation priniple.In partiular, all traditional systems derivable from the stationary ation priniple an bemodelled in our setting. In a similar way, one an get from suitable Lie-Poisson algebrasrelativisti and nonrelativisti Euler equations, Vlasov-Maxwell, Vlasov-Einstein, andEuler-Poinar�e equations.A new phase spae quantization priniple (generalizing the Wigner transform) allowsthe simple quantization of arbitrary Poisson algebras, with a good lassial limit.A large lass of Poinar�e invariant ations on spaes with a reduible representation ofthe Poinar�e group is exhibited. Sine it is manifestly ovariant but possesses a Hamil-2



tonian nonrelativisti limit, it appears to be well-suited for phenomenologial modelingof relativisti few-partile dynamis.In partiular, we obtain a Lorentz-ovariant phenomenologial multipartile quantumdynamis for eletromagneti and gravitational interation whih redues in the non-relativisti limit to the traditional Hamiltonian multipartile desription with standardNewton and Coulomb fores. The key that allows us to overome the traditional prob-lems in anonial quantization is the fat that we use the algebra of linear operators ona spae of wave funtions slightly bigger than traditional Fok spaes.For a quantum system, if the ation is translation invariant, one an �nd pure statesof given mass desribing isolated systems in a rest frame by solving a onstrainedShr�odinger equation. This opens a onstrutive spetral approah to �nding physialstates both in relativisti quantum �eld theories and in phenomenologial few-partileapproximation.While I have already heked muh of what is needed to get the many known results asonsequenes of the present setting, I am not yet ompletely sure about the adequayof the new theory for all aspets of traditional �eld theory. Thus I'd like to apologize(as Newton did in the prefae of [30℄) and \heartily beg that what I have here done maybe read with forbearane; and that my labors in a subjet so diÆult may be examined,not so muh with the view to ensure, as to remedy their defets."2 Prelude: Covariant transmutationDo not imagine, any more than I an bring myself to imagine, that I shouldbe right in undertaking so great and diÆult a task. Remembering whatI said at �rst about probability, I will do my best to give as probable anexplanation as any other { or rather, more probable; and I will �rst gobak to the beginning and try to speak of eah thing and of all.Plato, a. 367 B.C. [32℄We begin with traditional nonrelativisti quantum mehanis of a multipartile systemand rewrite it in a formally ovariant way that foreshadows the axiomati setup devel-oped afterwards. (This setion serves as a heuristi motivation only, without any laimsto rigor.)Let H be a translation invariant and time-independent Hamiltonian, p the 3-momentumoperator, the generator of the spatial translations,  the energy eigenstate in the restframe of a system with energy E > 0 and total mass m. The Shr�odinger equation givesH = E , and the ondition that the system is in a rest frame says p = 0.3



To make these statements ovariant, we extend wave funtions by an additional argu-ment E. Then we may onsider the energy E as an operator ating on funtions  (E; x)by multipliation with E, with time t = i�h�=�E as onjugate operator. By introduingthe operator L := E �H; (1)we may write the Shr�odinger equation together with the rest frame ondition in theform L = 0; p = 0:We now introdue a 4-momentum vetor p = �p0p�, where p0 is related to the energy Eby the relation E = p0�m2: (2)On writing p2 = p20 � p2 (where p2 = p � p) for the Lorentz square of a 4-vetor, andapplying a Lorentz transform, we see that this is equivalent with the onditionL = 0; p = k for a pure momentum state  with de�nite 4-momentum k > 0 (in the forward one,i.e., k0 > jkj) and energy E = pk2 �m2:A general pure state is a superposition  = R dk k of (unnormalized) momentum stateswith 4-momentum k, hene any nonzero  withL = 0; i.e.,  2 H := kerL:A general mixed state is a mixture � = Z d�(�) � �� of pure states  � weighted bya nonnegative measure d�(�). Thus L� = �L = 0. In partiular, with the standardexpetation hfi� := tr �f;of linear operators f on funtions  (E; x) we have[L; �℄ = 0; hLi� = 0: (3)The equations (3) will be the starting point for our axiomati setting. Slightly gener-alized, they will allow us to formulate not only nonrelativisti quantum mehanis, butalso lassial mehanis, lassial �eld theory, and quantum �eld theory.
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3 Axiomati physisDas Streben nah Strenge zwingt uns eben zur AuÆndung einfaherer Shlu�-weisen; auh bahnt es uns h�au�g den Weg zu Methoden, die entwikelungsf�ahigersind als die alten Methoden von geringerer Strenge. [...℄Durh die Untersuhungen �uber die Grundlagen der Geometrie wird uns dieAufgabe nahe gelegt, nah diesem Vorbilde diejenigen Disziplinen axiomatish zubehandeln, in denen shon heute die Mathematik eine hervorragende Rolle spielt;dies sind in erster Linie die Wahrsheinlihkeitsrehnung und die Mehanik.David Hilbert, 1900 [14℄We now begin the axiomati treatment; from now on, all onepts have a preise, un-ambiguous meaning. Here we onentrate on the onservative, (lassial and quantum)mehanis part of Hilbert's 6th problem, quoted above; for the probability part, viewedin the present ontext, see Neumaier [29℄. In this paper, we only give the outlinesand general avor of the theory. A muh more extensive version with full details, and atreatment of the dissipative ase are in preparation.The quantities of interest are elements of a Eulidean Poisson algebra E ontainingthe omplex numbers as onstants. Apart from an assoiative produt (ommutativeonly in the lassial ase) one has an involution � reduing on the onstants to omplexonjugation, a omplex-valued integral R de�ned on a subalgebra IE of integrablequantities, and a Lie produt (or braket) q . The subalgebra BE of boundedquantities onsists of all f 2 E with f �f � �2 for some � 2 R. Quantities f withf � = f are alled Hermitian. (For reasons given in Neumaier [29℄, we avoid usingthe ustomary word `observables', and follow instead the International System of Units(SI) [43℄ in our terminology.)Apart from the standard rules for �-algebras and the linearity of the integral and theLie produt, one assumes the following axioms. (The produt has priority over the Lieprodut, and both have priority over the integral. The partial order is de�ned by f � 0i� f � = f and R g�fg � 0 for all g 2 IE , and the monotoni limit is de�ned by fl # 0i�, for every g 2 IE , the sequene (or net) R g�flg onsists of real numbers onvergingmonotonially to zero.)Axioms for a Eulidean �-algebra:(E1) f 2 BE ; g 2 IE ) g�; fg; gf 2 IE(E2) (R g)� = R g�; R fg = R gf(E3) R g�g > 0 if g 6= 0(E4) R g�fg = 0 for all g 2 IE ) f = 0 (nondegeneray)(E5) R g�l gl ! 0 ) R fgl ! 0, R g�l fgl ! 0(E6) gl # 0 ) inf R gl = 0 (Dini property)5



Additional axioms for a Eulidean Poisson algebra:(P1) (f q g)� = f � q g�(P2) f q g = �g q f (antiommutativity)(P3) f q (g q h) = (f q g) q h+ g q (f q h) (Jaobi identity)(P4) f q gh = (f q g)h+ g(f q h) (Leibniz identity)(P5) f �f = 0 ) f = 0 (nondegeneray)(P6) f 2 IE ; g 2 E ) f q g 2 IE ,(P7) R f q g = 0 if f 2 IE (partial integration)As a onsequene,(P8) R f(g q h) = R (f q g)h.Note that (E3) implies the Cauhy-Shwarz inequalityR (fg)�(fg) � R f �f R g�g;whih implies thast IE is ontained in BE .The present de�nition of a Eulidean Poisson algebra is a modi�ation of the onept ofa Poisson algebra as disussed in Vaisman [45℄ and da Silva & Weinstein [5℄ in thatommutativity is dropped but integration requirements imposing a Eulidean strutureare added. This modi�ation enables us to treat lassial and quantum physis on thesame footing. (For a related attempt in this diretion, see Landsman [21℄.) Moreover,we introdued the symbol q (an inverted stylized L, read 'Lie') to replae the Poissonbraket notation, whih would be muh more umbersome if used extensively (as in asyet unpublished work).In the present, elementary paper, we make use only of some of the above axioms (mainlythose not involving limits). However, as will be shown elsewhere, all are needed for thedeeper analysis of our oneptual basis.To show that the axioms are rih in ontents, we desribe two basi realizations of them.The quantum Poisson algebra. Let H be a Eulidean (= pre-Hilbert) spae. Wede�ne the ommutator [f; g℄ := fg � gf , and let � := i=�h with a positive real number �halled Plank's onstant. Then the algebra E = Lin H of ontinuous linear operatorson H is a Poisson algebra with quantum braketf q g = �[f; g℄;and Eulidean with quantum integralR f = tr f;6



Integrable quantities are the operators f 2 E for whih all gfh with g; h 2 E are traelass. (This inludes all operators of �nite rank.) The axioms are easily veri�ed.Nonrelativisti quantum mehanis. Nonrelativisti quantum physis is usuallydesribed by a rigged Hilbert spae (see, e.g., Bohm [2℄), if one wants to have diretaess to the unbounded operators. Hene let H 0 be a Eulidean spae (the nulear partof the rigged Hilbert spae) with nulear topology; we put H = C1(R; H 0). For thestandard position representation and p0 = i�h�t=, q0 = t, we havep� q q� = ��� for �; � = 0; 1; : : : ; (4)with the metri � = Diag(1;�1; : : : ;�1):Restrited to E 0 = Lin H 0 , this gives the setting of traditional quantum mehanis.Nonrelativisti lassial mehanis. As disussed, e.g., inMarsden & Ratiu [24℄,lassial physis an be most onveniently desribed in terms of a Poisson manifold 
.Let f�; �g be the assoiated Poisson braket on the algebra E 0 := C1(
) of in�nitelydi�erentiable omplex-valued funtions on 
. Then E = C1(R2 ; E 0) (de�ned as inKriegl & Mihor [19℄) is a Poisson algebra with lassial braketf q g := �f�t �g�E � �f�E �g�t + ff; ggfor f = f(t; E), g = g(t; E), and Eulidean with lassial integralR f = Z dt dE Z
 f(t; E)(where R
 is the Liouville measure). Integrable quantities are the Shwartz funtions onE . (Thus integrability in the present sense is muh stronger than Lebesgue integrability.This is due to our requirement (E1) whih implies that IE must be an ideal in E .) Again,the axioms are easily veri�ed. With p0 = E=, q0 = t and the standard sympletiPoisson braket, we get again (4).
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4 Physial systems . . . da� die �ublihe Quantisierungsvorshrift sih durheine andere Forderung ersetzen l�a�t [...℄Die neue Au�assung ist verallgemeinerungsf�ahig undr�uhrt, wie ih glaube, sehr tief an das wahre Wesen derQuantenvorshriften.Erwin Shr�odinger, 1926 [38℄Motivated by the prelude, and onsistent with the introdutory remark in the seminalpaper \Quantisierung als Eigenwertproblem" (\Quantization as eigenvalue problem")by Shr�odinger [38℄, we generalize the Shr�odinger piture of traditional quantummehanis as follows. A physial system is haraterized by a Hermitian density� 2 IE with � � 0. The density, or any set of parameters from whih the density anbe uniquely reonstruted by a well-de�ned reipe, is referred to as the state of thesystem. A physial system with density � de�nes expetationshfi := R �f = R f�: (5)The entralizer E (S) of a quantity S (or a vetor of Lie ommuting quantities) is theset of all quantities Lie ommuting with (all omponents of) S,E (S) = ff 2 E j S q f = 0g:Clearly, E (S) is again a Poisson algebra. For a quantity f 2 E (S), the onditionalexpetation at a �xed value s of S is de�ned byhfiS=s = hfÆ(S � s)i=hÆ(S � s)i;de�ned via a limit of integrable funtions approahing the delta funtion. For example,if S is Hermitian with real spetrum thenhfiS=0 = lim"#0 h(S � i")�1f(S + i")�1i=h(S2 + "2)�1i:By onstrution, onditional expetations always satisfy h1iS=s = 1; they satisfy theaxioms for an ensemble given in Neumaier [29℄.Dynamial preditions are possible only in a system with a well-ontrolled environment.For a system in interation with an arbitrary environment, the expetation satis�es adynamis determined by the Ehrenfest equationshDffgi = 0 for all f 2 BE (6)8



with a forward derivation D, i.e, a ontinuous linear mapping Df�g : E ! E mappingbounded quantities to bounded quantities and satisfyingDffg� = Dff �g; Dff �fg � Dff �gf + f �Dffgfor all f 2 E . Physial systems with the same forward derivation (but in general di�erentdensities) are said to follow the same physial law. Written in terms of the density,(6) beomes the generalized Liouville equationD�f�g = 0 (7)with the Liouville operator D� de�ned (uniquely by (E4)) byRD�f�gf = R �Dffg:We shall disuss general physial systems and their (dissipative) properties elsewhere.Here we onsider isolated systems only, where the physial law is haraterized by aHermitian ation L 2 E whih determines the forward derivation. A physial systemwith density � is alled isolated (and � is alled a onservative density) ifhLi = RL� = 0and the generalized Liouville equation L q � = 0 (8)holds. Sine hL q fi = R �(L q f) = R (� q L)f = �R (L q �)f = 0;expetations in isolated systems satisfy the Ehrenfest equationshL q fi = 0 for all f 2 IE :The axioms for a Eulidean expetation algebra imply thatD�ffg = �L q f is a forwardderivation for both signs; as disussed elsewhere, this reets the reversible, onservativenature of isolated systems.If � is a onservative density and f 2 E (L) then�f := f�f � (9)is also a onservative density. Thus a large lass of onservative densities an be on-struted from a single one if some quantities fl in the entralizer E (L) are known, sinewe may apply (9) with any polynomial onstruted from the fl. This generalizes thetraditional onstrution of states from the vauum by means of reation operators. Itis appliable even where { suh as for interating quantum �elds in 4 dimensions { nopreise mathematial meaning an be given to the latter onstrution.9



5 Hamiltonian systemsOur axioms over the traditional physis of Hamiltonian systems. The ation orre-sponding to an arbitrary time-dependent Hamiltonian H(t) is de�ned asL = p0 �H(t);where p0 = E in the lassial ase and p0 = i�h�t in the quantum ase. In both ases,p0 q f = � _f :(Stritly speaking, the name 'ation' �ts tradition only for �eld theories. For multi-partile systems, the above expression for L is unrelated to traditional ation priniples.But applying the same mahinery whih gives the �eld equations of �eld theory to thisunorthodox ation happens to produe the orret multi-partile dynamis.)For onservative quantum systems, L q � = 0 implies for L = p0 �H:_� = �p0 q � = �(L +H) q � = �H q �;and we get the standard quantum Liouville equationi�h _� = [H; �℄ (10)for a onservative nonrelativisti quantum system with Hamiltonian H. The Ehrenfestequations redue to their traditional formi�h ddthfi = h[f;H℄i;showing that expetations follow a deterministi law. For onservative lassial systems,exatly the same derivation applies, and we get the lassial Liouville equation_� = fH; �g: (11)6 Pure statesPure states are the limiting situation (in a suitable ompletion of the spae of integrablequantities) of densities extremal with respet to the natural order relation. They areof mathematial interest sine any density an be written as a onvex ombination ofpure states, and of physial interest for few-partile systems, where states an often beonsidered as approximately pure. (However, states at positive temperature are never10



pure, and the deomposition into pure states is, in the quantum ase, not unique. Thuspure states desribe idealized situations only.)Pure lassial states. Here extreme states are distributional limits of densities; the ex-petations are algebra homomorphisms into C (i.e., haraters of the algebra) satisfyinghLi = 0. For nonrelativisti lassial physis with phase spae variable z,hfi = f(t; E; z);and the ondition hLi = 0 �xes the value of E to E = H(t; z). Hene we may assume fto be independent of E.Thus pure states of a lassial nonrelativisti system are haraterized by a pair (t; z)onsisting of a time t and the phase spae loation z of the system at this time. TheEhrenfest equations redue in the limit of pure states to the Hamiltonian dynamis_f = ff;Hg:Pure quantum states. Extreme states are limiting rank 1 densities� =   �;  2 H � :The equation L q � = 0 implies that  is a generalized eigenvetor of L. (See, e.g.,Maurin [25℄ for a mathematial treatment in terms of nulear spaes.) The onditionhLi = 0 then implies that the eigenvalue vanishes. Note that, sine generalized eigen-vetors need not be in H , not all expetations need to exist in a pure state; the latterare to be regarded only as idealized limits of physial states.Thus pure states of an isolated quantum system are haraterized by a generalizedShr�odinger equation L = 0;  2 H � : (12)We all solutions of (12) pure onservative quantum states.As disussed in the prelude, if the ation L is translation invariant and p is the gen-erator of the translations, one an �nd pure onservative quantum states of de�nite4-momentum k by solving the equations.p0 = m ; p = k : (13)In partiular, pure states of massm in a rest frame an be found by solving the eigenvalueproblem p0 = m ; p = 0; L = 0:11



This is a onstrained Shr�odinger equation, f. Setion 13 below.The pure onservative quantum states form a vetor spae H ons on whih the entralizerE (L) ats sine f 2 E (L) and  2 H ons imply Lf = fL = f0 = 0. In thequantum ase, f 2 E (L) i� f ommutes with L; thus quantities in E (L) an be found,e.g., by solving the eigenvalue problem for L. Thus we an reate from any partiularonservative quantum state a large lass of other onservative quantum states providedwe know enough quantities ommuting with L.7 Classial �eldsWe disuss here only boson �elds. By using super Poisson algebras and super versionsof all onepts, fermion �elds an be handled in an analogous fashion.Let H := S(R1;3) be the algebra of in�nitely di�erentiable, fast deaying Shwartz fun-tions on Minkowski spae R1;3 , and let V be a �nite-dimensional sympleti spae withsympleti form �. Then the �eld algebra E := C1pol(H 
 V �) of in�nitely di�erentiablefuntions f of the �eld argument � 2 H with �nf 2 C1(H 
 V �; (H 
 V )
n) and atmost polynomial growth is a Poisson algebra withf q g = Z dx �� �f��(x) ; �g��(x)� :With expolynomial funtions (linear ombinations of produts of polynomials with theexponential of a negative de�nite, quadrati polynomial) as integrable funtions, E isEulidean with an integral de�nable via in�nite-dimensional Gaussian measures.Pure lassial �eld states. A pure state over the �eld algebra E = C1pol(H 
 V �)assigns to eah f 2 E the value f(�) at a partiular �eld � 2 H 
 V �. The Ehrenfestequations redue in the limit of pure states over the �eld algebra to the equationsL q f = 0 for all f 2 E :Inserting the linear funtion f = a(�), wherea(�) := Z dx a(x)T�(x);into L q f = 0 we get �� �L��(x) ; a(x)� = 012



for a 2 H 
 V with ompat support. Sine � is nondegenerate, we onlude�L��(x) = 0 for all x 2 R1;3 :This is the traditional stationary ation priniple. In the urrent setting, it is nota postulate but a onsequene of the Ehrenfest equations. (The equations for otherhoies of f are onsequenes of this.)To get the traditional �eld theories, we simply need to �nd the right sympleti struturefor eah type of �eld. The �eld omponents must appear in onjugate pairs, whih wearrange to two onjugate vetors � and � (in plae of the single � used before). Thenadequate ommutation relations area(�) q b(�) = a(�) q b(�) = 0;a(�) q b(�) = (ajb) := Z dx a(x)T b(x);where � = �� for omplex �elds (whih ome in omplex onjugate pairs), while forreal �elds � and � are independent. For real �elds whih have no onjugate partnerin the Lagrangian, one adds additional onjugate partners to the algebra of quantities.These additional �elds are { like gauge degrees of freedom { unobservable and do nota�et the �eld equations for the original �elds.Hene the present framework allows a onsistent implementation of all lassial �eldequations derivable from the stationary ation priniple. (Note: If we apply this tothe eletromagneti 4-vetor potential, we get, in ontrast to the approah in anonialquantization, a onjugate 4-vetor potential, with standard sympleti Lie braket foreah omponent!)By extending the above framework to Eulidean super Poisson algebras, one an alsoinorporate lassial fermion �elds. In partiular, we an implement a lassial versionof the standard model, inluding gravitation within the present setting.If we use in plae of sympleti Poisson algebras suitable Lie-Poison algebras, the Ehren-fest equations produe in the limit of pure lassial states for appropriate ations boththe relativisti [26℄ and nonrelativisti [27℄ Euler equations for perfet uids and theEuler-Poinar�e equations [24℄. Using suitable Lie-Poison algebras of funtions ofphase spae �elds, it is possible to de�ne natural ations for whih the Ehrenfest equa-tions produe in this way the Vlasov equations. In suitable tensor produts one anthen form ations that de�ne Vlasov equations interating with eletromagneti and/orgravitational �elds, giving Vlasov-Maxwell equations (f., e.g., [34℄) and Vlasov-Einstein equations (f., e.g., [1℄).Details will be given elsewhere. 13



8 Phase spae quantizationThere are many ways to quantize a lassial system. From the point of view of beingable to do analysis (i.e., error estimates), the mathematially most developed formis deformation quantization (see, e.g., Rieffel [37℄), whih deforms a ommutativeprodut into a Moyal produt. In the following, we propose an alternative deformationapproah whih, instead, deforms the operators f 2 E by embedding E into Lin E ,identifying f 2 E with the multipliation mapping g ! fg. This an be done withsurprising ease.The superoperators Mf and Df de�ned byMffgg := fg; Dffgg := f q gbelongs to Lin E . For f 2 E , we de�ne the quantization bf of f bybf :=Mf � i�h2 Df 2 Lin E :The expetations h bfi = hfi � i�h2 hDfidi�er from those of f by a term of order O(�h), justifying an interpretation in terms of\deformation". In partiular, we automatially have a good lassial limit.To atually quantize a lassial theory, one may hoose a Lie algebra of relevant quanti-ties generating the Poisson algebra, quantizes its elements by the above rule, expressesthe lassial ation as a suitably ordered polynomial expression in the generators, anduses as quantum ation this expression with all generators replaed by their quantiza-tions.In general, the above reipe for phase spae quantization gives an approximate Poissonisomorphism, up to O(�h) terms. But Lie subalgebras are mapped into (perhaps slightlybigger) Lie algebras, and one gets a true isomorphism for all embedded Heisenberg Liealgebras, i.e., Lie algebras where all Lie produts are multiples of a entral element 1.Quantization Theorem. If E is ommutative then the quantum braketA q B = �[A;B℄ for A;B 2 Lin Esatis�es, for f; g 2 E , bf q bg =Mf q g � i�h4 Df q g = 12(Mf q g + df q g);14



Any Lie subalgebra L of E de�nes a Lie algebrabL = fMf q g + bh j f; g; h 2 Lgunder the quantum braket. If L is a Heisenberg Lie algebra then b : L ! bL is a Lieisomorphism.The proof is not diÆult but will be given elsewhere.In partiular, for the standard sympleti Poisson algebra E = C1(Rn � Rn), phasespae quantization amounts to using the reduible representationbp = p� i�h2 �q; bq = q + i�h2 �pof the anonial ommutation rules on phase spae funtions instead of the traditionalirreduible representation ~p = �i�h�x; ~q = xon on�guration spae funtions. It will be shown elsewhere that these representationsare related by a Wigner transform (f. Wigner [53℄).By quantizing in phase spae, one gives up irreduibility (and hene the desriptionof a state by a unique density) but gains in simpliity. Perhaps this is omparable tothe situation in gauge theory, where the desription by gauge potentials introdues somearbitrariness with whih one pays for the more elegant formulation of the �eld equationsbut whih does not a�et the observable onsequenes.9 Quantum �eld theoryA good many physiists are now working on the problemof trying to set up a quantum �eld theory independentlyof any Hamiltonian. [...℄I still think that in any future quantum theory therewill have to be something orresponding to Hamiltoniantheory, even if it is not in the same form as at present.Paul Dira, 1964 [7℄Ations for lassial or quantum �eld theories are based on representations of a symmetrygroup and orresponding invariant ations. In any fundamental theory, the symmetrygroup must ontain either the Galilei group (for nonrelativisti �elds) or the Poinar�egroup (for relativisti �elds); if gravitation is involved, the symmetry group must alsoontain the group of all di�eomorphisms of some spaetime manifold.15



Having a symmetry group is equivalent with having nonuniqueness in the desriptionof a physial system. Di�erent states providing equivalent desriptions (satisfying thesame laws but in di�erent oordinates) are ommonly said to orrespond to di�erenthoies of an inertial system. Changing the inertial system used to oordinatize a systemhanges the state and hene the expetations; for example, moving an inertial systemO (illustrated by an observing intelligent robot) in time produes a hange in observedexpetations whih O oneives of as the intrinsi dynamis of the environment, whilemoving (rotating or translating) the inertial system O in spae produes a hange inobserved expetations whih O oneives of as the illusion of the spae moving aroundit aused by the motion of its moving head. We now formalize these onsiderations.Let L be the Lie algebra of the Galilei group, the Poinar�e group or any assumedsymmetry group ontaining one of these groups, with Lie produt q . Let p 2 L1;3 bethe generator of the translation subgroup in the anonial basis. Let J be a Poissonrepresentation of L in a Eulidean Poisson algebra E , de�ned byJ(Æ) q J(Æ0) = J(Æ q Æ0) for all Æ; Æ0 2 L: (14)P := J(p) (taken omponentwise) de�nes the (total) physial 4-momentum. Asmooth hange of the inertial system (modeling a virtual motion of the robots head)is desribed by an arbitrary ontinuously di�erentiable mapping Æ : [0; 1℄ ! L speify-ing the in�nitesimal motions Æ(�) 2 L of the inertial systems at instant � 2 [0; 1℄. Aorresponding assignment of densities �(�) 2 IE at instant � is alled onsistent if itsatis�es the di�erential equationdd� �(�) = �(�) q J(Æ(�)): (15)In lassial physis, this desribes a anonial, in quantum physis a unitary transfor-mation representing a general element of the (onneted part of the) symmetry group.In partiular, an observer moving in spae-time with uniform veloity u 2 R1;3 �nds thedensity hanging aording to the ovariant Liouville equationdd� �(�) = �(�) q J(u � p): (16)Thus we have a ovariant generalization of the nonrelativisti situation onsidered inSetion 5.Sine suh a hange of inertial systems should not a�et the physis, we require thatquantities (and in partiular the ation L, i.e., the physial law) are una�eted by thesehanges, and that an isolated system remains isolated. The former ondition is simplythe requirement that we base our setting on the Shr�odinger piture, and the latterondition amounts to L q �(�) = 0 for all � (17)16



whenever L q �(0) = 0. To analyze this ondition, let �(0) be the density of an isolatedsystem, and put e(�) := L q �(�):Then e(0) = 0 anddd� e(�) = dd� (L q �(�)) = L q dd� �(�) = L q (�(�) q J(Æ(�)))= (L q �(�)) q J(Æ(�)) + �(�) q (L q J(Æ(�)))so that dd� e(�) = e(�) q J(Æ(�)) + �(�) q (L q J(Æ(�))): (18)If (17) holds then e(�) vanishes identially, and this redues to �(�) q (L q J(Æ(�))) = 0.The requirement that this holds for arbitrary densities and arbitrary smooth hanges ofthe inertial system therefore demands thatL q J(Æ) 2 CE for all Æ 2 L; (19)where CE denotes the Lie enter of E , the algebra of quantities whih Lie ommutewith all quantities. An ation L satisfying (19) is alled L-invariant. Conversely, if theation L is L-invariant, then (18) redues todd� e(�) = e(�) q J(Æ(�)):Under onditions whih guarantee the unique solvability of the initial value problem(18), we onlude that e(�) = 0 for all � , proving (17). Thus the L-invariane of theation is essentially equivalent to the requirement that being isolated is a ovariantonept.In partiular, using in our setting a Poinar�e invariant ation L de�nes a relativistiphysial theory. As shown in Setions 4 and 6, we an use an arbitrary onservativedensity (resp. pure quantum state) and a set of quantities in the entralizer E (L) toonstrut a large lass of onservative densities (resp. pure quantum states) as possiblestates of an isolated physial system with given ation.Having phase spae quantization as a universal generalization of the Wigner transform,we an use it to quantize the basi �elds of any (Galilei or Poinar�e invariant) lassial�eld theory. This gives well-de�ned mathematial de�nitions of the various (nonrela-tivisti or relativisti) quantum �eld theories in urrent physial usage.Using a Galilei invariant ation one gets nonrelativisti �eld theory. As explained non-rigorously in many textbooks (e.g., Umezawa et al. [44℄), nonrelativisti quantum �eld17



theory is in priniple equivalent to nonrelativisti quantum mehanis. Therefore, oneuses for nonrelativisti problems �eld theory only to desribe bulk matter, while sat-tering and bound state problems are handled with the Shr�odinger equation. This ismuh simpler than solving the full operator dynamis of �eld theory.In relativisti quantum �eld theory, there has been in the past no analogue of theShr�odinger equation that ould have been used for this purpose. Thus even simplesattering problems were formulated in a �eld theoreti language aessible to a per-turbative treatment, and bound state problems (see, e.g., Weinberg [47℄) ould bedesribed only very indiretly through poles in the S-matrix. For the latter, there isno sound mathematial basis sine in traditional quantum �eld theory, the S-matrix isonly de�ned perturbatively in terms of a presumably divergent (Dyson [8℄) asymptotiexpansion, so that, mathematially, talking about its poles is nonsense.The results of the present paper show, however, that to eah quantum (�eld or parti-le) theory there is a orresponding onstrained Shr�odinger equation from whih onean onstrut pure onservative quantum states with de�nite momentum in ompleteanalogy to the nonrelativisti ase, and without restrition to a partiular symmetrygroup. (Mathematially, it is suspet if ertain tehniques work for a partiular, highlynontrivial group but not for all groups. Already from this perspetive one ould see thatsomething was missing from urrent quantum �eld theory!)10 Wightman axiomsThe quantum theory of �elds never reahed a stage where one ouldsay with on�dene that it was free from internal ontraditions { northe onverse. In fat, the Main Problem [...℄ turned out to be [...℄to show that the idealizations involved in the fundamental notions ofthe theory are inompatible in some physial sense, or to reast thetheory in suh a form that it provides a pratial language for thedesription of elementary partile dynamis.R.F. Streater and A.S. Wightman, 1963 [42℄Traditionally, mathematial physiists approah relativisti quantum �eld theory viaan axiomati approah disussed in detail by Streater & Wightman [42℄. TheWightman axioms (Wightman [52℄) are an interpretation of �eld theory not in termsof �eld equations but in terms of orrelation funtions. Relations to the Lagrangianapproah have been laking so far. But one would have suh relations if one ouldombine tradition with the present formulation of quantum �eld theory. Thus one wouldlike to realize the Wightman axioms by identifying the vauum with a pure onservative18



quantum state  0 with zero momentum, i.e.,L 0 = 0; P 0 = 0; (20)and (in view of the remarks at the end of Setion 6) Wightman �eld operators by suitableHermitian quantities in the entralizer E (L).It is not lear whether the Wightman axioms desribe orretly the struture of relativis-ti quantum states. Apart from generalized free �elds, no realization of the Wightmanaxioms in 4-dimensional spae-time is known (see, e.g., Rehren [33℄), and there areno-go theorems { stating, for example, that there is no natural interation piture [42,Theorem 4-16℄ { pointing to the possibility that these axioms are indeed too strong todesribe realisti theories.To prove that the assumptions de�ning a Wightman �eld an (or annot) be satis�edin the present ontext is therefore a highly nontrivial task. But at least it is embeddedinto a well-de�ned funtional analyti ontext, where the Poinar�e representation isalready �xed. This might make it tratable for systems like QED, whih are lose tononrelativisti quantum mehanis. Therefore, one might be able to adapt the insightsfrom nonrelativisti sattering theory (whih provides a diagonalization of the ationand hene full ontrol over its entralizer) to the new situation.On the other hand, even without knowing the existene of Wightman �elds (and evenif one ould prove that they do not exist), the setting presented here makes sense andde�nes for arbitrary ations a good quantum �eld theory, losely related to physialpratie. In partiular, one an try to generalize to the new onstrained Shr�odingerequations the supply of tehniques available for ordinary Shr�odinger equations, and inthis way omplement the urrent perturbative tehniques of quantum �eld theory bytehniques known from nonrelativisti quantum mehanis. A �rst step in this diretion{ the generalization of the projetion formalism { has been done already; see Neumaier[28℄. Work on sattering theory is under way.11 Phenomenologial relativisti dynamisIn spite of the aeptane of �eld theories as a matter of priniple,most realisti dynamial alulations in nulear physis, and many inpartile physis, utilize the nonrelativisti Shr�odinger equation. [...℄Relativisti diret interation theories of partiles lie between loal �eldtheoretial models and nonrelativisti quantum mehanial models.B.D. Keister and W.N. Polyzou, 1991 [18℄While �elds are usually used to desribe nature on a fundamental level, pratial work19



(espeially for bound states and resonanes) requires phenomenologial few-partileequations, whih are frequently related only loosely to underlying �elds; see the ref-erenes in the next setion. It is therefore interesting to see that a variety of ovariantphenomenologial few-partile equations an be easily built in the present framework.We do this by using Poinar�e invariant ations on Hilbert spaes arrying a suitablePoinar�e representation without states of negative energy.The possible irreduible Poinar�e representations (modeling elementary partiles) werelassi�ed by Wigner [54℄. The representations of positive (relativisti) energy taketheir simplest form in momentum spae; the momenta p are restrited to a mass shell
(~p) = fp 2 R1;3 j p2 = ~p2; p0 > 0g; (21)the orbit of a 4-vetor ~p under the Poinar�e group. It is possible to ombine theseirreduible Poinar�e representations in many ways to obtain reduible momentum spaerepresentations for few-partile systems. Traditionally (see, e.g., Weinberg [48℄ forthe anonial �eld quantization approah and the review in Keister & Polyzou [18℄for the diret relativisti Hamiltonian few-body approah), this is done by breakingthe manifest invariane to a maximal subgroup of the Poinar�e group, with all theawkwardness this entails.The key that allows us to preserve a manifestly ovariant formalism, thus overomingthe traditional problems in anonial quantization, is the fat that we use as algebraof quantities the linear operators on a spae of wave funtions slightly bigger thantraditional Fok spaes. This is done in the following by adding a veloity vetor u as adynamial parameter, whih allows us to deform the bare mass shell p2 = (m)2 (where is the speed of light) to p2 = (mu)2, whih in turn permits the onservation of total4-momentum in interations.A phenomenologial realization of a system of N massive salar partiles with restmasses m1; : : : ; mN > 0 and harges Q1; : : : ; QN is now realized by wave funtions =  (u; p1:N) =  (u; p1; : : : ; pN)whose oordinates are a global 4-veloity vetor u with 0 < u 2 R1;3 and the partile4-momentum vetors pa in the dynami mass shells 
(mau) whose sale dependson u. The total 4-momentumP pa is required to be parallel to the 4-veloity u. Thusthe spae of wave funtions is H = C1(
N); (22)where 
N is the set of all tuples(u; p1:N) = (u; p1; : : : ; pN)20



with pa 2 
(mau) for a = 1; : : : ; N; 0 < u kX pa:The (not everywhere de�ned) Hermitian inner produt { from whih a Hilbert spae anbe onstruted by ompleting the spae of vetors of �nite norm { is given by�� := Z dm duDp1 : : :DpNÆ�mu�X pa��(u; p1:N) (u; p1:N);where Dp = dp Æ(p2 � (mu)2) = dp2p0 = dp2p(mu)2 + p2 (23)is the invariant measure on a dynami mass shell 
(mu). The one-partile operatorsare de�ned as J(f) :=Xa f(u;Qa; ma; pa;Ma);where the diagonal operator f = f(u;Q;m; p;M) is a funtion of 4-veloity u, hargeQ, mass m, 4-momentum p and 4-angular momentumM := p ^ ��p (24)with omponents M�� = p� ��p� � p� ��p� ;and the supersript a indiates appliation to the oordinates of the ath partile. (Notethat the global 4-veloity u arries no supersript; it is shared by all partiles.) Sine thep� are the Poinar�e generators of translation in the diretion of the �-axis and the M��are the standard generators of the Lorentz transformations, it is easy to see that the total4-momentum J(p) and total 4-angular momentum J(M) de�ne a representation ofthe Poinar�e group without negative energy states. In the terminology of Dira [6℄, it isa representation in the point form. (It shares this property with the representations ofRuijgrok [36℄ whih are based on Lippmann-Shwinger equations. But his translationgenerators are muh more ompliated than the present ones.)On the spae (22), one an now de�ne ations of the formL = L0 � V; (25)where the kineti ation L0 is a Poinar�e invariant one-partile operator, and theinteration V is a Poinar�e invariant integral operator.21



12 Poinar�e invariant multipartile interationsFor salar partiles, the simplest ovariant kineti ation isL0 = J�p2 � (m)22m � = J�m2 (u2 � 2)�; (26)with a onstant  > 0, the speed of light. However, more ompliated ovariantformulas with rational or analyti dependene on m and p2 are admissible, too, if theyvanish for p2 = (m)2 and nowhere else. In this ase, the generalized Shr�odingerequation L = 0 implies for noninterating partiles, where V = 0, the relation u2 = 2,foring the dynami mass shells to equal the bare mass shells.To onstrut a versatile lass of Poinar�e invariant interations, we �rst note that thevetor pm := p + u�p � u+p(p � u)2 � p2u2 + (mu2)2u2 (27)is in the dynami mass shell 
(mu). Indeed, it suÆes by ovariane to hek the asewhere u = 0; then u0 > 0, u2 = u20, p � u = p0u0,(pm)0 = p0 + u0�p0u0 +pp2u20 + (mu20)2u20 =pp2 + (mu0)2 > 0;and sine pm = p, we �nd p2m = (mu0)2 = (mu)2. Thus the mapping p ! pm (thedependene on u is not written expliitly) is a nonlinear projetion to the dynami massshell 
(mu).The simplest hoie for a nontrivial interation is a sum of pair interations,V =Xa<b V ab; (28)where V ab = V ba ats on the oordinates of partiles a and b as(V ab )(u; pa; pb) = Z dq Æ(u � q)Uab(q) (u; (pa + q)ma; (pb � q)mb); (29)where the projetions are to be taken with respet to the ommon 4-veloity argumentu, and Uab(q) is also allowed to depend on mass, momentum and harge of the partiles aand b. The delta funtion removes a redundany in the projetions, whih do no hangeif a multiple of u is added to q. The onstrution is suh that V ab is automatiallytranslation invariant. In partiular, if all Uab are Hermitian and Lorentz invariant then22



V and hene the ation (25) is Hermitian and Poinar�e invariant. For example, this isthe ase in pair potentials of the formUab(q) = Re �S(mamb)2 + (�Vmamb + �QaQb)pa � pb + �T (pa � pb)2mamb(q2 + i") ; (30)where the limit " # 0 is to be taken in (29) to regularize the potential near q = 0.These potentials desribe relativisti eletromagneti and gravitational fores; the ou-pling onstants � and �S; �V ; �T determine the strength of the eletromagneti andthe salar, vetor, and tensor gravitational interation, respetively. (This will bejusti�ed in the next setion by onsidering the nonrelativisti limit.) By making theseoupling onstants q-dependent (running oupling onstants), one an also aountovariantly for phenomenologial self-energy ontributions; f. the disussion in Peskin& Shroeder [31, pp. 252{255℄.Note that after Fourier transform into spaetime, we get { in ontrast to �eld theories{ a nonloal (but still Poinar�e invariant) ation.This basi setting an be extended in various ways. Partiles with positive spin or withinternal symmetries are easily aommodated, espeially when using the representationsdisussed in Weinberg [48, 49℄. (They are of ourse equivalent to Wigner's represen-tations but omputationally more tratable.) Partiles with positive integral spin arehandled in exatly the same way, exept that the wave funtions have additional indies,the angular momentum gets an additional intrinsi spin term operating on these indies,and the inner produt has a slightly di�erent form. It is easy to speify L-invariant in-teration terms similar to (30) for partiles with positive spin and for partiles withinner symmetries (and orresponding matrix-valued harges Qa); but suh interationsare now also restrited by Clebsh-Gordan rules (f. Weinberg [50℄).Fermion partiles with half-integral spin are handled similarly, using spinor omponentsin the wave funtions and kineti ations suh asL0 = J(p � �m2): (31)The resulting onstrained Shr�odinger equationsJ(p � �m2) = V  ; p = k generalize the Dira equations to the multipartile ase. Details about the handling ofspin will be given elsewhere.Massless partiles are handled in the same way, exept that the kineti part of the ationis absent, sine these partiles never go o�-shell in our phenomenologial setting.23



For indistinguishable partiles, symmetrization and antisymmetrization an be done inthe standard way. Di�erent kinds of partiles are handled by adding to the sum of theirself-ations another interation. Few-partile systems in whih the partile number isnot onserved an be modelled by using a diret sum of Hilbert spaes of the type (22)and ovariant interations hanging the partile number. For example, we may modelthe emission and absorption of a photon of momentum p by a massive salar partile ofharge Qa with the Hermitian and Poinar�e invariant interation proportional to(V  )(u; p; pa) = F (p)Qapama  (u; (pa + p)ma);(V  )(u; pa) = Z dp Æ(p2)F (p)Qapama �  (u; p; (pa � p)ma);where the form fator F (p) is an arbitrary ovariant salar C1-funtion formed fromp, pa and u. (Note that the photon wave funtion has additional vetor omponents,with respet to whih the inner produt � is taken.) Previous ovariant few-partilemodels ould not handle this situation (Keister & Polyzou [18, p. 392℄).In a multipartile system, one an model in the same way the interations orrespond-ing to Feynman diagrams with a single vertex of degree 3, and in a similar way alsointerations orresponding to more omplex verties. Note that beause momentumis onserved and all partile energies are positive, partiles annot be reated from avauum state (with 0 partiles), nor an partiles be annihilated without reating (orpreserving) at least one partile. Thus the phenomenologial approah does not havethe problems whih �eld theories have with the presene of an interating (`utuating')vauum.We see that the possibilities for the new ation-based relativisti models fully math(and even exeed) the freedom available for nonrelativisti Hamiltonian systems. Sinethey are manifestly Poinar�e invariant, they are muh simpler than various relativis-ti Hamiltonian models that have been onstruted in the past (see, e.g., the reviewin Keister & Polyzou [18℄ for nulear physis, Crater et al. [4℄ for QED, andRuijgrok [36℄ for a Lippmann-Shwinger based model), but have the same advantagesas the latter: onsisteny with relativity theory, tratable few-body alulations, easytreatment of bound states, resonanes, and partile prodution, and easy �t to paramet-ri models. In addition, they an be used to give phenomenologial models of quantumsystems in whih the partile number is not preserved, or the spin is > 1.In time, suh ation-based relativisti models may therefore replae the many nonrel-ativisti (e.g., Isgur [15℄, Karl [17℄), semirelativisti (e.g., Luha et al. [22, 23℄)and relativisti (e.g., Keister & Polyzou [18℄) Hamiltonian approximations, and ap-proximations based on Bethe-Salpeter equations (e.g., Kummer & M�odrih [20℄) or24



Dyson-Shwinger equations (e.g., Roberts & Williams [35℄) now in vogue for thephenomenologial desription of quarks, mesons, baryons, and other relativisti matter.Sine our phenomenologial ations are easily made manifestly symmetri under the fullsymmetry group of a system, it may also give more workable low energy e�etive the-ories for the standard model, suh as hiral perturbation theory (e.g., Eker [10, 11℄)or quantum hadrodynamis (e.g., Serot [39℄, Serot & Waleka [39, 40℄).The relation between the above ation-based relativisti multipartile models and the�eld-theoreti models disussed earlier is not lear at present. It is expeted that theprojetion tehniques from Neumaier [28℄ relate the �eld theories from Setion 9 toorresponding e�etive N -partile theories modeled as in the present setion. On theother hand, it is also oneivable that the �eld theories should rather be regarded aslimits of N -partile theories in the thermodynami limit N !1. There are indiationsthat this might be the ase for QED (sine radiation phenomena are always dissipative)and for gravitation (sine blak hole thermodynamis hanges pure states to mixedstates, f. Wald [46, pp. 180{185℄; the traditional oupling to a hydrodynami modelis also meaningful only in a thermodynami limit).13 Constrained Shr�odinger equationsStates of �xed total 4-momentum J(p) an be obtained by solving (13). With a Lorentzboost, we may transform the system to a rest frame; the resulting onstraint J(p) = 0an be imposed kinematially by restriting the 4-veloity to u = 0. Sine  and J(m2)are onstants, the wave funtion is an eigenstate of the rest frame energy J(p0�m2)(a shifted relativisti energy p0, introdued in analogy to the prelude), and we are leftwith the (still rotation invariant) onstrained Shr�odinger equations = Æ(u) 0; L = 0; J(p0�m2) = E ; (32)the relativisti analogue of the nonrelativisti multipartile Shr�odinger equation af-ter separation of the motion of the enter of mass. Thus our phenomenologial ap-proah is a ovariant version of the situation in the prelude: The mass shells form 3-dimensional manifolds, and the momenta pa an be onsidered as relativisti analoguesof 3-momentum vetors. Sine u = 0, the 4-veloity ontributes only one additionaldegree of freedom u0, whih replaes the energy degree of freedom of the nonrelativistisituation. Thus, in ontrast to the realizations of quantum �eld theory disussed above,to traditional Bethe-Salpeter equations, and to proper time based relativisti multipar-tile dynamis (see, e.g., Fanhi [12℄), there are no superuous degrees of freedom, butthe treatment is still manifestly ovariant.25



The delta funtion in the interation (29) fores q0 = 0. Dropping the redundantoordinates u = 0, p0 = p(mU0)2 + p2 and q0 = 0 from the notation, the interationan be written as the 3-dimensional integral(V ab )(u0; pa; pb) = �1 Z dq Uab(q) (u0;pa + q;pb � q); (33)the prefator omes from the delta funtion in (29). If we now Fourier transform inspae to get the position representation,b (u0;xa;xb) = Z dpadpbe�pa�xae�pb�xb (u0;pa;pb);we �nd [V ab (u0;xa;xb) =dUab(xb � xa) b (u0;xa;xb)with the spatial potential dUab(r) = �1 Z dq e�q�rUab(q): (34)This looks like a nonrelativisti formula, but the ovariant nature of the model is visiblein the form (29) of Uab(q) and also shows in the onstraint nature of (32). Compared tothe nonrelativisti ase, this is now a general linear eigenvalue problem for the eigenvalueE, and its solution is slightly more demanding. But numerial methods are available;see, e.g., Golub & van Loan [13℄.The nonrelativisti limit. To deepen the analogy, we give a rough, heuristi deriva-tion of the nonrelativisti limit  ! 1; it would be interesting to have a rigorousversion of this from whih one an obtain error bounds. The equation L = 0 anbe written (for bosons) as J(12m(u2 � 2)) = V  . For small potential energies,V � J(m)2 and small spatial momenta, p2 � (m)2, this gives u2 = 2 + O(1),hene p2 = (mu)2 = (m)2 + O(1) and p0 =p(m)2 + p2 = m+O(�1). Therefore,p20 � (m)22m = (p0 �m)p0 +m2m = (p0 �m)( +O(�1)) = p0�m2 +O(�2);L = J�p2 � (m)22m � = J�p20 � (m)22m �� J� p22m�� J(p0�m2)� J(p2=2m) = E � J(p2=2m)with the rest frame energy E = J(p0�m2). Thus, the onstraint Shr�odinger equationredues in the nonrelativisti limit to the standard Shr�odinger equation for a multipar-tile system with HamiltonianH = J(p2=2m) +Xa<b dUab(xb � xa):26



Arbitrary loal pair interations an be obtained in the nonrelativisti limit by hoosingUab appropriately (and in a non-unique way). For larger kineti energies, the potentialin position spae aquires additional, nonloal terms (that an be approximated usingderivatives in the interation). Thus we have a exible ovariant theory with a goodnonrelativisti limit.In partiular, from the ovariant potential (28) with pair interations of the form (30),we reover in the nonrelativisti limit the standard nonrelativisti multipartiledynamis in the presene of eletromagneti and gravitational fores.14 Golden opportunitiesBehind it all is surely an idea so simple, so beautiful, that when{ in a deade, a entury, or a millennium { we grasp it, wewill all say to eah other, how ould it have been otherwise?John Arhibald Wheeler, 1987 [51℄Eine mathematishe Theorie ist niht eher als vollkommenanzusehen, als bis du sie so klar gemaht hast, da� du sie demersten Manne erkl�aren k�onntest, den du auf der Stra�e tri�st.David Hilbert, 1900 [14℄I do not know whether the perfetion requested by Hilbert an be ahieved in deeptheories. But, having disovered the unexpeted beauty of the present approah, I hopethat the insights presented will ontribute to the perfetion of quantum �eld theory.In 1972, Freeman Dyson [9℄ gave a leture alled \Missed opportunities", where hetalked \about the ontribution that mathematis ought to have made" to physis \butdid not". I believe the present ontribution widely opens the door for mathematiians toontribute to quantum �eld theory, and reates golden opportunities for those interestedin mathematial physis.The present setting gives a mathematially onsistent point of view from whih to studythe laws of physis, whih omplements the point of view taken by past history. Onthe new basis, it is likely that sientists will resolve in the near future the most ba-si hallenges urrent theoretial physis poses to mathematiians and mathematialphysiists:� the existene of QED and derivation of its properties,� bound states and resonanes in quantum �eld theories,27



� a uni�ed quantum �eld theory of all fores of nature,� the existene and mass gap in quantum Yang-Mills theory { one of seven Claymillenium prize problems [3℄, a golden opportunity in the most onrete sense.15 ThanksIt is a great pleasure for me to be able to partiipate in the revelation of the lawsthe Creator has built into our universe. I want to thank God for the all, vision,open-mindedness, patiene, persistene and joy I got (and needed) for going suessfullythrough the journey in the platoni world of preise ideas (that, for a long time, appearedto me all too foggy in the regions where quantum �eld theory is loated) that lead tothe results presented here.I also want to thank the maintainers of (and the ontributors to) the Los Alamos Na-tional Laboratory e-Print arhive for this wonderful on-line soure ontaining mostphysis manusripts of the last few years. It saved me many hours of work by givingme quik aess to the many thousands of papers that I glaned at, leaved through, orread more thoroughly while searhing for the path to suess.I'd like to thank Dr. Hermann Shihl (Wien) for many disussions on various piees ofthe puzzle that helped me to larify my thoughts. Thanks also to Prof. Peter Mihor(Wien) who pointed me to the book by da Silva & Weinstein [5℄ on Poisson algebras,to Prof. Walter Thirring (Wien) for his treatise on mathematial physis whih I usedover and over again, to Prof. Gerhard Eker (Wien) for useful disussions on quantum�eld theory long ago, and to Prof. Hartmann R�omer (Freiburg), who introdued memany years ago to the idea that an elementary partile `is' [41, p.149℄ an irreduibleunitary representation of the Poinar�e group.
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