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1. Motivation

These notes discuss the primordial origin of the temperature variations in the cosmic

microwave background (CMB). The main goal will be to show how quantum fluc-

tuations in quasi-de Sitter space produce a spectrum of fluctuations that accurately

matches the observations.

Let me begin by reminding you of the metric for the de Sitter spacetime

ds2 = −dt2 + a2(t)dx2 , with a(t) = eHt , (1.1)

or, in conformal time dτ = dt/a(t),

ds2 = a2(τ)
[
−dτ 2 + dx2

]
, with a(τ) = − 1

Hτ
, (1.2)

where H = ∂t ln a is the Hubble parameter. Recall that perfect de Sitter space is

defined by constant H, while inflation (or quasi-de Sitter space) is characterized by a

small time-evolution of H,

ε = − Ḣ

H2
� 1 . (1.3)

For a perfect fluid with energy density ρ and pressure p, the Hubble expansion is

determined by the Einstein equations

H2 =
ρ

3M2
pl

and Ḣ +H2 = − 1

6M2
pl

(ρ+ 3p) , (1.4)

where M−2
pl = 8πG. This implies

ε =
3

2
(1 + w) , (1.5)

where w = p/ρ is the equation of state of the fluid. The de Sitter limit is w = −1,

while slow-roll inflation corresponds to w ≈ −1. As I have discussed elsewhere1, the

simplest way to realize such a negative pressure component in the stress tensor of the

early universe is to exploit the slow-roll dynamics of a scalar field φ on a sufficiently

flat potential V (φ):

ε ≈
M2

pl

2

(
V ′

V

)2

≡ εv � 1 . (1.6)

In general, the evolution of a scalar field in the FRW background (1.1) is governed by

the Klein-Gordon equation

φ̈+ 3Hφ̇+ V ′ = 0 , (1.7)

1D. Baumann, Basics of Inflation.
D. Baumann, TASI Lectures on Inflation.
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where

H2 =
1

3M2
pl

(
1

2
φ̇2 + V (φ)

)
. (1.8)

The slow-roll limit is a systematic approximation scheme to solve Eqns. (1.7) and (1.8).

For the purpose of the present discussion it is only important that this gives a classical

background a(t) and φ(t). In these notes we will be interested in small fluctuations

around the inflationary background.

2. Classical Perturbations

Why is it so interesting to study fluctuations during inflation? As we have just seen, the

inflaton evolution φ(t) governs the energy density of the early universe ρ(t) and hence

the end of inflation. Essentially, φ̄(t) + δφ(t,x) plays the role of a local clock reading

off the amount of inflationary expansion remaining. The space-dependent fluctuations

δφ imply that different regions of space inflate by different amounts. Intuitively, micro-

scopic clocks are quantum mechanical objects with necessarily some variance (by the

uncertainty principle). In quantum theory, local fluctuations in ρ and hence ultimately

in the CMB temperature T (t,x) are therefore unavoidable.

The main purpose of these notes is to compute this effect. For concreteness we will

consider single-field slow-roll models of inflation

S =

∫
d4x
√−g

[
M2

pl

2
R(4) −

1

2
gµν∂µφ∂νφ− V (φ)

]
. (2.1)

However, in the end we will explain that the quadratic action for small fluctuations is

in fact (almost) universal and can be derived using much more general considerations2

without assuming a specific action sourcing the inflationary background H(t).

We will study both scalar and tensor fluctuations. For the scalar modes we have to

be careful to identify the true physical degrees of freedom. A priori, we have 5 scalar

modes: 4 metric perturbations–δg00, δgii, δg0i ∼ ∂iB and δgij ∼ ∂i∂jH–and 1 scalar

field perturbation δφ. Gauge invariances associated with the invariance of (2.1) under

scalar coordinate transformations–t → t + ε0 and xi → xi + ∂iε–remove two modes.

The Einstein constraint equations remove two more modes. so that we are left with 1

physical scalar mode. Deriving the quadratic action for this mode is the aim of this

section.

2Cheung et al., The Effective Theory of Inflation.
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2.1 Comoving Gauge

I will work in a fixed gauge throughout. For a number of reason I like comoving gauge3:

δφ = 0 (2.2)

δgij = a2(1− 2R)δij + a2hij . (2.3)

Here, hij is a transverse (∇ih
ij = 0), traceless (hii = 0) tensor and R is a scalar. One

can show that the comoving spatial slices φ = const. have 3-curvature R(3) = 4
a2∇2R.

Hence, we refer to R as the curvature perturbation.

super-horizonsub-horizon

transfer
  function

CMB
recombination today

projection

horizon exit

time

comoving scales

horizon re-entry

zero-point 
  fluctuations

R̂k

Ṙ ≈ 0
〈RkRk′〉 C!∆T

k−1

k = aH

(aH)−1

Figure 1: Curvature perturbations in de Sitter: The comoving horizon (aH)−1 shrinks

during inflation and grows in the subsequent FRW evolution. This implies that comoving

scales k−1 exit the horizon at early times and re-enter the horizon at late times. While the

curvature perturbations R are outside of the horizon they don’t evolve, so our computation

for the correlation function 〈RkRk′〉 at horizon exit during the early de Sitter phase can be

related directly to CMB observables at late times.

The perturbation R has several nice properties:

1) it is time-independent on superhorizon scales:

lim
k�aH

Ṙk = 0 (2.4)

3In Appendix B we use the Einstein equations to replace the additional (non-dynamical) metric
perturbations δg00 and δg0i in terms of R. This results in an action purely for R which is why we can
afford to be a bit implicit about the remaining metric perturbations.
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2) it can straightforwardly be related to cosmological observables: e.g.

a`m = 4π(−i)`
∫

d3k

(2π)3/2
Rk ∆T`(k)Y`m(k̂) (2.5)

C` =
2

π

∫
k2dk PR(k) ∆T`(k)2 , (2.6)

where ∆T`(k) is a well-known transfer function supplied by CMBFast.

The constancy of R on superhorizon scales allows us to relate CMB observations di-

rectly to the inflationary dynamics (at the time when a given fluctuation crosses the

horizon) while allowing us to be completely ignorant about the high-energy physics

during the intervening history of the universe.

2.2 Constraint Equations

Solving the Einstein equations for the non-dynamical metric perturbations δg00 and

δg0i in terms of R is a bit tedious and would interrupt the flow of these notes. I show

the full calculation in Appendix B, but for now ask you to trust me that it can be done.

We can then proceed to the result for the quadratic action for the perturbation R.

2.3 Quadratic Action

Substituting δg00(R) and δg0i(R) from Appendix B into (2.1) and expanding in powers

of R we find

S =

∫
dt d3x

a3φ̇2

2H2

[
Ṙ2 − 1

a2
(∇R)2

]
+ · · · (2.7)

where we defined Mpl ≡ 1. The ellipses in (2.7) refer to terms that are higher order in

R. Being interested only in the quadratic action of R we will now drop these terms.

We will come back to these terms when we discuss higher-order correlations and non-

Gaussianity.4 We define the canonically-normalized Mukhanov variable

v ≡ zR , (2.8)

where

z2 ≡ a2 φ̇
2

H2
= 2a2ε . (2.9)

Switching to conformal time, results in

S =
1

2

∫
dτ d3x

[
(v′)2 − (∇v)2 +

z′′

z
v2

]
. (2.10)

4D. Baumann, Non-Gaussianity.
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We recognize this as the action of an harmonic oscillator with time-dependent mass

S =

∫
dτ d3x

[
−1

2
ηµν∂µv∂νv −

1

2
m2

eff(τ)v2

]
, (2.11)

where

m2
eff(τ) ≡ −z

′′

z
= −H

aφ̇

∂2

∂τ 2

(
aφ̇

H

)
. (2.12)

Given a solution for the homogeneous background a(t) and φ(t) one obtains meff(τ),

i.e. all of de Sitter is encoded in meff(τ). The time-dependence of the effective mass

accounts for the interaction of the scalar field R with the gravitational background.

2.4 Mukhanov-Sasaki Equation

Varying the action S and expanding v in Fourier modes,

v(τ,x) =

∫
d3k

(2π)3/2
vk(τ)eik·x , (2.13)

we arrive at the classical equation of motion (the Mukhanov-Sasaki equation)5

v′′k + ω2
k(τ)vk = 0 , where ω2

k(τ) ≡ k2 − z′′

z
. (2.14)

In de Sitter the effective frequency reduces to

ω2
k(τ) ≡ k2 − 2

τ 2
(de Sitter). (2.15)

It is interesting to study special limits of (2.14): For modes with wavelengths much

smaller than the horizon we get

v′′k + k2vk = 0 (subhorizon). (2.16)

This leads to oscillating solutions: vk ∝ e±ikτ . For modes with wavelengths much larger

than the horizon we find instead

v′′k
vk

=
z′′

z
≈ 2

τ 2
(superhorizon). (2.17)

This has the growing solution vk ∝ z ∝ τ−1 (and the decaying solution vk ∝ τ 2). This

implies that R indeed freezes on superhorizon scales: Rk = z−1vk ∝ const.

5The Mukhanov-Sasaki equation is hard to solve in full generality since the function z(τ) depends
on the background dynamics. For a given inflationary background, φ(τ) and a(τ), one may of course
solve (2.14) numerically. However, to gain a more intuitive understanding of the solutions, we will
discuss approximate analytical solutions in the pure de Sitter limit (Section 4) as well as in the slow-roll
expansion of quasi-de Sitter space (Appendix A).
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2.5 Mode Expansion

Since the frequency ωk(τ) in (2.14) depends only on k ≡ |k|, the most general solution

of (2.14) can be written as6

vk = a−k vk(τ) + a+
−kv

∗
k(τ) . (2.18)

Here, vk(τ) and its complex conjugate v∗k(τ) are two linearly independent solutions of

(2.14). As indicated by dropping the vector notation k on the subscript the mode

functions, vk(τ) and v∗k(τ), are the same for all Fourier modes with k ≡ |k|. The

Wronskian of the mode functions is

W [vk, v
∗
k] ≡ v′kv

∗
k − vkv∗k ′ = 2i Im(v′kv

∗
k) . (2.19)

From the equation of motion (2.14) it follows that W [vk, v
∗
k] is time-independent. Fur-

thermore, by rescaling the mode functions as vk → λvk (givingW [vk, v
∗
k]→ |λ|2W [vk, v

∗
k])

we can always normalize vk such that W [vk, v
∗
k] ≡ −i. The reason for this particular

choice of normalization will become clear momentarily.

The two time-independent integration constants a±k in (2.18) are

a−k =
v∗k
′vk − v∗kv′k

v∗k
′vk − v∗kv′k

=
W [v∗k, vk]

W [v∗k, vk]
and a+

k = (a−k )∗ , (2.20)

where the relation between a+
k and a−k follows from the reality of v. Note that the

constants a±k may depend on the direction of the wave vector k.

Finally, substituting (2.18) into (2.13) gives

v(τ,x) =

∫
d3k

(2π)3/2

[
a−k vk(τ) + a+

−kv
∗
k(τ)

]
eik·x (2.21)

=

∫
d3k

(2π)3/2

[
a−k vk(τ)eik·x + a+

k v
∗
k(τ)e−ik·x

]
, (2.22)

where the second line is manifestly real, since a+
k = (a−k )∗.

6The −k on a+
−k was chosen for later convenience.
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3. Quantum Origin of Cosmological Perturbations

Our task now is to quantize the field v. This is not much more complicated than

quantizing the simple harmonic oscillator in quantum mechanics, except for a small

subtlety in the vacuum choice arising from the time-dependence of the oscillator fre-

quencies ωk(τ).7

3.1 Quantization

The canonical quantization procedure proceeds in the standard way: the field v and its

canonically conjugate momentum π ≡ v′ are promoted to quantum operators v̂ and π̂,

which satisfy the standard equal-time commutation relations8

[v̂(τ,x), π̂(τ,y)] = iδ(x− y) (3.1)

and

[v̂(τ,x), v̂(τ,y)] = [π̂(τ,x), π̂(τ,y)] = 0 . (3.2)

It follows from (2.14) that the commutation relation (3.1) holds at all times if it holds

at any one time. The Hamiltonian is

Ĥ(τ) =
1

2

∫
d3x

[
π̂2 + (∇v̂)2 +m2

eff(τ)v̂2
]
. (3.3)

The constants of integration a±k in the mode expansion of v become operators â±k , so

that the field operator v̂ is expanded as

v̂(τ,x) =

∫
d3k

(2π)3/2

[
â−k vk(τ)eik·x + â+

k v
∗
k(τ)e−ik·x

]
. (3.4)

Substituting (3.4) into (3.1) and (3.2) implies

[â−k , â
+
k′ ] = δ(k− k′) and [â−k , â

−
k′ ] = [â+

k , â
+
k′ ] = 0 . (3.5)

We realize that our normalization for the mode functions

W [vk, v
∗
k] = v′kv

∗
k − vkv∗k ′ ≡ −i (3.6)

was wisely chosen to make (3.5) simple. The operators â+
k and â−k may then be inter-

preted as creation and annihilation operators, respectively.

7For a nice treatment of quantum field theory in curved backgrounds I strongly recommend:
V. Mukhanov and S. Winitzki, Introduction to Quantum Effects in Gravity.

8Here, we defined ~ ≡ 1.
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Quantum states in the Hilbert space are then constructed by defining the vacuum

state |0〉 via

â−k |0〉 = 0 , (3.7)

and by producing excited states by repeated application of creation operators

|mk1 , nk2 , · · ·〉 =
1√

m!n! · · ·
[
(a+

k1
)m(a+

k2
)n · · ·

]
|0〉 . (3.8)

3.2 Non-Uniqueness

An unambiguous physical interpretation of the states in (3.7) and (3.8) arises only

after the mode functions vk(τ) are selected.9 However, the normalization (3.6) is not

sufficient to completely fix the solutions χk(τ) to the second-order ODE (2.14). An

unambiguous definition of the vacuum still requires additional physical input.

To illustrate this ambiguity explicitly, consider the following functions

uk(τ) = αkvk(τ) + βkv
∗
k(τ) , (3.9)

where αk and βk are complex constants. The functions uk(τ) of course also sat-

isfy the equation of motion (2.14). Moreover, they satisfy the normalization (3.6),

i.e. W [uk, u
∗
k] = −i, if the coefficients αk and βk obey

|αk|2 − |βk|2 = 1 . (3.10)

At this point there is therefore nothing that permits us to favor vk(τ) over uk(τ) in our

choice of mode functions. In terms of uk(τ) the expansion of v̂ takes the form

v̂(τ,x) =

∫
d3k

(2π)3/2

[
b̂−kuk(τ)eik·x + b̂+

ku
∗
k(τ)e−ik·x

]
, (3.11)

where b̂±k are alternative creation and annihilation operators satisfying (3.5). Compar-

ing (3.11) to (3.4) leads to the Bogolyubov transformation between b̂±k operators and

â±k operators:

â−k = α∗kb̂
−
k + βkb̂

+
−k and â+

k = αkb̂
+
k + β∗k b̂

−
−k . (3.12)

Both sets of operators can be used to construct a basis of states in the Hilbert space:

â−k |0〉a = 0 b̂−k |0〉b = 0 (3.13)

9Changing vk(τ) while keeping v̂ fixed, changes â±k [cf. (2.20)] and hence changes the vacuum |0〉
and the excited states |m,n, · · ·〉.
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and

|mk1 , nk2 , · · ·〉a =
1√

m!n! · · ·
[
(a+

k1
)m(a+

k2
)n · · ·

]
|0〉a (3.14)

|mk1 , nk2 , · · ·〉b =
1√

m!n! · · ·
[
(b+

k1
)m(b+

k2
)n · · ·

]
|0〉b (3.15)

It should be clear that the b-states are in general different form the a-states. In partic-

ular, the b-vacuum contains a-particles:

b〈0|N̂ (a)
k |0〉b = b〈0|â+

k â
−
k |0〉b (3.16)

= b〈0|(αkb̂+
k + β∗k b̂

−
−k)(α∗kb̂

−
k + βkb̂

+
−k)|0〉b (3.17)

= |βk|2δ(0) . (3.18)

The divergent factor δ(0) arises because we are considering an infinite spatial volume,

but the mean density of a-particles in the b-vacuum is finite (and typically not zero):

n ≡
∫

d3k nk =

∫
d3k |βk|2 . (3.19)

3.3 Choice of the Physical Vacuum

Clearly, we are still missing some essential physical input to define the unique vacuum

state.

3.3.1 Vacuum in Minkowski Space

How do we usually do this? In a time-independent spacetime a preferable set of mode

functions and thus an unambiguous physical vacuum can be defined by requiring that

the expectation value of the Hamiltonian in the vacuum state is minimized. To illustrate

this let us consider the Mukhanov-Sasaki equation in Minkowski space (i.e. the a ≡ 0

limit of (2.14)):

v′′k + k2vk = 0 . (3.20)

We aim to find the mode functions vk that minimize the expectation value of the

Hamiltonian in the vacuum. We will therefore compute v〈0|Ĥ|0〉v for an arbitrary

mode function v and then find the preferred function v that minimize the result. In

terms of our mode expansion, the Hamiltonian (3.3) becomes

Ĥ =
1

2

∫
d3k

[
â−k â

−
−kF

∗
k + â+

k â
+
−kFk +

(
2â+

k â
−
k + δ(0)

)
Ek
]
, (3.21)

where

Ek ≡ |v′k|2 + k2|vk|2 , (3.22)

Fk ≡ v′ 2k + k2v2
k . (3.23)
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Since â−k |0〉v = 0, we have

v〈0|Ĥ|0〉v =
δ(0)

4

∫
d3kEk . (3.24)

Dividing out the uninteresting divergence, δ(0), we infer that the energy density in the

vacuum state is

ε =
1

4

∫
d3kEk . (3.25)

It is clear that this is minimized if each k mode Ek is minimized separately. We

therefore now determine the vk and v′k that minimize the expression

Ek = |v′k|2 + k2|vk|2 . (3.26)

We mustn’t forget that the mode functions χk satisfy the normalization (3.6),

v′kv
∗
k − vkv∗k ′ = −i . (3.27)

Using the parameterization vk = rke
iαk , for real rk and αk, (3.27) becomes

r2
kα
′
k = −1

2
(3.28)

and (3.26) gives

Ek = r′2k + r2
kα
′2
k + k2r2

k (3.29)

= r′2k +
1

4r2
k

+ k2r2
k . (3.30)

It easily seen that (3.30) is minimized if r′k = 0 and rk = 1√
2k

. Integrating (3.28) gives

αk = −kτ (up to an irrelevant constant that doesn’t affect any observables; e.g. this

constant phase factor drops out in the computation of the power spectrum) and hence

vk(τ) =
1√
2k
e−ikτ . (3.31)

This defines the preferred mode functions for fluctuations in Minkowski space. Note

that for these mode functions we find Ek = k ≡ ωk and Fk = 0, so the Hamiltonian is

Ĥ =

∫
d3k ωk

[
â+
k â
−
k +

1

2
δ(0)

]
. (3.32)

Hence, the Hamiltonian is diagonal in the eigenbasis of the occupation number operator

N̂k ≡ â+
k â
−
k .
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3.3.2 Vacuum in Time-Dependent Spacetimes

The vacuum prescription which we just applied to Minkowski space does not generalize

straightforwardly to time-dependent spacetimes.

In this case the mode equation (2.14) involves time-dependent frequencies ωk(τ) and

the ‘minimum-energy vacuum’ depends on the time τ0 at which it is defined. Repeating

the above argument, one can nevertheless determine the vacuum which instantaneously

minimizes the expectation value of the Hamiltonian at some time τ0. One finds that

the initial conditions

vk(τ0) =
1√

2ωk(τ0)
e−iωk(τ0)τ0 , v′k(τ0) = −iωk(τ0)χk(τ0) (3.33)

select the preferred mode functions which determine the vacuum |0〉τ0 . However, since

ωk(τ) changes with time, the mode functions satisfying (3.33) at τ = τ0 will typically

be different from the mode functions that satisfy the same conditions at a different

time τ1 6= τ0. This implies that |0〉τ1 6= |0〉τ0 and the state |0〉τ0 is not the lowest-energy

state at a later time τ1.

3.3.3 Bunch-Davies Vacuum

How do we resolve this ambiguity for the inflationary quasi-de Sitter spacetime?

From Fig. 1 we note that a sufficiently early times (large negative conformal time τ)

all modes of cosmological interest were deep inside the horizon:

k

aH
∼ |kτ | � 1 (subhorizon) (3.34)

This means that in the remote past all observable modes had time-independent fre-

quencies; e.g. in perfect de Sitter space:

ω2
k = k2 − 2

τ 2
→ k2 . (3.35)

The corresponding modes are therefore not affected by gravity and behave like in

Minkowski space:

v′′k + k2vk = 0 . (3.36)

The two independent solutions of (3.36) are vk ∝ e±ikτ . As we have seen above only the

positive frequency mode vk ∝ e−ikτ is the ‘minimal excitation state’, cf. Eqn. (3.31).

Given that at sufficiently early times all modes have time-independent frequencies,

we can now avoid the ambiguity in defining the initial conditions for the mode functions

– 12 –



that afflicts the treatment in more general time-dependent spacetimes. In practice, this

means solving the Mukhanov-Sasaki equation with the (Minkowski) initial condition

lim
τ→−∞

vk(τ) =
1√
2k
e−ikτ . (3.37)

This defines a preferable set of mode functions and a unique physical vacuum, the

Bunch-Davies vacuum.

4. Results for de Sitter Space

We are now ready to derive the correlation functions for quantum fluctuations in de

Sitter space.

4.1 de Sitter Mode Functions

In de Sitter space the Mukhanov-Sasaki equation is:

v′′k +

(
k2 − 2

τ 2

)
vk = 0 . (4.1)

The exact solution of (4.1) is

vk(τ) = α
e−ikτ√

2k

(
1− i

kτ

)
+ β

eikτ√
2k

(
1 +

i

kτ

)
. (4.2)

The initial condition (3.37) fixes β = 0, α = 1. Hence, the unique mode function is

vk(τ) =
e−ikτ√

2k

(
1− i

kτ

)
. (4.3)

This determines the future evolution of the mode including its superhorizon dynamics:

lim
kτ→0

vk(τ) =
1

i
√

2
· 1

k3/2 τ
. (4.4)

Since z ∝ a ∝ τ−1 in de Sitter, this implies

lim
kτ→0

Rk(τ) =
1

z
lim
kτ→0

vk(τ) = const. , (4.5)

i.e. as advertized, R freezes on superhorizon scales.
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4.2 Zero-Point Fluctuations

Knowledge of the mode functions for canonically-normalized fields in de Sitter space

allows us to compute the effect of quantum zero-point fluctuations:

〈v̂kv̂k′〉 = 〈0|v̂kv̂k′ |0〉 (4.6)

= 〈0|
(
a−k vk + a+

−kv
∗
k

) (
a−k′vk′ + a+

−k′v
∗
k′

)
|0〉 (4.7)

= vkv
∗
k′〈0|a−k a+

−k′|0〉 (4.8)

= vkv
∗
k′〈0|

[
a−k , a

+
−k′

]
|0〉 (4.9)

= |vk|2 δ(k + k′) (4.10)

≡ Pv(k) δ(k + k′) . (4.11)

On superhorizon scales this approaches [cf. Eqn. (4.4)]

Pv =
1

2k3

1

τ 2
=

1

2k3
(aH)2 . (4.12)

All power spectra for fields in de Sitter space are simple rescalings of this power spec-

trum for the canonically-normalized field.

4.3 Curvature Fluctuations in Quasi-de Sitter

Strictly speaking, the curvature fluctuationsR = z−1v are ill-defined in perfect de Sitter

since z2 = a2 φ̇2

H2 = 2a2ε vanishes in that limit. We therefore consider quasi-de Sitter

space where ε is small but finite.10 In this case, the power spectrum of R is simply

given by rescaling the power spectrum of v:

PR =
1

z2
Pv =

1

4k3

H2

ε
=

1

2k3

H4

φ̇2
. (4.13)

Evaluating the r.h.s at horizon crossing k = aH this becomes a function purely of k:

PR(k) =
1

4k3

H2

ε

∣∣∣∣
k=aH

. (4.14)

Defining the dimensionless power spectrum ∆2
s(k) ≡ k3

2π2PR(k) we get

∆2
s(k) =

1

8π2

H2

ε

∣∣∣∣
k=aH

. (4.15)

10For a more systematic treatment of the slow-roll approximation please refer to Appendix A.
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Since H and possibly ε are now functions of time, the power spectrum will deviate

slightly from the scale-invariant form ∆2
s ∼ k0. The common way to quantify the

deviation from scale-invariance is via the scalar spectral index ns:

ns − 1 ≡ d ln ∆2
s

d ln k
. (4.16)

We split the r.h.s. into two factors

d ln ∆2
s

d ln k
=
d ln ∆2

s

dN
× dN

d ln k
. (4.17)

The derivative with respect to e-folds is

d ln ∆2
s

dN
= 2

d lnH

dN
− d ln ε

dN
. (4.18)

The first term is just −2ε and the second term is −η.11 The second factor in Eqn. (4.17)

is evaluated by recalling the horizon crossing condition k = aH, or

ln k = N + lnH . (4.19)

Hence
dN

d ln k
=

[
d ln k

dN

]−1

=

[
1 +

d lnH

dN

]−1

≈ 1 + ε . (4.20)

To first order in the Hubble slow-roll parameters we therefore find

ns − 1 = −2ε− η . (4.21)

The parameter ns is an interesting probe of the inflationary dynamics.

4.4 Gravitational Waves in de Sitter

The formalism we just introduced can also be applied to compute the quantum gen-

eration of tensor perturbations to the spatial metric hij, cf. Eqn. (2.3). In this case,

our job is considerably simplified by the fact that first-order tensor perturbation are

gauge-invariant and don’t backreact on the inflationary background.

Expansion of the Einstein-Hilbert action gives the second-order action for tensor

fluctuations

S =
M2

pl

8

∫
dτ d3x a2

[
(h′ij)

2 − (∇hij)2
]
. (4.22)

11D. Baumann, Classical Dynamics of Inflation.
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Here, we have reintroduced the explicit factor of M2
pl to make hij manifestly dimension-

less. Up to the normalization factor of
Mpl

2
this is the same as the action for a massless

scalar field in an FRW universe.

We define the standard Fourier representation for transverse, traceless tensors

hij(τ,x) =

∫
d3k

(2π)3/2

∑
γ=+,×

εγij(k)hγk(τ)eik·x , (4.23)

where εγii = kiεγij = 0 and εγijε
γ′

ij = 2δγγ′ . The fields hγk describe the two polarization

modes of the gravitational waves (+ and ×). Eqn. (4.22) then becomes

S =
∑
γ

∫
dτ d3k

a2

4
M2

pl

[
hγk
′hγk
′ − k2hγkh

γ
k

]
. (4.24)

For the canonically-normalized fields

vγk ≡
a

2
Mplh

γ
k (4.25)

this reads

S =
∑
γ

1

2

∫
dτ d3k

[
(vγk
′)2 −

(
k2 − a′′

a

)
(vγk)2

]
, (4.26)

where for a de Sitter background
a′′

a
=

2

τ 2
. (4.27)

Eqn. (4.26) should be recognized as essentially two copies of the action (2.10). Hence,

we can jump straight to Eqn. (4.12):

Pv =
1

2k3
(aH)2 . (4.28)

Defining the tensor power spectrum Pt as the sum of the power spectra for each polar-

ization mode of hij, we find

Pt = 2 · Ph = 2 ·
(

2

aMpl

)2

· Pv =
4

k3

H2

M2
pl

, (4.29)

or

∆2
t (k) =

2

π2

H2

M2
pl

∣∣∣∣∣
k=aH

. (4.30)

This completes our treatment of the quantum generation of scalar and tensor fluctua-

tions in the inflationary quasi-de Sitter space.
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5. Conclusions

We conclude by summarizing the predictions of inflation for primordial scalar and

tensor perturbations. We then briefly discuss present constraints and future test of the

inflationary paradigm.

5.1 Theory

The power spectra of scalar and tensor fluctuations are

∆2
s(k) =

1

8π2

H2

ε

∣∣∣∣
k=aH

and ∆2
t (k) =

2

π2

H2

M2
pl

∣∣∣∣∣
k=aH

. (5.1)

This implies that the tensor-to-scalar ratio is determined by the inflationary equation

of state:

r ≡ ∆2
t

∆2
s

= 16ε , (5.2)

The scale-dependence of the spectra is

ns − 1 ≡ d ln ∆2
s

d ln k
= −2ε− η (5.3)

and

nt ≡
d ln ∆2

t

d ln k
= −2ε . (5.4)

Here, we have defined a second slow-roll parameter η ≡ ε̇
Hε

(see Appendix A). Note

that while the scalar spectrum can be red (ns < 1) or blue (ns > 1) (depending on the

sign of η), the tensor spectrum is always red (nt < 0). Finally, in single-field slow-roll

models we find a consistency relation between tensor observables

r = −8nt . (5.5)

5.2 Observations

Scalar (density) fluctuations have been measured from the imprints they leave in the

CMB temperature anisotropies. The inferred amplitude of fluctuations is

∆s ∼ 10−5 . (5.6)

Its scale-dependence is

ns ∼ 0.96 . (5.7)

No non-Gaussian and/or non-adiabatic contributions have been found.
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Primordial tensor modes have not yet been detected, but will be hunted in the

B-mode polarization of the CMB. So far we just have upper limits on the tensor-to

scalar ratio

r . 0.2 . (5.8)

The future will be tremendously exciting, with a number of CMB experiments going

after the elusive gravitational waves predicted by inflation.
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A. Results for Slow-Roll Inflation

In this appendix we compute the power spectrum of curvature fluctuation in a system-

atic expansion in slow-roll parameters:

ε ≡ − Ḣ

H2
, η ≡ ε̇

Hε
, κ ≡ η̇

Hη
. (A.1)

This will involve a slow-roll expansion of the Mukhanov-Sasaki equation (2.14):

v′′k +

(
k2 − z′′

z

)
vk = 0 . (A.2)

Given z2 = 2a2ε we find

z′

z
= (aH)

[
1 +

1

2
η

]
(exact) (A.3)

z′′

z
= (aH)2

[
2− ε+

3

2
η − 1

2
εη +

1

4
η2 + ηκ

]
(exact) (A.4)

Despite the appearance of the slow-roll parameters, both expressions above are exact.

From the definition of ε we furthermore get

d

dτ

(
1

aH

)
= ε− 1 (exact) (A.5)

Expanding the expressions to first order in the slow-roll parameters, {ε, |η|, |δ|} � 1,

gives

aH = −1

τ
(1 + ε) (first order in SR) (A.6)

and
z′′

z
=

1

τ 2

[
2 + 3

(
ε+

1

2
η

)]
≡ ν2 − 1

4

τ 2
(first order in SR) (A.7)

where

ν ≡ 3

2
+ ε+

1

2
η . (A.8)

For constant ν, the Mukhanov-Sasaki equation

v′′k +

(
k2 − ν2 − 1

4

τ 2

)
vk = 0 (A.9)

has an exact solution in terms of Hankel function of the first and second kind:

vk(τ) =
√
−τ
[
αH(1)

ν (−kτ) + βH(2)
ν (−kτ)

]
(A.10)
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To impose the Bunch-Davies boundary condition at early times, we consider the limit

lim
kτ→−∞

vk(τ) =

√
2

π

[
α

1√
k
e−ikτ + β

1√
k
eikτ
]
, (A.11)

where we used

lim
kτ→−∞

H(1,2)
ν (−kτ) =

√
2

π

1√
−kτ

e±ikτe±i
π
2

(ν+ 1
2

) (A.12)

and dropped the unimportant phase factors e±i
π
2

(ν+ 1
2

). Comparing (A.11) to (3.37) we

find

β = 0 and α =

√
π

2
. (A.13)

Hence, the Bunch-Davies mode functions to first order in slow-roll are:

vk(τ) =

√
π

2
(−τ)1/2H(1)

ν (−kτ) ν ≡ 3

2
+ ε+

1

2
η . (A.14)

To compute the power spectrum of curvature fluctuations, PR = z−2Pv, we use z ∼ τ
1
2
−ν

(first order in SR)

PR ∼
π

2
(−τ)2ν |H(1)

ν (−kτ)|2 . (A.15)

In the superhorizon limit, −kτ � 1, this reduces to

∆2
s ≡

k3

2π2
PR ∼ k3−2ν , (A.16)

where we used

lim
kτ→0

H(1)
ν (−kτ) =

i

π
Γ(ν)

(−kτ
2

)−ν
. (A.17)

Finally, the scale-dependence of the scalar spectrum is

ns − 1 ≡ d ln ∆2
s

d ln k
= 3− 2ν (A.18)

= −2ε− η . (A.19)

This shows that the spectrum is perfectly scale-invariant in de Sitter space, while slow-

roll corrections to de Sitter led to percent level deviations from ns = 1.
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B. Free Field Action for R

In this appendix we compute the second-order action for the comoving curvature per-

turbation R, cf. Eqn. (2.7). This is a basic element for the quantization of cosmological

scalar perturbations.

Slow-Roll Background

We consider slow-roll models of inflation which are described by a canonical scalar field

φ minimally coupled to gravity

S =
1

2

∫
d4x
√−g

[
R− (∇φ)2 − 2V (φ)

]
, (B.1)

in units where M−2
pl ≡ 8πG = 1. We will study perturbations of this action due to

fluctuations in the scalar field δφ(t, xi) ≡ φ(t, xi)− φ̄(t) and the metric. We will treat

metric fluctuations in the ADM formalism (Arnowitt-Deser-Misner).

We consider a flat background metric

ds2 = −dt2 + a2(t)δijdx
idxj = a2(τ)(−dτ 2 + δijdx

idxj) , (B.2)

with scale factor a(t) and Hubble parameter H(t) ≡ ∂t ln a satisfying the Friedmann

equations

3H2 =
1

2
φ̇2 + V (φ) and Ḣ = −1

2
φ̇2 . (B.3)

The scalar field satisfies the Klein-Gordon equation

φ̈+ 3Hφ̇+ V,φ = 0 . (B.4)

The standard slow-roll parameters are

εv =
1

2

(V,φ
V

)2

≈ 1

2

φ̇2

H2
, ηv =

V,φφ
V
≈ − φ̈

Hφ̇
+

1

2

φ̇2

H2
. (B.5)

ADM Formalism

We treat fluctuations in the ADM formalism where spacetime is sliced into three-

dimensional hypersurfaces

ds2 = −N2dt2 + gij(dx
i +N idt)(dxj +N jdt) . (B.6)

Here, gij is the three-dimensional metric on slices of constant t. The lapse function

N(x) and the shift function Ni(x) appear as non-dynamical Lagrange multipliers in
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the action, i.e. their equations of motion are purely algebraic. For our purposes this is

the main advantage of the ADM formalism. The action (B.1) becomes

S =
1

2

∫
d4x
√−g

[
NR(3) − 2NV +N−1(EijE

ij − E2) +

N−1(φ̇−N i∂iφ)2 −Ngij∂iφ∂jφ− 2V
]
, (B.7)

where

Eij ≡
1

2
(ġij −∇iNj −∇jNi) , E = Ei

i . (B.8)

Eij is related to the extrinsic curvature of the three-dimensional spatial slices Kij =

N−1Eij.

To fix time and spatial reparameterizations we choose the following gauge for the

dynamical fields gij and φ

δφ = 0 , gij = a2[(1− 2R)δij + hij] , ∂ihij = hii = 0 . (B.9)

In this gauge the inflaton field is unperturbed and all scalar degrees of freedom are

parameterized by the metric fluctuation R(t,x).

Solving the Constraint Equations

The ADM action (B.7) implies the following constraint equations for the Lagrange

multipliers N and N i

∇i[N
−1(Ei

j − δijE)] = 0 , (B.10)

R(3) − 2V −N−2(EijE
ij − E2)−N−2φ̇2 = 0 . (B.11)

To solve the constraints, we split the shift vector Ni into irrotational (scalar) and

incompressible (vector) parts

Ni ≡ ψ,i + Ñi , where ∂iÑi = 0 , (B.12)

and define the lapse perturbation as

N ≡ 1 + α . (B.13)

The quantities α, ψ and Ñi then admit expansions in powers of R,

α = α1 + α2 + . . . ,

ψ = ψ1 + ψ2 + . . . ,

Ñi = Ñ
(1)
i + Ñ

(2)
i + . . . , (B.14)
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where, e.g. αn = O(Rn). The constraint equations may then be set to zero order-by-

order:

At first order Eqn. (B.11) implies

α1 =
Ṙ
H
, ∂2Ñ

(1)
i = 0 , (B.15)

where Ñ
(1)
i ≡ 0 with an appropriate choice of boundary conditions. Furthermore, at

first order Eqn. (B.10) implies

ψ1 = −R
H

+
a2

H
εv ∂

−2Ṙ , (B.16)

where ∂−2 is defined via ∂−2(∂2φ) = φ.

The Free Field Action

Substituting the first-order solutions for N and Ni back into the action, one finds the

following second-order action12

S(2) =
1

2

∫
d4x a3 φ̇

2

H2

[
Ṙ2 − a−2(∂iR)2

]
. (B.17)

12To arrive at Eqn. (B.17) requires integration by parts and use of the background equations of
motion.
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C. Quantum-to-Classical Transtion

[to be included.]
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