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Abstract

Thisis a course of six lectures given at the 2003 European School of High-
Energy Physics, Tsakhkadzor, Armenia, 24th August - 6th September 2003.
They aim to provide a compact introduction to quantum field theory (in the
‘canonical’ formalism) and the standard model, focusing on: field quantisa-
tion and the canonical route to the Feynman rules; Abelian symmetries and
QED; one-loop renormalisation of QED; non-Abelian symmetries; sponta
neously broken symmetries; and the el ectroweak theory.

1. OUTLINE OF THE COURSE

§2 (Lecture 1) Canonical quantisation of free spin-0 (scalar) field. Interacting scalar fields. The Dyson-
Wick expansion of the S-matrix. Propagators. Tree graphs. The Yukawa potential.

§3 (Lecture 2) Complex scalar field. Global U(1) phaseinvariance. Number conservation laws. Fermions.
Loca U(1) phaseinvariance and the electromagnetic interaction. The Maxwell field. Elements of QED.
§4 (Lecture 3) One-loop graphsin QED: renormalisation, and running coupling constant.

§5 (Lecture 4) Non-Abelian symmetries, global and local. Local SU(2) symmetry. Gauge field self-
interactions. Local SU(3) symmetry. QCD.

§(Lecture 5) Spontaneous symmetry breaking, global and local. Chiral symmetry breaking. The Abelian
Higgs model. Spontaneously broken SU(2) x U(2).

§7 (Lecture 6) Introduction to the electroweak theory. The Higgs sector. One loop effects.

2. SCALARFIELDS: TO TREE GRAPHS

A more leisurely treatment of the material in this section is given in chapters 5 and 6 of volume 1 of the
new (third) edition of Aitchisonand Hey [1].

2.1 Theclassical field asan assembly of non-interacting oscillators
Consider afamiliar problem, that of a string stretched between pointsz = 0 and z = L. Thetransverse

displacement y of the string at position = and time ¢, y(z, t), satisfiesthe wave equation
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for small displacements. Here y(z, ) isa scalar field: ‘scalar’ becauseit has only one component, and
‘field’ because it varies continuously with = and ¢. The fundamental method of solving equations like
(2) isfirst to find particular solutions called modes, and then to use the fact that (1) is linear to write
the general solution as a linear superposition of modes. Here, the modes must satisfy the boundary
conditionsy(0,¢) = y(L,t) = 0, sowetry
. rnx

y(a,t) = X, (1) sin(—-) )
for r = 1, 2..., which expresses the fact that any number of half-wavelengths must fit into the interval
(0, L). Substituting (2) into (1) wefind

X, (1) = ~w2X, (1) ©)



where

Wi =c*rin? /12 4
Thus each mode amplitude X ,.(¢) executes simple harmonic motion with frequency w, = (crmx/L): it
actslikethe *coordinate’ of an oscillator! The general solution of (1) isthen

o0

ZX,, t) sin( ”;x) (5)

in short, a Fourier series.
Now let’s consider the total energy of the vibrating string, which is given by the integral

L 1 [0y L, /0y\?
p= [ (5 ) #3057 ) Joe ©
wherethefirst termisthekineticenergy ‘1" (p isthe mass per unitlength) and the second isthe potential
energy ‘V’. When (5) is placed in (6) and the integral over = done, a remarkable result is obtained

(problem P1.1):

E:Ei[le2+lpw2X2] (7
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Equation (7) has a strikingly simple physical interpretation: the energy of the stringis equal to the

sum of the energies of individual ‘ mode oscillators' (recall the energy of one SHO is $mi? + 1 mw?a?

so here X, < z, % < m,w, < w). For ageneral motion of the strings, al the oscillators (modes)
will be present. Because the total energy isthe sum of the individual mode energies, the modes do not
interact with each other. So, from the point of view of the energy, at least, the field is equivalent to an

assembly of non-interacting oscillators.

2.2 Quantisation
Let'swrite M = L2 so that (7) becomes

1, oy 1
E=Y" §MX3 + 5wa)(f. (8)

The essential idea is to treat the mode amplitudes * X" as ‘quantum coordinate-like variables’. The
associated ‘ momentum-like variables will be P, = M X,.. The energy (8) (which of coursein classical
physicsis a number) becomes now an operator, namely the Hamiltonian operator
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We know all about the energy levels and states of a single quantum oscillator; the fact that we
have here arbitrarily many oscillators doesn’t worry us as they are not interacting with each other, so
they can be treated quite independently. For a single oscillator of frequency w, the energy levels are
E,=(n+ %) hw, and the wavefunctions are well-known, in al g.m. textbooks. For our purposes, we
prefer the * operator approach’ interms of a’s and a'’s to the wavefunction one. The essentials are gone
through in problem P1.2.

For our vibrating string, then, we simply have

Z:(aJr a, +d, a 7,) hw,, with [a,, dl] = 4,5. (20)

r=1
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The eigenstatesof I are products of the single oscillator states |71 )|n2)|n3) ........ where |n; ) isthe state
of the oscillator with frequency w1, which has energy (n; + £ )fiw;, etc. We can write this more briefly
as|ny, ny, ....), which has energy 3, (n, 4+ %)fiw,. Theground state |0) hasall n,’s= 0, and hence an
energy (the ‘zero point energy’) equal to ), %hwr.

Thus the energy eigenstates of the quantised field (z, ¢) are characterised by saying how many
guanta of each frequency are present; in the ground state there are no quanta of excitation present. Such
vibrational quanta are called ‘ phonons' in condensed matter physics. Our ‘particles are similar quanta
of excitation of fields. The state with no excitation quantaisa (too smple!) model of the vacuum.

2.3 Freemassivereal scalar field
We will fromnowonput s = ¢ = 1. The‘classical’ field satisfies the Klein-Gordon equation

2

(O4m?)¢ = (% ~ V¢ +m*)¢ =0, where O=9,0" =09} -~ V* (11)

which is the wave equation for a free massive spin-0 (scalar) field. We now consider the field to be in
‘infinite space’ so Fourier series — Fourier integrals and our modes have the form

P, t) = Xy, (t)expik - z]. (12)
Plugging thisinto the K-G equation gives
Xjp = —(m* + k%) X}, (13)
which again shows that our mode amplitude acts like an SHO, thistime with frequency
wi = £ (m? + k)3, (14)

The total energy in thefield is the obvious generalisation of the energy of the string:
B=3 [ deld+ (Vo2 + m?e?) (15)

Once again, this can be written asa‘sum’ (in this case, an integral over the Fourier variable k) of
independent energies for each mode oscillator. So, when quantised, we get the Hamiltonian (compare

10
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where ko = +(m? + k*) 2, and where the mode creation and annihilation operators setisfy
[a(k), a' (k)] = (27)°3 (k — k), (17)

al other commutatorsvanishing: [af(k), at(k')] = [a(k), a(k)] = 0.

Problem P1.3 showsthat the state |p)  af(p)|0) isan eigenstateof /7 witheigenvalue \/m? + p2,
the expected energy for a particle of mass m and momentum p (note 2 = ¢ = 1). We actually choose
the particular normalisation

Ip) = /2poit! (p)|0). (18)
The general (quantised) solution to the K-G field equation is then
. Pk , -t .
x) = —da(k)exp|—ik - x| + a' (k)explik - 9
60) = [ g ALk o]+ (Rjexpli -} (19)
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fora‘red’ field, andwherek - z = kgzo — k - = and the (Qko)‘% is a conventional normalisation factor.
Problem P1.4 shows that

(016 () Ip) = e~ (20)

In ordinary quantum mechanics the RHS of this equation would be written as (z|p), the z-space wave-

function for a state |p) of definite 4-momentum p (which is of course a 4-D plane wave). We can then
reasonably assert that the operator

P 1yt = §0)
[ il ke = 6 @) @y
(27)3(2ko)2
creates aquantum at z: () ()|0) = |2). (Note that the other part of ¢(z) gives0 when acting on |0)).
The commutation relations (17) imply that

|p1, p2) = |p2, 1) (22)

so our particles are bosons!

2.4 Interactions

In the case of the freely vibrating string, or the free scalar field, the energy is the sum of individual
mode energies - the modes do not interact. But our particles are precisely mode quanta, and we want
them to interact, of course. So we must complicate our simple expressions for field energiesin some
way. The crucial feature of (6) and (15) which leads to the ‘>~ mode energies result is that they are
quadratic in the fields and their derivatives. Interactions will generally be represented by expressions
which are cubic or quartic in the fields. Correspondingly, quadratic or cubic expressionswill appear in
the equations of motion. (Compare the SHO: the ‘free’ SHO energy is 1 ma? 4+ 1mw?2? with equation
of motion m# = —mw?z; if it isperturbed by adding a cubic potential energy Az 3, thisproduces aforce
—4V — _3)2?). Inthe case of lattice vibrations, such ‘anharmonic terms’ cause the phononsto interact

- it isthe same with our particles. We will introduce an interaction term A’ in the Hamiltonian:
' = [ dait'(6), (23)

for example ) )
H = Ao(z)). (24)

We treat 1’ as aperturbation on H ;.

2.5 Covariant perturbation theory: the Dyson-Wick expansion of theS operator, Feynman rules

Thereisavery compact and powerful formalism for doing relativistic perturbation theory, which we are
not going to go through the details of here - just quote the essential results. Transitions are described by
means of matrix elements (between free-particle states |¢) and | f)) of the S operator, (f|S|i), where S
has the expansion in powers of %’

§=1- i/d%#(&(x')) + %//d“xld“sz(—i?%’(xl). — i (2) £ ... (25)
where‘T" isthe time-ordering operation

T(d(z1)p(x2)) = %(901)%(962) for t; >ty
= ¢(az)p(aq) for 1 <ty (26)

i.e. ‘earlier ontheright’.



Discussion Point: Thisis supposed to be covariant (relativistically invariant) perturbation theory.
But the ‘7" symbol seems to be singling out ‘time’ in some way, and doesn’t ook ‘4-D symmetric’.
Should we be worried?

Example: ‘ABC’ theory

To have a little more variety than the single ¢ field, let’simagine a world with three real scalar
fieIdSqAbA(mass ma), qAﬁB(mB) and qAﬁc(mc) with an interactionquA(w)qAbB(ac)qgc(x). Thisinteraction
creates or annihilates one each of an A,B or C particle - for example C —+ A + B. Suppose m¢ >
m 4 + mp. Then C will be able to decay to A + B. The matrix element for thiswill be, to lowest order,

/d4$<PA7pB| —igda(z)dp(x)de(2)|pc). (27)

Problem P1.5 showsthat thismatrix element isequal to —ig(27)*6*(pc — pa — pg). (Note: creation and
annihilation operators for the different fields commute with each other). So we have our first ‘ Feynman
rule’!

(i) —ig for an ‘A-B-C’ vertex

together with an overall factor of (27)*0 (pinitial — Pfinal) -

Now consider A B — A B scattering. Thelowest order in perturbation theory at which thisprocess
can proceed is second, viathe matrix element

3 [ [ dtedteatpla o T4 (=ig0aa1) 1) (21)) (—igdale2)dm (r2)c (02) Hpa, ps). (28)

Suddenly we have a complicated expression on our hands! Remembering (18), we see that (28) is
essentially

(16 EAERE Eyg)2 (0)aa(py)in (pg) T{da(21)dp(21)do (1) da(we) bp(22) do(x2) Yaly (pa)al (pp)|0) (29)

which is the vacuum expectation value (vev) of 10 operators. Remarkably, it can be shown (Wick's
theorem) that such vev’'s can be written as a sum of products of all possible choices of pairwise vev's
(time-ordered vev's, in general). One suchterm is

[ [ dterd ea(0laa(ea)daten) [0)(016a(e2)aly (p4) 0)(0lan(p) i (e2) 10)
% (01dm(@1)al (p3) |0 (O|T (e(21) e (22))[0) x (16EAERE) Elg)¥. (30)

Problem 1.4 shows us that the terms with one field and one @ or &' give just plane waves: two ingoing
ones and two outgoing ones, yielding exp i{p’y - 1 — pa - ¥2 + ply - ¥2 — pp - ¥1}. Theinteresting
bit is the remaining vev of the time-ordered product of two ¢ fields, which is the Feynman propagator
in coordinate space. The physical interpretation of the two terms in (0|7 (¢ (1) dc (22))]0), one for
t; > to and onefor t; < t9 isasfollows: A C-quantum isbeing produced at =, and destroyed by x5,
or the other way round (Exercise: explain why, with the aid of the mode expansion for ¢¢(z)). So
including the incoming and outgoing plane waves we have the physical processes shownin figure 1, and
we have to integrate the whole expression in (30) over all =, and z5. The result isthe Feynman rulein
momentum space for the scalar propagator (see textbooks):

N

(ii) afactor i /[(4 — momentum carried by the propagating particle)? — (its mass)?]

So for the C-exchange process we have the diagram of figure 2, corresponding to the Feynman amplitude
—ig/(¢*—m%) whereq = p4 — p/z. Inaddition, thereisthe overall factor (27)6*(pa+ps —p'y — Plg)-

Pointsto note:
1 A and B areinteracting by ‘exchanginga C’.



and

>
time

Fig. 1: Thetwo physical processesincluded in the single Feynman C propagator.

Fig. 2: One-C exchangeprocessin A + B — A +B.



2 But the (4-momentum)? carried by the exchanged C is not equal to mZ - itis‘off mass shell’.

3 Both time orderings are included in this one momentum space amplitude.

4 Suppose we evaluate the amplitude in the c.m. frame: ps = (Ea,p),p = (EB,—p), P4y =
(Ea,—p'), P = (EB,+P). |pl = |P'|. Then (pa — p)? = (Ea — EB)* — (p — p')®. Now
consider the static or non-relativistic limit (K4 — Eg)* < (p — p’)%. Our amplitude is now

essentially
1

(p—P)+me
We can interpret thisin terms of a potential associated with the A-B interaction. According to the
Born approximation in scattering theory, the amplitude to go from p to p’ in the potential V' (r) is

(31)

~ /exp{—ip’ P}V (r)exp{ip - r}d°r = /exp{i(p —p) - r}V(r)dr (32

which is some function of ( — p")%. Question: what is V' (r) such that this function is equal to
[(p—p')2+m&]~1? Answer: V (r) o< exp{—m¢|r|}/|r|, the Yukawa potential, of range 1/m;
see problem P1.6.

5 Good exercise: think about some of the other terms in the Wick expansion of (28)!

Problemsfor Lecture 1

P1.1 A string is stretched between two pointsz = 0 and z = L. The transverse displacement of the
string at the point = at time t isy(x, t) where

9%y B 9%y

2ot §a?’
The general solution can be written as a superposition

rex
g X sm —_—

Thetotal energy of the vibrating stringis

L1 y 1, [0y\?
p= [ (5) + 0 (32) 0
where p isthe mass per unit length. Show that

£ =5 SlppXit gt
where w, = erw/L. [Hint: write the term ( )2, for example as a product of two independent sum-
mations (>, ...)(>_, ...) and explain why there are no ‘cross terms’ of the form X, X; r # sinthe
answer.)
P1.2 A one-dimensional harmonic oscillator hasthe Hamiltonian (energy operator) [/ = p 2/ 2m+Sw
where [#, p] = i (units = 1). Define the operatorsa, at by

o= @<@+£)7 ot = @(i_i)_
2 mw 2 mw
(i) Show that [a,a’] = 1. (i) Show that [7 can be written as Lhw(aat + ata) or as hw(ata + 1).
Deduce that [af, II] = —wat and hence show that if H|n) = E,|n) Tatln) = (F, +w)|n), so
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that af|n) o |n+1). State and prove asimilar result for a| ). (iii) Explain why there must be a state |0)
such that a[0) = 0. What isthe energy eigenvalue of |0)? Deduce the energy spectrum of the oscillator.
P1.3 Hx ¢ isdefined by

- L[ &Pk P
i = 5 [ kol (R)atk) + ak)a (k)

where kg = —|—\/m, with
[a(k), a"(K')] = (2m)°5(k — k')
all other commutators vanishing. Show that
Hiccal(p)|0) = poa' (p)|0)
where py = ++/m? + p? and a(k)|0) = 0 for al k.
P1.4 Thefield ¢(«) has the mode expansion
30 = [ T8 fagepessiit )+t Ryexpit - )

(27)3(2ko) 2

where k - & = kgzg — k - . Show that
(0lg(2)|p) = e

where
p) = \/2pod (p)|0).

P15¢4, 5, and ¢ arethreedistinct scalar fields. Evaluate
[ 4 (pa, sl — igda(2)én(2)b0 () ).
P1.6 Evaluate the Fourier transform

/d?’rexp{iq . T}M

of a Yukawa potential by following these steps: change dr to polar coordinates‘ r2dr sin dfd¢’ with
the polar axis chosen along the direction of g. So exp{iq - r} = exp{i|g|r cos#}. Do theintegral over
6. Then do theintegral over r (the ¢ integral just gives 27). [Answer: 47 /(g + a=2) ]

3. LAGRANGIANS, COMPLEX SCALAR FIELDS, DIRAC AND MAXWELL FIELDS
See chapter 7 of [1].

We have managed to get thisfar without mentioning the word ‘ Lagrangian’, but now we are going
to have to start using this language, whichis particularly well suited to the discussion of symmetries, and
these are of fundamental importance in the Standard Model (SM).

3.1 Lagrangians

Thisisessentially aformulation of dynamicswhich isdifferent from (but in the classical case equivalent
to) Newton's. The basic quantity here is the Lagrangian function, which in most cases has the form
‘L =T — V'’ (instead of the energy whichis‘FE = T 4+ V). For aclassica particle with coordinate
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Fig. 3: Possible space-time trajectories between the fixed pointsz (¢ 1) and = (¢2).

z(t), Lisjust L[z (t), &(t)] = $ma(t)? — V(x(t)). The ‘path’ z(t) the particle takes is determined by
the principlethat the actionintegral .5 given by

t2 t2

S= [ Ll i) = [ 5ma0? = V(o) €
11 t1

isaminimumas all paths z(¢) are searched over, subject to z(¢,) and z(¢) being fixed (see figure 3).

Problem P2.1 provides a simple example.

Although the action principle seems very different from the differential equations of Newton's
laws, we can connect them by using a bit of calculus. The actual path must be determined from the
condition that small changes away from it make no changein S, to first order (i.e. .S isat a minimum).
So consider an arbitrary change x(t) — = (t) + éz(t), which also implies & () — #(t) + 4dz(t). So
then 32 — 32 4 23 4 5x tofirst order, and V (z) — V (z) + 26z, giving

t2 d dv

05 = t [mx%(&v) — %&cwt. (34)

Now do a partial integration in the first term to get

2 d av

85 = | L (mi) + Yo (0)dr, (35)

dx

assuming that éz= vanishes at the end points (all paths start and finish at the same points). Now it is
important to realise that ‘5z (¢)’ hereisan arbitrary (if ‘small’) function of t. But this changein S, 6.9,
must be zero, by our principle. The only way the integral in (35) can be zero for arbitrary 5z (¢) isif the
guantity inside the square brackets vanishes, i.e.

d, . av

%(mﬂf) = (36)

whichis exactly Newton'slaw of motion!
In quantum mechanics, the action approach can also be used, as stated by Dirac and developed by
Feynman. There, the amplitudeto go from z (1) to = (¢2) is proportional to

Z exp (% /j L(x(t),ab(t))dt) = Z exptS/h. (37)

all paths z(¢) paths

The qualitative idea here isthat if the integral is an essentially classical quantity, thenitsvalue will be a
very large number of 7’s, so the phase factor will oscillate wildly as the 2’s change, and everything will



cancel out except for trajectories such that the action is stationary to small variations around them, since
for these ones the phaseswill ‘add up’ coherently; hence we get back to the classical action principlein
that case.

The action approach can also be used for fields, both classical and quantum; for the latter, see Peter
Hasenfratz'slectures. In thiscoursewe will not useit for dynamics(i.e. for deriving the Feynman rules),
but we will use the Lagrangian language, because it is a very powerful one for discussing symmetries,
and becauseit isquite simply the lingua franca of particle physics(at least insofar asthe Standard Model
is concerned). Before moving to that, we note that the general formulation of (36) is (problem P2.2)

d (0L oL

For fields, we will have to introduce a Lagrangian density £ such that (in one space dimension)

_ . 0¢(x) 09(x)
S_//dtdx£[¢(x), =20, 2, (39)

b = 22 islike @ in (33), and 32 is new, but analogous. Again, the field equatlon for ¢(x) will be
determined from the condition that §S=o0under ¢ — ¢+ 06, & — b+ &b, T a(b + 6 ( )

0=65= /dt/ l 8¢§8$)5 (&b) ¢5¢] (40)

(compare (34)). But § (%) = 2.§¢, and similarly for the ¢ term, so that the second and third termsin

(40) can both be integrated by parts, asin (35). Asin that case, the variations vanish at the end-points,
and since 4 ¢ is arbitrary, we deduce the Euler-Lagrange equation of motion

oL 0 oL a (oL
9L _ 9 (9% ) _ 2 (%), 41
5~ x \aarm) ~ a0 (a¢) ’ )
Example. £ = 142 — 1(2£)2 _ 11242 TheE-L equationis 22 — 2% + m2¢ = 0, the KG equation.
Thisal generalisesto 4-D via

Lxa = 30,600 — Sm?6?. @)

w_ 0
Hereé? = 5070

V2
And this generalises to quantumfields by putting hats on!

2 b= (20, @), 1, = (20, —2), 040, = ool = Ll B (— 2=

8t2

3.2 Thecomplex scalar field

In section 2 we considered a‘real’ scalar field for which ¢t = ¢. The next most complicated thingisa
complex scalar field for which ¢! is different from ¢. So here our mode expansion will have the form

4’k P —ik-x 7t ik-w
6= [ Gyl +H ] @)

The physical interpretation of thisis that ‘a’ will destroy a particle (quantum) of the field, while bt
will create an antiparticle. Thisis because states @ 1]0) and b1|0) are distinguished by having opposite



signs of a certain conserved quantumnumber. Now conservation laws have to do with symmetries: what
symmetry is at work here? The answer isthat it isasymmetry under

é—e P (44)
i.e a simple phase transformation. Any £(¢) which is a function of ¢ and 9,,¢'9"% only will be
invariant (symmetric) under (44); for instance the Lagrangian for the free complex KG field
L=0,610"6 — m?To (45)
isinvariant under (44).

The symmetry (44) is called a continuous symmetry because the phase angle o can be anything
(compare ‘parity’, where the transformationis # — —a and there’s no such thing as a ‘ small change of
parity’). It isalso aglobal symmetry, meaning that the parameter o does not depend on the space-time
point z; if it did, so that we had o — «(z) in (44), the symmetry would be called a local one. In the
case of (45), the Lagrangian can’t be invariant under such alocal phase change because of the d,,¢ terms,

which will produce 0,,a pieces which won't cancel. But, if we include the electromagnetic field, then
we can get aLagrangian which isinvariant under local phase transformations (see section 2.4).

Another piece of jargon we need to introduce is the statement that (44) isa‘U(1)’ transformation.
The ‘U’ standsfor ‘unitary’ asin‘unitary matrix’. We can write (44) as ¢ — U(«a)¢, where the ‘ matrix’
U(a) has only a single element - i.e. itisa‘ 1 x 1" matrix. A genuine unitary matrix U satisfies
U'U = 1, where 1 is the identity matrix and the dagger denotes the Hermitian conjugate. A one-
dimensional matrix isof course asingle number - in thiscase acomplex number. The*unitary’ condition
then reducesto U*U = 1, which isto say that U is just a phase factor, asin (44). Such phase factors
e form a group: the product e*“¢'” of any two of them is also a phase factor, and there is an obvious
identity ( when o = 0) and an inverse (replace o by —«). Furthermore, this group is Abelian, meaning
that it doesn’t matter in which order we multiply any two U’stogether: U(a)U(5) = U(5)U(«). (Aswe
shall see in Section 4, the symmetries of QCD and of the electroweak theory are precisely non-abelian
generalisationsof (44)). Sofinally, we say that (44) isaglobal U(1) transformation, and (45) hasa global
U(1) symmetry.

The basic theory of such continuous symmetries is supplied by Noether’s theorem. Because the
transformation is continuous, it is good enough to consider an infinitesimal transformation - finite ones
can be built up by having lots of little ones. So let’s consider an arbitrary £ whichisinvariant under

b o Fmboid
) e ) (46)
ol = =9 +icdl.
Thechangein £(¢, ¢T, 9,6, d,6") will then be zero (becauseit'sinvariant), and this change is
. oL . oL .
0=26L = b — 69,01
(m)(u) (MT)(M)
LT
+a¢¢+a¢T¢ (47)

Thisisabit likethe manipul ationsleading up to the derivation of the Euler-Lagrange equationin Section
3.1, but now the changes §¢ and 56! have nothing to do with space-time trajectories - they mix up the
two fields via (46). However, we can use the equationsof motion for ¢ and ¢1 to rewrite §£ as

oL ) oL

"= 50,0 " e

oL : oL n
’ la“ (8(8@)] o la“ (a@qﬁ))] e )

5(9.97)




Since (see similar steps after (40)) 5(@@) = 8M(5q5¢), the right hand side of (48) isjust atotal diver-
gence, and (48) becomes ) )
0=20, oL 5o+ oL
9(0,9) 0(0,97)
This means that the quantity inside the [.....] is a “current J* which is conserved in the sense that
dug* = 0.
Thisisagenera result for any £ invariant under (46), and it is an example of Noether’s theorem
(which states that continuous symmetries imply the existence of conserved currents). For our particular
case, with the small changes (46), the quantity inthe[...] bracketsis

[.] = (0%¢"). —ichd+ (0"¢).ich!
= ic ((0"9)6' — (0"6)0) = . (50)

5ot . (49)

We drop the irrelevant constant parameter ¢ and arrive at the expression for the conserved current fol-
lowing from the symmetry under (46):

i =i(01)d" - (0"9hd). (51)

What does all this have to do with conserved quantities? Written out in full, the conservation
equation d,,j;, = 0 is
0j9/0t+V -5, =0. (52)
Integrating this equation over all space, we obtain

d %0 13 s
— d:I:—I—/ -dS =0 53

where we have used the divergence theorem in the second term. Normally the fields die off sufficiently
fast at infinity that the surface integral vanishes, and we can therefore deduce that the quantity Vv, is
constant in time, where

Ny = [ 3o (54

that is, the volumeintegral of the 4 = 0 component of a symmetry current isindependent of time, so its
eigenval ues are constants of the motion - i.e. conserved quantum numbers.

We can calculate N¢ given the field expansion (43). Here we must of course pay attention to the
fact that the &’sand &’s are mode operators with the commutation rel ations

[a(k), a' (k)] = (27)°6 (k — k'), [b(k), bT(K")] = (27) 6 (k — k'), (55)

all other commutators vanishing. Also we are defining the vacuum state |0) asbeing such that a(k)|0) =
b(k)|0) = 0. Now, if we go ahead and calculate N, in terms of the @’s and ’s from (54), we will get
some terms in which the rightmost operator is a creation operator; such terms will not give zero when
acting on |0). We want the vacuum to be a state with zero eigenvalue of this conserved quantity, and so
we re-order the expression for 1\7¢, using the commutation relations, so as to arrive at a form in which
all a’sand b's appear to theright of all a'’sand b!'s (thisis called ‘normal ordered form'-note that we
need to do thiswith the Hamiltonian also!). We discard (infinite) constant contributions arising from the
d-functions on the RHS of (55). Having done this, we find

N = [ Sl (Waw) - (k) (56)



while the Hamiltonian in normally ordered formis
. >k P .
fy= [ Gy ol (R)a) + B () (k)] (57)

So N¢ counts 1 for every ‘a and -1 for every ‘b’ particlein a state (remember that thingslike‘ata’ are
just number operators), while A, » counts+-kq for every *a and also + kg for every ‘b’. Theinterpretation
then isthat free a's and b’s of momentum & have the same energy \/m?2 + k2, but carry opposite values
of the conserved quantum number N, which is the eigenvalue of 1\7¢. Thisiswhy weinterpret b asthe
creation operator of an anti-a.

3.3 Fermions

Thefirst step towards getting nearer to the SM is to introduce the quantised Dirac field, which is needed
for spin-1/2 particles such as quarks and leptons. The free Dirac equationis

2
ot

where the Hamiltonianisthus Hp = —ia - V + m, and e and 5 arethe 4 x 4 Dirac matriges. Asin
the scalar case, we will promote the ‘wave function field ()’ into a quantum field operator + () with
amode expansion

() = (—ia - V 4 fm)¢(x) = Hpy(z) (58)

0 P’k —ik-z tk-x
Y= / o 3\/%521:2 - ‘|’dT(k) (k,s)e k 1, (59)

where ko = (m? + k?)'/2. Note: (i) ¢ # + - it isa complex Dirac (spinor) field: aswith the complex
scalar field, this has to do with the fact that its quanta carry a conserved number which distinguishes
particle quanta from antiparticle quanta; (ii) » and v are 4-component spinors of positive and negative
4-momentum respectively, such that

(f—m)u(k,s)=0, (f+m)v(k,s)=0 (60)

where & = %% — v - k and v° = 38,4 = fBa; (iii) there are two independent spinors « (and two
independent v’s) for given k, corresponding to the two possible spin statesfor a spin-1/2 particle, 1abelled
by ‘s’

We have written (59) in a form which mimics the complex spin-0 case, suggesting that the é’s are
mode annihilation operators and the d!’s are mode creation operators. That is, we expect the vacuum to
be such that ¢,(k)|0) = 0 = d,(k)|0), and that particle states will be formed by applying ¢’sand dI's
to |0). However, whilethis seems fine for single particle states, we know very well that a state such as

|l€17 515 k27 82> X C (kl) (k2)|0> (61)

has to be antisymmetric under interchange of the labels (k1, s1) <> (k2, s2): in particular, the state must
be zero (fail to exist) if £y = ky and s; = s, (the Pauli exclusion principle). So these mode operators
can’t be just like the spin-0 ones.

The solution to this dilemma is simple but radical: for fermions, commutators are replaced by
anticommutators! If two different ¢'s anticommute, then

el (k)et (ko) + el (ka)el (k) = (62)
so that we have the desired antisymmetry
|k1, 515 ko, s2) = —lka, 525 k1, 51). (63)



In general we postulate

{é4, (k1), el (ka)} = (27)°6% (k1 — k)05,
(64)
{5, (k1), &5y (k2)} = {€l, (1), el (ka)} = 0

and similarly for the d’s and d'’s. The factor in front of the § function depends on the convention for
normalising Dirac wavefunctions.

Why doesit have to be thisway? Thisis a deep question and has a (rather technical) answer in the
famous ‘ spin-statisticstheorem’ of quantum field theory. One can get some idea of what goes wrong if
we use commutators for fermion modes, by considering the Hamiltonian operator whichis

ﬁD:/¢W@@k»V+ﬂmW@M%- (65)
If we place the expansion (59) into (65) we find (after quite alot of algebra)
1o [ PR S e — d ot
fb—/k%P%g%M%M%)cMM%Wl (66)

Aswith [, and Ny for the scalar field, we would want to re-order the last term in (66) so as to ensure
Hp |0) = 0. But if we do this assuming ordinary commutation relations for the d's, we get

. A3k N N

Ap = / Gy 2 [ ) - AR,k (67)

s=1,2

The problem with (67) is that, although indeed Hp|0) = 0, there are states with negative energy! -
namely states with any number of d-quanta (because of the minus sign in front of the number operator
d'd). On the other hand, if we re-order the dd' term using anticommutation relations, we convert the -
signin (67) intoa+ sign, and al iswell.
We can also see the same mechanism at work if we enquire about a conserved fermion number.
The Dirac Lagrangian is )
Lp = (@) (iv- 0 —m)d(x) (69)
where <> and /! are independent degrees of freedom (the E-L equation for QZ isjust the Dirac equation

(17 -0 — m)y = 0). The Lagrangian (68) is plainly invariant under the global U(1) transformation
D(e) = P (2) = (). (69)

The corresponding (Noether) symmetry current can be found by followingthe standard stepsin Noether’s
theorem of §3.2, and is

NE = h(a)y"d(x). (70)
The associated symmetry operator is

Ny = /N{;(x)d% _ /QLT(x)QL(x)d%, (7)

which isjust the usual Dirac number density, integrated over . If we now calculate Nw from (71), we
find

$= [ s S 08 + Ao 72



The first term isfine, but if we re-order the second to *dtd’ so that N| 0) = 0, we will be counting +1
for both ¢’'s and d's. We clearly need, again, to use anticommutators, so that N, ~ &'é — dtd, which
counts +1 for each c (particles), and -1 for each d (antiparticles).

We also need the Dirac propagator (0|7 (¢(z1)¢(x:2))|0). Thismay be compared with the anal-
ogous propagator for the complex scalar field, namely (0|7 (¢(x1)d!(x2))|0) - see problem P2.3. But
note that in the Dirac case, each of > and ! carries an independent spinor index (telling which of the
four componentsit is), so the Dirac propagator isa 4 x 4 matrix in this spinor space. For the Feynman
rule appropriate to a propagating fermion we need the momentum space version, as usual. In the scalar
case, the propagator is proportional to 1/(¢* — m?) where ¢ is the momentum carried by the internal
particle and m isitsmass. The ‘poor man's way of getting thisisto take the equation of motion for a
free scalar particle (the KG equation)

(02— YV + m)e(z) = 0 (73)
and consider a plane wave solution (4-momentum eigenfunction) of the form
¢ = Aexp(—i¢’t + iq - ) = Aexp(—iq - z) (74)
giving
(—(@") +¢* +m)A= (=" + m*)A =0 (75)
and the propagator is basically the inverse of the expression (....) multiplying A in (75), namely (—q?* +
m?)~L. Inthe Dirac case, an anaogous plane wave solution has the form
¥ = exp(—1iq - v)u, (76)
where u isa4-component spinor. Inserting (76) into (58) we find
(f —m)u=0 (77)

asin (60), and the inverse of the LHS of (77) is (g — m)~! (remember that 4 isamatrix!). The actual
answer is

(iii) afactor i /(¢ — m) for an internal fermion line carrying 4-momentum g.

3.4 Local U(1) phase invariance (U(1) gauge theory): QED
Consider the Dirac Lagrangian

Lp = d(iy -0 — m)i. (78)

It is certainly invariant under ¢» — ¢4 with constant a, which is a global U(1) symmetry associ-
ated with conservation of the number of «-fermions, as we have seen. Let’'s explore the possibility of
invariance under the local phase transformation

d(z) = e @ () (79)

where & (z) isascalar quantum field. Clearly Lp isnot invariant under (79): it changes by

SLp = d(x)y d(x)d,a(x). (80)

Now, in classical electrodynamics, the way in which electromagnetic interactions are introduced in the
Hamiltonian formulation of dynamicsisviathe replacement of the momentum variable p* by p* — e A#,
where e(> 0) isthe particle’'s charge and A* = (V, A) isthe 4-vector of electromagnetic potentials



and Asuchthaa B=V x Aand E = —VV — 0A/0t. In quantum mechanics, we follow the same
prescription, but now p* — p* = 10" and electromagnetism isintroduced viaio* — 10" — e A*, or

O — " +ieA* = DM (81)
Applying this prescription to £, we generate an interaction
Ling = ey A, (82)

Now, if AM were a so to change by exactly therule
1, .
AM — AM ‘I’ _8;1,05 (83)

when ¢ changes by (79), the term (80) will be cancelled and the complete Lagrangian £ + £Lin would
belocally U(1) invariant.

Of course, this is indeed the case. The electromagnetic potentials are arbitrary up to gauge
transformations’ of the form (83) (consider for example just the 3-vector part: A — A + lva, and

B = V x A remainsthe same because curl grad =0). So the combined transformations

da) = )
Aue) = At L0,6() )

are what we mean by a U(1) gauge transformation. Note that the interaction is the 4-dimensional dot
product of the gauge field A, (z) and the ‘global U(1) symmetry current’ ¢-y*4).
Like our other quantum fields, A* () has amode expansion:

Z / oy \/_ (e (b, A)dn(K)e= e + e (k, A) il (k)eito] (85)

where ¢ (k, \) isthe ‘polarisation vector’ of the planewave solution (A = 0, 1, 2, 3). A* isreal (because
the photon isits own antiparticle), and e (k, A) isa‘spin-1 analogue’ of the spinor u(p, s) for the Dirac
field.

But this‘ A*' isitself a dynamical field, of course. What is its Lagrangian? To answer this, we
need to find an £4 such that, if that was all we had, the E-L equations of motion would give us the
free-space (source-free) Maxwell equations. Now Maxwell’s equations are for the field strengths E and
B, not the potentials, so they are automatically unchanged under the transformation (83) - that is, they
are gauge invariant. This suggeststhat we need to use the gauge invariant object

., =0,A, -0,A, (86)
to build our £ 4 (it iseasy to check that £}, isinvariant under (83)). Indeed, the Maxwell Lagrangian is

1 4 N
La=—7Fu F™. (87)

How do we know? By verifying that indeed the E-L equations for AM following from £ 4 are the free-
space Maxwell equations (warning: this needs some patience to do correctly, first time!).

So actually we are now in possession of the QED Lagrangian

Lopn = b6 §—m)b = by by — LBy F% = 3 P —m)d = Th P (89



for one fermion of charge e and mass m. It isinvariant under local U(1) transformations- i.e. itis
gauge invariant. What are the Feynman rules? We have the fermion propagator: we need the interaction
vertex, and the A# (photon) propagator. First, the vertex. Remember that ‘£ = T — V", sotheinteraction
Hamiltonianis

H' = /ei’y“z@flud‘lx. (89)

In perturbation theory we alwaysget ‘ —i 1"’ So alowest order matrix element will be
(= ie [ GrrdAdtali). (90)

Just asinthe ‘ABC’ case, the amplitude for the elementary building block ‘e~ — e~ + ~’ will be just
(iv) zey*
with appropriate factorsfor an incoming fermion (a « spinor), an outgoing fermion (a « spinor), and the
7 (e, for aningoing v, €, for an outgoing one).
The only other thing we need is the photon propagator, and here we hit an unpleasant snag, which

should not be concealed. Let’stry to follow the ‘ poor man’'s way of getting propagatorsin thiscase. We
start with the E-L equation of motion for the A* field, which turns out to be

OA” — 0"(0,A") =0 (91)
(see problem P2.4). Now try pluggingin afree particle planewave solution A" ~ exp(iq - z)€”. We get

(—¢*8) + ¢"qu)e" = 0. (92)
The propagator should be basically (q25z + ¢"q,)~!. But thisinverse doesn’t exist! It's obviousthat

(=48 + ¢"q.)q") =0 (93)

so that treated as a matrix it has a zero eigenvalue; hence its determinant must vanish, and its inverse
therefore will not exist.

The propagator should be something like (0|7 ( A% (1) A¥ (x4))|0), but as we have seen the A*’s
are not unigque, and can be altered by a gauge transformation (83). So the propagator is in fact gauge
dependent, not a unique quantity, and that’s why the naive poor man’s approach failed. In classical
electromagnetic theory, one ‘fixes the gauge’, for example by imposing the condition 9, A* = 0, which
reduces (91) to 0 A” = 0, and then the plane wave solution gives —¢2¢* = 0 and the propagator ~ 1/¢?
(as expected!). But in general we must acknowledge the gauge dependence. A standard form for the v
propagator is

(v) afactor :[—g** + (1 — &€)q*q”/q*]/q* for an internal photon line carrying 4-momentum ¢,
where ¢ isa‘gauge parameter’ (¢ = 1 givesthesimple 1/¢* form).

Resultsfor physical quantitieswill always beindependent of £ (i.e. will be gaugeinvariant) , but it isnot
so simpleto give ageneral proof of this.

Problemsfor Lecture 2
P2.1 The‘action’ in classical mechanics is defined by

1
s= 1

. 2m(a’c(t))2 — V(z(t))]dt.



Consider one-dimensional motion under gravity with V' = —mga(t). Evaluate S fort; = 0,t, =T, for
three alternative trajectories: (a) z(t) = at; (b) z(t) = $¢t* (the Newtonian one); and (c) z(¢) = bt>.
[Take care to choose « and b so that all trgjectories end at the same point.] P2.2 The classical actionis

t2

S = Llz(t), &(t)]dt

t1
where L isthe Lagrangian. Under an infinitesimal change of trajectory = (t) — z(t) + dz(t), &(t) —
&(t) + £Lé2(t) the action changes by

2 JL 8L d

The classical path is determined from the condition 6.5 = 0. Show that thisimplies

4oy oLy
dt \ 0% ox
P2.3 Discussthe interpretation of (07" ( (1)1 (x25))|0) for both time-orderings. P2.4 Maxwell's equa-

tionsare 9B IE
V.E=0,VxE=-—V-B=0,VxB=—
ot ot

In quantum mechanics, electromagnetic interactions are introduced via the potentials V' and A defined
by

E:—VV:%A, B=VxA.
ThenV-B=0andV x FE = —8— are satisfied automatically, while the other two Maxwell equations
become

9 9 A%

and
g 0V

2 2 v oV _
(0f = VIV at(at +V.-A)=0.

(i) Verify these last two equations.

(i) Verify that they can be put into a neat covariant form by introducing the 4-vector A# = (V, A),

namely

0A" - 0"(0,4") =0
where O = 97 — V*, 9" = 32, 9,4" = a—V + V- A. [Notethat z; = —z' fori = 1,2,3; 0
ai - 8?0,‘ - _% - ( V)z components and 8 = ai = (‘|’V)z component- So 8MAM = 80140 + 82142 -
vV
W4 V. Al
P2.5 Show that

[D,,D,] = ieF,,
(see (81)). Hint: in working with such commutators of differential operators, it is best to put in an
arbitrary function for the operatorsto act on, on both sides.

P2.6 A photon mass term in the Lagrangian would give a term proportional to A*A,,. Show that thisis
not gauge invariant.
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Fig. 5: One-loop correctionsto figure 4.

4. ONE-LOOP GRAPHSIN QED: RENORMALISATION, AND RUNNING COUPLING CON-
STANT

See chapters10 and 11 of [1].

Feynman diagrams represent terms in a perturbation theory expansion of physical amplitudes,
where the expansion parameter isthe relevant ‘ charge’ of thetheory - ‘¢’ for QED, or more precisely the
fine structure constant o« = ¢2? /4. The lowest order graphs for any process are always the ones with
the fewest vertices, and this means, in fact, that for given external ‘legs’, each vertex must be joined to
only one other vertex by a singleinterna line (propagator); for example, the ~v-exchange amplitude in
e~ pu~ — e~ p~ showninfigure 4. Such graphsare called ‘tree’ graphs.

But tree graphs will only give us the lowest order contribution to the amplitudes. As soon as we
go to the next order in perturbation theory, we meet loops - for example, those shown in figures 5 (a), (b)
and (c), which are O(a?) ( four powersof ¢) diagramsine~u~ — e~ p~ . Admittedly, since v ~ 1/137
is quite small, such corrections would seem to be relatively insignificant, perhaps. But, as you all know
very well, there are certain quantities (such as the anomalous magnetic moments of the e and the )
which are known with truly remarkable precision (typically 0.1%), well beyond that represented by the
simplest lowest order calculation. More to the point for this school, LEP and SLAC experiments had an
accuracy sensitive to one-loop corrections; hence an understanding of this physicsis now essential for
phenomenolgy.

As soon as one tries to calculate aloop, in nearly al quantum field theories, one finds that it is
infinite! Thisis pretty disastrous, particularly as loops are supposed to be a small correction to the tree
graphs (if the expansion parameter issmall, as « is). Thusat once we are faced with the whole business
of renormalisation, whichisasystematic procedurefor ‘taming’ theseinfinities. All three gauge theories
of the standard model are ‘renormalisable’, meaning that higher order corrections can in fact be reliably
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Fig. 6: Theloop parts of figure 5.

calculated. The remarkable agreement between theory and experiment is impressive confirmation that
therather elaborate theoretical structure of these theoriesis actually agood model of nature at this scale.
However, the renormalisation of non-abelian gauge theories is too technical for this course, and here |
shall sketch how it worksfor QED only.

The loop bits in figure 5 are, in fact, the only divergent one-loop graphs in QED; we redraw
them separately in figures 6 (a)-(c). Figure 6(a) is clearly a correction to the photon propagator, and is
called genericaly a‘vacuum polarisation’ graph (see section 5.3), (b) isa‘vertex correction’ and (c) isa
correction to a fermion propagator. We are going to concentrate on (a).

4.1 Vacuum polarisation and the photon self-energy

We shall use the gauge ¢ = 1 in which the unmodified photon propagator is —ig ' /¢*. The amplitude
for figure 6(a) is (omitting Dirac spinor factorsfor the fermion lines)

—ig"* —igTH
I (ind(¢Y) qu (94)

where m
d ? ?

T2 (02Y — (1) (i) 2

) = () (ie) T [ g
Note: (i) When we attach external legsto figure 6(a), asin figure 5(a), ‘¢’ will be determined in terms of
the 4-momenta of the external particles, but this ¢ is shared by the et and e~ inthe loop in all possible
ways: the et has 4-momentum k, say, in the direction indicated, and the e~ has ¢ + k, but nothing
determines k - it has to be integrated over. (ii) The (-1) factor hasto be included for all closed fermion
loops, as does the Tr (which means ‘take the trace - i.e. sum the diagonal elements - of the Dirac matrix
product’).

The [ d*z in (95) extends over the (presumably) infinite 4-D ‘volume'; in particular, al com-
ponents of & can go to infinity. So a crude ‘counting of powers seems to show that (95) will diverge
as

(95)

/ Ak ~ / 1Bdlk k2 ~ / ledk ~ A2 (96)

if we ‘cut-off’ the integral at an upper limit A. Thiswould be a (divergent) constant contribution, mul-
tiplying ¢, to get the indices right. What would such a constant loop correction mean , in this case?
Suppose we consider awhole series of such ‘insertions’, as shownin figure 7 - which is, in fact, a geo-
metric seriesof theform ‘L + 1p1 4 Lplpl 2 symming to m = —L+. Inthe present case, then,
thiswould mean that a constant part of H[pzcl will correct the propagator (after summing) to something of
theform (¢* — const) ™! - in other words, the photon will apparently acquire a mass!
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Fig. 7: Sum of vacuum polarisation ‘bubble’ insertions.

Actually, such insertions into propagators usually do have the effect of shifting the mass of the
particle in question, and they are generically called ‘self-energies’ (e.g. figure 6(c) is a fermion self-
energy, which will indeed modify the original fermion mass). But the real photon is massless We
know thisto a very high accuracy experimentally. Theoretically, thisis fundamentally related to gauge
invariance - see problem P2.6! So, provided we introduce the cut-off in a gauge-invariant way, it turns
out that this apparent A? divergence of (95) is not there after all. Instead, what one findsis that

M2 () = i(6* 90 — 4,00) T2 (%) (97)

where H[f] (¢?) isaLorentz scalar, and is given by an integral which diverges more ‘weakly’, namely as

In A. Notethat the dimensions of H[pzcl (q?) are M*: inthe‘naive cut-off approach thiswasvisiblein the
A%, whereasin (97) quadratic factors of ¢ appear, and thisiswhy the divergence can only be logarithmic.
These factors ensure that

¢'115) = ¢ 1} =0 (98)

(assuming H[f] isfinitel); thisguarantees that the ¢-dependent part of the propagator (rule(v)) disappears
- i.e. theresult is gauge invariant, as required.

When all the bubbles are added up, and bits proportional to ¢ are omitted because of (98) (gauge
invariance), one finds the net result that the photon propagator is modified according to

—1Guv —Guv

7 (i)
What is the physics of this? When (99) appears inside a scattering graph such as figure 5(a), we would
still be able to say that the (corrected) exchanged photon had zero mass, since near the ‘mass shell’ point
q* = 0 (99) does indeed behave like (a constant times) the massless propagator 1/¢2, provided that
(42 = 0) isfinite.
Discussion point: what happensiif H[f] (¢* = 0) itself hasaterm like A/¢*? and how might this happen?

On the other hand, the propagator will have a peculiar normalisation: it will be

1 —1G
N : (100)
(1 - HRQ](O)) ¢

(99)

for ¢> ~ 0 instead of the familiar —ig,,, /¢*>. Why is this? The propagator in the free case was the
Fourier transform of (0|7'(A,(z1)A,(z2))|0). Take one time-ordering, say (0|A,(z1)A, (z2)|0), and
insert a complete set of free statesvia* ), |n)(n| = 1":

> (0[Au(21)[m)(n|A, (22)]0). (101)

n



The only state “»’ which can contribute is the state of one free photon - and indeed we know that matrix
elements of theform (0|field operator|particle state) are awaysjust the corresponding wavefunction.
But now consider the interacting case. Here the full propagator is (2|7 (A, (z1)A, (22))|€2) where |2)
is the exact ‘interacting’ vacuum. Insert a complete set of interacting states >, |7)(n| = 1: then the
analogue of (101) is

S Q1AL () |1) (7] A, (22)|2) (102)
and now the crucial point is that in addition to the one-photon state in |7) there will also be awhole lot
of other states to which the photon can couple - for instance, precisely the e Te~ state in our vacuum
polarisation graph! Thismust mean that the |1+) state cannot any longer, by itself, produce all of the ‘1’
in the completeness sum. So the ‘strength’ of the matrix element (1| A, (2)|2) cannot be unity (in the
normalisation we are adopting, like problem P1.4).

To take account of this‘ diminished single particle strength’, we write
(7, b Al A(2)|Q) =/ Zsel (A) et (103)

where 73 is called the wavefunction renormalisation constant. Thiswill mean that the interacting prop-
agator hasthe form

F.T. of (QT (A, (21) Ay (22))]9)

= % + contributionsfrom non single particle states, (104)
for ¢? ~ 0. So we can identify
1
1 - (o)

Thisisthe interpretation of the change in normalisation of the photon propagator.

Thisis all innocent-sounding enough . . . but of course H[f] (0) depends on A and is divergent as

the cut-off A — oo. To bury this divergence, which after all is occurring as a multiplicative factor in the
wavefunction, we introduce the * physical’ (renormalised) photon field operator A, 1, defined by

1
A = A 106
u,ph(f) \/Z_S M(x) ( )
for which the propagator will be of the expected form
F.T. of (T (Aypn(21) Ay i (22))[Q) & —2 4 multiparticle bits (107)
q

for ¢> ~ 0. Formally this will work even if A — oc; the physical matrix elements are OK. Note that
Zs = Zs(A), from (105), since H[f] dependson A.
Discussion point: Do we actually envisage A — oo, realy?

Now let’stidy up. Our results so far tell us that the renormalised +-propagator is 7 ;' x the one
we have been calculating to O («), that is

1 —1G
— . (108)
2 (TN

where we now indicate the A dependence explicitly. Now

Zs(A) = [1 - 110, A)] 7" = [1 4 1110, A)] (109)

~



since [112] ~ o and we are doing a systematic order-by-order perturbative approach. So (108) becomes

—1Guv

- (110)
¢ (1- 152, 0) + 1l (0, 4))
again dropping the O (a?) term his (qz)H[f] (0). Sofinally our renormalised propagator is
_ig;w
g (112)
¢ (1- 1)
where -
M2 (g*) = Jim [NE(g%, A) — 110, A)] (112)

is called the ‘ once-subtracted self-energy’, and isfinite and independent of A as A — oc. We will come
back to (111) in section 4.3.

4.2 Thefermion self-energy and the vertex correction

Let’snow briefly examine the other two one-loop divergent graphs, figures 6(b) and 6(c), beginning with
the latter, the fermion self-energy. In analogy with IT%2, we call the amplitude for figure 6(c) —ix2 (p)
where 4
—1 ] d*k
sl = (= 2/ v Y u @R 11
X (p) = (—ie)” [ " —3 S o) (113)

Asinthe~ case, when the string of self-energy insertionsis summed up, the result isamodified fermion
propagator equal to

@

p—m =B (p)

(114)

As expected, 212! as given by (113) diverges: there are four powers of & in the numerator and three in
the denominator, so we might expect a divergent term proportional to A (note that (2! has dimensions
of mass, asis also evident from (114)). Actualy the leading p-independent divergence is, instead, pro-
portional to m In(A/m). Thereason for thisisimportant, and it hasinteresting generalisations. Suppose
that m in the Dirac Lagrangian (i § — m)1> were were set equal to zero. Then (see problem P3.1)

the two ‘left’ and ‘right’ helicity components )y, = (1_”5) ¢ and p = (“’%) ¢ of the electron field

2

will not be coupled by the QED interaction. It follows that no terms of the form v7,vr or ¢ r1r, can be
generated - and these are just of the * Dirac mass' type (problem P4.2). Hence no perturbatively-induced
fermion mass term can be generated by higher-order e-m interactions, and the 322! correction must vanish
asm — 0. Soit must behave as~ m In(A/m) on dimensional grounds, which gives a logarithmically
divergent correction to m in (114), call it sm(A).

We can agree to call the resulting * on shell point g = m + ém[2(A)’ the physical massmy, such
that

mpn = m(A) + ml(A) (115)

isindependent of A as A — oo - which of course means that the original parameter m hasin fact to be
A-dependent, and in just such away as to compensate for that of §m/[2.

There is aso a p-dependent logarithmic divergence of the form p1n A /m. This can be soaked up
in a fermion wavefunction renormalisation constant 7, analogousto 5, and having the same interpre-

tation:
1

(Z)7

Yph = P (116)



In thisway the physical fermion propagator isindeed
i/(p— mph). (117)

Finally there isthe vertex part shown in figure 6(b). In this case, power counting indicates a new
logarithmic divergence. We have one more card to play, in order to sweep it up. Consider the QED
interaction term

e () A2)(x) = —eBoh Apn o - Z2 72 (118)

1

Thisgeneratesa‘lowest order’ vertex (in terms of the physical renormalised fields) equal to —iey* 7, 722
to which figure 6(b) must be added. Now the physical charge e, iS going to be determined experimen-
tally from the Coulomb scattering contribution as ¢> — 0 (the classical limit). Figure 6(b) contributes
alogarithmically divergent correction to the charge in this limit, call it de(A). So, once again, we are
going to assume that the ‘original’ ¢ had a A-dependence just right to cancel out the A -dependence of the
total contribution, leaving afinite A-independent physical chargeas A — oo. We express thisformally
by introducing the vertex renormalisation constant /7 such that the physical charge is defined by

eph = Z9 73 (e/71) (119)
Theinteraction (118) then becomes B
-1 6phlﬁph Aph¢ph- (120)
Now some alarm bells should be ringing! The free Dirac part of the QED Lagrangian is now
b(i P —m) = Zagpn(i P — m)pn (121)

to which we must add (120) (as well as the Maxwell term). But then the result is not gauge invariant! -
since ¢ doesn’t appear in the gauge invariant combination‘ @ + ie A’ (See section 3). For thisto work
we heed akind of small miracle - the equality

7 = Z (122)

between two quite different wavefunction renormalisation constants. Of course, (122) istrue; itisaWard
identity, and can be proved to follow from the gauge invariance of the original QED L agrangian.

Relation (122) has a remarkable consequence: the ‘rescaling’ relation (119) now becomes
eph = V/ Z3e (123)

showing that the corrections to ‘e’ associated with the fermion propagator and the vertex cancel out,
leaving only the ~-propagator correction. Now this correction is the same whatever the external particles
are, in a Feynman graph. So (123) is a statement of ‘universality’ of radiative corrections: they do not
spoil the gaugeinvariance of theoriginal Lagrangian, and theration of e to e, isindependent of the types
of external particles. If a set of unrenormalised charges are all equal (or ‘universal’), the renormalised
ones will be too. Universality survives renormalisation - and thisis a very big clue as to why the weak
interactions have to be described by a gauge theory too, since quarks and leptons do seem to couplein
some ‘universal’ way to W’sand Z’s: the strong interactions, experienced only by the quarks, do not
seem to spoil that, just as - in the e-m case - the charge on a proton is the same as that on a positron.
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We will only be able to offer brief notes:
(i) How doesthe renormalised v-propagator affect physical processes? Let’simagineusingitine =~ —
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Fig. 8: Screeing of achargein adipolar medium.

e~ p~ scattering via figure 4 with the corrected propagator (111), for instance. Then, the amplitude will
be (omitting the spinor factors) .
. —Guv
(—26)2 ~ (124)
# (1 1)

where now we have changed the notation so that ‘e’ means the physical charge (which we previously
called e,,},), and m isthe physical mass (previously ). Inthestaticlimit ¢o = 0, the photon propagator
~ 1/q* hasasimpleinterpretation - it isthe Fourier transform of the 1 /r Coulomb potential (see ‘ Point
4" at the end of section 2). So theform (124) must, in the static limit, represent correctionsto Coulomb’s
law. Indeed, with ¢y = 0 and evaluating ﬁ[f Ifor ¢ < m?, onefindsthat (124) becomes, approximately,

NPT/ o
(i€ 22 (1+ 73 a*/m) (129

2
~ 2—2 + constant. (126)

The e?/q* in (126) gives us back the Coulomb 1/r in z-space: the Fourier transform of the ‘ constant’ is
aé function. Thisvery short distance correction, affecting only s-statesin atomic physics, isresponsible
for asmall (but entirely detectable) contribution to the famous Lamb shift between hydrogenic 225 1 and

QQP% levels. See problem P3.3.

(i) Without making the low-q? approximation, the form ~ ;—22 (1 + b ](qz)) indicatesthat the charged
leptons have effectively developed a‘form factor’ (or spatial extension, when Fourier transformed) due
to radiative corrections. Sharing it equally between the two e’sin ‘e?’, we can say that the radiatively
induced charge form factor is 73 (¢%) ~ 1 + %ﬁ[f](q?). Examination of the Fourier transform of this
showsthat the spatial extension is of order ~ m !, the fermion Compton wavelength.

(iii) An alternative interpretationisin terms of a‘ ¢“-dependent charge’, or ‘ ¢*-dependent «’, given by

o(f®) = a {1 + ﬁg](qQ)} . (127)

Theideathat a charge is ¢-dependent may seem strange at first, but it is analogous to the way in which
a charge placed in a polarisable medium can give rise to a space-dependent effective charge, due to
screening (see figure 8). The screening length hereisjust m !, the distance over which the ete~ pairs
can be ‘fluctuated’ out of the cacuum, and which measures the extension of the radiatively induced form
factor. Thisiswhy the photon self-energy e ™ ¢~ bubbleis called a vacuum polarisation graph!

For |¢%| > m?, (127) becomes

o(f?) = a [1 + %_ln (_m—qj)] (128)



showing that a(¢?) increases at large —q? (which is short distances, when Fourier transformed), just as
indicated in figure 8.
(iv) However, a better approximation at large —q? isto return to the form (124) and write

2 o 2 2
a(Q) 0= (/30 n(Q2/m7)] for Q> m (129)
where Q? = —¢?. Equation (129) is the standard ‘leading log’ expression for the running coupling

constant in QED. This shows a slow logarithmic increase as )2 increases. For example, o(MZ) ~
1/128.8, ascompared with (= «(0)) ~ 1/137. In QCD, the effect of gluon self-interactionsisto make
«, (the QCD analogue of «) decrease as (2 increases (‘asymptotic freedom’). There, the analogous

formulais
(0%

2 s
Ol = o
@)= I nene)
where f isthe number of fermion-antifermion pairs (in the loops) considered, and p isa‘ renormalisation

sca€. If f < 16, a; will decrease as (2 increases, leaving the quarks weakly interacting at very short
distances.

(130)

4.4 Renormalisability

We have tried to give some idea of how we can make sense of a theory with divergences. At the one-
loop level, some of the steps seemed quite trivial. More generaly, however, we can ask: how do we
know that we can go on soaking up these divergences into redefinitions of ‘physical’ quantities, as we
proceed on to higher order loops? The answer is really rather remarkable: there are classes of theory
(‘renormalisable theories’) which are such that all divergences, encountered at each successive order in
systematic perturbation theory, can be tamed by this procedure of redefining finite physical quantities
(and doing wavefunction rescalings), and then re-expressing all amplitudes in terms of these physical
quantities. Furthermore, there is a surprisingly simple criterion for telling (almost) which theory is
renormalisable and which isn’'t. Thiscriterion hasto do with the dimensionality of the coupling constant
(inunits = ¢ = 1) - see problem P3.4.

The result is simply stated: if the dimensionality of the coupling is M ¢ where ¢ > 0, then the
theory is‘ super-renormalisable’ (like the ABC theory - there are fewer divergences than we could in fact
deal with, for instance 7~ and the vertex correction arefinite); if « = 0 (dimensionless) then the theory
may be renormalisable, and oftenis (e.g. QED, where the couplingis«); and if @ < 0, the theory is not
renormalisable.

Consider a hypothetical theory, similar to the original four-fermion theory of 3-decay, describing
interactions between the v. and a neutron (assumed pointlikefor this purpose). The interaction density
is

Grpn (@) Pn (@) Yo ()0, (). (131)
To find the dimensionality of ¢, we need to remember that the mass term in the Dirac Hamiltonian
is map, so that the dimension of a ¢ field is M3, This implies that the dimension of G/ is M =2 so
that this theory is non-renormalisable. Isthisin fact so bad? Consider what happens when we calculate
n+ v, — n+ v, in perturbation theory. The lowest order (‘tree’) graph isfigure 9(a); next isfigure 9(b);
and then at third order figure 9(c). Let’s count powers in the loop of figure 9(b). Since each fermion
propagator ~ k=, we expect the graph to diverge as A2. Fine . . . what about figure 9(c)? Here we have
two loops, with therefore 8 momentum integrals, and four fermion propagators each contributing only
one power of & in the denominator, so it diverges as A*! The first point to note, then, is clearly that
aswe go up in order of perturbation theory, the divergence gets worse. To control the A* divergence,
we would have to ‘subtract’ the amplitude for figure 9(c) three times. Each subtraction means that
we have to take one parameter from experiment (the amplitude at a certain point, its derivative at that
point, its second derivative, etc). Very soon we need more parameters than are appearing in the original
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Fig. 9: Contributionsto n + v. — n + v, in perturbation theory, using (131).

Lagrangian (masses, couplings). So simply defining a ‘physical’ set of Lagrangian parameters won't
get us off the hook in this case. A renormalisable theory is one whose infinities can all be tamed by
redefinitions of the parameters in the original Lagrangian (plus wavefunction rescalings); if infinities
arise which need new parameters (not in the original Lagrangian) to be taken from experiment, then the
theory is non-renormalisable.

The reason for this worsening divergence in higher orders in GG is, of course, related to the
dimensionality of . All the amplitudes of figure 9 have to have the same dimension, obviously. But
since each G bringsin two powers of amass‘ M’ in the denominator, these must be compensated by
two powers of momentum in the numerator, making the divergence successively worse.

Is the situation really hopeless? Actually no. We know quite well that people lived with the
Fermi theory reasonably happily for years, until the advent of high energy experiments probing weak
interactions. The reason can again be found in dimensional analysis. Consider the amplitude for figure
9(b), call it G2(s), where s = (p; + p2)?. This needs two subtractions to tame it into a finite quantity

Gr(s) = G — G (5p) — (s — 50) 4G , Where s isthe point we chooseto define our amplitudes
S$=50

at. Thismeansthat, expanding G!(s) about s = s, we can calculate terms of order (s—sq)? and higher

(the two lowest terms in the expansion have to be taken from experiment). But the worse divergence of

figure 9(c) (amplitude G*) would require us to do three subtractions before arriving at a finite part we

could calculate: inthiscase, thefirst calculablebit wouldbe ~ G'%(s — s0)? dzcjf] - and the process
5=50

hasto be repeated each time we go up an order. Assuming that all the derivativesare about the same order
of magnitude, we see that we can get away with using only low order corrections provided G s < 1,
i.e

1
Vs < Ve (132)
This is an important idea - and in the case of the real Fermi constant (G ~ 1.17 x 107°GeV™2),
ﬁ ~ 300GeV. So anon-renormalisabletheory can be useful at energieswell below its* natural energy
scale’, as set by the inverse coupling constant; but the nearer we approach this scale, the less predictive
the theory will become. And we are, after all, always striving to reduce the number of parametersin our
theoriesthat have to be taken from experiment.

From this perspective, it may be less of a mystery why renormalisable theories are generaly the
relevant ones at present energies. We may imagine that a ‘true’ theory exists at some enormously high
scale A (the Planck scale?) which, though not itself a local quantum field theory, can be written out in
terms of all possible fields and their couplings, as allowed by the operative symmetry principles. Our
particular renormalisable subset of these theories then emerges as alow energy effective theory, due to
the strong suppression of the non-renormalisable terms (which are damped like (s/A?) to some power).

Nonrenormalisable theories may be physically detectable at low energiesif they involve processes



Fig. 10: Relation between four-fermi coupling and Yukawa-like coupling.

that would be otherwise forbidden. For example, the fact that (asfar as we know) neutrinos have neither
electromagnetic nor strong interactions, but only weak ones, allowed the four-fermi interaction to be
detected - but amplitudes were suppressed by powersof s/M§, relative to e-m ones, and thisis precisely
why it was ‘weak’! Aswe'll discusslater, the four-fermi model is superseded in the Standard Model by
a Yukawartype theory involving exchanges of W+, 70 (see figure 10). For ¢* < MZ,, Gp ~ g&,/M%;,
explaining the origin of the M —2 dimensiondlity of ¢ -, and telling us the actual scale, in thiscase. Thus
thistheory changes from being an effective non-renormalisable four-fermion theory at very low energies,
to being an effective renormalisableone at ¢? ~ Mg,.

Problemsfor Lecture 3
P3.1 For aDirac field ¢ (x), define v = (152) v, v, = (152 ) v. Show that

2
YLy YR =0,

where ¢y, = ¢£'ZO'

P3.2 Rewrite m1) in terms of the «»r and 7, fields, and deduce that e-m interactions cannot generate
such a‘Dirac’ massin perturbation theory.

P3.3 Coulomb’slaw is corrected by the vacuum polarisation (et e™) to

« 40
Y Sl 53
{r + 15m?2 (T)}
where m is the electron mass. Treating the ¢ function piece as a perturbation on the Coulomb term,

calculate the shift in energy (to first order) of an/ = 0 hydrogenic state with principal quantum number
n, given that the Coulomb wave functionat r = 0 is

Givethe answer in eV for the n = 2 shift.

P3.4 What is the (mass) dimension of a scalar field ¢ in four space-time dimensions? What is the
dimension of the coupling constant A ina‘\¢>" interaction? And of g ina‘g¢?’ interaction? What is
the dimension of G ina‘G(1))® interaction?

P3.5 Consider a A\¢* theory. Given that it is renormalisable, explain why any graph contributing to the
process ¢ + ¢ — ¢ + ¢ + ¢ + ¢ must befinite.

5. GLOBAL AND LOCAL NON-ABELIAN SYMMETRIES

For a much fuller treatment of the material in this section see chapters 12 and 13 of volume 2 of the new
(third) edition of Aitchisonand Hey [2].



Having introduced QED as an example of a gauge theory with alocal phase invariance, we now
consider the generalisations of QED which describe the weak and strong interactions between quarks
and leptons. These involve a more complicated kind of local phase symmetry, in which the phase factors
are (z-dependent) matrices, which in general don't commute - that’'s what ‘non-abelian’ means in this
context. We shall limit the treatment to the particular ingredients needed for the Standard Model. Note:
from now on we shall omit the hats on quantum field operators!

5.1 Global non-Abelian symmetry
Consider the Lagrangian for two free fermions of the same massm; = my = m

Lo = 1(id — m)1 + 2 (i — m) b ; (133)
in terms of the ‘doublet’ field
_(
V= ( %) (134)
it can easily be rewritten as B
Ly = d(if — m). (135)

Note that although (135) looks formally like the single-field £ of (78), it is of course quite different
physically, representing two different sorts of particle (e.g. up and down quarks, and their antiparticles).
Nevertheless, (135) isinvariant under asymmetry rather like (79), namely the 2 x 2 unitary transformation

Y= =Uy, UUT=UU=1. (136)

The U in (136) isa2 x 2 matrix of numbers (not field operators) acting on the 2 components of > in
(134), and they commute with the Dirac 4’s. Such unitary 2 x 2 U’sform a group, U(2). Since U in
(136) does not involve z, we call (136) a global symmetry. In general, two UU’s do not commute with
each other, and it is called a non-Abelian symmetry.

From elementary properties of determinantswe have
detUUT = detU.detUT = detU.detU* = |detU|? = 1 (137)
so that detl/ = e~%*, say. We can therefore write
U=eoU (138)

where U has determinant +1. Matrices of the form U/ form the SU(2) group, where the S just means
they have unit determinant. The phase factor in (138) correspondsto a simultaneous U(1) transformation
of 1, and 1, (with the same phase angle) and leads, as in Section 3.3, to a conservation law of the total
number of ‘1’ particlesand ‘2’ particles. (For quarksthiswould be part of baryon number conservation).
The new physicsis contained in the U part.

Groupssuch as SU(2) (and, later, SU(3)) have theimportant feature that their physically important
properties can be found by studying infinitesimal transformations, of the form (cf (46))

U=1-i¢ (139)

where { isa2 x 2 matrix with small entries. The conditiondet/ = 1 givesTr{ = 0 (neglecting terms
of order &2 - see problem P4.1), while UUT = 1 reduces (problem P4.1) to ¢ = ¢F. So ¢ isaHermitian
traceless matrix. Such athing depends on only three real parameters (problem P4.1) and can be written
as



where e = (1, €2, €3) are the three parameters, and 7 = (1, 73, 73) are the Pauli matrices (problem P4.2).
Thus an infinitesimal SU(2) transformation on the doublet ¢ is

= =(1-ieT/2)9. (141)

This should be compared with theinfinitesimal version of (69), namely i) — ' = (1 —i¢)e, from which
itis clear that the ‘¢’ in that case becomes a matrix in (141). The form for a finite SU(2) transformation
is

¢ — ¢/ — e—ia~7‘/2¢ (142)
which generalises (69) (note that for amatrix A, exp A =1+ A+ A%/2!4 ...

Since (141) or (142) areinvariancesof £, we expect an associated conservation law. Indeed, since
we have three independent transformations (using each of ¢; in turn) we expect three conservation laws.
Following the same steps used in deriving the Noether current for the complex scalar field in §3.2, but
this time for the doublet Dirac field +, one finds that the three quantities 7'} (), T3 (), T’ (¢) defined
by (cf (70)) B

T () = d(2)(ri/2) v (x) (143)
satisfy
0,17 (x) =0 (144)

and are therefore symmetry currents. The corresponding ‘ charges

T, = / Vi) Soe) d (145)
are conserved. These arethe (field theoretic) *isospin’ operators, which have thevery interesting property
(T3, T5] = ieiju Ty (146)

as can be explicitly checked from (145) (using the proper commutation relations for the « fields). A
simple example is provided in problem P4.2. Therelations (146) are of course exactly the commutation
relations of the familiar angular momentum operators, which iswhy the name isospin was coined; (146)
is called the 'SU(2) algebra’. Not coincidentally, the 7’s satisfy [7;/2, 7;/2] = i¢;;,71/2, the same
algebra.

In thinking about more complicated SU(2) multiplets than doublets (which we shan’t need to do
much) this angular momentum analogy is very helpful. The essential step isto find larger matrices than
the 2 x 2 77'5 which satisfy commutation relations of the form (146). For example, the three 3 x 3
matricest,, to and ¢, defined by

(ti)jk = —iéijk (147)
satisfy [¢;,t;] = i€;;xtx (See problem P4.3). Then if we consider atriplet of three real degenerate fields
(bosonic, say)

o1
=1 ¢ (148)
@3
with Lagrangian
Lp = %au(j)-@“(ﬁ - %mQ(ﬁ-(ﬁ, (149)
Lp isinvariant under
¢ — o =(1—iet)op. (150)

Using (147), (150) is equivaent to (problem P4.4)

¢ =¢p+exo (151)



which should be familiar as the ‘infinitesimal rotation’ of an ordinary vector.

The SU(2) transformation of (142) can be generalised to the case of three degenerate fermion
fields. If L3 is(133) with the addition of »5(i@ — m)1s, it too can can be written asin (135) where now

V1
Y= (%) : (152)
V3

Note particularly that unlike the ¢’s in (148), the v)’sin (152) are complex: each ; contains ¢; and d:f
operators as in (59). L3 isinvariant under v — ¢’ = Ut where U isnow an x-independent 3 x 3
unitary matrix. Extracting the overall phase again, we are left with a global SU(3) transformation. An
infinitesimal SU(3) matrix has the form

U=1-1x (153)

where y isaHermitean traceless 3 x 3 matrix. Such a y involves eight parameters and can be written as
X =1nA/2 (154)

where n = (m1,...7ns) are the arbitrary parameters and the eight A's are 3 x 3 Hermitean traceless
matrices generalising the three 7’s. They obey the commutation relations

Aa Ab . Ac
[77 ?:| — Zfabc? (155)
where the f,;. are numbers characteristic of SU(3) (a, b, c dl run from 1 to 8). If ¥y, 1, 13 are taken
to be the u, d, s quarks, this global SU(3) symmetry would be the SU(3) of strong interaction flavour
symmetry (which however is not exact as m,,, mq and m, are not equal). Similarly, if we take 1, 2, 3
to be colour indices we have the exact SU(3).. colour symmetry of QCD, which we shall shortly seeisa
local symmetry. The currents corresponding to the SU(3) symmetry of L3 are (cf (143))

Gi(z) = () (Aa/2)7"¢(x) (156)

and the associated eight ‘ charges

G = [0(0) (/2 b(a) d's (157)
generalise the three i sospin operators, and obey the commutation relations
[Ga, Gp] = 1 fapeGle . (158)

whichiscaled the ‘' SU(3) algebra’. Note the similarity between (146) and (158).

Asin the case of SU(2), larger multipletsare possibletoo. The key requirement isto find matrices
which satisfy (158), since these commutation relations effectively define the group. For SU(3), the only
larger multiplet in which we shall be interested isthe octet, 8, which isanalogous to the triplet of SU(2).
The matrices for the 8 are defined analogously to the ¢'s of (147), namely (F,),. = —ifu. Where the
f'sareasin (158). Notice that since there are eight ‘charges’ G, and all theindicesa, b, ¢ in (158) run
from 1to 8, the eight matrices F, are each 8 x 8. In the same way, the three matrices; of (147) are each
3 x 3, sincethere are three SU(2) charges. Thiskind of pattern can be extended to arbitrary SU(N); the
‘representation’ in which the matrices are equal (with afactor of —¢) to the ‘ structure constants' (the ¢'s
and f’sin (147) and (158)) is generally called the adjoint or regular representation.



5.2 Local non-Abelian SU(2) symmetry

Global symmetries and their associated (possibly approximate) conservation laws are certainly interest-
ing, but they do not have the dynamical significance of local symmetries. We saw in section 3.4 how the
‘requirement’ of local U(1) symmetry seemed to lead almost automatically to QED, with the symmetry
current of the ¢» matter fields now playing the role of the dynamical current which, when dotted into the
A-field, gives the interaction term in Lgogrp. A similar link between symmetry and dynamics follows
if we generalise the preceding non-Abelian global symmetries to local ones. In this section we carry
through the analysisfor SU(2).

We begin by considering again a fermion doublet asin (135), without yet specifying exactly what
the physical application will be. We want to extend the global SU(2) symmetry transformation (142) to
the local one

Y(a) = ¢ () = eI T2 (a) (159)
by analogy with (79); note that we have slipped in a constant ¢ in the exponent - it will be analogous to
the e-m charge e. Clearly, although the 1>+ part of (135) is still invariant under (159), the
Yi@yy part isnot - just as in the U(1) case (80), since the @ will pull down a @a () factor. Asin the
U(1) case, we try to compensate this factor by introducing some vector field whose change under an
appropriate transformation (accompanying (159)), exactly cancels this da(x) part. This time, since
there are three a(z)'s (o (), az(z), as(z)) we immediately see that we need three vector (gauge)
fields, called W' (2), W' (z), Wi (z), or W*(z) for short.

Thekey step in constructing the locally U(1) invariant Lagrangian of QED was the replacement of
‘9" by ‘D* = 9" + ie A" (cf (81)), together with the transformation * A* — A* + 19#«(x)" (cf (83))
for the A-field. Let’shave another ook at the combination D+ inthe QED Lagrangian (88). Under the
gauge transformation (84) ,

Dt = (0" + teA" )Yy — (0" + zeA’“)Qb’
(0% + ie A" + i("a(z)))e” <%
= [—i(0"a(z))e O] + 7@ gy 4 je At Wep 4 [i(9) e )]
e~ @) Py (160)

since the bracketed terms cancel. So we have
DMy = e=(@) pragp, (161)

In words, this says that the quantity * D#+’ transforms under alocal U(1) phase transformation just like
¥ would under aglobal one (i.e. it just gets multiplied by a phase factor). So to construct alocally U(1)
invariant Lagrangian all we needed to do was multiply D #¢) by « from theleft, since then under thelocal
transformation B B o
YD = DY = et T Dity = o Dy, (162)
showing that ¢»D* ¢ isindeed locally U(1) invariant. Of course, we also need the v, to get rid of the
loose Lorentz index j:, and make £ aLorentz invariant.
So the key to constructing a locally SU(2) phase-invariant theory is to generalise ‘ D#+’. The
required generalisationis
DHp = (9" + igT-WH/2)d (163)
when acting on an SU(2) doublet field such as . The property required of (163) is that D# should
transform under the local symmetry (159) exactly as 9*¢> does under the global one (142), as we have
seen happening in the U(1) case. Then, aterm like 2})*+ isautomatically invariant under local SU(2).
This requirement on D*+ determines the transformation law of the fields W*. The algebrais
easier if we consider an infinitesimal transformation

0 = (—ige(z)-7/2)P(x) ; (164)



Fig. 11: ¢-¢-W vertex.

we then require
S(D*p) = (~ige(x)T/2) D). (165)

It isagood exercise (problem PA4.5) to verify that (165) implies that
SWH(z) = 0"e(x) + ge(x) x WH(z), (166)

which tells us how the W #’s must transform. The first term in (166) is the straightforward anal ogue of
the infinitesimal version of (84), with «(z) — ee(x). Comparing the second term of (166) with (151),
we see that it implies that the three W -fields form the components of an SU(2) triplet. Thusthe W's
carry SU(2) ‘charge'.

We now know the generalisation of (135) which makesit locally SU(2) invariant:

Low = (i) — m)p = $(if — m)$ — gy, 7/20- W, (167)

the last term being the generalisation of £, in QED (equation (82)). We can immediately read off the
P-1p-W vertex factor as (figure 11) '
_ g%'y“ ) (168)

In (168) the index ‘i’ refers to the SU(2) component of the W field quantum, and ‘1’ to the Lorentz
component of its polarisation vector. Each W -field will have the same kind of mode expansion as the
A-field did (equation (85)).

We can easily generalise (163) to other SU(2) multiplets than doublets, by using appropriately
larger matrices instead of the 7 /2. For example, for an SU(2) triplet of fields ¢ = (¢1, ¢2, ¢3), (163)
becomes

Dt¢; = (0" 4 igt-WH) o, (169)

where the three 3 x 3 matrices ¢ are defined in (147). Under infinitesimal transformations, this changes
by

§(D"¢;) = (—ige(x)t)(D"e;) (170)
= (ge(z) x D"@); (171)

(cf (150), (151), and (164)).

However, there is still an important part of the non-Abelian analogue of £ qrp unaccounted for
- namely the bit corresponding to the Maxwell-term — iFF for the gauge fields W#. Note that, asin
the QED case (problem P2.6), a simple mass term involving W# - W, will violate invariance under
(166), so these quanta are massless. Clearly we have a problem here in applying this local SU(2) - as



we eventualy will - to weak interactions, which are very short ranged, and whose quanta are therefore
massive. Thisiswhere we will need the Higgs mechanism - see Section 6.

To get the non-Abelian* £ - 7 term, the obvious thing might be to consider
OFAY — 9V A* — DFWY — DVWH (172)

with D# given by (169), since the W’s are an SU(2) triplet. The hope would be that by using the D’s,
DFWY — DYW*# would transform under local SU(2) transformations exactly as 0*W*" — 0" W# does
under global ones - i.e. like (171). Then the ‘dot product’ (D*W* — D*W*) . (D,W, — D,W )
would be alocaly invariant* F' - F” term. Unfortunately it is not quite that simple. The problem is that
the W's are a rather special triplet: whereas an ordinary triplet ¢ would transform via only the second
term in (166), the W’ s also have the first (* non-homogeneous’) term as well. You can verify that in fact

S(DFWY — D"WH) + ge(x) x (DFWY — D'WH) (173)

so that the proposed * F' - F” term will not work.

With the aid of some hindsight, we can be led to the right answer asfollows. Consider, in the U(1)
case, the quantity
(D*DY — DV D*)¢ (174)

where ¢ isany field of charge e and D* = 0* + e A*. Evaluating (174) one finds (problem P2.5)
(DFDY — DV DF)¢p = ie '™ ¢ (175)

where F#¥ = g*A# — 9" A*. This suggests that we should look at the commutator of two covari-
ant derivatives [D*, D¥]. It does not matter whether we use the D from (163) or (169) - the result is
essentially the same for all cases. Using the D# from (163) one finds (problem P4.6)

[DH, DY) = igT/2-F* (176)
where
Fr = 0PWY — "WH — gWH x WY, a77)

(Had we used (169) we would have got (176) with /2 — ¢.) When we now investigate the effect of the
local SU(2) transformation (166) on F** we find (problem P4.7)

SF* (x) = ge(z) X F* () (178)

precisely as desired (but not accomplished) in (173) - i.e. the inhomogeneous part in (166) has been
got rid of. Thus F'** doestransform under local SU(2) transformations exactly asif it were an ordinary
triplet under global SU(2) transformations and so the quantity

1
Lw =~ Fu P (179)

isindeed locally SU(2) invariant. Thisis the famous Yang-Mills Lagrangian, the non-Abelian generali-
sation of the Maxwell Lagrangian. F'** isthe non-Abelian field strength tensor.

The argument leading to (179) has been given in some detail since the result is of fundamental
importance. Looking at (177) and (179) it is clear that, unlike the Maxwell term £ 4 of (87), the Yang-
Mills term Ly of (179) includes interactions between the gauge fields - in addition, of course, to the
expected ‘free’ part

—i(aﬂwy — W) - (WY — VW) (180)

Thefree part leadsto a ¥/ -propagator which isthe same asthat in rule (v) of section 3.4, with as;; factor
to ‘dot’ the W’s together. The interactionsincluded in (179) are of two types: W-W-W (trilinear) and



Fig. 12: W-W-~ vertex.

W-W-W-W (quadrilinear). Thisis quite unlike QED, where no fundamental ~-v vertices are present. It
arises here because the W’s both *transmit’ the gauge field force and feel it themselves since they are not
SU(2) neutral (asthe v was U(1) neutral). Another important point to noteis that these self-interactions
among the 1W7’s come in with a coupling constant which is the same one as appears in the --IW vertex
(168)—the W's‘ couple universaly’.

The physics application of all thisisto the SU(2) of the weak interactions (see section 7). There,
the W} and W' fields correspond to the charged gauge bosons W *# (the combination % (W1 — iWy)

destroys ¥V * or creates W ). Aswe shall see, thefield W' isalinear combination of the photon v and
79 fields:
WL = sin Oy A" 4 cos Oy Z# (181)

where 6y, isthe ‘weak angle’, and the SU(2) gauge coupling constant g isrelated to e by
gsin by =e. (182)
We can then pick out the W-W -~ vertex from (179), and find that it is given by
ie[gun(ky = k2) + gau(kz = ky)y + g (ky — k1) (183)

where the momenta and indices are asin figure 12. This unique e-m coupling of the W is of precisely
the kind needed to make a renormalisable (see section 4) theory of the ‘ electromagnetic interactions of
charged vector bosons'.

5.3 Local SU(3) Symmetry: the QCD L agrangian

Using what has been said about global SU(3) in section (5.1), and about how to make a global SU(2)
symmetry into alocal onein section 5.2, it is straightforward to discusslocal SU(3). Thisis the gauge
group of QCD (see the course on QCD), the labels 1, 2, 3in (152) standing for colour, the ¢’sbeing one
flavour of quark. Under alocal SU(3). transformation, the triplet (152) transforms by

0 = (—igsn(2)-A/2)¢ (184)

(cf (154) and (164)), where now there are eight field parameters 7y (), na(z) . . . ns(x) going with the
eight \’s. To cancel off the unwanted ¢ parts which occur when we try to make @+ invariant under
(184), we now need eight vector gaugefields A* (z), a = 1,2, .. .8. These A’stransform according to

5Ag($) = 8M77a($) —I_gsfabcnb(x)Ag(f) (185)
(cf (166) and (155)). The SU(3). covariant derivative acting on atripletis

DI = (0" + ig\/2-A¥) i (186)



Fig. 13: A-y-y vertex.

giving the A-1-1) vertex (cf (168)) of figure 13:

Aa
—igs7’y“ ) (187)

The quanta of the A% field are the (eight different) gluons. Asin local SU(2), there isan SU(3). field
strength tensor which is (cf (177))

FM = 94 AY — 0" AP — g, fape AVAY (188)

The SU(3). Yang-Millsterm isthen
1 v
- ZFa“ Fouw (189)
and it containstriple and quadruple gluon couplings, all involving the same ‘ strong’ coupling ¢ 5, and the
constants f,;. determined from (155). Once again, there is no mass term allowed by invariance under

(185), and the gluons are massless. Their propagator is the same as the photon one in rule (v), with a
colour factor &,.

For one SU(3). triplet +, then, our Lagrangian so far is

L= 3P —m)d — F Fup (190)

with D#+ given by (186). For many different quark flavours f, the Dirac term is repeated for each,
giving
o 1.,
Locp =Y _bp(i) — my)vy — ZFa Fou - (191)
!

Actually, however, matters are not quite that smple. Asin QED, we need a gauge-fixing term to pro-
duce the gauge field propagator; in the non-Abelian case this turns out to be a more complicated affair,
necessitating additional piecesin £ qcp called ‘ghost terms’. We shall not give their form here: they are
needed only for loop calculations, the details of which we shall not need. The Lagrangian of (191) is
adequate at the tree level.

Problemsfor Lecture 4

P4.1 An ‘infinitesimal’ SU(2) transformation means one very close to the identity, U = 1 — i¢ where

1—i&n — ifm) .
) } . Show that to first
—1&91 1 — €22

order inthe ¢’s, UUt = I impliesthat ¢ = ¢ (i.e. ¢ is Hermitean). Also, show (again to first order in

¢ is a matrix whose entries are infinitesimally small. So U = (



the &’s) that detlU = 1 implies&yy + &30 = 0 (i.e. € istraceless). So ¢ isatraceless Hermitean matrix,
2 x 2. Explainwhy ¢ is specified by three real parameters. How many parameters are needed for an
infinitessimal SU(N) matrix?

P4.2 The 7-matrices are

7'1:<01)7 72:(9 —¢)7 73:(1 0 )

10 1 0 0 -1

(a) Verify that [y /2, 72/2] = ir3/2. (b) A simple model of the isospin raising operator 7'y is
7y = (@} a)(n/2+ im/2) (5 )

wherethe i!’s create u’sand d’s. Check that 7, = ata, and interpret this. Define also

T_ = (al al)(r1/2 — ia/2) (Zu) :
d

Show that 7 = ala,. (c) Evaluate [T, 7_], and check that it is compatible with [}, T;] = ie;; 1%,
where X

ro— (ot ATy Ao

;= (al al)ny2) ().
P43 The3 x 3 matricest;, tq, t3 aredefined by (¢;);1 = —ic;;, for ¢, 5,k =1,2,3 wheretheindex :
standsfor which ¢ itis, and the j, k indices specify the row and column, respectively, of that :th ¢ matrix.
Here ¢;;;, isdefined to be O if any of 7, j, k£ are equal, +1 if they are a cyclic permutation of *123’, and
-1 if they are a cyclic permutation of ‘213'. Write down the 3 x 3 matrices ¢, t,, t3, and verify that
[tl, tz] =13.
P4.4 Theinfinitesimal transformation law of an SU(2) triplet ¢ is

o b1
(@bé) = (1 — iéltl — iégtg — i63t3) ng .
5 b3

Calculate the 3 x 3 transformation matrix explicitly, and show that the transformation can a so be written
in ‘cross product’ form ¢’ = ¢ + € x ¢.

P4.5 The *SU(2) covariant derivative’ acting on an SU(2) doublet is D# = (0% + igT - W (z)/2)1.
Under an infinitesimal local SU(2) transformation, ¢ transforms by

0p = —igr -€(x)/2 .

The transformation law of W* is determined from the requirement that

B(DMp) = —igr - e(x)/2 (D).
Now the LHS of thisequationis
S[(0" + igT - WH(x)/2)1]
= igr - (W (2)"/2) b+ (9 + igT - WH()/2)30
= g7 - (OW (2)"/2) ¥ + (0" +igT - WH(2)/2)(~igT - €(2)/2)¢
whilethe RHS is
—igT - €(x)/2 (0" +igT - WH(x)/2)4.

Verify that thisimplies
SWH(z) = 0"e(x) + ge(z) Xx WH(z).



(a) (b)

Fig. 14: Two-X exchangein fermion-fermion scattering, and effective four-fermion structure.

P4.6 Check that
[0" +igT - WH(2)/2,0" +igT - WV (2)/2] = igT - F*" /2

where
F* = "WV (z) — 0"WH(z) — gWH(z) x W¥(z).

P4.7 Verify that, under an infinitesimal local SU(2) transformation, § F** = ge(x) x F*”.

6. SPONTANEOUS SYMMETRY BREAKING
See chapter 21 of [2].

6.1 Some motivation

In the previous section, an indication was given as to why the relevant theories at current energy scales
should be renormalisable theories (a small subclass, incidentally, out of all possible quantum field the-
ories!). We also pointed out how ‘universality’ phenomenain weak interactions suggested that they are
described by a gauge theory, which presumably should be a renormalisable one. On the other hand, we
also know that weak interactions are very short-ranged, so their mediating quanta must be massive - and
thisat once seemsto present a barrier tothe ' gauge’ idea, because (see problem P2.6) asimple gauge bo-
son mass term violates gauge invariance. Perhaps, then, we can have a theory involving massive charged
W= bosons, for instance, without it being a gauge theory? Yes, we can, but it will not be renormalisable.
In fact, the renormalisability of QED has a great deal to do with the gauge symmetry it possesses. Let's
try and explain what's wrong with a ‘ non-gauge theory of massive W +'s'.

Consider figure 14, which shows some kind of fermion-fermion scattering proceeding, in fourth
order of perturbation theory (one loop), via the exchange of two massive vector bosons that we'll call
X *#. To calculate this diagram, we need to know the propagator for X *.

For thiswe need the wave equation for X #, which is quite simple to write down. We just replace
O in the wave equation (91) for A* by O + M? where M isthe mass of the X #:

(O+ M*)XH* - 0"9,X" = 0. (192)

To find the propagator, we follow the poor-man’s route, putting in a plane wave solution for X #, which
yields
(=2 M3+ P, eremiv =0, (199



The propagator should now be proportional to the inverse of the[. . ] bracket in (193), and (unlike the
corresponding inverse in (92)!) thisdoes exist and is given by (problem P5.1)

—9" + ¢"q" /M

Py (194)

Note (i) that trouble ensues (the numerator blows up) when M — 0, so aready we see that a massless
vector particle seemsto be avery different kind of thing from a massive one (you can’t just simply take
the massless limit); (ii) that if we ‘dot’ (193) with ¢, we easily deduce ¢ - ¢ = 0 (see below, after (198)).

Now consider the loopintegral infigure 14. At each vertex we will have a coupling constant factor
‘g’, whichisin fact dimensionless(the interaction will be something like g ¥y,,1> X *). But, aswewarned
in section 4.4, this may not guarantee renormalisabilty, and thisis a case where it does not. To get an
idea of why not, consider the leading divergent behaviour of figure 14. Thiswill be associated with the
‘q*q¥’ termsin the numerator of (194), so that the leading divergence is effectively

g (gt 11
<[ () (5 0 o
q @ ) aq

for high ¢ (we are of course not troublingto get all theindicesetc right). But thefirsttwo (.. .)'sin (195)
behave like a constant, at large ¢, so that the asymptotic behaviour is effectively

N / dtgil (196)
q49

which is exactly what we would get in a four-fermion theory ! - see figure 14, and we know that such a
theory is non-renormalisable.

Where have these dangerous powers of ¢ come from? The answer is simple and important. They
come from the longitudinal polarisation state of the massive X particle. We can see this as follows.
Consider a free X particle with 4-momentum ¢ = (¢°, 0,0, |g|), o that the = and y directions are
transverse, and the z directionislongitudinal. In therest frame of the X, the three pol arisation states can
be taken to be

e(A=41) =F272(1,4,0), e(A=0)=(0,0,1). (197)

Boosting to the frame with 4-momentum ¢, the transverse polarisation vectors remain the same, but the
longitudinal one becomes
(¢, =0) = M~'(lql.0,0,4"). (198)

Notethat ¢ - ¢(q, A = 0) = 0 issatisfied. Atlarge valuesof ¢, ¢*(q, ) istherefore proportional to ¢* /M,
and thisisthe origin of such factorsin the propagator.

Consider now the photon propagator given by rule (v): there are apparently quite similar factors
there too, but they are gauge dependent, and in fact can be ‘gauged away’ entirely by choice of ¢! But,
aswe have seen, such ‘gauging’ seemsto be possible only in a massless vector theory. A closely related
point is that, as we all know, electromagnetic waves are purely transverse: equivalently, free photons
exist in only two independent polarisation states, instead of the three we might have expected (from the
three orientations of their unit spin). The longitudinal state is missing, and it turns out (see Aitchison
and Hey [1] page 188) that thisis precisely related to the masslessness of the photon. In the massive X
case, al three polarisation states are present - and this gives another way of seeing why a massl ess vector
particleisreally different from even avery light massive one: there is no smooth naive M — 0 limit.

This above considerations therefore suggest the following line of thought:
e can we somehow create a gauge theory involving massive vector quanta, such that the offending ¢*¢”
bits could be gauged away, making the theory renormalisable?
The answer isyes, viathe idea of spontaneous breaking of the gauge symmetry.



Thisterminology is contrasted with ‘ explicit symmetry breaking’, in which the observed symme-
try breaking isassociated with aterm in the Lagrangian, in the absence of which the theory would possess
some exact symmetry. For example, to the extent that the up and down quark masses are equal, we have
approximate SU(2) flavour symmetry of the QCD Lagrangian. But it is also possible to have a symmet-
rical Lagrangian, while the particle states and other physical observables seem to show no obvious (even
approximate) sign of the symmetry. Thisis the ‘ spontaneously broken’ case. This