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Abstract
This is a course of six lectures given at the 2003 European School of High-
Energy Physics, Tsakhkadzor, Armenia, 24th August - 6th September 2003.
They aim to provide a compact introduction to quantum field theory (in the
‘canonical’ formalism) and the standard model, focusing on: field quantisa-
tion and the canonical route to the Feynman rules; Abelian symmetries and
QED; one-loop renormalisation of QED; non-Abelian symmetries; sponta-
neously broken symmetries; and the electroweak theory.

1. OUTLINE OF THE COURSE

x2 (Lecture 1) Canonical quantisation of free spin-0 (scalar) field. Interacting scalar fields. The Dyson-
Wick expansion of the S-matrix. Propagators. Tree graphs. The Yukawa potential.
x3 (Lecture 2) Complex scalar field. Global U(1) phase invariance. Number conservation laws. Fermions.
Local U(1) phase invariance and the electromagnetic interaction. The Maxwell field. Elements of QED.
x4 (Lecture 3) One-loop graphs in QED: renormalisation, and running coupling constant.
x5 (Lecture 4) Non-Abelian symmetries, global and local. Local SU(2) symmetry. Gauge field self-
interactions. Local SU(3) symmetry. QCD.
x(Lecture 5) Spontaneous symmetry breaking, global and local. Chiral symmetry breaking. The Abelian
Higgs model. Spontaneously broken SU(2) x U(1).
x7 (Lecture 6) Introduction to the electroweak theory. The Higgs sector. One loop effects.

2. SCALAR FIELDS : TO TREE GRAPHS

A more leisurely treatment of the material in this section is given in chapters 5 and 6 of volume 1 of the
new (third) edition of Aitchison and Hey [1].

2.1 The classical field as an assembly of non-interacting oscillators

Consider a familiar problem, that of a string stretched between points x � � and x � L. The transverse
displacement y of the string at position x and time t, y�x� t�, satisfies the wave equation

��y�x� t�

c��t�
�
��y�x� t�

�x�
(1)

for small displacements. Here y�x� t� is a scalar field: ‘scalar’ because it has only one component, and
‘field’ because it varies continuously with x and t. The fundamental method of solving equations like
(1) is first to find particular solutions called modes, and then to use the fact that (1) is linear to write
the general solution as a linear superposition of modes. Here, the modes must satisfy the boundary
conditions y��� t� � y�L� t� � �, so we try

y�x� t� � Xr�t� sin�
r�x

L
� (2)

for r � �� ����, which expresses the fact that any number of half-wavelengths must fit into the interval
��� L�. Substituting (2) into (1) we find

Xr�t� � ���rXr�t� (3)



where
��r � c�r����L�� (4)

Thus each mode amplitude Xr�t� executes simple harmonic motion with frequency �r � �cr��L�: it
acts like the ‘coordinate’ of an oscillator! The general solution of (1) is then

y�x� t� �
�X
r��

Xr�t� sin�
r� x

L
�� (5)

in short, a Fourier series.

Now let’s consider the total energy of the vibrating string, which is given by the integral
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where the first term is the kinetic energy ‘T ’ (� is the mass per unit length) and the second is the potential
energy ‘V ’. When (5) is placed in (6) and the integral over x done, a remarkable result is obtained
(problem P1.1):

E �
L

�

�X
r��

�
�

�
� �X�

r 	
�

�
� ��r X

�
r 
� (7)

Equation (7) has a strikingly simple physical interpretation: the energy of the string is equal to the
sum of the energies of individual ‘mode oscillators’ (recall the energy of one SHO is �

�m �x� 	 �
�m��x�

so here Xr � x� L�� � m��r � ��. For a general motion of the strings, all the oscillators (modes)
will be present. Because the total energy is the sum of the individual mode energies, the modes do not
interact with each other. So, from the point of view of the energy, at least, the field is equivalent to an
assembly of non-interacting oscillators.

2.2 Quantisation

Let’s write M � L�
� so that (7) becomes

E �
X
r

�

�
M �X�

r 	
�

�
Mw�

rX
�
r � (8)

The essential idea is to treat the mode amplitudes ‘Xr’ as ‘quantum coordinate-like variables’. The
associated ‘momentum-like variables’ will be Pr � M �Xr. The energy (8) (which of course in classical
physics is a number) becomes now an operator, namely the Hamiltonian operator

�H �
�X
r��

�P �
r

�M
	

�

�
M��r

�X�
r � (9)

We know all about the energy levels and states of a single quantum oscillator; the fact that we
have here arbitrarily many oscillators doesn’t worry us as they are not interacting with each other, so
they can be treated quite independently. For a single oscillator of frequency �, the energy levels are
En � �n 	 �

�� 
h�, and the wavefunctions are well-known, in all q.m. textbooks. For our purposes, we
prefer the ‘operator approach’ in terms of �a’s and �ay’s to the wavefunction one. The essentials are gone
through in problem P1.2.

For our vibrating string, then, we simply have

�H �
�

�

�X
r��

��ayr �ar 	 �ar �a
y
r� 
h�r� with ��ar� �a

y
s
 � �rs� (10)



The eigenstates of �H are products of the single oscillator states jn�ijn�ijn�i ........ where jn�i is the state
of the oscillator with frequency ��, which has energy �n� 	

�
��
h��, etc. We can write this more briefly

as jn�� n�� ����i, which has energy
P

r�nr 	
�
��
h�r. The ground state j�i has all nr’s � �, and hence an

energy (the ‘zero point energy’) equal to
P

r
�
�
h�r.

Thus the energy eigenstates of the quantised field �y�x� t� are characterised by saying how many
quanta of each frequency are present; in the ground state there are no quanta of excitation present. Such
vibrational quanta are called ‘phonons’ in condensed matter physics. Our ‘particles’ are similar quanta
of excitation of fields. The state with no excitation quanta is a (too simple!) model of the vacuum.

2.3 Free massive real scalar field

We will from now on put 
h � c � �. The ‘classical’ field satisfies the Klein-Gordon equation

��	m��	 � �
��	

� t�
�r�		m��	 � �� where � � ���

� � ��t �r� (11)

which is the wave equation for a free massive spin-0 (scalar) field. We now consider the field to be in
‘infinite space’ so Fourier series� Fourier integrals and our modes have the form

	�x� t� � Xk�t�exp�ik �x
� (12)

Plugging this into the K-G equation gives

�Xk � ��m� 	 k��Xk (13)

which again shows that our mode amplitude acts like an SHO, this time with frequency

�k � ��m� 	 k��
�
� � (14)

The total energy in the field is the obvious generalisation of the energy of the string:

E �
�

�

Z
d�x� �	� 	 �r	�� 	m�	�
� (15)

Once again, this can be written as a ‘sum’ (in this case, an integral over the Fourier variable k) of
independent energies for each mode oscillator. So, when quantised, we get the Hamiltonian (compare
(10))

�HKG �
�

�

Z
d�k

�����
k�f�ay�k��a�k� 	 �a�k��ay�k�g (16)

where k� � 	�m� 	 k��
�
� , and where the mode creation and annihilation operators satisfy

��a�k�� �ay�k
�

�
 � �������k � k��� (17)

all other commutators vanishing: ��ay�k�� �ay�k
�

�
 � ��a�k�� �a�k
�

�
 � ��

Problem P1.3 shows that the state jpi � �ay�p�j�i is an eigenstate of �H with eigenvalue
p
m� 	 p�,

the expected energy for a particle of mass m and momentum p (note 
h � c � ��. We actually choose
the particular normalisation

jpi � p
�p��a

y�p�j�i� (18)

The general (quantised) solution to the K-G field equation is then

�	�x� �

Z
d�k

�������k��
�
�

f�a�k�exp��ik � x
 	 �ay�k�exp�ik � x
g (19)

� �	y�x�



for a ‘real’ field, and where k � x � k�x�� k �x and the ��k���
�
� is a conventional normalisation factor.

Problem P1.4 shows that
h�j�	�x�jpi � e�ip�x� (20)

In ordinary quantum mechanics the RHS of this equation would be written as hxjpi, the x-space wave-
function for a state jpi of definite 4-momentum p (which is of course a 4-D plane wave). We can then
reasonably assert that the operator

Z
d�k

�������k��
�
�

�ay�k�eik�x � �	����x� (21)

creates a quantum at x: �	����x�j�i � jxi. (Note that the other part of �	�x� gives 0 when acting on j�i).
The commutation relations (17) imply that

jp�� p�i � jp�� p�i (22)

so our particles are bosons!

2.4 Interactions

In the case of the freely vibrating string, or the free scalar field, the energy is the sum of individual
mode energies - the modes do not interact. But our particles are precisely mode quanta, and we want
them to interact, of course. So we must complicate our simple expressions for field energies in some
way. The crucial feature of (6) and (15) which leads to the ‘

P
mode energies’ result is that they are

quadratic in the fields and their derivatives. Interactions will generally be represented by expressions
which are cubic or quartic in the fields. Correspondingly, quadratic or cubic expressions will appear in
the equations of motion. (Compare the SHO: the ‘free’ SHO energy is �

�mx� 	 �
�m��x� with equation

of motion m�x � �m��x; if it is perturbed by adding a cubic potential energy 
x�, this produces a force
�dV

dx � ��
x��. In the case of lattice vibrations, such ‘anharmonic terms’ cause the phonons to interact
- it is the same with our particles. We will introduce an interaction term �H

�

in the Hamiltonian:

�H
�

�
Z
d�x �H���	�� (23)

for example
�H� � 
��	�x���� (24)

We treat �H � as a perturbation on �HKG.

2.5 Covariant perturbation theory: the Dyson-Wick expansion of the �S operator, Feynman rules

There is a very compact and powerful formalism for doing relativistic perturbation theory, which we are
not going to go through the details of here - just quote the essential results. Transitions are described by
means of matrix elements (between free-particle states jii and jfi) of the �S operator, hf j �Sjii, where �S
has the expansion in powers of �H�:

�S � �� i

Z
d�x �H���	�x��� 	

�

�

Z Z
d�x�d

�x�T ��i �H��x���� i �H��x��� 	 � � � (25)

where ‘T ’ is the time-ordering operation

T ��	�x���	�x��� � �	�x���	�x�� for t� � t�

� �	�x���	�x�� for t� � t� (26)

i.e. ‘earlier on the right’.



Discussion Point: This is supposed to be covariant (relativistically invariant) perturbation theory.
But the ‘T ’ symbol seems to be singling out ‘time’ in some way, and doesn’t look ‘4-D symmetric’.
Should we be worried?

Example: ‘ABC’ theory

To have a little more variety than the single �	 field, let’s imagine a world with three real scalar
fields �	A�massmA�� �	B�mB� and �	C�mC� with an interaction g �	A�x��	B�x��	C�x�. This interaction
creates or annihilates one each of an A,B or C particle - for example C � A + B. Suppose mC �

mA 	mB. Then C will be able to decay to A + B. The matrix element for this will be, to lowest order,Z
d�xhpA� pBj � ig �	A�x��	B�x��	C�x�jpCi� (27)

Problem P1.5 shows that this matrix element is equal to�ig��������pC�pA�pB�. (Note: creation and
annihilation operators for the different fields commute with each other). So we have our first ‘Feynman
rule’!

(i) �ig for an ‘A-B-C’ vertex

together with an overall factor of �������pinitial� p	nal�.

Now consider A B� A B scattering. The lowest order in perturbation theory at which this process
can proceed is second, via the matrix element

�

�

Z Z
d�x�d

�x�hp�A� p�BjTf��ig�	A�x���	B�x���	C�x�����ig�	A�x���	B�x���	C�x���gjpA� pBi� (28)

Suddenly we have a complicated expression on our hands! Remembering (18), we see that (28) is
essentially

���EAEBE
�
AE

�
B�

�
� h�j�aA�p�A��aB�p�B�Tf�	A�x���	B�x���	C�x���	A�x���	B�x���	C�x��g�ayA�pA��ayB�pB�j�i (29)

which is the vacuum expectation value (vev) of 10 operators. Remarkably, it can be shown (Wick’s
theorem) that such vev’s can be written as a sum of products of all possible choices of pairwise vev’s
(time-ordered vev’s, in general). One such term isZ Z

d�x�d
�x�h�j�aA�p�A��	A�x��j�ih�j�	A�x���ayA�pA�j�ih�j�aB�p�B��	B�x��j�i�

�h�j�	B�x���ayB�pB�j�ih�jT ��	C�x���	C�x���j�i � ���EAEBE
�
AE

�
B�

�
� � (30)

Problem 1.4 shows us that the terms with one field and one �a or �ay give just plane waves: two ingoing
ones and two outgoing ones, yielding exp ifp �A � x� � pA � x� 	 p�B � x� � pB � x�g. The interesting
bit is the remaining vev of the time-ordered product of two �	 fields, which is the Feynman propagator
in coordinate space. The physical interpretation of the two terms in h�jT � �	C�x���	C�x���j�i, one for
t� � t� and one for t� � t� is as follows: A C-quantum is being produced at x� and destroyed by x�,
or the other way round (Exercise: explain why, with the aid of the mode expansion for �	C�x��. So
including the incoming and outgoing plane waves we have the physical processes shown in figure 1, and
we have to integrate the whole expression in (30) over all x� and x�. The result is the Feynman rule in
momentum space for the scalar propagator (see textbooks):

(ii) a factor i�����momentum carried by the propagating particle�� � �its mass��


So for the C-exchange process we have the diagram of figure 2, corresponding to the Feynman amplitude
�ig��q��m�

C�where q � pA�p�B . In addition, there is the overall factor ��������pA	pB�p�A�p�B�.
Points to note:

1 A and B are interacting by ‘exchanging a C’.



Fig. 1: The two physical processes included in the single Feynman C propagator.

Fig. 2: One-C exchange process in A + B� A + B.



2 But the (4-momentum)� carried by the exchanged C is not equal to m�
C - it is ‘off mass shell’.

3 Both time orderings are included in this one momentum space amplitude.

4 Suppose we evaluate the amplitude in the c.m. frame: pA � �EA�p�� pB � �EB��p�� p�A �
�EA��p��� p�B � �EB�	p

��� jpj � jp�j� Then �pA � p�B�
� � �EA � EB�

� � �p � p���. Now
consider the static or non-relativistic limit �EA � EB�

� 	 �p � p���. Our amplitude is now
essentially


 �

�p � p��� 	m�
C

� (31)

We can interpret this in terms of a potential associated with the A-B interaction. According to the
Born approximation in scattering theory, the amplitude to go from p to p � in the potential V �r� is



Z

expf�ip� � rgV �r�expfip � rgd�r �
Z

expfi�p� p�� � rgV �r�d�r (32)

which is some function of �p � p���. Question: what is V �r� such that this function is equal to
��p�p���	m�

C 

��? Answer: V �r� � expf�mC jrjg�jrj, the Yukawa potential, of range ��mC ;

see problem P1.6.

5 Good exercise: think about some of the other terms in the Wick expansion of (28)!

Problems for Lecture 1

P1.1 A string is stretched between two points x � � and x � L. The transverse displacement of the
string at the point x at time t is y�x� t� where

��y

c��t�
�

��y

�x�
�

The general solution can be written as a superposition

y�x� t� �
�X
r��

Xr�t� sin
r�x

L
�

The total energy of the vibrating string is

E �

Z L

�
�
�

�
�

�
�y

�t

��
	

�

�
�c�

�
�y

�x

��

dx

where � is the mass per unit length. Show that

E �
L

�

X
r

�
�

�
� �X�

r 	
�

�
���rX

�
r 


where �r � cr��L. [Hint: write the term ��y�t �
�, for example, as a product of two independent sum-

mations �
P

r � � ���
P

s � � �� and explain why there are no ‘cross terms’ of the form XrXs r �� s in the
answer.)
P1.2 A one-dimensional harmonic oscillator has the Hamiltonian (energy operator) �H � �p���m	 �

��
��x�

where ��x� �p
 � i (units 
h � �). Define the operators �a� �ay by

�a �

r
m�

�

�
�x	

i�p

m�

�
� �ay �

r
m�

�

�
�x� i�p

m�

�
�

(i) Show that ��a� �ay
 � �. (ii) Show that �H can be written as �
�
h���a�a

y 	 �ay�a� or as 
h���ay�a 	 �
���

Deduce that ��ay� �H
 � ���ay and hence show that if �Hjni � Enjni then �H�ayjni � �En 	 ��jni� so



that �ayjni � jn	�i. State and prove a similar result for �aj ni. (iii) Explain why there must be a state j�i
such that �aj�i � �. What is the energy eigenvalue of j�i? Deduce the energy spectrum of the oscillator.
P1.3 �HKG is defined by

�HKG �
�

�

Z
d�k

�����
k�f�ay�k��a�k� 	 �a�k��ay�k�g

where k� � 	
p
m� 	 k�, with

��a�k�� �ay�k��
 � �������k � k��

all other commutators vanishing. Show that

�HKG�a
y�p�j�i � p��a

y�p�j�i

where p� � 	
p
m� 	 p� and �a�k�j�i � � for all k.

P1.4 The field �	�x� has the mode expansion

�	�x� �

Z
d�k

�������k��
�
�

f�a�k�exp��ik � x
 	 �ay�k�exp�ik � x
g

where k � x � k�x� � k � x� Show that

h�j�	�x�jpi � e�ip�x

where
jpi � p

�p��a
y�p�j�i�

P1.5 �	A� �	B� and �	C are three distinct scalar fields. EvaluateZ
d�xhpA� pBj � ig �	A�x��	B�x��	C�x�jpCi�

P1.6 Evaluate the Fourier transform Z
d�rexpfiq � rgexpf�r�ag

r

of a Yukawa potential by following these steps: change d�r to polar coordinates ‘ r�dr sin 
d
d	’ with
the polar axis chosen along the direction of q. So expfiq � rg � expfijqjr cos 
g. Do the integral over

. Then do the integral over r (the 	 integral just gives ��). [Answer: ����q� 	 a���.]

3. LAGRANGIANS, COMPLEX SCALAR FIELDS, DIRAC AND MAXWELL FIELDS

See chapter 7 of [1].

We have managed to get this far without mentioning the word ‘Lagrangian’, but now we are going
to have to start using this language, which is particularly well suited to the discussion of symmetries, and
these are of fundamental importance in the Standard Model (SM).

3.1 Lagrangians

This is essentially a formulation of dynamics which is different from (but in the classical case equivalent
to) Newton’s. The basic quantity here is the Lagrangian function, which in most cases has the form
‘L � T � V ’ (instead of the energy which is ‘E � T 	 V ’). For a classical particle with coordinate



Fig. 3: Possible space-time trajectories between the fixed points x�t�� and x�t��.

x�t�, L is just L�x�t�� �x�t�
 � �
�m �x�t�� � V �x�t��� The ‘path’ x�t� the particle takes is determined by

the principle that the action integral S given by

S �
Z t�

t�

L�x�t�� �x�t�
 �
Z t�

t�

�
�

�
m �x�t�� � V �x�t��
dt (33)

is a minimum as all paths x�t� are searched over, subject to x�t �� and x�t�� being fixed (see figure 3).
Problem P2.1 provides a simple example.

Although the action principle seems very different from the differential equations of Newton’s
laws, we can connect them by using a bit of calculus. The actual path must be determined from the
condition that small changes away from it make no change in S, to first order (i.e. S is at a minimum).
So consider an arbitrary change x�t� � x�t� 	 �x�t�, which also implies �x�t� � �x�t� 	 d

dt�x�t�� So
then �x� � �x� 	 � �x d

dt�x to first order, and V �x�� V �x� 	 dV
dx �x, giving

�S �

Z t�

t�

�m �x
d

dt
��x�� dV

dx
�x
dt� (34)

Now do a partial integration in the first term to get

�S �

Z t�

t�

�� d
dt
�m �x� 	

dV

dx

�x�t�dt� (35)

assuming that �x vanishes at the end points (all paths start and finish at the same points). Now it is
important to realise that ‘�x�t�’ here is an arbitrary (if ‘small’) function of t. But this change in S, �S,
must be zero, by our principle. The only way the integral in (35) can be zero for arbitrary �x�t� is if the
quantity inside the square brackets vanishes, i.e.

d

dt
�m �x� � �dV

dx
(36)

which is exactly Newton’s law of motion!

In quantum mechanics, the action approach can also be used, as stated by Dirac and developed by
Feynman. There, the amplitude to go from x�t�� to x�t�� is proportional to

X
all paths x�t�

exp

�
i


h

Z t�

t�

L�x�t�� �x�t��dt

�
�

X
paths

expiS�
h� (37)

The qualitative idea here is that if the integral is an essentially classical quantity, then its value will be a
very large number of 
h’s, so the phase factor will oscillate wildly as the x’s change, and everything will



cancel out except for trajectories such that the action is stationary to small variations around them, since
for these ones the phases will ‘add up’ coherently; hence we get back to the classical action principle in
that case.

The action approach can also be used for fields, both classical and quantum; for the latter, see Peter
Hasenfratz’s lectures. In this course we will not use it for dynamics (i.e. for deriving the Feynman rules),
but we will use the Lagrangian language, because it is a very powerful one for discussing symmetries,
and because it is quite simply the lingua franca of particle physics (at least insofar as the Standard Model
is concerned). Before moving to that, we note that the general formulation of (36) is (problem P2.2)

d

dt

�
�L

� �x

�
� �L

�x
� �� (38)

For fields, we will have to introduce a Lagrangian density L such that (in one space dimension)

S �
Z Z

dtdxL�	�x�� �	 �
�	�x�

�t
�
�	�x�

�x

� (39)

�	 � ��
�t is like �x in (33), and ��

�x is new, but analogous. Again, the field equation for 	�x� will be

determined from the condition that �S � � under 	� 		 �	� �	� �		 � �	� ���x � ��
�x 	 �

�
��
�x

�
:

� � �S �
Z
dt

Z �
�L
�	

�		
�L

���	��x�
�

�
�	

�x

�
	
�L
� �	

� �	

�
dx� (40)

(compare (34)). But �
�
��
�x

�
� �

�x�	, and similarly for the �	 term, so that the second and third terms in
(40) can both be integrated by parts, as in (35). As in that case, the variations vanish at the end-points,
and since �	 is arbitrary, we deduce the Euler-Lagrange equation of motion

�L
�	

� �

�x

�
�L

���	��x�

�
� �

�t

�
�L
� �	

�
� �� (41)

Example. L � �
�
�	� � �

��
��
�x�

� � �
�m

�	�. The E-L equation is ���
�t�

� ���
�x�

	m�	 � �, the KG equation.

This all generalises to 4-D via

LKG �
�

�
��	�

�	 � �

�
m�	�� (42)

Here �� � �
�x�

� �� � �
�x� � x

� � �x��x�� x� � �x���x�� ���� � �
�x�

�
�x�

� �
�x�

�
�x� 	

�
�x � �� �

�x� �
��

�t�
�r��

And this generalises to quantum fields by putting hats on!

3.2 The complex scalar field

In section 2 we considered a ‘real’ scalar field for which �	y � �	. The next most complicated thing is a
complex scalar field for which �	y is different from �	. So here our mode expansion will have the form

�	 �

Z
d�k

�����
p
��

��a�k�e�ik�x 	�by�k�eik�x
 (43)

The physical interpretation of this is that ‘�a’ will destroy a particle (quantum) of the field, while ‘�by’
will create an antiparticle. This is because states �ayj�i and �byj�i are distinguished by having opposite



signs of a certain conserved quantum number. Now conservation laws have to do with symmetries: what
symmetry is at work here? The answer is that it is a symmetry under

�	� e�i� �	 (44)

i.e a simple phase transformation. Any �L��	� which is a function of �	y �	 and �� �	
y�� �	 only will be

invariant (symmetric) under (44); for instance the Lagrangian for the free complex KG field

�L � �� �	
y�� �	�m� �	y �	 (45)

is invariant under (44).

The symmetry (44) is called a continuous symmetry because the phase angle � can be anything
(compare ‘parity’, where the transformation is x � �x and there’s no such thing as a ‘small change of
parity’). It is also a global symmetry, meaning that the parameter � does not depend on the space-time
point x; if it did, so that we had � � ��x� in (44), the symmetry would be called a local one. In the
case of (45), the Lagrangian can’t be invariant under such a local phase change because of the ��	 terms,
which will produce ��� pieces which won’t cancel. But, if we include the electromagnetic field, then
we can get a Lagrangian which is invariant under local phase transformations (see section 2.4).

Another piece of jargon we need to introduce is the statement that (44) is a ‘U(1)’ transformation.
The ‘U’ stands for ‘unitary’ as in ‘unitary matrix’. We can write (44) as �	� U����	, where the ‘matrix’
U��� has only a single element - i.e. it is a ‘ � � �’ matrix. A genuine unitary matrix U satisfies
U
y
U � �, where � is the identity matrix and the dagger denotes the Hermitian conjugate. A one-

dimensional matrix is of course a single number - in this case a complex number. The ‘unitary’ condition
then reduces to U�U � �, which is to say that U is just a phase factor, as in (44). Such phase factors
ei� form a group: the product ei�ei� of any two of them is also a phase factor, and there is an obvious
identity ( when � � �) and an inverse (replace � by ��). Furthermore, this group is Abelian, meaning
that it doesn’t matter in which order we multiply any two U’s together: U���U��� � U���U���. (As we
shall see in Section 4, the symmetries of QCD and of the electroweak theory are precisely non-abelian
generalisations of (44)). So finally, we say that (44) is a global U(1) transformation, and (45) has a global
U(1) symmetry.

The basic theory of such continuous symmetries is supplied by Noether’s theorem. Because the
transformation is continuous, it is good enough to consider an infinitesimal transformation - finite ones
can be built up by having lots of little ones. So let’s consider an arbitrary �L which is invariant under

�	 � �	� � �	 � i��	

(46)
�	y � �	�y � �	y 	 i��	y�

The change in �L��	� �	y� �� �	� �� �	y� will then be zero (because it’s invariant), and this change is

� � � �L �
� �L

���� �	�
���� �	� 	

� �L
���� �	y�

���� �	
y�

	
� �L
� �	

� �		
� �L
� �	y

� �	y� (47)

This is a bit like the manipulations leading up to the derivation of the Euler-Lagrange equation in Section
3.1, but now the changes � �	 and � �	y have nothing to do with space-time trajectories - they mix up the
two fields via (46). However, we can use the equations of motion for �	 and �	y to rewrite � �L as

� �
� �L

���� �	�
���� �	� 	

� �L
���� �	y�

���� �	
y�

	

�
��

�
� �L

���� �	�

��
� �		

�
��

�
� �L

���� �	y�

��
� �	y� (48)



Since (see similar steps after (40)) ���� �	i� � ���� �	i�, the right hand side of (48) is just a total diver-
gence, and (48) becomes

� � ��

�
� �L

���� �	�
� �	 	

� �L
���� �	y�

� �	y
�
� (49)

This means that the quantity inside the [.....] is a ‘current’ �j� which is conserved in the sense that
���j

� � �.

This is a general result for any L invariant under (46), and it is an example of Noether’s theorem
(which states that continuous symmetries imply the existence of conserved currents). For our particular
case, with the small changes (46), the quantity in the [...] brackets is

�� � �
 � ��� �	y��� i��		 ��� �	��i��	y

� i�
�
��� �	��	y� ��� �	y��	

�
� ��j�� � (50)

We drop the irrelevant constant parameter � and arrive at the expression for the conserved current fol-
lowing from the symmetry under (46):

�j
�
� � i

�
�y�	��	y � ��� �	y��	

�
� (51)

What does all this have to do with conserved quantities? Written out in full, the conservation
equation ���j

�
� � � is

��j����t	r � �j� � �� (52)

Integrating this equation over all space, we obtain

d

dt

Z
V��

�j��d
�x	

Z
S��

�j� � dS � � (53)

where we have used the divergence theorem in the second term. Normally the fields die off sufficiently
fast at infinity that the surface integral vanishes, and we can therefore deduce that the quantity �N� is
constant in time, where

�N� �
Z

�j��d
�x� (54)

that is, the volume integral of the � � � component of a symmetry current is independent of time, so its
eigenvalues are constants of the motion - i.e. conserved quantum numbers.

We can calculate �N� given the field expansion (43). Here we must of course pay attention to the
fact that the �a’s and �b’s are mode operators with the commutation relations

��a�k�� �ay�k��
 � �������k � k��� ��b�k���by�k��
 � �������k � k��� (55)

all other commutators vanishing. Also we are defining the vacuum state j�i as being such that �a�k�j�i �
�b�k�j�i � �. Now, if we go ahead and calculate �N� in terms of the �a’s and �b’s from (54), we will get
some terms in which the rightmost operator is a creation operator; such terms will not give zero when
acting on j�i. We want the vacuum to be a state with zero eigenvalue of this conserved quantity, and so
we re-order the expression for �N�, using the commutation relations, so as to arrive at a form in which
all �a’s and �b’s appear to the right of all �ay’s and �by’s (this is called ‘normal ordered form’-note that we
need to do this with the Hamiltonian also!). We discard (infinite) constant contributions arising from the
�-functions on the RHS of (55). Having done this, we find

�N� �
Z

d�k

�����
��ay�k��a�k�� �by�k��b�k�
� (56)



while the Hamiltonian in normally ordered form is

�H� �

Z
d�k

�����
k���a

y�k��a�k� 	 �by�k��b�k�
� (57)

So �N� counts 1 for every ‘a’ and -1 for every ‘b’ particle in a state (remember that things like ‘�ay�a’ are
just number operators), while �H� counts	k� for every ‘a’ and also	k� for every ‘b’. The interpretation

then is that free a’s and b’s of momentum k have the same energy
p
m� 	 k�, but carry opposite values

of the conserved quantum number N�, which is the eigenvalue of �N�. This is why we interpret �by as the
creation operator of an anti-a.

3.3 Fermions

The first step towards getting nearer to the SM is to introduce the quantised Dirac field, which is needed
for spin-1/2 particles such as quarks and leptons. The free Dirac equation is

i
��

�t
�x� � ��i� �r	 �m���x�� HD��x� (58)

where the Hamiltonian is thus HD � �i� �r	 �m, and � and � are the �� � Dirac matrices. As in
the scalar case, we will promote the ‘wave function field ��x�’ into a quantum field operator ���x� with
a mode expansion

�� �
Z

d�k

�����
p
�k�

X
s����

��cs�k�u�k� s�e
�ik�x 	 �dys�k�v�k� s�e

ik�x
� (59)

where k� � �m� 	 k�����. Note: (i) �� �� ��y - it is a complex Dirac (spinor) field: as with the complex
scalar field, this has to do with the fact that its quanta carry a conserved number which distinguishes
particle quanta from antiparticle quanta; (ii) u and v are 4-component spinors of positive and negative
4-momentum respectively, such that

��k �m�u�k� s� � �� ��k	m�v�k� s� � � (60)

where � k � ��k� � � � k and �� � ��� � ��; (iii) there are two independent spinors u (and two
independent v’s) for given k, corresponding to the two possible spin states for a spin-1/2 particle, labelled
by ‘s’.

We have written (59) in a form which mimics the complex spin-0 case, suggesting that the �c’s are
mode annihilation operators and the �dy’s are mode creation operators. That is, we expect the vacuum to
be such that �cs�k�j�i � � � �ds�k�j�i, and that particle states will be formed by applying �cys’s and �dys’s
to j�i. However, while this seems fine for single particle states, we know very well that a state such as

jk�� s�� k�� s�i � �cys��k���c
y
s�
�k��j�i (61)

has to be antisymmetric under interchange of the labels �k�� s��� �k�� s��: in particular, the state must
be zero (fail to exist) if k� � k� and s� � s� (the Pauli exclusion principle). So these mode operators
can’t be just like the spin-0 ones.

The solution to this dilemma is simple but radical: for fermions, commutators are replaced by
anticommutators! If two different �c’s anticommute, then

�cys��k���c
y
s��k�� 	 �cys��k���c

y
s��k�� � � (62)

so that we have the desired antisymmetry

jk�� s�� k�� s�i � �jk�� s�� k�� s�i� (63)



In general we postulate

f�cs��k��� �cys��k��g � ��������k� � k���s�s�
(64)

f�cs��k��� �cs��k��g � f�cys��k��� �cys��k��g � �

and similarly for the �d’s and �dy’s. The factor in front of the � function depends on the convention for
normalising Dirac wavefunctions.

Why does it have to be this way? This is a deep question and has a (rather technical) answer in the
famous ‘spin-statistics theorem’ of quantum field theory. One can get some idea of what goes wrong if
we use commutators for fermion modes, by considering the Hamiltonian operator which is

�HD �

Z
��y�x���i� �r	 �m� ���x�d�x� (65)

If we place the expansion (59) into (65) we find (after quite a lot of algebra)

�HD �

Z
d�k

�����
k�

X
s����

��cys�k��cs�k�� �ds�k� �d
y
s�k�
� (66)

As with �H� and �N� for the scalar field, we would want to re-order the last term in (66) so as to ensure
�HDj�i � �� But if we do this assuming ordinary commutation relations for the �d’s, we get

�HD �

Z
d�k

�����
k�

X
s����

��cys�k��cs�k�� �dys�k� �ds�k�
� (67)

The problem with (67) is that, although indeed �HDj�i � �, there are states with negative energy! -
namely states with any number of d-quanta (because of the minus sign in front of the number operator
�dy �d). On the other hand, if we re-order the �d �dy term using anticommutation relations, we convert the -
sign in (67) into a + sign, and all is well.

We can also see the same mechanism at work if we enquire about a conserved fermion number.
The Dirac Lagrangian is

�LD � �
��x��i� � � �m� ���x� (68)

where �� and ��y are independent degrees of freedom (the E-L equation for �
� is just the Dirac equation
�i� � � �m� �� � ��. The Lagrangian (68) is plainly invariant under the global U(1) transformation

���x�� ����x� � e�i� ���x�� (69)

The corresponding (Noether) symmetry current can be found by following the standard steps in Noether’s
theorem of x3.2, and is

�N�
	 �


���x��� ���x�� (70)

The associated symmetry operator is

�N	 �

Z
�N�
	�x�d

�x �

Z
��y�x� ���x�d�x� (71)

which is just the usual Dirac number density, integrated over x. If we now calculate �N	 from (71), we
find

�N	 �
Z

d�k

�����

X
s����

��cys�k��cs�k� 	 �ds�k� �d
y
s�k�
� (72)



The first term is fine, but if we re-order the second to ‘ �dy �d’ so that �N	j �i � �, we will be counting +1
for both c’s and d’s. We clearly need, again, to use anticommutators, so that �N	 
 �cy�c � �dy �d, which
counts +1 for each c (particles), and -1 for each d (antiparticles).

We also need the Dirac propagator h�jT � ���x��
���x���j�i. This may be compared with the anal-
ogous propagator for the complex scalar field, namely h�jT ��	�x���	y�x���j�i - see problem P2.3. But
note that in the Dirac case, each of �� and ��y carries an independent spinor index (telling which of the
four components it is), so the Dirac propagator is a � � � matrix in this spinor space. For the Feynman
rule appropriate to a propagating fermion we need the momentum space version, as usual. In the scalar
case, the propagator is proportional to ���q� � m�� where q is the momentum carried by the internal
particle and m is its mass. The ‘poor man’s’ way of getting this is to take the equation of motion for a
free scalar particle (the KG equation)

���t �r� 	m��	�x� � � (73)

and consider a plane wave solution (4-momentum eigenfunction) of the form

	 � Aexp��iq�t	 iq � x� � Aexp��iq � x� (74)

giving
���q��� 	 q� 	m��A � ��q� 	m��A � � (75)

and the propagator is basically the inverse of the expression (....) multiplyingA in (75), namely ��q � 	
m����. In the Dirac case, an analogous plane wave solution has the form

� � exp��iq � x�u� (76)

where u is a 4-component spinor. Inserting (76) into (58) we find

��q �m�u � � (77)

as in (60), and the inverse of the LHS of (77) is �� q �m��� (remember that � q is a matrix!). The actual
answer is

(iii) a factor i���q �m� for an internal fermion line carrying 4-momentum q.

3.4 Local U(1) phase invariance (U(1) gauge theory): QED

Consider the Dirac Lagrangian
�LD �


���i� � � �m� ��� (78)

It is certainly invariant under �� � e�i�� with constant �, which is a global U(1) symmetry associ-
ated with conservation of the number of �-fermions, as we have seen. Let’s explore the possibility of
invariance under the local phase transformation

���x�� e�i
��x� ���x� (79)

where ���x� is a scalar quantum field. Clearly �LD is not invariant under (79): it changes by

� �LD �

���x��� ���x������x�� (80)

Now, in classical electrodynamics, the way in which electromagnetic interactions are introduced in the
Hamiltonian formulation of dynamics is via the replacement of the momentum variable p� by p�� eA�,
where e�� �� is the particle’s charge and A� � �V�A� is the 4-vector of electromagnetic potentials V



and A such that B � r �A and E � �rV � �A��t. In quantum mechanics, we follow the same
prescription, but now p� � �p� � i�� and electromagnetism is introduced via i�� � i�� � eA�, or

�� � �� 	 ie �A� � �D�� (81)

Applying this prescription to �LD, we generate an interaction

�Lint � �e
���� �� �A�� (82)

Now, if �A� were also to change by exactly the rule

�A� � �A� 	
�

e
�� �� (83)

when �� changes by (79), the term (80) will be cancelled and the complete Lagrangian �LD 	 �Lint would
be locally U(1) invariant.

Of course, this is indeed the case. The electromagnetic potentials are arbitrary up to ‘gauge
transformations’ of the form (83) (consider for example just the 3-vector part: �A � �A 	 �

er��, and
�B �r� �A remains the same because curl grad =0). So the combined transformations

���x� � e�i
��x� ���x�

�A��x� � �A� 	
�

e
�� ���x� (84)

are what we mean by a U(1) gauge transformation. Note that the interaction is the 4-dimensional dot

product of the gauge field �A��x� and the ‘global U(1) symmetry current’ 
���� ��.

Like our other quantum fields, �A��x� has a mode expansion:

�A��x� �
�X


��

Z
d�k

�����
p
��

����k� 
���
�k�e
�ik�x 	 ����k� 
���y
�k�e

ik�x
 (85)

where ���k� 
� is the ‘polarisation vector’ of the plane wave solution (
 � �� �� �� �). �A� is real (because
the photon is its own antiparticle), and ���k� 
� is a ‘spin-1 analogue’ of the spinor u�p� s� for the Dirac
field.

But this ‘ �A�’ is itself a dynamical field, of course. What is its Lagrangian? To answer this, we
need to find an �LA such that, if that was all we had, the E-L equations of motion would give us the
free-space (source-free) Maxwell equations. Now Maxwell’s equations are for the field strengths �E and
�B, not the potentials, so they are automatically unchanged under the transformation (83) - that is, they
are gauge invariant. This suggests that we need to use the gauge invariant object

�F�� � �� �A� � �� �A� (86)

to build our �LA (it is easy to check that �F�� is invariant under (83)). Indeed, the Maxwell Lagrangian is

�LA � ��

�
�F�� �F�� � (87)

How do we know? By verifying that indeed the E-L equations for �A� following from �LA are the free-
space Maxwell equations (warning: this needs some patience to do correctly, first time!).

So actually we are now in possession of the QED Lagrangian

�LQED �

���i �� �m� �� � e


���� �� �A� � �

�
�F�� �F�� � 
���i �D �m� �� � �

�
�F�� �F�� (88)



for one fermion of charge e and mass m. It is invariant under local U(1) transformations - i.e. it is
gauge invariant. What are the Feynman rules? We have the fermion propagator: we need the interaction
vertex, and the �A� (photon) propagator. First, the vertex. Remember that ‘L � T �V ’, so the interaction
Hamiltonian is

�H � �
Z
e

���� �� �A�d

�x� (89)

In perturbation theory we always get ‘�i �H �’. So a lowest order matrix element will be

hf j � ie

Z

���� �� �A�d

�xjii� (90)

Just as in the ‘ABC’ case, the amplitude for the elementary building block ‘e� � e� 	 �’ will be just

(iv) ie��

with appropriate factors for an incoming fermion (a u spinor), an outgoing fermion (a 
u spinor), and the
� (�� for an ingoing �, ��� for an outgoing one).

The only other thing we need is the photon propagator, and here we hit an unpleasant snag, which
should not be concealed. Let’s try to follow the ‘poor man’s’ way of getting propagators in this case. We
start with the E-L equation of motion for the A� field, which turns out to be

�A� � �����A
�� � � (91)

(see problem P2.4). Now try plugging in a free particle plane wave solutionA� 
 exp�iq � x��� . We get

��q���� 	 q�q���
� � �� (92)

The propagator should be basically �q���� 	 q�q��
��. But this inverse doesn’t exist! It’s obvious that

��q���� 	 q�q��q
�� � � (93)

so that treated as a matrix it has a zero eigenvalue; hence its determinant must vanish, and its inverse
therefore will not exist.

The propagator should be something like h�jT � �A��x�� �A
��x���j�i, but as we have seen the �A�’s

are not unique, and can be altered by a gauge transformation (83). So the propagator is in fact gauge
dependent, not a unique quantity, and that’s why the naive poor man’s approach failed. In classical
electromagnetic theory, one ‘fixes the gauge’, for example by imposing the condition ��A� � �, which
reduces (91) to �A� � �, and then the plane wave solution gives�q��� � � and the propagator
 ��q�

(as expected!). But in general we must acknowledge the gauge dependence. A standard form for the �
propagator is

(v) a factor i��g�� 	 �� � ��q�q��q�
�q� for an internal photon line carrying 4-momentum q,
where � is a ‘gauge parameter’ (� � � gives the simple ��q� form).

Results for physical quantities will always be independent of � (i.e. will be gauge invariant) , but it is not
so simple to give a general proof of this.

Problems for Lecture 2

P2.1 The ‘action’ in classical mechanics is defined by

S �
Z t�

t�

�
�

�
m� �x�t��� � V �x�t��
dt�



Consider one-dimensional motion under gravity with V � �mgx�t�. Evaluate S for t� � �� t� � T , for
three alternative trajectories: (a) x�t� � at; (b) x�t� � �

�gt
� (the Newtonian one); and (c) x�t� � bt�.

[Take care to choose a and b so that all trajectories end at the same point.] P2.2 The classical action is

S �
Z t�

t�

L�x�t�� �x�t�
dt

where L is the Lagrangian. Under an infinitesimal change of trajectory x�t� � x�t� 	 �x�t�� �x�t� �
�x�t� 	 d

dt�x�t� the action changes by

�S �

Z t�

t�
�
�L

�x
�x	

�L

� �x

d

dt
�x
dt�

The classical path is determined from the condition �S � �. Show that this implies

d

dt

�
�L

� �x

�
� �L

�x
� ��

P2.3 Discuss the interpretation of h�jT � �	�x���	y�x���j�i for both time-orderings. P2.4 Maxwell’s equa-
tions are

r �E � �� r�E � ��B
�t

� r �B � �� r�B �
�E

�t
�

In quantum mechanics, electromagnetic interactions are introduced via the potentials V and A defined
by

E � �rV �
�A

�t
� B �r�A�

Thenr �B � � andr�E � ��B
�t are satisfied automatically, while the other two Maxwell equations

become

���t �r��A	r�
�V

�t
	r �A� � �

and

���t �r��V � �

�t
�
�V

�t
	r �A� � ��

(i) Verify these last two equations.
(ii) Verify that they can be put into a neat covariant form by introducing the 4-vector A� � �V�A�,
namely

�A� � �����A
�� � �

where � � ��t � r�� �� � �
�x�

� ��A
� � �V

�t 	 r � A. [Note that xi � �xi for i � �� �� �; so

�i � �
�xi

� � �
�xi

� ��r�i component, and �i � �
�xi

� �	r�i component. So ��A� � ��A
� 	 �iA

i �
�V
�t 	r �A].

P2.5 Show that
� �D�� �D�
 � ie �F��

(see (81)). Hint: in working with such commutators of differential operators, it is best to put in an
arbitrary function for the operators to act on, on both sides.

P2.6 A photon mass term in the Lagrangian would give a term proportional to �A� �A�. Show that this is
not gauge invariant.



Fig. 4: �-exchange amplitude in e��� � e���.

Fig. 5: One-loop corrections to figure 4.

4. ONE-LOOP GRAPHS IN QED: RENORMALISATION, AND RUNNING COUPLING CON-
STANT

See chapters 10 and 11 of [1].

Feynman diagrams represent terms in a perturbation theory expansion of physical amplitudes,
where the expansion parameter is the relevant ‘charge’ of the theory - ‘e’ for QED, or more precisely the
fine structure constant � � e����. The lowest order graphs for any process are always the ones with
the fewest vertices, and this means, in fact, that for given external ‘legs’, each vertex must be joined to
only one other vertex by a single internal line (propagator); for example, the �-exchange amplitude in
e��� � e��� shown in figure 4. Such graphs are called ‘tree’ graphs.

But tree graphs will only give us the lowest order contribution to the amplitudes. As soon as we
go to the next order in perturbation theory, we meet loops - for example, those shown in figures 5 (a), (b)
and (c), which are O(��) ( four powers of e) diagrams in e��� � e��� . Admittedly, since � 
 �����
is quite small, such corrections would seem to be relatively insignificant, perhaps. But, as you all know
very well, there are certain quantities (such as the anomalous magnetic moments of the e and the �)
which are known with truly remarkable precision (typically 0.1%), well beyond that represented by the
simplest lowest order calculation. More to the point for this school, LEP and SLAC experiments had an
accuracy sensitive to one-loop corrections; hence an understanding of this physics is now essential for
phenomenolgy.

As soon as one tries to calculate a loop, in nearly all quantum field theories, one finds that it is
infinite! This is pretty disastrous, particularly as loops are supposed to be a small correction to the tree
graphs (if the expansion parameter is small, as � is). Thus at once we are faced with the whole business
of renormalisation, which is a systematic procedure for ‘taming’ these infinities. All three gauge theories
of the standard model are ‘renormalisable’, meaning that higher order corrections can in fact be reliably



Fig. 6: The loop parts of figure 5.

calculated. The remarkable agreement between theory and experiment is impressive confirmation that
the rather elaborate theoretical structure of these theories is actually a good model of nature at this scale.
However, the renormalisation of non-abelian gauge theories is too technical for this course, and here I
shall sketch how it works for QED only.

The loop bits in figure 5 are, in fact, the only divergent one-loop graphs in QED; we redraw
them separately in figures 6 (a)-(c). Figure 6(a) is clearly a correction to the photon propagator, and is
called generically a ‘vacuum polarisation’ graph (see section 5.3), (b) is a ‘vertex correction’ and (c) is a
correction to a fermion propagator. We are going to concentrate on (a).

4.1 Vacuum polarisation and the photon self-energy

We shall use the gauge � � � in which the unmodified photon propagator is �ig ���q�. The amplitude
for figure 6(a) is (omitting Dirac spinor factors for the fermion lines)

�ig��
q�

�
i����

���q
��
� �ig��

q�
(94)

where

i����
���q

�� � ������ie��Tr
Z

d�k

�����
i

�q	 �k �m
��

i

�k �m
��� (95)

Note: (i) When we attach external legs to figure 6(a), as in figure 5(a), ‘q’ will be determined in terms of
the 4-momenta of the external particles, but this q is shared by the e
 and e� in the loop in all possible
ways: the e
 has 4-momentum k, say, in the direction indicated, and the e� has q 	 k, but nothing
determines k - it has to be integrated over. (ii) The (-1) factor has to be included for all closed fermion
loops, as does the Tr (which means ‘take the trace - i.e. sum the diagonal elements - of the Dirac matrix
product’).

The
R
d�x in (95) extends over the (presumably) infinite 4-D ‘volume’; in particular, all com-

ponents of k can go to infinity. So a crude ‘counting of powers’ seems to show that (95) will diverge
as Z

d�k�k� 

Z
k�dk�k� 


Z
kdk 
 �� (96)

if we ‘cut-off’ the integral at an upper limit �. This would be a (divergent) constant contribution, mul-
tiplying g�� to get the indices right. What would such a constant loop correction mean , in this case?
Suppose we consider a whole series of such ‘insertions’, as shown in figure 7 - which is, in fact, a geo-
metric series of the form ‘�a 	

�
ab

�
a 	

�
ab

�
ab

�
a � � �’, summing to �

a���b�a� �
�

a�b . In the present case, then,

this would mean that a constant part of ����
�� will correct the propagator (after summing) to something of

the form �q� � const��� - in other words, the photon will apparently acquire a mass!



Fig. 7: Sum of vacuum polarisation ‘bubble’ insertions.

Actually, such insertions into propagators usually do have the effect of shifting the mass of the
particle in question, and they are generically called ‘self-energies’ (e.g. figure 6(c) is a fermion self-
energy, which will indeed modify the original fermion mass). But the real photon is massless! We
know this to a very high accuracy experimentally. Theoretically, this is fundamentally related to gauge
invariance - see problem P2.6! So, provided we introduce the cut-off in a gauge-invariant way, it turns
out that this apparent �� divergence of (95) is not there after all. Instead, what one finds is that

i����
���q

�� � i�q�g�� � q�q���
���

 �q�� (97)

where ����

 �q�� is a Lorentz scalar, and is given by an integral which diverges more ‘weakly’, namely as

ln �. Note that the dimensions of ����
���q�� are M�: in the ‘naive’ cut-off approach this was visible in the

��, whereas in (97) quadratic factors of q appear, and this is why the divergence can only be logarithmic.
These factors ensure that

q�����
�� � q�����

�� � � (98)

(assuming����

 is finite!); this guarantees that the �-dependent part of the propagator (rule(v)) disappears

- i.e. the result is gauge invariant, as required.

When all the bubbles are added up, and bits proportional to q are omitted because of (98) (gauge
invariance), one finds the net result that the photon propagator is modified according to

�ig��
q�

� �ig��
q�
�
���

���

 �q��

� � (99)

What is the physics of this? When (99) appears inside a scattering graph such as figure 5(a), we would
still be able to say that the (corrected) exchanged photon had zero mass, since near the ‘mass shell’ point
q� � � (99) does indeed behave like (a constant times) the massless propagator ��q�, provided that

�
���

 �q� � �� is finite.

Discussion point: what happens if � ���

 �q� � �� itself has a term like A�q�? and how might this happen?

On the other hand, the propagator will have a peculiar normalisation: it will be



�

�

���
���

 ���

�
� �ig��

q�
(100)

for q� � � instead of the familiar �ig���q�. Why is this? The propagator in the free case was the
Fourier transform of h�jT �A��x��A��x���j�i. Take one time-ordering, say h�jA��x��A��x��j�i, and
insert a complete set of free states via ‘

P
n jnihnj � �’:X

n

h�jA��x��jnihnjA��x��j�i� (101)



The only state ‘n’ which can contribute is the state of one free photon - and indeed we know that matrix
elements of the form h�j�eld operatorjparticle statei are always just the corresponding wavefunction.
But now consider the interacting case. Here the full propagator is h�jT �A��x��A��x���j�i where j�i
is the exact ‘interacting’ vacuum. Insert a complete set of interacting states

P
n j
nih
nj � �: then the

analogue of (101) is X
n

h�jA��x��j
nih
njA��x��j�i (102)

and now the crucial point is that in addition to the one-photon state in j
ni there will also be a whole lot
of other states to which the photon can couple - for instance, precisely the e
e� state in our vacuum
polarisation graph! This must mean that the j��i state cannot any longer, by itself, produce all of the ‘1’
in the completeness sum. So the ‘strength’ of the matrix element h��jA��x�j�i cannot be unity (in the
normalisation we are adopting, like problem P1.4).

To take account of this ‘diminished single particle strength’, we write

h�� k� 
jA��x�j�i �
p
Z��

�
��
�e

ik�x (103)

where Z� is called the wavefunction renormalisation constant. This will mean that the interacting prop-
agator has the form

F�T� ofh�jT �A��x��A��x���j�i
� �iZ�g��

q�
	 contributions from non single particle states� (104)

for q� � �. So we can identify

Z� �
�

�� �
���

 ���

� (105)

This is the interpretation of the change in normalisation of the photon propagator.

This is all innocent-sounding enough � � � but of course �
���

 ��� depends on � and is divergent as

the cut-off ��
. To bury this divergence, which after all is occurring as a multiplicative factor in the
wavefunction, we introduce the ‘physical’ (renormalised) photon field operator A��ph defined by

A��ph�x� �
�p
Z�

A��x� (106)

for which the propagator will be of the expected form

F�T� ofh�jT �A��ph�x��A��ph�x���j�i � �ig��
q�

	 multiparticle bits (107)

for q� � �. Formally this will work even if � � 
; the physical matrix elements are OK. Note that
Z� � Z����, from (105), since ����


 depends on �.
Discussion point: Do we actually envisage ��
, really?

Now let’s tidy up. Our results so far tell us that the renormalised �-propagator is Z ��
� � the one

we have been calculating to O���, that is

�

Z�
� �ig��
q�
�
���

���

 �q����

� (108)

where we now indicate the � dependence explicitly. Now

Z���� � �������

 �����
�� � �� 	 ����


 �����
 (109)



since ���� 
 � and we are doing a systematic order-by-order perturbative approach. So (108) becomes

� �ig��
q�
�
���

���

 �q����	 �

���

 �����

� (110)

again dropping the O���� term �
���

 �q���

���

 ���. So finally our renormalised propagator is

�ig��
q�
�
�� 
�

���

 �q��

� (111)

where

����

 �q�� � lim

���
�����


 �q���������

 �����
 (112)

is called the ‘once-subtracted self-energy’, and is finite and independent of � as �� 
. We will come
back to (111) in section 4.3.

4.2 The fermion self-energy and the vertex correction

Let’s now briefly examine the other two one-loop divergent graphs, figures 6(b) and 6(c), beginning with
the latter, the fermion self-energy. In analogy with �

���

 , we call the amplitude for figure 6(c) �i�����p�

where

�i�����p� � ��ie��
Z
��
�ig��
k�

i

�p� �k �m
��

d�k

�����
� (113)

As in the � case, when the string of self-energy insertions is summed up, the result is a modified fermion
propagator equal to

i

�p�m� �����p�
� (114)

As expected, ���� as given by (113) diverges: there are four powers of k in the numerator and three in
the denominator, so we might expect a divergent term proportional to � (note that � ��� has dimensions
of mass, as is also evident from (114)). Actually the leading p-independent divergence is, instead, pro-
portional to m ln���m�. The reason for this is important, and it has interesting generalisations. Suppose
that m in the Dirac Lagrangian 
��i �� � m�� were were set equal to zero. Then (see problem P3.1)

the two ‘left’ and ‘right’ helicity components �L �
�
��
�
�

�
� and �R �

�
�

�
�

�
� of the electron field

will not be coupled by the QED interaction. It follows that no terms of the form 
�L�R or 
�R�L can be
generated - and these are just of the ‘Dirac mass’ type (problem P4.2). Hence no perturbatively-induced
fermion mass term can be generated by higher-order e-m interactions, and the���� correction must vanish
as m � �. So it must behave as 
 m ln���m� on dimensional grounds, which gives a logarithmically
divergent correction to m in (114), call it �m������.

We can agree to call the resulting ‘on shell point �p � m	 �m������’ the physical mass mph, such
that

mph � m���	 �m������ (115)

is independent of � as � � 
 - which of course means that the original parameter m has in fact to be
�-dependent, and in just such a way as to compensate for that of �m���.

There is also a p-dependent logarithmic divergence of the form �p ln ��m. This can be soaked up
in a fermion wavefunction renormalisation constant Z�, analogous to Z�, and having the same interpre-
tation:

�ph �
�

�Z��
�
�

�� (116)



In this way the physical fermion propagator is indeed

i���p�mph�� (117)

Finally there is the vertex part shown in figure 6(b). In this case, power counting indicates a new
logarithmic divergence. We have one more card to play, in order to sweep it up. Consider the QED
interaction term

�e 
��x� �A�x���x� � �e 
�ph �Aph�ph � Z�Z
�
�
� � (118)

This generates a ‘lowest order’ vertex (in terms of the physical renormalised fields) equal to�ie��Z�Z
�
�
�

to which figure 6(b) must be added. Now the physical charge eph is going to be determined experimen-
tally from the Coulomb scattering contribution as q� � � (the classical limit). Figure 6(b) contributes
a logarithmically divergent correction to the charge in this limit, call it �e���. So, once again, we are
going to assume that the ‘original’ e had a �-dependence just right to cancel out the �-dependence of the
total contribution, leaving a finite �-independent physical charge as � � 
. We express this formally
by introducing the vertex renormalisation constant Z� such that the physical charge is defined by

eph � Z�Z
�
�
� �e�Z�� (119)

The interaction (118) then becomes
�Z�eph 
�ph �Aph�ph� (120)

Now some alarm bells should be ringing! The free Dirac part of the QED Lagrangian is now


��i �� �m�� � Z� 
�ph�i �� �m��ph (121)

to which we must add (120) (as well as the Maxwell term). But then the result is not gauge invariant! -
since �� doesn’t appear in the gauge invariant combination ‘ �� 	 ie �A’ (see section 3). For this to work
we need a kind of small miracle - the equality

Z� � Z� (122)

between two quite different wavefunction renormalisation constants. Of course, (122) is true; it is a Ward
identity, and can be proved to follow from the gauge invariance of the original QED Lagrangian.

Relation (122) has a remarkable consequence: the ‘rescaling’ relation (119) now becomes

eph �
p
Z�e (123)

showing that the corrections to ‘e’ associated with the fermion propagator and the vertex cancel out,
leaving only the �-propagator correction. Now this correction is the same whatever the external particles
are, in a Feynman graph. So (123) is a statement of ‘universality’ of radiative corrections: they do not
spoil the gauge invariance of the original Lagrangian, and the ration of e to eph is independent of the types
of external particles. If a set of unrenormalised charges are all equal (or ‘universal’), the renormalised
ones will be too. Universality survives renormalisation - and this is a very big clue as to why the weak
interactions have to be described by a gauge theory too, since quarks and leptons do seem to couple in
some ‘universal’ way to W ’s and Z’s: the strong interactions, experienced only by the quarks, do not
seem to spoil that, just as - in the e-m case - the charge on a proton is the same as that on a positron.

4.3 The physics of 
����

 �q��

We will only be able to offer brief notes:
(i) How does the renormalised �-propagator affect physical processes? Let’s imagine using it in e��� �



Fig. 8: Screeing of a charge in a dipolar medium.

e��� scattering via figure 4 with the corrected propagator (111), for instance. Then, the amplitude will
be (omitting the spinor factors)

��ie�� �ig��
q�
�
�� 
�

���

 �q��

� (124)

where now we have changed the notation so that ‘e’ means the physical charge (which we previously
called eph), andm is the physical mass (previouslymph�. In the static limit q� � �, the photon propagator

 ��q� has a simple interpretation - it is the Fourier transform of the ��r Coulomb potential (see ‘Point
4’ at the end of section 2). So the form (124) must, in the static limit, represent corrections to Coulomb’s
law. Indeed, with q� � � and evaluating 
�

���

 for q� 	 m�, one finds that (124) becomes, approximately,

��ie�� ig���q�
�
� 	

�

���
q��m�

�
(125)


 e�

q�
	 constant� (126)

The e��q� in (126) gives us back the Coulomb ��r in x-space: the Fourier transform of the ‘constant’ is
a � function. This very short distance correction, affecting only s-states in atomic physics, is responsible
for a small (but entirely detectable) contribution to the famous Lamb shift between hydrogenic ��S �

�
and

��P �
�

levels. See problem P3.3.

(ii) Without making the low-q� approximation, the form 
 e�

q�

�
� 	 
�

���

 �q��

�
indicates that the charged

leptons have effectively developed a ‘form factor’ (or spatial extension, when Fourier transformed) due
to radiative corrections. Sharing it equally between the two e’s in ‘e�’, we can say that the radiatively
induced charge form factor is F��q�� � � 	 �

�

�
���

 �q��. Examination of the Fourier transform of this

shows that the spatial extension is of order 
 m��, the fermion Compton wavelength.
(iii) An alternative interpretation is in terms of a ‘q�-dependent charge’, or ‘q�-dependent �’, given by

��q�� � �
h
� 	 
����


 �q��
i
� (127)

The idea that a charge is q�-dependent may seem strange at first, but it is analogous to the way in which
a charge placed in a polarisable medium can give rise to a space-dependent effective charge, due to
screening (see figure 8). The screening length here is just m��, the distance over which the e
e� pairs
can be ‘fluctuated’ out of the cacuum, and which measures the extension of the radiatively induced form
factor. This is why the photon self-energy e
e� bubble is called a vacuum polarisation graph!

For jq�j � m�, (127) becomes

��q�� � �

�
� 	

�

��
ln

�
�q�
m�

��
(128)



showing that ��q�� increases at large �q� (which is short distances, when Fourier transformed), just as
indicated in figure 8.
(iv) However, a better approximation at large �q� is to return to the form (124) and write

��Q�� �
�

��� ������ ln�Q��m��

for Q� � m� (129)

where Q� � �q�. Equation (129) is the standard ‘leading log’ expression for the running coupling
constant in QED. This shows a slow logarithmic increase as Q� increases. For example, ��M�

Z� 

�������, as compared with ��� ����� 
 �����. In QCD, the effect of gluon self-interactions is to make
�s (the QCD analogue of �) decrease as Q� increases (‘asymptotic freedom’). There, the analogous
formula is

�s�Q
�� �

�s	
� 	 �s

��� ���� �f� ln�Q����

 (130)

where f is the number of fermion-antifermion pairs (in the loops) considered, and � is a ‘renormalisation
scale’. If f � ��, �s will decrease as Q� increases, leaving the quarks weakly interacting at very short
distances.

4.4 Renormalisability

We have tried to give some idea of how we can make sense of a theory with divergences. At the one-
loop level, some of the steps seemed quite trivial. More generally, however, we can ask: how do we
know that we can go on soaking up these divergences into redefinitions of ‘physical’ quantities, as we
proceed on to higher order loops? The answer is really rather remarkable: there are classes of theory
(‘renormalisable theories’) which are such that all divergences, encountered at each successive order in
systematic perturbation theory, can be tamed by this procedure of redefining finite physical quantities
(and doing wavefunction rescalings), and then re-expressing all amplitudes in terms of these physical
quantities. Furthermore, there is a surprisingly simple criterion for telling (almost) which theory is
renormalisable and which isn’t. This criterion has to do with the dimensionality of the coupling constant
(in units 
h � c � �) - see problem P3.4.

The result is simply stated: if the dimensionality of the coupling is M a where a � �, then the
theory is ‘super-renormalisable’ (like the ABC theory - there are fewer divergences than we could in fact
deal with, for instance ZC and the vertex correction are finite); if a � � (dimensionless) then the theory
may be renormalisable, and often is (e.g. QED, where the coupling is �); and if a � �, the theory is not
renormalisable.

Consider a hypothetical theory, similar to the original four-fermion theory of �-decay, describing
interactions between the �e and a neutron (assumed pointlike for this purpose). The interaction density
is

GF

�n�x��n�x� 
��e�x���e�x�� (131)

To find the dimensionality of GF , we need to remember that the mass term in the Dirac Hamiltonian
is m 
��, so that the dimension of a � field is M

�
� . This implies that the dimension of GF is M�� so

that this theory is non-renormalisable. Is this in fact so bad? Consider what happens when we calculate
n	 �e � n	 �e in perturbation theory. The lowest order (‘tree’) graph is figure 9(a); next is figure 9(b);
and then at third order figure 9(c). Let’s count powers in the loop of figure 9(b). Since each fermion
propagator
 k��, we expect the graph to diverge as ��. Fine � � �what about figure 9(c)? Here we have
two loops, with therefore 8 momentum integrals, and four fermion propagators each contributing only
one power of k in the denominator, so it diverges as ��! The first point to note, then, is clearly that
as we go up in order of perturbation theory, the divergence gets worse. To control the �� divergence,
we would have to ‘subtract’ the amplitude for figure 9(c) three times. Each subtraction means that
we have to take one parameter from experiment (the amplitude at a certain point, its derivative at that
point, its second derivative, etc). Very soon we need more parameters than are appearing in the original



Fig. 9: Contributions to n� �e � n� �e in perturbation theory, using (131).

Lagrangian (masses, couplings). So simply defining a ‘physical’ set of Lagrangian parameters won’t
get us off the hook in this case. A renormalisable theory is one whose infinities can all be tamed by
redefinitions of the parameters in the original Lagrangian (plus wavefunction rescalings); if infinities
arise which need new parameters (not in the original Lagrangian) to be taken from experiment, then the
theory is non-renormalisable.

The reason for this worsening divergence in higher orders in GF is, of course, related to the
dimensionality of GF . All the amplitudes of figure 9 have to have the same dimension, obviously. But
since each GF brings in two powers of a mass ‘M ’ in the denominator, these must be compensated by
two powers of momentum in the numerator, making the divergence successively worse.

Is the situation really hopeless? Actually no. We know quite well that people lived with the
Fermi theory reasonably happily for years, until the advent of high energy experiments probing weak
interactions. The reason can again be found in dimensional analysis. Consider the amplitude for figure
9(b), call it G����s�, where s � �p� 	 p��

�. This needs two subtractions to tame it into a finite quantity

GF �s� � G��� � G����s��� �s� s��

dG���

ds

���
s�s�

, where s� is the point we choose to define our amplitudes

at. This means that, expanding 
G����s� about s � s�, we can calculate terms of order �s�s��� and higher
(the two lowest terms in the expansion have to be taken from experiment). But the worse divergence of
figure 9(c) (amplitude G���) would require us to do three subtractions before arriving at a finite part we
could calculate: in this case, the first calculable bit would be 
 G�

F �s� s��
� d�G���

ds�

���
s�s�

- and the process

has to be repeated each time we go up an order. Assuming that all the derivatives are about the same order
of magnitude, we see that we can get away with using only low order corrections provided GF s 	 �,
i.e. p

s	 �p
GF

� (132)

This is an important idea - and in the case of the real Fermi constant (GF 
 ���� � ����GeV��),
�p
GF


 ���GeV. So a non-renormalisable theory can be useful at energies well below its ‘natural energy
scale’, as set by the inverse coupling constant; but the nearer we approach this scale, the less predictive
the theory will become. And we are, after all, always striving to reduce the number of parameters in our
theories that have to be taken from experiment.

From this perspective, it may be less of a mystery why renormalisable theories are generally the
relevant ones at present energies. We may imagine that a ‘true’ theory exists at some enormously high
scale � (the Planck scale?) which, though not itself a local quantum field theory, can be written out in
terms of all possible fields and their couplings, as allowed by the operative symmetry principles. Our
particular renormalisable subset of these theories then emerges as a low energy effective theory, due to
the strong suppression of the non-renormalisable terms (which are damped like �s���� to some power).

Nonrenormalisable theories may be physically detectable at low energies if they involve processes



Fig. 10: Relation between four-fermi coupling and Yukawa-like coupling.

that would be otherwise forbidden. For example, the fact that (as far as we know) neutrinos have neither
electromagnetic nor strong interactions, but only weak ones, allowed the four-fermi interaction to be
detected - but amplitudes were suppressed by powers of s�M �

W relative to e-m ones, and this is precisely
why it was ‘weak’! As we’ll discuss later, the four-fermi model is superseded in the Standard Model by
a Yukawa-type theory involving exchanges of W �� Z� (see figure 10). For q� 	M�

W , GF 
 g�W �M�
W ,

explaining the origin of theM�� dimensionality of GF , and telling us the actual scale, in this case. Thus
this theory changes from being an effective non-renormalisable four-fermion theory at very low energies,
to being an effective renormalisable one at q� 
M�

W .

Problems for Lecture 3

P3.1 For a Dirac field ��x�, define �R �
�
�

�
�

�
�� �L �

�
��
�
�

�
�. Show that


�L�
��R � ��

where 
�L � �yL��.
P3.2 Rewrite m 
�� in terms of the �R and �L fields, and deduce that e-m interactions cannot generate
such a ‘Dirac’ mass in perturbation theory.
P3.3 Coulomb’s law is corrected by the vacuum polarisation (e
e�) to

�
�
�

r
	

���

��m�
���r�




where m is the electron mass. Treating the � function piece as a perturbation on the Coulomb term,
calculate the shift in energy (to first order) of an l � � hydrogenic state with principal quantum number
n, given that the Coulomb wave function at r � � is

	n��� �
�p
�

�
�m

n

��
�

�

Give the answer in eV for the n � � shift.
P3.4 What is the (mass) dimension of a scalar field 	 in four space-time dimensions? What is the
dimension of the coupling constant 
 in a ‘
	�’ interaction? And of g in a ‘g	�’ interaction? What is
the dimension of G in a ‘G� 
����’ interaction?
P3.5 Consider a 
	� theory. Given that it is renormalisable, explain why any graph contributing to the
process 		 	� 		 		 	 	 	 must be finite.

5. GLOBAL AND LOCAL NON-ABELIAN SYMMETRIES

For a much fuller treatment of the material in this section see chapters 12 and 13 of volume 2 of the new
(third) edition of Aitchison and Hey [2].



Having introduced QED as an example of a gauge theory with a local phase invariance, we now
consider the generalisations of QED which describe the weak and strong interactions between quarks
and leptons. These involve a more complicated kind of local phase symmetry, in which the phase factors
are (x-dependent) matrices, which in general don’t commute - that’s what ‘non-abelian’ means in this
context. We shall limit the treatment to the particular ingredients needed for the Standard Model. Note:
from now on we shall omit the hats on quantum field operators!

5.1 Global non-Abelian symmetry

Consider the Lagrangian for two free fermions of the same mass m� � m� � m

L� � 
���i�� �m��� 	 
���i�� �m��� � (133)

in terms of the ‘doublet’ field

� �

�
��
��

�
(134)

it can easily be rewritten as
L� � 
��i�� �m�� � (135)

Note that although (135) looks formally like the single-field LD of (78), it is of course quite different
physically, representing two different sorts of particle (e.g. up and down quarks, and their antiparticles).
Nevertheless, (135) is invariant under a symmetry rather like (79), namely the ��� unitary transformation

� � �� � U�� UUy � UyU � � � (136)

The U in (136) is a � � � matrix of numbers (not field operators) acting on the 2 components of � in
(134), and they commute with the Dirac �’s. Such unitary � � � U ’s form a group, U(2). Since U in
(136) does not involve x, we call (136) a global symmetry. In general, two U ’s do not commute with
each other, and it is called a non-Abelian symmetry.

From elementary properties of determinants we have

detUUy � detU�detUy � detU�detU� � jdetU j� � � (137)

so that detU � e��i�, say. We can therefore write

U � e�i� �U (138)

where �U has determinant 	�. Matrices of the form �U form the SU(2) group, where the S just means
they have unit determinant. The phase factor in (138) corresponds to a simultaneous U(1) transformation
of �� and �� (with the same phase angle) and leads, as in Section 3.3, to a conservation law of the total
number of ‘1’ particles and ‘2’ particles. (For quarks this would be part of baryon number conservation).
The new physics is contained in the �U part.

Groups such as SU(2) (and, later, SU(3)) have the important feature that their physically important
properties can be found by studying infinitesimal transformations, of the form (cf (46))

�U � �� i� (139)

where � is a �� � matrix with small entries. The condition detU � � gives Tr� � � (neglecting terms
of order �� - see problem P4.1), while �U �Uy � � reduces (problem P4.1) to � � �y. So � is a Hermitian
traceless matrix. Such a thing depends on only three real parameters (problem P4.1) and can be written
as

� � ����� (140)



where � = ���� ��� ��) are the three parameters, and � = ���� ��� ��) are the Pauli matrices (problem P4.2).
Thus an infinitesimal SU(2) transformation on the doublet � is

� � �� � ��� i������� � (141)

This should be compared with the infinitesimal version of (69), namely � � � � � ���i���, from which
it is clear that the ‘�’ in that case becomes a matrix in (141). The form for a finite SU(2) transformation
is

� � �� � e�i��� ��� (142)

which generalises (69) (note that for a matrix A, exp A � � 	A	 A���� 	 � � ��.
Since (141) or (142) are invariances of L� we expect an associated conservation law. Indeed, since

we have three independent transformations (using each of �i in turn) we expect three conservation laws.
Following the same steps used in deriving the Noether current for the complex scalar field in x3.2, but
this time for the doublet Dirac field �, one finds that the three quantities T �

� �x�, T
�
� �x�, T

�
� �x� defined

by (cf (70))
T�
i �x� �


��x���i����
���x� (143)

satisfy
��T

�
i �x� � � (144)

and are therefore symmetry currents. The corresponding ‘charges’

Ti �
Z
�y�x�

�i
�
��x� d�x (145)

are conserved. These are the (field theoretic) ‘isospin’ operators, which have the very interesting property

�Ti� Tj
 � i�ijkTk (146)

as can be explicitly checked from (145) (using the proper commutation relations for the � fields). A
simple example is provided in problem P4.2. The relations (146) are of course exactly the commutation
relations of the familiar angular momentum operators, which is why the name isospin was coined; (146)
is called the ‘SU(2) algebra’. Not coincidentally, the � ’s satisfy ��i��� �j��
 � i�ijk�k��, the same
algebra.

In thinking about more complicated SU(2) multiplets than doublets (which we shan’t need to do
much) this angular momentum analogy is very helpful. The essential step is to find larger matrices than
the � � � � �s

� , which satisfy commutation relations of the form (146). For example, the three � � �
matrices t�� t� and t�, defined by

�ti�jk � �i�ijk (147)

satisfy �ti� tj 
 � i�ijktk (see problem P4.3). Then if we consider a triplet of three real degenerate fields
(bosonic, say)

� �

�
�	�
	�
	�

�
A (148)

with Lagrangian

LB �
�

�
�������� �

�
m���� � (149)

LB is invariant under
�� �� � ��� i��t�� � (150)

Using (147), (150) is equivalent to (problem P4.4)

�� � � 	 �� � (151)



which should be familiar as the ‘infinitesimal rotation’ of an ordinary vector.

The SU(2) transformation of (142) can be generalised to the case of three degenerate fermion
fields. If L� is (133) with the addition of 
���i�� �m���, it too can can be written as in (135) where now

� �

�
���
��
��

�
A � (152)

Note particularly that unlike the 	’s in (148), the �’s in (152) are complex: each �i contains ci and dyi
operators as in (59). L� is invariant under � � � � � U� where U is now an x-independent � � �
unitary matrix. Extracting the overall phase again, we are left with a global SU(3) transformation. An
infinitesimal SU(3) matrix has the form

�U � �� i� (153)

where � is a Hermitean traceless �� � matrix. Such a � involves eight parameters and can be written as

� � ����� (154)

where � � ���� � � ���� are the arbitrary parameters and the eight �’s are � � � Hermitean traceless
matrices generalising the three � ’s. They obey the commutation relations�


a
�
�

b
�

�
� ifabc


c
�

(155)

where the fabc are numbers characteristic of SU(3) (a� b� c all run from 1 to 8). If ��, ��, �� are taken
to be the u, d, s quarks, this global SU(3) symmetry would be the SU(3) of strong interaction flavour
symmetry (which however is not exact as mu, md and ms are not equal). Similarly, if we take 1, 2, 3
to be colour indices we have the exact SU(3)c colour symmetry of QCD, which we shall shortly see is a
local symmetry. The currents corresponding to the SU(3) symmetry of L� are (cf (143))

G�
a�x� �


��x��
a����
���x� (156)

and the associated eight ‘charges’

Ga �

Z
�y�x��
a�����x� d�x (157)

generalise the three isospin operators, and obey the commutation relations

�Ga� Gb
 � ifabcGc � (158)

which is called the ‘SU(3) algebra’. Note the similarity between (146) and (158).

As in the case of SU(2), larger multiplets are possible too. The key requirement is to find matrices
which satisfy (158), since these commutation relations effectively define the group. For SU(3), the only
larger multiplet in which we shall be interested is the octet, 8, which is analogous to the triplet of SU(2).
The matrices for the 8 are defined analogously to the t’s of (147), namely �Fa�bc � �ifabc where the
f ’s are as in (158). Notice that since there are eight ‘charges’ Ga, and all the indices a, b, c in (158) run
from 1 to 8, the eight matrices Fa are each �� �. In the same way, the three matrices ti of (147) are each
�� �, since there are three SU(2) charges. This kind of pattern can be extended to arbitrary SU(N); the
‘representation’ in which the matrices are equal (with a factor of �i) to the ‘structure constants’ (the �’s
and f ’s in (147) and (158)) is generally called the adjoint or regular representation.



5.2 Local non-Abelian SU(2) symmetry

Global symmetries and their associated (possibly approximate) conservation laws are certainly interest-
ing, but they do not have the dynamical significance of local symmetries. We saw in section 3.4 how the
‘requirement’ of local U(1) symmetry seemed to lead almost automatically to QED, with the symmetry
current of the � matter fields now playing the role of the dynamical current which, when dotted into the
A-field, gives the interaction term in LQED. A similar link between symmetry and dynamics follows
if we generalise the preceding non-Abelian global symmetries to local ones. In this section we carry
through the analysis for SU(2).

We begin by considering again a fermion doublet as in (135), without yet specifying exactly what
the physical application will be. We want to extend the global SU(2) symmetry transformation (142) to
the local one

��x�� ���x� � e�ig��x��� ����x� (159)

by analogy with (79); note that we have slipped in a constant g in the exponent - it will be analogous to
the e-m charge e. Clearly, although the 
�m� part of (135) is still invariant under (159), the

�i��� part is not - just as in the U(1) case (80), since the �� will pull down a ����x� factor. As in the
U(1) case, we try to compensate this factor by introducing some vector field whose change under an
appropriate transformation (accompanying (159)), exactly cancels this ����x� part. This time, since
there are three ��x�’s (���x�, ���x�, ���x�) we immediately see that we need three vector (gauge)
fields, called W�

� �x�, W
�
� �x�, W

�
� �x�� or W ��x� for short.

The key step in constructing the locally U(1) invariant Lagrangian of QED was the replacement of
‘��’ by ‘D� � �� 	 ieA�’ (cf (81)), together with the transformation ‘A� � A� 	 �

e�
���x�’ (cf (83))

for the A-field. Let’s have another look at the combination D�� in the QED Lagrangian (88). Under the
gauge transformation (84) ,

D� � ��� 	 ieA��� � ��� 	 ieA�����

� ��� 	 ieA� 	 i�����x���e�i��x��

� ��i�����x��e�i��x��
 	 e�i��x���� 	 ieA�e�i��x�� 	 �i����e�i��x��


� e�i��x�D�� (160)

since the bracketed terms cancel. So we have

D���� � e�i��x�D��� (161)

In words, this says that the quantity ‘D��’ transforms under a local U(1) phase transformation just like
� would under a global one (i.e. it just gets multiplied by a phase factor). So to construct a locally U(1)
invariant Lagrangian all we needed to do was multiplyD�� by 
� from the left, since then under the local
transformation


�D��� 
��D���� � 
�ei��x� e�i��x�D�� � 
�D��� (162)

showing that 
�D�� is indeed locally U(1) invariant. Of course, we also need the �� to get rid of the
loose Lorentz index �, and make L a Lorentz invariant.

So the key to constructing a locally SU(2) phase-invariant theory is to generalise ‘D��’. The
required generalisation is

D�� � ��� 	 ig� �W ����� (163)

when acting on an SU(2) doublet field such as �. The property required of (163) is that D�� should
transform under the local symmetry (159) exactly as ��� does under the global one (142), as we have
seen happening in the U(1) case. Then, a term like 
��D�� is automatically invariant under local SU(2).

This requirement on D�� determines the transformation law of the fields W �. The algebra is
easier if we consider an infinitesimal transformation

�� � ��ig��x��������x� � (164)



Fig. 11: �-�-W vertex.

we then require
��D��� � ��ig��x������D�� � (165)

It is a good exercise (problem P4.5) to verify that (165) implies that

�W ��x� � ����x� 	 g��x��W��x� � (166)

which tells us how the W �’s must transform. The first term in (166) is the straightforward analogue of
the infinitesimal version of (84), with ��x� � e��x�. Comparing the second term of (166) with (151),
we see that it implies that the three W -fields form the components of an SU(2) triplet. Thus the W ’s
carry SU(2) ‘charge’.

We now know the generalisation of (135) which makes it locally SU(2) invariant:

L�W � 
��i�D�m�� � 
��i�� �m�� � g 
��������W �� (167)

the last term being the generalisation of Lint in QED (equation (82)). We can immediately read off the
�-�-W vertex factor as (figure 11)

�ig �i
�
�� � (168)

In (168) the index ‘i’ refers to the SU(2) component of the W field quantum, and ‘�’ to the Lorentz
component of its polarisation vector. Each W -field will have the same kind of mode expansion as the
A-field did (equation (85)).

We can easily generalise (163) to other SU(2) multiplets than doublets, by using appropriately
larger matrices instead of the ���. For example, for an SU(2) triplet of fields � � �	�� 	�� 	��, (163)
becomes

D�	i � ��� 	 igt�W ��	i (169)

where the three �� � matrices t are defined in (147). Under infinitesimal transformations, this changes
by

��D�	i� � ��ig��x��t��D�	i� (170)

� �g��x��D���i (171)

(cf (150), (151), and (164)).

However, there is still an important part of the non-Abelian analogue of LQED unaccounted for
- namely the bit corresponding to the Maxwell-term � �

�F�F for the gauge fields W �. Note that, as in
the QED case (problem P2.6), a simple mass term involving W � �W � will violate invariance under
(166), so these quanta are massless. Clearly we have a problem here in applying this local SU(2) - as



we eventually will - to weak interactions, which are very short ranged, and whose quanta are therefore
massive. This is where we will need the Higgs mechanism - see Section 6.

To get the non-Abelian ‘F � F ’ term, the obvious thing might be to consider

��A� � ��A� � D�W � �D�W � (172)

with D� given by (169), since the W ’s are an SU(2) triplet. The hope would be that by using the D’s,
D�W � �D�W � would transform under local SU(2) transformations exactly as ��W � � ��W � does
under global ones - i.e. like (171). Then the ‘dot product’ �D�W � � D�W �� � �D�W � � D�W ��
would be a locally invariant ‘F � F ’ term. Unfortunately it is not quite that simple. The problem is that
the W ’s are a rather special triplet: whereas an ordinary triplet � would transform via only the second
term in (166), the W ’s also have the first (‘non-homogeneous’) term as well. You can verify that in fact

��D�W � �D�W�� �� g��x�� �D�W � �D�W �� (173)

so that the proposed ‘F � F ’ term will not work.

With the aid of some hindsight, we can be led to the right answer as follows. Consider, in the U(1)
case, the quantity

�D�D� �D�D��	 (174)

where 	 is any field of charge e and D� � �� 	 ieA�. Evaluating (174) one finds (problem P2.5)

�D�D� �D�D��	 � ieF��	 (175)

where F�� � ��A� � ��A�. This suggests that we should look at the commutator of two covari-
ant derivatives �D�� D�
. It does not matter whether we use the D from (163) or (169) - the result is
essentially the same for all cases. Using the D� from (163) one finds (problem P4.6)

�D�� D� 
 � ig����F �� (176)

where
F �� � ��W � � ��W � � gW� �W � � (177)

(Had we used (169) we would have got (176) with ���� t.) When we now investigate the effect of the
local SU(2) transformation (166) on F �� we find (problem P4.7)

�F ���x� � g��x�� F ���x� (178)

precisely as desired (but not accomplished) in (173) - i.e. the inhomogeneous part in (166) has been
got rid of. Thus F �� does transform under local SU(2) transformations exactly as if it were an ordinary
triplet under global SU(2) transformations and so the quantity

LW � ��

�
F �� �F �� (179)

is indeed locally SU(2) invariant. This is the famous Yang-Mills Lagrangian, the non-Abelian generali-
sation of the Maxwell Lagrangian. F �� is the non-Abelian field strength tensor.

The argument leading to (179) has been given in some detail since the result is of fundamental
importance. Looking at (177) and (179) it is clear that, unlike the Maxwell term LA of (87), the Yang-
Mills term LW of (179) includes interactions between the gauge fields - in addition, of course, to the
expected ‘free’ part

��

�
���W � � ��W �� � ���W � � ��W �� � (180)

The free part leads to a W -propagator which is the same as that in rule (v) of section 3.4, with a �ij factor
to ‘dot’ the W ’s together. The interactions included in (179) are of two types: W -W -W (trilinear) and



Fig. 12: W -W -� vertex.

W -W -W -W (quadrilinear). This is quite unlike QED, where no fundamental �-� vertices are present. It
arises here because theW ’s both ‘transmit’ the gauge field force and feel it themselves since they are not
SU(2) neutral (as the � was U(1) neutral). Another important point to note is that these self-interactions
among the W ’s come in with a coupling constant which is the same one as appears in the �-�-W vertex
(168)—the W ’s ‘couple universally’.

The physics application of all this is to the SU(2) of the weak interactions (see section 7). There,
the W�

� and W�
� fields correspond to the charged gauge bosons W�� (the combination �p

�
�W� � iW�)

destroysW
 or creates W�). As we shall see, the field W�
� is a linear combination of the photon � and

Z� fields:
W�

� � sin 
WA� 	 cos 
WZ� (181)

where 
W is the ‘weak angle’, and the SU(2) gauge coupling constant g is related to e by

g sin 
W � e � (182)

We can then pick out the W -W -� vertex from (179), and find that it is given by

ie �g�
�k� � k��� 	 g
��k� � k
�� 	 g���k
 � k��

 (183)

where the momenta and indices are as in figure 12. This unique e-m coupling of the W� is of precisely
the kind needed to make a renormalisable (see section 4) theory of the ‘electromagnetic interactions of
charged vector bosons’.

5.3 Local SU(3) Symmetry: the QCD Lagrangian

Using what has been said about global SU(3) in section (5.1), and about how to make a global SU(2)
symmetry into a local one in section 5.2, it is straightforward to discuss local SU(3). This is the gauge
group of QCD (see the course on QCD), the labels 1, 2, 3 in (152) standing for colour, the �’s being one
flavour of quark. Under a local SU(3)c transformation, the triplet (152) transforms by

�� � ��igs��x������� (184)

(cf (154) and (164)), where now there are eight field parameters ���x�� ���x� � � ����x� going with the
eight 
’s. To cancel off the unwanted ��� parts which occur when we try to make 
���� invariant under
(184), we now need eight vector gauge fields A�

a�x�, a � �� �� � � ��. These A’s transform according to

�A�
a�x� � ���a�x� 	 gsfabc�b�x�A

�
c �x� (185)

(cf (166) and (155)). The SU(3)c covariant derivative acting on a triplet is

D�� � ��� 	 igs����A��� (186)



Fig. 13: A-�-� vertex.

giving the A-�-� vertex (cf (168)) of figure 13:

�igs
a
�
�� � (187)

The quanta of the A�
a field are the (eight different) gluons. As in local SU(2), there is an SU(3)c field

strength tensor which is (cf (177))

F��
a � ��A�

a � ��A�
a � gsfabcA

�
bA

�
c � (188)

The SU(3)c Yang-Mills term is then

��

�
F��
a Fa�� (189)

and it contains triple and quadruple gluon couplings, all involving the same ‘strong’ coupling g s, and the
constants fabc determined from (155). Once again, there is no mass term allowed by invariance under
(185), and the gluons are massless. Their propagator is the same as the photon one in rule (v), with a
colour factor �ab.

For one SU(3)c triplet �, then, our Lagrangian so far is

L � 
��i �D�m�� � �

�
F��
a Fa�� (190)

with D�� given by (186). For many different quark flavours f , the Dirac term is repeated for each,
giving

LQCD �
X
f


�f �i �D�mf��f � �

�
F��
a Fa�� � (191)

Actually, however, matters are not quite that simple. As in QED, we need a gauge-fixing term to pro-
duce the gauge field propagator; in the non-Abelian case this turns out to be a more complicated affair,
necessitating additional pieces in LQCD called ‘ghost terms’. We shall not give their form here: they are
needed only for loop calculations, the details of which we shall not need. The Lagrangian of (191) is
adequate at the tree level.

Problems for Lecture 4

P4.1 An ‘infinitesimal’ SU(2) transformation means one very close to the identity, �U � � � i� where

� is a matrix whose entries are infinitesimally small. So �U �

�
�� i��� � i���
�i��� �� i���

�
. Show that to first

order in the �’s, �U �Uy � I implies that � � �y (i.e. � is Hermitean). Also, show (again to first order in



the �’s) that detU � � implies ��� 	 ��� � � (i.e. � is traceless). So � is a traceless Hermitean matrix,
� � �. Explain why � is specified by three real parameters. How many parameters are needed for an
infinitesimal SU(N) matrix?
P4.2 The � -matrices are

�� �

�
� �
� �

�
� �� �

�
� �i
i �

�
� �� �

�
� �
� ��

�
�

(a) Verify that ������ ����
 � i����. (b) A simple model of the isospin raising operator �T
 is

�T
 � ��ayu �a
y
d������ 	 i�����

�
�au
�ad

�

where the �ay’s create u’s and d’s. Check that �T
 � �ayu�ad and interpret this. Define also

�T� � ��ayu �a
y
d������� i�����

�
�au
�ad

�
�

Show that �T� � �ayd�au. (c) Evaluate � �T
� �T�
, and check that it is compatible with � �Ti� �Tj
 � i�ijk �Tk,
where

�Ti � ��ayu �a
y
d���i���

�
�au
�ad

�
�

P4.3 The �� � matrices t�� t�� t� are defined by �ti�jk � �i�ijk for i� j� k � �� �� � where the index i
stands for which t it is, and the j� k indices specify the row and column, respectively, of that ith t matrix.
Here �ijk is defined to be 0 if any of i� j� k are equal, +1 if they are a cyclic permutation of ‘123’, and
-1 if they are a cyclic permutation of ‘213’. Write down the � � � matrices t�� t�� t�, and verify that
�t�� t�
 � t�.
P4.4 The infinitesimal transformation law of an SU(2) triplet � is�

�	��
	��
	��

�
A � ��� i��t� � i��t� � i��t��

�
�	�
	�
	�

�
A �

Calculate the ��� transformation matrix explicitly, and show that the transformation can also be written
in ‘cross product’ form �� � � 	 �� �.
P4.5 The ‘SU(2) covariant derivative’ acting on an SU(2) doublet is D�� � ��� 	 ig� �W ��x�����.
Under an infinitesimal local SU(2) transformation, � transforms by

�� � �ig� � ��x��� ��
The transformation law of W � is determined from the requirement that

��D��� � �ig� � ��x��� �D����

Now the LHS of this equation is

����� 	 ig� �W ��x�����


� ig� � ��W �x������ 	 ��� 	 ig� �W ��x������

� ig� � ��W �x������ 	 ��� 	 ig� �W ��x������ig� � ��x�����
while the RHS is

�ig� � ��x��� ��� 	 ig� �W��x������

Verify that this implies
�W ��x� � ����x� 	 g��x��W ��x��



Fig. 14: Two-X exchange in fermion-fermion scattering, and effective four-fermion structure.

P4.6 Check that
��� 	 ig� �W ��x���� �� 	 ig� �W ��x���
 � ig� � F ����

where
F �� � ��W ��x�� ��W ��x�� gW��x��W ��x��

P4.7 Verify that, under an infinitesimal local SU(2) transformation, �F �� � g��x�� F �� �

6. SPONTANEOUS SYMMETRY BREAKING

See chapter 21 of [2].

6.1 Some motivation

In the previous section, an indication was given as to why the relevant theories at current energy scales
should be renormalisable theories (a small subclass, incidentally, out of all possible quantum field the-
ories!). We also pointed out how ‘universality’ phenomena in weak interactions suggested that they are
described by a gauge theory, which presumably should be a renormalisable one. On the other hand, we
also know that weak interactions are very short-ranged, so their mediating quanta must be massive - and
this at once seems to present a barrier to the ‘gauge’ idea, because (see problem P2.6) a simple gauge bo-
son mass term violates gauge invariance. Perhaps, then, we can have a theory involving massive charged
W� bosons, for instance, without it being a gauge theory? Yes, we can, but it will not be renormalisable.
In fact, the renormalisability of QED has a great deal to do with the gauge symmetry it possesses. Let’s
try and explain what’s wrong with a ‘non-gauge theory of massive W �’s’.

Consider figure 14, which shows some kind of fermion-fermion scattering proceeding, in fourth
order of perturbation theory (one loop), via the exchange of two massive vector bosons that we’ll call
X�. To calculate this diagram, we need to know the propagator for X�.

For this we need the wave equation for X�, which is quite simple to write down. We just replace
� in the wave equation (91) for A� by �	M� where M is the mass of the X�:

��	M��X� � ����X
� � �� (192)

To find the propagator, we follow the poor-man’s route, putting in a plane wave solution for X �, which
yields h

��q� 	M����� 	 q�q�
i
��e�iq�x � �� (193)



The propagator should now be proportional to the inverse of the [� � �] bracket in (193), and (unlike the
corresponding inverse in (92)!) this does exist and is given by (problem P5.1)

�g�� 	 q�q��M�

q� �M�
� (194)

Note (i) that trouble ensues (the numerator blows up) when M � �, so already we see that a massless
vector particle seems to be a very different kind of thing from a massive one (you can’t just simply take
the massless limit); (ii) that if we ‘dot’ (193) with q� we easily deduce q � � � � (see below, after (198)).

Now consider the loop integral in figure 14. At each vertex we will have a coupling constant factor
‘g’, which is in fact dimensionless (the interaction will be something like g 
����X

�). But, as we warned
in section 4.4, this may not guarantee renormalisabilty, and this is a case where it does not. To get an
idea of why not, consider the leading divergent behaviour of figure 14. This will be associated with the
‘q�q� ’ terms in the numerator of (194), so that the leading divergence is effectively



Z
d�q

�
q�q�

q�

��
q�q�

q�

�
�

q

�

q
(195)

for high q (we are of course not troubling to get all the indices etc right). But the first two (� � �)’s in (195)
behave like a constant, at large q, so that the asymptotic behaviour is effectively



Z
d�q

�

q

�

q
(196)

which is exactly what we would get in a four-fermion theory ! - see figure 14, and we know that such a
theory is non-renormalisable.

Where have these dangerous powers of q come from? The answer is simple and important. They
come from the longitudinal polarisation state of the massive X particle. We can see this as follows.
Consider a free X particle with 4-momentum q � �q�� �� �� jqj�, so that the x and y directions are
transverse, and the z direction is longitudinal. In the rest frame of the X , the three polarisation states can
be taken to be

��
 � ��� � ��� �
� ����i� ��� ��
 � �� � ��� �� ��� (197)

Boosting to the frame with 4-momentum q, the transverse polarisation vectors remain the same, but the
longitudinal one becomes

���q� 
 � �� � M���jqj� �� �� q��� (198)

Note that q � ��q� 
 � �� � � is satisfied. At large values of q, ���q� 
� is therefore proportional to q��M ,
and this is the origin of such factors in the propagator.

Consider now the photon propagator given by rule (v): there are apparently quite similar factors
there too, but they are gauge dependent, and in fact can be ‘gauged away’ entirely by choice of �! But,
as we have seen, such ‘gauging’ seems to be possible only in a massless vector theory. A closely related
point is that, as we all know, electromagnetic waves are purely transverse: equivalently, free photons
exist in only two independent polarisation states, instead of the three we might have expected (from the
three orientations of their unit spin). The longitudinal state is missing, and it turns out (see Aitchison
and Hey [1] page 188) that this is precisely related to the masslessness of the photon. In the massive X
case, all three polarisation states are present - and this gives another way of seeing why a massless vector
particle is really different from even a very light massive one: there is no smooth naive M � � limit.

This above considerations therefore suggest the following line of thought:
� can we somehow create a gauge theory involving massive vector quanta, such that the offending q�q�

bits could be gauged away, making the theory renormalisable?
The answer is yes, via the idea of spontaneous breaking of the gauge symmetry.



This terminology is contrasted with ‘explicit symmetry breaking’, in which the observed symme-
try breaking is associated with a term in the Lagrangian, in the absence of which the theory would possess
some exact symmetry. For example, to the extent that the up and down quark masses are equal, we have
approximate SU(2) flavour symmetry of the QCD Lagrangian. But it is also possible to have a symmet-
rical Lagrangian, while the particle states and other physical observables seem to show no obvious (even
approximate) sign of the symmetry. This is the ‘spontaneously broken’ case. This language is borrowed
from condensed matter physics, where the ferromagnet is the frequently quoted example. The (Heisen-
berg) Hamiltonian is certainly rotationally invariant, yet below the transition temperature the spins are
thought of as lining up in some particular direction, breaking the rotational symmetry ‘spontaneously’.

In the case of a field theory, there are striking differences in the physical consequences depending
on whether the symmetry that is spontaneously broken is a global or a local one. In the global case, a
general result due to Goldstone [3] and others states that spontaneous breaking of a continuous symmetry
is always associated with the appearance of a massless particle, or particles, called ‘Goldstone bosons’.
In the local case, these Goldstone bosons become the longitudinal components of the gauge field(s) -
which, before symmetry breaking, always had only the two transverse components. The total of three
‘spin’ components in all is exactly what is required for a massive vector field. This is the essence of
the theoretical loophole which allows gauge bosons to be massive even though the Lagrangian is locally
(gauge-) invariant (cf problem P2.6), and which is invoked to give masses to the W and the Z bosons in
the Standard Model.

We begin with the simpler case of spontaneously broken global symmetry, which is of physical
importance in its own right in the non-Abelian case (section 6.3).

6.2 Spontaneously broken global U(1) symmetry

See chapter 17 of [2].

We consider a simple classical field theory which shows the effect we want to study. Let 	 be a
complex scalar field, described by the Lagrangian

L� � ��	
���	� V �	� (199)

where the potential is taken to have the form (
 � �)

V �	� � ���	�		



�
�	�	�� � (200)

Clearly L� is invariant under the global U(1) symmetry

	� 	� � e�i�	 � (201)

(Note that a term like �	�	�� would also be invariant under (201), but this would be a non-renormalisable
interaction in the quantum theory of L�, so we exclude it.)

Application of the Euler-Lagrange equation yields the equation of motion

��� ���	 � �

�
j	j�	 � (202)

This is nearly the standard Klein-Gordon equation for 	 (with an interaction term on the right-hand side)
- except for the fact that ‘���’ has the wrong sign for a mass term! This prevents us from making any
quantum interpretation of (199) as yet; we therefore concentrate on V �	� regarded simply as the potential
energy of the classical field.

As a first step to understanding (199), we try to identify the configuration(s) of minimum energy,
about which the system might be expected to oscillate. Generally, the energy will be a minimum when



Fig. 15: The ‘wine-bottle’ potential of (200).

	 is a constant, which reduces the kinetic terms to zero. The minimum energy is then reached at the
minimum of V �	�. This occurs at

j	j � v�
p
�� v � ���
��� � (203)

where v is referred to as the ‘symmetry breaking parameter’. To have a clearer picture, it is helpful to
introduce two real fields 	� and 	� by

	 � �	� � i	���
p
� (204)

and also the ‘polar’ variables
	 � ���

p
��ei��v � (205)

where the v is inserted so that 
 has the same dimensions as �. Figure 15 shows V �	� versus 	� and
	�, from which it is obvious that the minimum of V is not at 	� � 	� � �. In fact, there is no
unique minimum point - rather, any value on the circle 	�� 	 	�� � v� or equivalently � � v will do.
Before proceeding further, we briefly outline the condensed matter analogue of (199) and (200) which
we mentioned earlier - namely the ferromagnet. In this case, one considers the free energy as a function
of the magnetisationM at a given temperature T , and makes an expansion of the form

F � F��T � 	
�

�
���T �M� 	

�

�

�T ��M��� 	 � � � � (206)

valid for small magnetisation. If the parameter �� is positive, it is easy to see that F has a simple
‘bowl’ shape as a function of jM j, with a minimum at jM j � �. This is the case for T greater than
the ferromagnetic transition temperature TC. However, if one assumes that ���T � becomes negative
for T � TC (so that ���TC� � ��, then F will now look like figure 15 and the minimum free energy
will occur for jM j �� �. The interpretation is that in this case the ground state will be magnetised.
Any direction of M is possible (only jM j is specified); but when the system does settle into one actual
configuration withM �� � the original full rotational invariance of (206) is lost - the magnetisation, and
the breaking of the symmetry, has occurred ‘spontaneously’.

In the same way, any particular minimum on the circle � � v will select out a particular 
 in (205),
breaking ‘spontaneously’ the invariance (201).



In quantum field theory, particles are thought of as excitations from a ground state, which we call
‘the vacuum’. Figure 15 strongly suggests that if we want a decent quantum interpretation of (199), we
should consider expanding the fields about a point on the circle of minima, about which stable oscillations
are likely. Any such point represents a possible vacuum state in which

h�j	�� 	 	�� j�i � v� � or h�j� j�i � v � (207)

Bearing in mind (cf (200)) that for a field with a conventional (positive) mass� parameter the potential
would be U-shaped, we might guess that ‘radial’ oscillations in figure 15 would correspond to a conven-
tional massive field, while ‘angle’ oscillations - which pass through all the degenerate minima (vacua) -
have no ‘restoring force’ and are massless. Accordingly, we set (cf (205))

	�x� �
�p
�
�v 	 h�x��e�i��x��v (208)

and find that L� becomes (problem P5.2)

L� �
�

�
��h�

�h � ��h� 	
�

�
��
�

�
 	
��



	 terms cubic and quartic in 
� h � (209)

Equation (209) exhibits the desired form of a conventional scalar field h with mass
p
�� and a

massless field 
, together with interaction terms. In particular, the quantum version of (209) will have
h�jh�x�j�i� h�j
�x�j�i � �, consistent with (207), so that h and 
 will have the usual mode expansions
(of the form (19) for example), allowing the usual particle interpretation. (The constant term in (209),
which does not affect equations of motion, reflects the fact that V �min� � ����
). Note that the
symmetry (201), which is evident in (199), is well and truly hidden in (209)!

This model (due originally to Goldstone [3]) contains the essence of spontaneous symmetry break-
ing in field theory: a non-zero value of a field in the ground state (vacuum), a zero mass mode or modes
(the Goldstone bosons), and a massive excitation or excitations in the directions ‘perpendicular’ to the
degenerate ground states.

It is interesting to find out what happens to the symmetry current corresponding to the invari-
ance (201). Following the usual procedure, this current is

j�� � i
n
	y��	 � ���	�y	

o
� v��
 	 �h��
 	 h���
�v � (210)

The presence of the term involving just the single field 
 is very remarkable: it tells us that (in the
quantum theory) there is a non-zero matrix element of the form

h�j j����� j
i � �ip�v � (211)

where j
i stands for a state with one Goldstone boson 
, with momentum p�. That is, the symmetry
current connects the Goldstone boson to the vacuum, with an amplitude proportional to the symmetry
breaking parameter. In the case of spontaneously broken chiral SU(2)f� symmetry (section 6.3 below),
the analogue of j�� is the current of the global axial SU(2) symmetry A�

i , and there are three 
 modes
which are identified with the physical pions. The parameter v in the corresponding equation (211) is
then f� (
 ��MeV), the constant which enters into the pion decay � � ��.

Although by the ansatz (208) we seem to have arrived at a viable particle interpretation of (199),
we might well ask: how would such a negative (mass)� term arise in quantum field theory? One possi-
ble answer is that, as with the ferromagnetic analogy, the coefficient �� in (200) could be temperature
dependent: perhaps at extremely high temperatures, such as prevailed in the early universe, �� had the
opposite sign, corresponding to a conventional mass term. In that case the potential would have a simple
minimum at the origin, and the symmetry would not be spontaneously broken until T dropped below



some TC, where ���TC� � �. This simple picture is indeed popular in models of the early universe,
where such phase transitions are proposed. On the other hand, it may be that some theory might predict
the coefficient �� in (200) to be negative, in a particular case. Or, one might simply postulate a V �	� of
the form (200), so as to ‘trigger’ the desired breakdown. The last alternative is essentially what is done
in the Higgs sector of the Standard Model - as we will discuss in section 6.5 and section 7.

6.3 Spontaneously broken global chiral symmetry

See section 12.3.2, and chapter 17, of [2].

The Dirac Lagrangian for a single massless fermion,


�i ��� (212)

is invariant not only under the ordinary global U(1) symmetry of (69), but also under the ‘��-version’ of
it, namely

� � �� � e�i�
�� � (213)

This can be easily verified directly, using

���� � ������ �i�� � ����i � (214)

but it will be useful later to expand the discussion now to cover this type of symmetry, not considered
previously. We may write

� �
��� ���

�
� 	

�� 	 ���

�
� � �L 	 �R� (215)

The ordinary (infinitesimal) U(1) symmetry (69) is then

��R � �i��R� ��L � �i��L (216)

while the infinitesimal version of (213) is

��R � �i��R � ��L � 	i��L � (217)

Transformations such as (217), which act differently on the L and R components are called ‘chiral’.
Using (214), (215) can be written as


�i��� � 
�Li���L 	 
�Ri���R � (218)

which clearly exhibits both the symmetries (216) and (217). It is also manifestly L � R symmetric,
which means it conserves parity. On the other hand, a mass term m 
�� becomes

m 
�� � m� 
�L�R 	 
�R�L� (219)

which is invariant under (216) but not under (217), while still preserving parity.

Consider then LQCD of (191), in the limit in which some quark masses - in particular the lightest,
mu and md - are regarded as negligible. The fact that �� in (212) is replaced by �D clearly makes no
difference to the preceding discussion, which depended only on (214). Thus in this limit LQCD will be
invariant under the ��-version of (141), namely

�� � �i����� ��� � (220)

which is a chiral ‘SU(2)f�’ transformation. Now this cannot be realised as an exact symmetry in nature,
or else for every non-strange baryon made of u and d quarks there would have to exist another one,
degenerate in mass, but with the opposite parity. The reason is worth pausing over.



Associated with the invariance (220) will be three conserved charges, just as in (141)-(145),
namely

T �
i �

Z
�y�x�

� i

�
����x�d

�x� (221)

In this case, however, these objects are ‘pseudoscalars’ (because of the ��) - meaning that they will
change the parity of any state they act on. Thus whereas the ordinary isospin raising operator T
 �
T� 	 iT� has the action T
jdi � jui, where u and d are degenerate in mass because �T
� H 
 � � (T
 is
a constant of the motion), in the case of T �


 we must have

T �

jdi � j�ui (222)

where �u is an ‘up’ state, degenerate in mass with jui (because �T �

� H 
 � � also), but with opposite

parity.

Such negative parity analogues of all non-strange baryons are not seen experimentally. One might
of course blame this on the finite mass of the u and d quarks, but this is implausible. Instead, we try the
idea that this chiral symmetry is spontaneously broken. In that case, we expect three massless Goldstone
bosons (corresponding to the three independent SU(2) chiral transformations), and we can interpret �ui
of (222) as being really ju 	 massless pseudoscalar bosoni, thus producing a state degenerate with u
in mass, but of opposite parity! These three massless Goldstone bosons are identified with the pions -
thereby explaining their anomalously low mass (by comparison with that of the �-meson, for example).
The mass of the physical pion is not, of course, strictly zero, and this is attributed to small non-zero
quark masses in the original QCD Lagrangian. Still useful, though more ‘explicitly’ broken than this
chiral SU(2), is the chiral flavour SU(3) analogue, in which we suppose ms � � - the Goldstone bosons
are then the kaons.

Remarkably enough, these ideas are also relevant to the weak interactions. In this case, as we
shall see, the interaction is most definitely not left-right symmetric (it violates parity) - indeed the ‘V�A’
structure means that the weak gauge fields couple only to the �L components of the fermions, and not to
the �R components at all. This means that the corresponding local gauge symmetry is of the form

��L � �i��� �x����L (223)

��R � � � (224)

for a ‘weak doublet’ such as �
�e
e�

�
� (225)

But this implies that any mass term of the form (219), which treats �L and �R the same, will break
this ‘left-handed’ gauge symmetry. Although the neutrinos were usually taken to be massless, the other
leptons are definitely not, nor are the quarks. Thus, curiously enough, there is another ‘mass problem’
with the weak interactions: they would like not only the W and Z bosons but also the fermions to be
massless. Once again, we shall have to suppose that the fermion masses arise ‘spontaneously’, if we
want to save the (weak) gauge symmetry. In the Standard Model, one appeals to the same mechanism
(the Higgs field) to give mass to the gauge bosons and to the fermions, which is an economical but not
necessary step; see section 7.

It is now time to turn to spontaneously broken local symmetries, concentrating on those relevant
to the Standard Model.

6.4 Spontaneously broken local U(1) symmetry: the Abelian Higgs model

See section 19.3 of [2].

The U(1) Higgs model is just L� of (199) extended so as to be locally U(1) invariant; it provides
a beautifully simple model for investigating what happens when a gauge symmetry is spontaneously



broken. To make (199) locally U(1) invariant, we need only replace �’s by D’s as in (81), and add the
Maxwell piece, giving

Lh � ���� 	 ieA��	

y ���� 	 ieA��	
� �

�
F��F

�� � V �	� (226)

where V is still (200), and of course F �� � ��A� � ��A�. (226) is invariant under the local version of
(201), namely

	� 	��x� � e�i��x�	�x� (227)

when accompanied by a gauge transformation on A�

A� � A� � � A� 	
�

e
��� (228)

as in section 3.4. Before proceeding further, we note at this stage that we have four field degrees of
freedom - two in 	 and two in the massless A� �F�� � ��A� � ��A��.

Now we have learned that the form of V in (200) does not lend itself to a natural particle interpre-
tation, which only appears after making the ‘shift to the minimum’, as in (208). But there is a remarkable
difference between the local and global cases. In the local case, the phase of 	 is completely arbitrary,
since any change in 
�x� in (208) can be compensated by an appropriate transformation (228) on A�,
leaving Lh the same as before. Thus in fact the ‘
’ field in (208) can be ‘gauged away’ altogether, if we
like! This must mean that the massless Goldstone boson, described precisely by 
 in the quantum theory,
somehow no longer appears. This is the first unexpected result in the local case (and it reminds us of our
desire to ‘gauge away’ those longitudinal polarisation states � � �).

However, we cannot simply ‘lose’ degrees of freedom. Somehow the system must keep track of
the fact that we started with four. To see what has happened, we substitute (208) into (226) with 
 � �;
i.e. set

	 �
�p
�
�v 	 h�x�� (229)

in Lh. We find then (problem P5.3)

Lh �
�

�
��h �

�h� ��h� 	
��



� �

�
F��F

�� 	
�

�
e�v�A�A

� 	 interaction terms, (230)

where A� has to be understood as the gauge field after the transformation needed to reduce 	 to (229).
Equation (230) shows the second ‘Higgs miracle’: we see that the A� field now has a mass, equal to ev
where v is the symmetry breaking parameter. The missing degree of freedom has reappeared as the third
(longitudinal) polarisation state of the massive field A�. The fourth degree of freedom is still there, the
massive h field as in (209).

Can such miracles ever occur? The answer is undoubtedly yes, at least in the non-relativistic
case. The low-energy version of Lh is just the Ginzburg-Landau (GL) approximation for (again) the
free energy in a superconductor. In this case (see section 19.2 of Aitchison and Hey [2] for example)
	 represents a composite (rather than elementary) field, such that j	j� is the density of bound Cooper
pairs (of e�e�). Also, the mass for theA-field implies that the field is exponentially attenuated inside the
superconductor, with a penetration length of order ��ev; this is the Meissner effect. It is worth noting that
the GL free energy is not to be regarded as a fundamental theory, which must of course be derived from
the physical electron-electron and electron-lattice interactions; this is what the BCS theory is all about,
and the GL free energy is a phenomenological expression embodying much of the important physics
of the BCS theory. In particle physics the question of whether the 	 field in the Standard Model (see
section 7) is elementary or composite is completely unknown. However, whatever the truth of that may
be, it seems pretty well inevitable that some such field, or effective field, is required to give mass to the



W and Z (see section 6.5 , and section 7)—and in that case it should have its own excitation quantum,
the Higgs boson: hence the intense interest in hunting for it!

Before proceeding further we can at this stage read off from (230) the propagator for the massive
vector A-field. As in the discussion following (193), we need to invert the quantityP���MA� � ���k�	
M�

A�g�� 	 k�k� 
, where MA � ev here. As we saw, this does have a straightforward inverse, leading to
the propagator

i
��g�� 	 k�k�

M�
A

�

k� �M�
A

� (231)

We see that (231) makes no sense as MA � �, reflecting the difficulty with the massless limit of the
massive theory. A more technical point concerns the fact that (231) obtains only when the special choice
of gauge, 
 � �, is made as in (229). In general, the vector propagator will contain a gauge parameter �
like the massless propagator of rule (v): this is after all a gauge theory! Rule (v) becomes

� rule (v)� a factor i��g�� 	 �����q�q�
q���M� 
��q� �M�� for an internal massive gauge boson carrying

4-momentum q, where � is a gauge parameter (� � 
 gives the ‘naive’ vector boson propagator).

Note that for finite �, this propagator has a large q behaviour 
 ��q�, which is good enough to
make figure 14 convergent! This, then, is the essential clue as to how we can have a renormalisable
theory with massive gauge bosons. The gauge � � 
 is called ‘unitary gauge’: in this gauge there is
no visible sign of the scalar 	-field. But note that in gauges with � finite, the scalar field will also be
present with a �-dependent propagator (associated with the degree of freedom suppressed in (229)); the
complete theory is nevertheless always �-independent. Further discussion of this is contained in section
19.5 of Aitchison and Hey [2] for example.

Returning to (226), we can again look at the electromagnetic current in this ‘spontaneously broken
local U(1)’ model. The gauge invariant form of (210) is

j�e�m� � ie
h
	y��� 	 ieA��	� complex conjugate

i
� ie�	y��	� ���	y�	�� �e�A�	�	 � (232)

Inserting (208) into (232) (this time in a gauge such that 
 �� �) we find (cf (210))

j�e�m� � �e�v�A� 	 ev��
 	 interaction terms � (233)

(233) tells us that there is a ‘screening current’ (the first term on the RHS) which leads to a mass ev of
the A-field, once again; the second term shows that - as in (211) - the vacuum couples to the ‘would-
be Goldstone boson’ (which has become the longitudinal part of the A-field) via the electromagnetic
current.

This is an important observation as it leads to a somewhat different way of understanding the
‘mechanism’ whereby a gauge particle can become massive. In section 5.1 we introduced the photon
self-energy ��� which had the general form

��� � �g��q
� � q�q���


�q�� � (234)

When all the self-energy insertions are summed up, and after renormalisation, the photon propagator has
the form (cf (111))

�ig���q�
�
�� 
�
�q

��
�
� (235)

in the Feynman gauge. The existence of the matrix element

h�jj�e�m����j
i � �iq�ev (236)

means that ��� will now receive a contribution from the diagram of figure 16, where the dotted line
represents the massless 
 quantum. This is now a tree diagram, not a loop as in the e
e� contribution



Fig. 16: Massless Goldstone boson coupling to photon.

of figure 9(a), and so the contribution to ��� will involve simply the (massless) 
-propagator, with no
momentum integration. The �-
 vertex is given by (236), with the result that the contribution to 
�
�q��
in (235) is


��

�q

�� � e�v��q� � (237)

so that the pole in the photon propagator (235) is now at q � � e�v�, and the photon has a mass ev, as
before. We have been casual about questions of gauge choice in this argument, but the essential point
is valid: a gauge quantum can acquire mass if (for some reason) its vacuum polarisation function has a
zero mass pole (see the Discussion point after (99)). This pole can be associated with the ‘elementary’
massless quantum in a Higgs potential of the form (200), but it does not have to be. The massless
quantum could equally well be a bound state in some strongly-interacting fermion-antifermion channel
- in particular, a Goldstone boson arising from the spontaneous breaking of some global symmetry in a
purely fermionic theory, for instance. All that is necessary is that it has a coupling of the form (236). The
point of this latter interpretation is that only the product ‘ev’ has significance - there is no sign of figure
15, or of ‘v’ alone as the vacuum value of a scalar field. Theories of this latter type do seem to produce
a natural ‘dynamical’ mechanism for gauge boson mass generation. Both the ‘t
t’ models (Nambu [4];
Miransky et al [5], [6]; Bardeen et al [7]), and technicolour (Farhi and Susskind [8]), are of this type,
but neither seem to be favoured by experiment. In the electroweak theory it is of course the W and Z
particles that we want to be massive (while still being gauge bosons), not the photon. We therefore need
to extend the above to the (non-Abelian) SU(2) case.

6.5 Spontaneously broken SU(2)�U(1) symmetry: the gauge and Higgs field sectors of the elec-
troweak theory

See section 19.6 of [2].

We shall confine ourselves to the particular case which we need for the electroweak theory. We
consider a complex scalar (spin-0) SU(2) doublet

	 �

�
	


	�

�
(238)

where the complex 	
 field destroys positively charged particles and creates negatively charged ones,
and the complex 	� field creates neutral particles and antiparticles (a hadronic analogy would be the K


and K� fields under hadronic SU(2)f ). The Lagrangian

L� � ���	�
y���	� 	 ��	y	 � 


�
�	y	�� (239)

then exhibits a global SU(2) invariance of the form (cf (159))

	� 	� � exp��i������	 � (240)

but this is spontaneously broken, the minimum of the potential in (239) occurring at (cf (207))

�	y	�min � ����
 � v��� � (241)

As in the U(1) case, we interpret (241) in the quantum theory as (cf (207))

h�j	y	 j�i � v��� � (242)



so that the 	-field has a non-zero value in the vacuum. Once again, we exclude higher powers of 	y	 in
(237) on grounds of renormalisability.

As before, in order to get a sensible particle spectrum we must ‘shift’ the fields so as to deal with
stable oscillations about the minimum (vacuum) given by (242). So we need to define ‘h�j	j�i’ and
expand about it, as in (207) and (208). In the present case, however, the situation is more complicated
than (208), since the complex doublet (238) contains four real fields, parametrised for example as

	
 �
�p
�
�	� � i	�� � 	� �

�p
�
�	� � i	�� � (243)

(242) then becomes
h�j	�� 	 	�� 	 	�� 	 	�� j�i � v� � (244)

It is evident that we have a lot of freedom in choosing the h�j	ij�i so that (244) holds, and it is not at
first obvious what an appropriate generalisation of (207) and (208) might be.

Furthermore, in this more complicated (non-Abelian) situation a qualitatively new feature can
arise: it may happen that the chosen condition h�j	ij�i �� � is invariant under some subset of the allowed
symmetry transformations. This would effectively mean that this particular choice of the vacuum state
respected that subset of symmetries, which would therefore not be ‘spontaneouslybroken’ after all. Since
each broken symmetry is associated with a massless Goldstone boson, we would then get fewer of these
bosons than expected.

Just this happens (by design!) in the present case. To understand how it works, we must first
recognize that, in addition to the global SU(2) symmetry of (4.41), L� of (240) is also invariant under a
completely independent global U(1) symmetry of the form

	� 	� � e�i�	 (245)

which just means that the phases of the upper and lower components of 	 in (238) change simultaneously
by the same amount. Thus the full symmetry of (239) is global SU(2)�U(1) (which will be made local
in a moment, as is required in the Standard Model).

Suppose then that we could choose the h�j	ij�i so as to break this SU(2)�U(1) symmetry com-
pletely: we would then expect four massless fields. Actually, however, it is not possible to make such a
choice. An analogy may make this point clearer. Suppose we were considering just SU(2), and the field
	 was an SU(2)-triplet. Then we could always write h�j� j�i � vn where n is a unit vector; but this
form is invariant under rotations about the n-axis, irrespective of where that points. In the present case,
by using the freedom of global SU(2)�U(1) phase changes, an arbitrary h�j	j�i can be brought to the
form

h�j	j�i �
�

�

v�
p
�

�
� (246)

In considering what symmetries are respected or broken by (246), it is easiest to look at infinitesimal
transformations. It is then clear that the particular transformation

�	 � �i��� 	 ���	 (247)

(which is a combination of (245) and the ‘third component’ of (240)) is still a symmetry of (246) since

�� 	 ���

�
�

v�
p
�

�
�

�
�

�

�
� (248)

so that
h�j	j�i � h�j		 �	j�i � (249)



we say that ‘the vacuum is invariant under (247)’, and when we look at the spectrum of oscillations about
that vacuum we expect to find only three massless bosons, not four.

Oscillations about (246) are conveniently parametrised by

	 � exp��i���x������v�
�

�
�p
�
�v 	H�x��

�
� (250)

which is to be compared with (208). Inserting (250) into (239) (see problem P5.4), we easily find that no
mass term is generated for the � fields, while the H field piece is

LH �
�

�
��H��H � ��H� 	 interactions (251)

just as in (209), showing that mH �
p
��.

As noted in section 6.3, there is an interesting physical example of a spontaneously broken global
SU(2) symmetry, the SU(2)f� symmetry of LQCD , in which the three massless modes are identified with
the pions. We cannot consider this in any more detail here, however, being concerned rather to proceed
to the local version of the SU(2)�U(1) model of (239). Such an extension is easily written down, just by
using the SU(2) covariant form (3.28) and the U(1) covariant derivative of the form (163). In the notation
we shall use in the next section, this means replacing (239) by

LG� � �D�	�
y�D�	� 	 ��	y	� 


�
�	y	�� � �

�
F �� �F �� � �

�
G��G

�� (252)

where
D�	 � ��� 	 ig� �W ��� 	 ig�B����	 � (253)

F �� is as in (177), and G�� � ��B� � ��B�. Thus the W ’s are the SU(2) gauge fields, and the B is
the U(1) gauge field. (252) is, in fact, the gauge and Higgs field sector of the Standard Model. As in
the local U(1) case, the particle spectrum is most easily found by exploiting the local gauge freedom to
choose the � fields in (250) to vanish, as in the ansatz (229): that is, we set

	 �

�
�

�v 	H�x���
p
�

�
� (254)

Substituting (254) into (252) and retaining only terms which are of second order in the fields (i.e. kinetic
energies or mass terms) we find

LG� �
�

�
��H��H � ��H�

��

�
F���F

��
� 	

�

�
g�v�W��W

�
�

��

�
F���F

��
� 	

�

�
g�v�W��W

�
�

��

�
F���F

��
� � �

�
G��G

�� 	
�

�
v��gW�� � g�B���gW

�
� � g�B�� � (255)

The first line of (255) tells us that we have a scalar field of mass
p
�� (the Higgs boson, again). The

next two lines tell us that the components W� and W� of the triplet (W�, W�, W�) acquire a mass

M� � M� � gv�� �MW � (256)

The last line shows us that the fields W� and B are mixed. But they can easily be unmixed by noting that
the last term in (255) involves only the combination gW� � g�B, which evidently acquires a mass. This
suggests introducing the linear combinations

Z� � cos 
WW�
� � sin 
WB� (257)

A� � sin 
WW�
� 	 cos 
WB� (258)



where
cos 
W � g��g�	 g������� sin 
W � g���g�	 g������ � (259)

We then find that the last line of (255) becomes

��

�
FZ��F

��
Z 	

�

�
v��g�	 g���Z�Z� � �

�
F��F

�� (260)

where
FZ�� � ��Z� � ��Z� and F�� � ��A� � ��A� � (261)

Thus

MZ �
�

�
v�g�	 g� ����� � MW � cos 
W (262)

and
MA � � � (263)

Counting degrees of freedom as in the local U(1) case, we originally had 12 in (252) - three massless
W ’s and one massless B, which is 8 in all, together with 4 	-fields. After symmetry breaking, we have
three massive vector fields W�, W� and Z making 9 degrees of freedom, one massless vector field A

with 2, and one massive scalar H . Of course, the physical application will be to identify the W and Z
fields with those physical particles, and the A field with the massless photon. In the gauge (254), the W
and Z particles have propagators of the form (231 ).

The identification of A� with the photon field is made clearer if we look at the form of D�	written
in terms of A� and Z�, discarding the W�, W� pieces:-

D�	 �

�
�� 	 ig sin 
W

�
� 	 ��
�

�
A� 	

ig

cos 
W

�
��
�
� sin� 
W

�
� 	 ��
�

��
Z�

�
	 � (264)

Now the operator (� 	 ��) acting on h�j	j�i gives zero, as observed in (248), and this is why A� does
not acquire a mass when h�j	j�i �� � (gauge fields coupled to unbroken symmetries of h�j	j�i do not
become massive). Although certainly not unique, this choice of 	 and h�j	j�i (due to Weinberg (1967))
is undoubtedly very economical and natural. The zero eigenvalue of �� 	 ��� can be interpreted as
the electromagnetic charge of the vacuum, which we would not wish to be non-zero. We would then
tentatively expect the identification

e � g sin 
W (265)

in order to get the right ‘electromagnetic D�’ in (264).

We have at last assembled all the conceptual ingredients we need for the electroweak theory, to
which we now turn.

Problems for Lecture 5

P5.1 Verify that the inverse of the bracket �� � �
 in (193) is as given in (194).
P5.2 Let

L���� � ��	
y��		 ��	y	 � 


�
�	y	���

Set

	�x� �
�p
�
�v 	 h�x��e�i��x��v�

Show that

L���� �
�

�
��h�

�h� ��h� 	
�

�
��
�

�
 	
��



	 non-quadratic terms

(���
 is an irrelevant constant).
P5.3 Let

Lh � ���� 	 ieA��	

y���� 	 ieA��	
� �

�
F��F

�� 	 ��	y	� 


�
�	y	���



Set 	 � ��
p
��v 	 h�x��� Show that

Lh �
�

�
��h�

�h� ��h� 	
��



� �

�
F��F

�� 	
�

�
e�v�A�A

� 	 non-quadratic terms�

So mA � ev.
P5.4 Let

L���� � ��	�y���	� 	 ���	y	�� 


�
�	y	��

where 	 �
���
��
�

and �	
�y � 	�� �	��y � 
	�. Set

	 � exp��i��x� � ��v�
�

�
v
��x�p

�

�
�

Show that

L���� �
�

�
����

�� � ���� 	
�

�
��� � ��� 	 non-quadratic terms�

7. THE ELECTROWEAK THEORY

See chapter 22 of [2].

We have seen that the original 4-fermion theory of weak interactions is non-renormalisable, and
useful only at energies well below 100 GeV. Replacing the 4-fermion coupling by a Yukawa-like cou-
pling to massive W ’s and Z’s gave us a theory with a dimensionless coupling constant, but it was not
renormalisable either. In fact, the only known way of getting a renormalisable theory of massive charged
vector bosons is to regard them as gauge quanta of a spontaneously broken gauge theory. This neces-
sitates the existence of a scalar field, the Higgs field, three of whose components correspond to the
longitudinal components of the W � and Z�, and the fourth of which survives as a scalar particle in the
physical spectrum, but of unknown mass. In a sense, the mass of the Higgs boson mH acts like a cut-off;
but we shall see that there are quite persuasive reasons to think that at least the simplest Higgs sector
model of section 6.5 does not make sense for mH much beyond 500-1000 GeV.

7.1 The electroweak theory for one fermion family

So far, in section 6.5, we have only introduced the gauge and Higgs field sectors of the electroweak
theory; we now need to include the quarks and leptons. Here the crucial new phenomenological in-
put is that the weak interactions violate parity (while the electromagnetic ones of course do not). This
means that the weak interaction is different for the left-handed components of fermion fields and for
right-handed components. Electroweak interactions are described by a gauge theory based on a spon-
taneously broken local SU(2)L�U(1) invariance. The ‘L’ means that the SU(2) part (with the gauge
fields W � of section 6.5) acts only on the left-handed parts �L of fermion fields (see problem P4.1
); it is therefore ‘maximally’ parity violating. The U(1) part (with the gauge field B�) acts on both
right-(if any) and left-handed components, in such a way that the particular combination (258) conserves
parity, as is required for the electromagnetic interaction; the other combination (257), which mediates
neutral weak interactions, will turn out not to couple in the ‘pure V�A’ form, as is indeed observed.
The simplest structure allowing connection between the parity violating weak force and the parity con-
serving e-m one is the SU(2)L�U(1) one, originally proposed by Glashow [9], with brave disregard for
the non-renormalisability problem. The SU(2)L part is often called ‘weak isospin’ and the U(1) ‘weak
hypercharge’.

In this theory, the basic fields are fermions (leptons and quarks), gauge bosons, and Higgs fields.
The left-handed parts of the fermion fields form (weak isospin) doublets under SU(2)L

��L’ �

�
�e
e�

�
L

�

�
��
��

�
L

�

�
��
��

�
L

�

�
u
�d

�
L

�

�
c

�s

�
L

�

�
t
�b

�
L

� (266)



where the�denotes states which are mixed with respect to the strong interaction states d� s and b (see the
following section, and note that the colour labels will be suppressed throughout), while the right-handed
components are SU(2)L singlets

��R’ � e�R � ��R� � � � � (267)

where for simplicity we shall generally assume in this section that the neutrinos are massless (see also
section 7.2). We shall confine the discussion in the present section to just one ‘family’, comprising
�e� e

�� u and d (which should really be �d but we are ignoring mixing for the moment).

The Lagrangian can be looked at in many ways, but we shall write it as

L � LS 	 LSB (268)

where S stands for ‘symmetrical’ under SU(2)�U(1) and SB stands for ‘symmetry breaking’. In LS we
have a gauge invariant LagrangianLf describing the interactions of the fermions with theW andB fields,
together with the SU(2) Yang-Mills Lagrangian LW (179) for theW fields and the U(1) Lagrangian LB
for the B field as in (252); in LSB we will have everything involving the Higgs fields. In section 4.2 we
learned how to construct a locally SU(2) invariant gauge theory with a fermion doublet (see (163)). The
difference now is that we want the SU(2)L to act only on the L-component of the doublet. However, there
is no problem with this for massless fields: (218) shows us that the ‘kinetic’ operator �� does not mix L
and R components, and hence there is no objection to ‘gauging’ each of them differently (i.e. using a
different �D on �L and on �R). On the other hand, (219) shows that this is not true for the mass terms -
a difficulty we will deal with shortly by getting the mass terms from LSB. First, we simply state that the
appropriate D’s are in fact

D� � �� 	 ig� �W ��� 	 ig�yB��� on �L’s (269)

and
D� � �� 	 ig�yB��� on �R’s � (270)

where the condition
Q � ���� 	 y�� (271)

is imposed, Q being the electric charge in units of e (the positron charge). The factor of �
� in the B-term

of (269) is conventional, but (271) fixes the normalisation of the coupling g �. The eigenvalues of the ����
operator in (269) are as indicated by the placings in (266): namely 	 �

� for ��e� ��� �� � u� c� s�L and ��
�

for e�L , etc. For the (lepton)L fields the y eigenvalue is ��, while for the (quark)L fields it is 	 �
� ; for the

R-fields y is just �Q since the ���� eigenvalue is zero.

The gauge invariant Lagrangian Lf (for massless fermions) is therefore

Lf � �eLi�D�eL 	 qLi�DqL 	 eRi�DeR 	 uRi�DuR 	 dRi�DdR (272)

where

�eL �

�
�e
e�

�
L

� qL �

�
u

d

�
L

(273)

and a �eR term can be added to (272) if desired. From (272) we can already read off the couplings
of the charged W ’s to the fermions (the W� and B will mix, as we saw in section 6.5). The correct
normalisation for charged fields is that W � � �W�� iW���

p
� destroys the W
 or creates W�, so that

the � �W �� terms are

�p
�

�
�


�W� � iW��p
�

	 ��
�W� 	 iW��p

�

�
	 ��

W�

�
(274)



where �� � ��� � i����� are the raising and lowering operators for the doublet. Thus the first term in
(274) picks out the process e� � �eW

� for example, with the result that the corresponding vertex is

� igp
�
��

��� ���

�
� (275)

and similarly for the quarks (if unmixed), and other families. Hence we can immediately make a con-
nection with the original V-A Fermi theory of these charged current processes, namely

GF�
p
� � g���M�

W � (276)

Although the quark couplings can also be read off from (272), they are unphysical at this stage since
mixing has not yet been introduced.

There are also couplings of the Z� to fermions. To find these, we need to rewrite the neutral part
of the D’s in (269) and (270) in terms of the Z and A fields defined in (257) and (258) (cf (264)). We
find

D��neutral� � �� 	 ieQA� 	
igZ�

� cos 
W
�vf � af��� (277)

where
vf �

��
�
� �Q sin� 
W (278)

and
af �

��
�
� (279)

We see that, as remarked earlier, the Z (or ‘neutral-current’) coupling is not pure V�A. The Z-couplings
analogous to (275) are therefore

�ig
� cos 
W

���vf � af��� � (280)

(280) is the coupling observed around the Z � peak.

Finally, we may write effective four-fermion interactions (valid for energies much less thanMW ,MZ )
as

GFp
�
jC�
 j

C�
� (281)

for the charged current processes, with

jC�� � �������� �������� � (282)

and as p
�GF� j

N
� jN� (283)

for the neutral current processes, where

jN� � �f���vf � af����f (284)

and the quantity
� � M�

W �M�
Z cos� 
W (285)

has the value 1 in the Standard Model, at tree level.

The vector boson masses arise through symmetry breakdown via the Higgs sector, in the standard
model, as discussed in section 6.5. After spontaneous symmetry breaking, we have

MW � gv�� � cos 
WMZ (286)

cos 
W � g��g�	 g� ����� (287)

e � g sin 
W (288)

mH �
p
�� (289)



in terms of the fundamental coupling parameters g, g� of the SU(2)�U(1) gauge group, and the parame-
ters v and � of the Higgs potential. There is also the low-energy connection (276), which we can write
as

vp
�
� �����G����

F � ����� GeV � (290)

usingGF � ���������GeV��. This gives us the scale of h�j	j�i, for which as yet there is no theoretical
explanation. We may also write (276) as

MW � ����
p
�GF�

���� sin 
W (291)

� ������� GeV� sin 
W (292)

using the conventional low-energy value of �. Note that all the above relations are between parameters in
the Lagrangian, and hold at the tree level only; they can be changed by loop corrections (see section 7.4).

We must now consider how to bring fermion masses into this theory. We begin by noting, again,
that a typical Dirac mass term has the form (219), which is clearly not invariant under transformations
which treat �L and �R differently. Would it matter if we just added in such a mass term? The answer is
that if we did this the theory would, once again, not be renormalisable. And, once again, we can arrange
for the fermions to ‘acquire mass spontaneously’, this time via couplings of the generic ‘Yukawa’ type
gf 
��	. This can be made SU(2)L�U(1) invariant, and then if the scalar field acquires a vacuum value
v we have a mass term (in such a vacuum) equal to gfv. Some such treatment of fermion masses is
necessary for the theory to make sense much beyond the W � Z mass range.

It is obviously most economical if we can ‘blame’ fermion masses on the same Higgs field that
generates the W and Z masses, but it must be recognised that the Yukawa coupling ‘mechanism’ is on
a very different footing from the symmetry-inspired gauge couplings - at least in the absence of any
further symmetry that might relate these two types of coupling. At any rate, consider the case of the
�e� e

� doublet, in the simple case that the �e is massless, with a Yukawa coupling between these fields
and the standard doublet Higgs, of the type

�ge��eL	eR 	 eR	
y�eL� � (293)

Remembering that eR is an SU(2) scalar, we see that (293) is Lorentz invariant, and invariant under
global SU(2) transformations (because 
�	 and 	y� are invariant); it is also invariant under U(1)y trans-
formations, with the y assignments made after (271), if y�	� � � (which is what we actually assumed
in (253)). In fact, since no derivatives are involved in (293), it is also invariant under local SU(2)�U(1)
transformations. But the Higgs sector contains the potential V �	� of (239), which ‘triggers’ spontaneous
symmetry breaking. The vacuum value (246) for 	 when inserted into (293), yields

��gev�
p
���eLeR 	 eReL� (294)

which is precisely a mass term for the electron if we identify

ge � me

p
��v � (295)

When oscillations about this vacuum are considered, in the simple gauge of (254), one easily finds that
the H-field couples to the electron with a vertex

�ime�v � (296)

Sure enough, the coupling is proportional to the electron mass - and on dimensional grounds to v ��.

It might seem from the foregoing that only a mass for the t� � ��
� component of the fermion

doublets could be generated this way, because of the form of h�j	j�i. Remarkably enough, however, the



same Higgs field can also provide a mass for the t� � 	�
� component (and this is of course necessary for

the quarks, if not for the neutrinos). It can be shown that the field 	c defined by

	c � i��	
� �

�
�	� 	 i	���

p
�

��	� 	 i	���
p
�

�
�

�
	
�

�	�
�
� (297)

where (243) has been used, is also an isodoublet. (The notation in (297) is reminiscent of the K-meson

doublet � 
K�� K��; alternatively, we may think of a quark isospin doublet like
�
u

d

�
and its conjugate

doublet
� 
d
�
u

�
, with the I � � combination being � 
dd � 
uu). With the help of 	c we can write down

another gauge invariant coupling in the �e-e sector, namely

�g�e
�
�eL	c�eR 	 �eR	

y
c�eL

�
(298)

which produces
�
�
g�ev�

p
�
�
��eL�eR 	 �eR�eL� (299)

in the Higgs vacuum (246), which is a neutrino mass term (if required) provided g�e �
p
�m�e�v. Once

again, the H-field will couple with an amplitude of the form (296), with me � m�e . The procedure can
obviously be repeated for the u and d quarks.

It is clearly possible to go on like this, and arrange for as many fermion families to have a mass
as is required - and we will look at this a little more closely in the next section. However, one must
note that the theory does no more than accommodate itself to the mass difficulty: in no sense do the
fermion masses ‘come out’ of the theory, since each has simply to be inserted by hand via a new Yukawa
coupling. In essence, these Yukawa couplings are not gauge interactions, and hence not universal.

The Higgs coupling to fermions can now be written generally as

�iemf�� sin 
WMW � (300)

There are also trilinear and quadrilinear Higgs self-couplings arising from the 
�	y	�� term in (252).
Recalling that 
 � ����v� and that mH �

p
��, we can write the trilinear coupling as

�i�m�
He��MW sin 
W (301)

and the quadrilinear as
�i�m�

He
����M�

W sin� 
W � (302)

There are also the trilinear H-W
-W�

ieMW g
�� sin 
W (303)

and H-Z-Z
i�eMZg
�� sin �
W (304)

couplings, together with quadrilinear 	�W �, 	�Z� couplings which we shall not give here. Note that
all these couplings are determined by the existing set of parameters—and, in particular, that the Higgs
couples most strongly to the heaviest particles, so that decays to heavy channels offer the largest rates.



7.2 The three-family model

We now extend the preceding discussion to the three family case, which will involve the important
subjects of quark flavour mixing in charged current processes (and of no mixing - the GIM mechanism
(Glashow et al [10]) - in neutral current processes), and CP violation. We shall here assume that there
are just three families. We introduce three doublets of left handed fields

qL� �

�
uL�
dL�

�
� qL� �

�
uL�
dL�

�
� qL� �

�
uL�
dL�

�
(305)

and the corresponding six singlets

uR�� dR�� uR�� dR�� uR�� dR� � (306)

which transform in the now familiar way under SU(2)L�U(1). The u-fields correspond to the t� � 	�
�

components of SU(2)L, the d ones to the t� � ��
� components, and to their ‘R’ partners. The labels

1, 2, and 3 refer to the family number; for example, with no mixing at all, uL� � uL, dL� � dL, etc.
(We are thinking of (305) and (306) as quark fields, but the discussion will be quite general and could
just as well apply to leptons if they should need mixing too - we return to leptons later). We have to
consider what is the most general SU(2)L�U(1)-invariant interaction between the Higgs field (assuming
we can still get by with only one) and these various fields. Apart from the symmetry, the only other
theoretical requirement is renormalisability - for, after all, if we drop this we might as well abandon
the whole motivation for the ‘gauge’ concept. This implies (as in the discussion of the Higgs potential
V ) that we cannot have terms like � 
��	�� appearing - which would have a coupling with dimensions
(mass)�� and would be non-renormalisable. In fact the only renormalisable Yukawa coupling is of the
form ‘ 
��	’, which has a dimensionless coupling (as in the ge and g�e of (293) and (298)). However,
there is no a priori requirement for it to be ‘diagonal’ in the weak interaction family index i. The allowed
generalisation of (293) and (298) is therefore an interaction of the form (summing on repeated indices)

L	� � aij 
qLi	
cuRj 	 bij 
qLi	dRj 	 h�c� (307)

where

qLi �

�
uLi
dLi

�
(308)

and a sum on the family indices i and j (from 1 to 3) in (307) is assumed. After symmetry breaking,
using the gauge (254), we find

Lf� � �
�
� 	

H

v

�h

uLim

u
ijuRj 	 
dLim

d
ijdRj 	 h�c�

i
(309)

where the ‘mass matrices’ are

mu
ij � � vp

�
aij � md

ij � � vp
�
bij � (310)

Although we have not indicated it, the mu and md matrices could involve a ‘��’ part as well as a ‘1’
part in Dirac space. It can be shown (Weinberg [11], Feinberg et al [12]) that mu and md can both be
made Hermitean, ��-free, and diagonal by making four separate unitary transformations on the ‘family
triplets’

uL �

�
�uL�
uL�
uL�

�
A � dL �

�
� dL�
dL�
dL�

�
A � etc� (311)

via
uL� �

�
U
�u�
L

�
�i
uLi� uR� �

�
U
�u�
R

�
�i
uRi� (312)



dL� �
�
U
�d�
L

�
�i
dLi� dR� �

�
U
�d�
R

�
�i
dRi (313)

In this notation, ‘�’ is the index of the ‘mass diagonal’ basis, and ‘i’ is the ‘weak interaction’ basis. Then
(309) becomes

Lq	 � �
�
� 	

H

v

�	
mu
uu	 � � �	mb


bb


� (314)

Rather remarkably, we can still manage with only the one Higgs field. It couples to each fermion with a
strength proportional to the mass of that fermion, divided by MW .

Now consider the SU(2)L�U(1) gauge invariant interaction part of the Lagrangian. Written out in
terms of the ‘weak interaction’ fields uL�R i and dL�R i (cf (269) and (270)), it is

LfW�B � i
�

uLj � 
dLj

�
����� 	 ig� �W ��� 	 ig�yB����

�
uLj
dLj

�

	 i
uRj�
���� 	 ig�yB����uRj 	 i 
dRj�

���� 	 ig�yB����dRj (315)

where a sum on j is understood. This now has to be rewritten in terms of the mass-eigenstates uL�R �

and dL�R �.

Problem P6.1 shows that the neutral current part of (315) is diagonal in the mass basis - that is,
the neutral current interactions do not change the flavour of the physical (mass eigenstates) quarks. The
charged current processes, however, involve the non-diagonal matrices �� and �� in (315), and this spoils
the argument used in problem P6.1. Indeed, using (274) we find that the charged current piece is

Lcc � � gp
�
�
uLj � dLj����
W�

�
uLj
dLj

�
	 h�c�

� � gp
�

uLj�

�dLjW� 	 h�c�

� � gp
�

uL�

��
U
�u�
L

y�
�i

�
U
�d�
L

�
i�

�
��dL�W� 	 h�c� (316)

where the matrix

V�� �
�
U
�u�
L

y
U
�d�
L

�
��

(317)

is not diagonal, though it is unitary. V therefore has 9 real parameters, which can be reduced to 4 - three
‘rotational angles’ and one phase - by redefinitions of the quark fields (Jarlskog [13]). This is the famous
CKM matrix, (Cabibbo [14], Kobayashi and Maskawa [15]) the interaction (316) having the form

� gp
�
W� �
uL 
cL 
tL�

�
B� Vud Vus Vub

Vcd Vcs Vcb
Vtd Vts Vtb

�
CA
�
B� dL

sL
bL

�
CA	 h�c� (318)

The entries in the V -matrix modify the vertex (275) in an obvious way. The single phase � in the V -
matrix accommodates CP-violation. In the case of only two flavours, V has only 1 real parameter, which
is the Cabibbo angle, and there is no freedom to have a CP violation phase in the family mixing matrix. It
is an important challenge to experiment to find out whether all CP-violating phenomena can be described
with just this one parameter � in the CKM matrix (see the lectures on CP violation).

Returning finally to the leptons, all of the above will apply (with three more mixing angles and
one more phase) if the neutrinos do in fact have a mass. We would then have leptonic flavour mixing
in c.c. processes, involving a term of the form �
�LV�����LW� 	 h�c�
 (cf (316)), and lepton mass terms
�
�Lm��R 	 h�c�
 and �
��Lm

�
��
�
R 	 h�c�
, where V� is the leptonic analogue of (317), and m�, m�

� are the
analogues of the quark masses. There is nothing in the standard model that requires the neutrinos to be
massless, and indeed the experimental data now imply that more than one is not; in GUTs they generally
do have (small) masses - see the lectures on neutrinos.



7.3 One remark about the Higgs sector

The Higgs sector is the one big unknown still hanging over the Standard Model, starting with the ques-
tion: what is the Higgs mass? There is an interesting theoretical argument here which is worth a mention.

We first note that, for a given vacuum value v as in (290), the Higgs mass is (cf (241) and (251))

mH � v

�
� �
p
� 
 


�
� � 174 GeV� (319)

Now 
 is a dimensionless constant: if it is O��� we would say that the theory is perturbative, while if it
is O��� we would say it was strongly coupled. It is clear from (319), and the present experimental lower
bounds on mH , that we are already not far from the strongly coupled region. But we can ask: can 
 (the
renormalised coupling) take any value at all? That is, can mH (for fixed v) be arbitrarily large?

To answer this we must recall that, in a renormalisable theory, ‘the’ value of 
 has to be defined
at a certain scale, and the value at another scale is different (i.e. 
 ‘runs’). For the interaction (239),
calculation shows that the analogue of (129) is


�E� � 


��
�� �

���

 ln

�
E

v

��
� (320)

taking the ‘physical’ 
 to be defined at the scale v. Note that this theory, like QED, is not asymptotically
free. It follows from (320) that the theory breaks down (or, more conservatively, 
�E� becomes so large
that all perturbative expectations are useless) at an energy E� such that E� 
 v exp���

�

�
 �. But, for given
v, we also have from (319) that 
 is related to mH . So the theory breaks down at

E� 
 v exp�
���v�

�m�
H

�� (321)

This is a very remarkable formula, because it is exponentially sensitive to the unknown mH - and it is
particularly interesting that the Higgs mass is in the denominator of the exponent. For ‘small’ mH the
breakdown scale is high - e.g. for mH 
 150 Gev� E� 
 6 ����� GeV. But for mH 
 700 GeV, E�

is already as low as 1 TeV. Clearly, at such a value of mH , the Higgs mass is essentially equal to the
‘breakdown scale’ itself, and mH cannot get any higher without new physics intervening in one form or
another: maybe non-perturbative phenomena, or maybe supersymmetry.

7.4 Two remarks on one-loop corrections in the Standard Model

The precision of LEP and other data (of order 0.1%) was such that the measurements were sensitive
to one-loop effects - and the very high quality of the fits to all the data confirm the presence of these
corrections very convincingly. What is particularly interesting is that the loop corrections could be used
to make predictions about as yet unseen particles: for example, the top quark mass was predicted to be
something like ���� �� GeV via its virtual effects in loops, before it was discovered as a real particle!
(and the errors on the experimental mass determination were similar!). A typical fit to all data (Grünewald
[16]) has a ���d�o�f of 14.9/15, corresponding to a probability of 46%. This extremely strong numerical
consistency lends impressive support to the belief that we are indeed dealing with a renormalisable
spontaneously broken gauge theory, because no extra parameters, not in the original Lagrangian, have
had to be introduced. In fact, one can turn this around. It is widely believed that, remarkably successful
as it is, the Standard Model is not the end of physics, and that consequently further parameters will be
required at some stage. The close agreement between the data and the existing Standard Model means
that the new physics is proving very hard to see, at present energies.

As we have seen, we obtain cut-off independent results from loop corrections in a renormalisable
theory by taking certain parameters (those appearing in the original Lagrangian) from experiment. In the
electroweak case, it is usual to take the set

�� GF � mZ � mH � mf � parameters of mixing matrices� (322)



Fig. 17: t� �b vacuum polarisation loop.

(�s of QCD and the QCD 
-parameter need to be added for the full Standard Model). After renormali-
sation, one can derive radiatively-corrected values for physical quantities in terms of the set (322). For
example, the tree-level relation (291) takes the following form at one loop:

M�
W �

h
����

p
�GF�� sin

� 
W
i
�����r� (323)

where sin 
W has been defined as sin� 
W � ��M�
W �M�

Z ��r is the one-loop correction.

We cannot go into all the details of �r, but we do want to focus on two important features of the
result (which are typical of other radiatively-corrected formulae). The leading terms in�r have the form

�r � �� � cot� 
W��	 ��r�rem � (324)

In (324), �� is precisely the quantity 
��

�M

�
Z� which entered into the running QED constant� discussed

in Section 5.3 (see (127) and after (129)). �� is given by

�� �
�GF�m

�
t �m�

b�

���
p
�

� (325)

while the ‘remainder’ ��r�rem contains a non-negligible term proportional to ln�mt�MZ�, and a contri-
bution from the Higgs boson which is (for mH �MW )

��r�rem�H �
p
�GFM

�
W

����
��

�

�
ln

�
m�
H

M�
W

�
� �

�

�
� (326)

The running of � is no surprise, but (325) and (326) contain unexpected features.

As regards (325), it is associated with top-bottom quark loops in vacuum polarisation amplitudes,
of the kind discussed for 
�

���

 , but in weak boson propagators. In the QED case, referring to (125) we

see that the contribution of very heavy fermions (e.g. the top) in a vacuum polarisation loop should be
suppressed, appearing as ‘O�q��m�

t �’. This seems plausible enough: after all, the mass appears in the
fermion propagator and hence in the denominator of the loop integral expression. Yet in fact m�

f appears
in the numerator of (325)! the usual case (
 q��m�) is termed ‘decoupling’ of heavy matter, and it is
certainly what we’d expect intuitively; in (325) we have ‘non-decoupling’.

We can understand the appearance of the fermion masses (squared) in the numerator as follows.
The shift �� is associated with vector boson vacuum polarisation contributions, for example the one
shown in figure 16. Consider in particular the contribution from the longitudinal polarisation components
of the W ’s. As we have seen, these components are nothing but three of the four Higgs components
which the W� and Z� ‘swallowed’ to become massive. But the couplings of these ‘swallowed’ Higgs
fields to fermions are determined by just the same Higgs-fermion Yukawa couplings as we introduced to
generate the fermion masses via spontaneous symmetry breaking. Hence we expect the fermion loops to



Fig. 18: One-loop self-energy graph in �	 theory.

contribute (to these longitudinalW states) something of order g �f��� where gf is the Yukawa coupling.
Since gf 
 mf�v (see (295)) we arrive at an estimate 
 m�

f���v
� 
 GFm

�
f��� as in (325). An

important message is that particles whose mass is proportional to their coupling to some field (ie in this
case the Higgs field) do not ‘decouple’.

But we still have to explain why �� vanishes if mt � mb. This has to do with a further symmetry
of the assumed Higgs sector. As the notation suggests,�� is a leading order correction to the � parameter
introduced in (283) and (285). At tree level, � has the value 1, which is a reflection of the fact that the
(mass)� matrix, in terms of the original SU(2)L�U(1) fields W � and B� was (cf (255))

v�

�

�
BBB�

g� � � �
� g� � �
� � g� �gg�
� � �gg� g��

�
CCCA (327)

acting in the �W �
� W�

� W�
� B�� space. Notice now that the leading �� � block of this matrix, acting on

theW ’s alone, is proportional to the unit matrix. This would be the natural consequence of an unbroken
SU(2) symmetry in which theW ’s form an SU(2) triplet. Now, with the doublet Higgs of the form (243),
it is a striking fact that the Higgs potential only involves the (globally) SO(4)-symmetric combination

	�� 	 	�� 	 	�� 	 	��� (328)

The vacuum expectation value (246) singles out one of the four components, and breaks the SO(4)
symmetry of the Higgs sector down to an SO(3), which is equivalent to the SU(2) of the W ’s, above.
This (global) symmetry is called the ‘custodial symmetry’ of the (assumed) Higgs sector. It is this
symmetry, in fact, that guarantees � � � to all orders.

However, examination of the behaviour of the quark mass terms under such global SU(2) trans-
formations shows that the symmetry is explicitly broken by a difference in the masses of two quarks in
the same doublet. This explains the ‘m�

t � m�
b’ dependence of the non-decoupled t � 
b loop correc-

tion. Phenomenologically this m�
t dependence was of great importance, because of course it meant that

(paradoxically!) the heavier the top was, the more visible its effect in such loops would be. Its ‘virtual’
discovery was a wonderful cooperative achievement between theory and experiment.

The case is unfortunately ‘reversed’, in a sense, for the Higgs - and this is our second remark
about loops. Without the Higgs particle, the Standard Model is non-renormalisable, and hence one might
expect to see some radiative correction becoming large O�m�

H� as one tried to ‘banish’ the Higgs from
the theory by sendingmH �
 (mH would be acting like a cut-off �). The reason is that in such a ‘	�’
theory, the simplest loop we meet is that shown in figure 17, and it is easy to see by counting powers as
usual that it diverges as the square of the cut-off.

However, even without a Higgs contribution it turns out that the theory is renormalisable at the
one-loop level for zero fermion masses (Veltman [17], [18]). Thus one suspects that the large m�

H effects
will not be so dramatic after all. In fact, calculation shows (Veltman [19]; Chanowitz et al [20], [21]) that
one-loop radiative corrections grow at most like lnm�

H for large mH . While there are finite corrections



which are approximately O�m�
H� for m�

H 	 M�
W�Z , for m�

H � M�
W�Z the O�m�

H� pieces cancel out
from all observable quantities, leaving only lnm�

H terms. This is just what we have in (326), and it
means, unfortunately, that the sensitivity of the data to the last remaining parameter of the Standard
Model (not counting the neutrino parameters!) is only logarithmic. Fits to data typically give mH in the
region of 100 GeV at the minimum of the �� curve, but the error (which is not simple to interpret) is of
the order of 50 GeV. Direct searches now rule out a Higgs mass less than about 110 GeV, while the 

2.5 s.d. effect seen just before LEP closed down gave mH 
 ��� GeV.

At the two-loop level, the expected O�m�
H� behaviour becomes O�m�

H� instead (van der Bij and
Veltman [22], van der Bij [23]) - and of course appears (relative to the one-loop contributions) with an
additional factor of O���. This relative insensitivity of the radiative corrections to mH , in the limit of
large mH , was discovered by Veltman [19] and called a ‘screening’ phenomenon by him: for large mH

(which also means, as we have seen, large 
) we have an effectively strongly interacting theory whose
principal effects are screened off from observables at lower energy. It was shown by Einhorn and Wudka
[24] that this screening is also a consequence of the (approximate) isospin-SU(2) symmetry we have
just discussed in connection with (325). Phenomenologically, the upshot is that it is unfortunately very
difficult to get a good handle on the value of mH from fits to the precision data.

Problems for Lecture 6

P6.1 Show that the neutral current couplings are diagonal in the ‘mass’ basis.
P6.2 Suppose that we took the Higgs field to be a triplet of SU(2)L instead of a doublet; and suppose

h�j	j�i �
�
B� �

�
f

�
CA in the gauge in which it is real. The non-vanishing component has t� � ��, using

t� �

�
B� � � �

� � �
� � ��

�
CA

in the familiar ‘spherical’ basis. Since we want the charge of the vacuum to be zero (Qj�i � �) and
Q � t� 	 y��, we need to pick y�	� � �. So the covariant derivative on 	 is

��� 	 igt �W � � ig�B��	

where

t� �

�
BB�

� �p
�

�
�p
�

� �p
�

� �p
�

�

�
CCA � t� �

�
BB�

� �ip
�

�
ip
�

� �ip
�

� ip
�

�

�
CCA

and t� is as above (this is the more familiar set of three matrices satisfying �t�� t�
 � it�, a change of
basis from the set �ti�jk � �i�ijk . Show that the photon and Z fields are still (257) and (258), with the
same sin 
W as in (259), but that now

MZ �
p
�MW � cos 
W �

What would be the parameter �, at tree level, for this model?
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