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Chapter 5

Lattice Quantum Chromodynamics

C. T. Sachrajda

School of Physics and Astronomy,
University of Southampton, Southampton SO17 1BJ, UK
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I review the the application of the lattice formulation of QCD and large-scale
numerical simulations to the evaluation of non-perturbative hadronic effects in
Standard Model Phenomenology. I present an introduction to the elements of the
calculations and discuss the limitations both in the range of quantities which can
be studied and in the precision of the results. I focus particularly on the extraction
of the QCD parameters, i.e. the quark masses and the strong coupling constant,
and on important quantities in flavour physics. Lattice QCD is playing a central
role in quantifying the hadronic effects necessary for the development of precision
flavour physics and its use in exploring the limits of the Standard Model and in
searches for inconsistencies which would signal the presence of new physics.

1. Introduction

Quantum Chromodynamics (QCD) is now well established as the theory of the

strong nuclear force. This has been possible largely as a result of the property of

asymptotic freedom which states that the force between quarks and gluons becomes

weak at distances much less than 1 fm. At such short distances, the standard ana-

lytical tool of perturbation theory can be applied and the results compared with

experimental results as discussed, e.g. in the chapter by R. K. Ellis in this Book.1

However at the typical hadronic scale of about 1 fm, the strong coupling constant

αs is too large for perturbation theory to be applied and non-perturbative meth-

ods are required to make quantitative determinations of hadronic effects. Of these

Lattice QCD, i.e. the use of lattice formulations of QCD in large scale numerical

simulations has emerged in recent years as a precise ab initio technique which can

be applied to a wide range of processes and physical quantities.

As the name suggests, the evaluation of hadronic effects in lattice QCD is

performed by approximating space–time by a discrete lattice of points in each

space–time direction in Euclidean space. A schematic sketch is shown in Fig. 1(a).

c© 2016 Author(s). Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commerical (CC BY-NC)
4.0 License.
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(a) (b)

Fig. 1. (a) Schematic illustration of a Euclidean lattice where a represents the lattice spacing
and L its spacial extent. The green circle represents the hadron which is being studied. (b) Deter-
mination of the vertex (ρ̄, η̄) of the unitarity triangle from a variety of weak decay processes.42

The quark fields ψ(x) are placed at the lattice sites, whereas gluon fields Aµ(x)

are introduced in terms of links Uµ(x) = eiAµ(x+aµ̂/2), where a is the spac-

ing between neighbouring points and µ̂ is the unit vector in the µ direction.

(Throughout this paper the lattice spacing will be denoted by a.) The links trans-

form covariantly under SU(3) gauge transformations Uµ(x) → g(x)Uµ(x)g
†(x + µ̂)

(ψ(x) → g(x)ψ(x)), making it possible to construct lattice QCD actions which are

exactly gauge invariant. Here we do not review the different discretisations of QCD

which are used in actual simulations, but refer the reader to some of the many

excellent textbooks on the subject.2–5

The applications of lattice QCD are numerous and it is not possible to review

them all here. For example at the most recent annual symposium on lattice field the-

ory6 there were parallel sessions on hadron spectroscopy and interactions; hadron

structure; standard model parameters and renormalisation; physics beyond the stan-

dard model; weak decays and matrix elements; QCD at nonzero temperature and

density; chiral symmetry; vacuum structure and confinement, as well as on new

theoretical developments, on algorithms and machines and on applications beyond

QCD. In this review I will focus on some of the applications to particle physics

phenomenology in general and to flavour physics in particular (see the chapters by

G. Isidori7 and F. Teubert8 in this Book). In flavour physics we explore the limits of

the standard model and search for signatures of new physics by overdetermining the

four parameters of the Cabibbo–Kobayashi–Maskawa (CKM) matrix using numer-

ous different physical processes and checking for inconsistencies. The central role

of lattice simulations here is in quantifying the hadronic effects, without which the
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CKM elements in general cannot be determined, and several examples are given

below. This is illustrated in Fig. 1(b) in which the status of the vertex (ρ̄, η̄) of

the unitarity triangle is shown.42 Lattice results are used in extracting information

about the CKM matrix elements when using the measured values of the indirect

CP-violation parameter εK , the mass differences of neutral B mesons (∆md and

∆ms) and the determination of |Vub| from exclusive decays.

Numerical results from lattice simulations are constantly improving and I will

not attempt to provide an independent detailed compilation of all the results

and uncertainties. The Flavour Physics Lattice Averaging Group FLAG, performs

detailed critical analyses of the computations and results and so far has published

two editions of its reviews with a third one scheduled for early in 2016.11,12 Through-

out this paper I illustrate the discussion by quoting the averages from Ref. 12.

The plan of the remainder of this review is as follows. The following section

contains a brief introduction to lattice phenomenology with the aim of providing

the non-specialist reader with some intuition as to which quantities are calculable

and what the limitations on precision are. In Section 3 I discuss the determination of

the parameters of QCD, i.e. the quark masses and the strong coupling constant. This

is followed by a discussion of a selection of important quantities in flavour physics,

including the leptonic decay constants of pseudoscalar mesons, the B-parameters of

neutral meson mixing, semileptonic decays as well as nonleptonic kaon decays whose

amplitudes were computed for the first time very recently. Prospects for extending

the range of lattice computations in flavour physics are briefly discussed in Section 5

and the review concludes with a brief summary.

2. Introduction to Lattice Phenomenology

Lattice phenomenology starts with the evaluation of correlation functions of the

form:

〈0|O(x1, x2, . . . , xn) |0〉 = 1

Z

∫
[dAµ] [dψ] [dψ̄] e

iS O(x1, x2, . . . , xn), (1)

where O(x1, x2, . . . , xn) is a multilocal operator composed of quark and gluon fields

and Z is the partition function:

Z =

∫
[dAµ] [dψ] [dψ̄] e

iS . (2)

In lattice simulations, the infinite-dimensional functional integrals in Eq. (1) are per-

formed by discretising space–time, and using Monte Carlo integration in Euclidean

space. The physics which can be studied by computing correlation functions depends

on the choice of the multilocal operator O. To illustrate this, consider two-point cor-

relation functions of the form:

C2(t) =

∫
d 3x ei�p·�x 〈0|φH(�x, t)φ†H(�0, 0) |0〉, (3)
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Fig. 2. Schematic illustrations of two- and three-point correlation functions.

where φH is any interpolating operator for the hadron H whose properties we wish

to determine and the time t is taken to be positive. We assume that H is the lightest

hadron which can be created by φ†H and that t > 0. Inserting a complete set of states

between the operators in Eq. (3) and exploiting translational invariance one obtains

for sufficiently large t in Euclidean space

C2(t) =
1

2EH
e−EHt |〈0|φH(0)|H(p)〉|2 + · · · , (4)

where EH =
√
m2
H + �p 2. A schematic sketch of C2(t) is shown in Fig. 2(a). The

ellipsis in Eq. (4) represents contributions from heavier states with the same quan-

tum numbers as H and which fall more rapidly with t. By fitting C2(t) as a function

of t (at sufficiently large t so that the excited states in Eq. (4) can be neglected) we

obtain both the mass mH and the matrix element |〈0|φH(0)|H(p)〉|. For example,

if φH is the axial current q̄1γ
µγ5q2, where q1,2 are the valence quarks of the pseu-

doscalar meson P , then we obtain the leptonic decay constant fP as discussed in

Section 4.1.

To obtain matrix elements of the form 〈H2 |O |H1〉, whereH1,2 are single-hadron

states and O is a composite operator of quark and gluon fields, we evaluate three-

point correlation functions of the form

C3(tx, ty) =

∫
d3x d3y ei�p·�x ei�q·�y 〈0|φH2(�x, tx)O(�y, ty)φ

†
H1

(�0, 0)|0〉 (5)

=
e−EH1 tye−EH2(tx−ty)

(2EH1)(2EH2)
〈0|φH2 (0)|H2(�p)〉

×〈H2(�p)|O(0)|H1(�p+ �q)〉〈H1(�p+ �q)|φ†H1
(0)|0〉, (6)

where φH1,H2 are interpolating operators for H1, H2 and we assume that tx >

ty > 0. All the factors in (6) can be obtained from two-point functions as described

above with the exception of the matrix element 〈H2(�p )|O(0)|H1(�p + �q )〉 which is

therefore determined from the computation of the three-point functions. In this way

we can obtain for example, weak and electromagnetic form factors, the amplitudes

for neutral meson mixing (such as the BK parameter of K−K̄ mixing) and the

moments of hadronic structure functions.

By computing correlation functions of the form C2 and C3, the determination

of the spectrum and of matrix elements of local operators O between single hadron

states is now standard. We briefly discuss the status of the (non-standard as yet)
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evaluation of matrix elements with multi-hadron states and of non-local operators

below.

2.1. Uncertainties in lattice simulations

Before presenting results, I briefly discuss some of the main contributions to the

uncertainties. The evaluation of the correlation functions C2 and C3 is performed

using Monte Carlo sampling and has an associated statistical error which is esti-

mated by observing how the results vary as additional field configurations are added

or removed. More problematic is a reliable determination of the systematic uncer-

tainties. Some of these are specific to the particular quantities being computed; here

I mention those which are common to most computations.

2.1.1. Unphysical light-quark masses

For much of the period since the 1980’s, when lattice computations were in their

infancy, the simulations were performed in the quenched approximation in which

vacuum polarisation effects (sea-quark loops) are neglected. In practice this is imple-

mented by setting the fermionic determinant Det(D[A]) = 1, where D[A] is the

Dirac operator in the presence of the background gluon field configuration {A(x)}.
This determinant arises from the integration over the quark fields in Eqs. (1) and

(2); it is non-local and its presence makes the generation of the gluon configurations

significantly more expensive. Whilst results for known quantities were typically cor-

rect at the 10–20% level, the problem with the quenched approximation is that the

associated errors cannot be reliably determined.

From around 2000, unquenched simulations became possible albeit with unphys-

ically heavy u- and d-quark masses mu and md; generally the corresponding pion

masses were in the range of 0.5–1GeV. To obtain physical quantities it was therefore

necessary to extrapolate in the light-quark masses, frequently using chiral pertur-

bation theory (ChPT) to guide the extrapolation. Indeed as the quark masses were

reduced the lattice simulations provided tests of the range of applicability of ChPT

and a determination of the corresponding low-energy constants.13,14 Today we are in

the early years of simulations performed with physical values of mu and md (or at

least their average (mu + md)/2). The next challenge is to include and control

isospin breaking effects (including electromagnetic effects). An interesting recent

example is the determination of the neutron–proton mass difference by the BMW

collaboration.9 For electromagnetic corrections to amplitudes, one has to control

the cancelation of infrared divergences and some initial thoughts were presented

earlier this year.10

2.1.2. Lattice spacings and volumes

Since the cost of the simulations is largely proportional to the number of points in

each direction, the choice of the lattice spacing is a compromise between the two
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conflicting requirements of a fine lattice to minimise lattice artefacts (discretisation

errors) and simultaneously one with a large physical volume. At present, depending

on the discretisation of QCD being used and on the values of the light quark masses,

typical values of the lattice spacing are in the range 0.05−0.1 fm and typical volumes

are of the order of a few fm, perhaps 5 fm or so. A natural approach to quantifying

the errors due to the finite lattice spacing a and volume V is to perform several

simulations at different values of a and V and to perform the extrapolations to the

continuum and infinite-volume limits and indeed this is done in many cases. In addi-

tion one can choose an improved discretisation of QCD in which the lattice artefacts

decrease as higher powers of a. For example, the artefacts in results obtained using

the original Wilson formulation of lattice fermions fall linearly with a whereas with

many other formulations they decrease quadratically. The finite-volume corrections

are dominated by the propagation of the lightest particles, the pseudo-Goldstone

bosons of chiral symmetry breaking (pions and kaons) and so ChPT can be used to

estimate these effects. In a finite volume the momentum spectrum is discrete and

so infinite-volume momentum integrals are replaced by finite-volume sums and the

Poisson summation formula is a powerful tool for calculating the difference between

the two.

2.2. Renormalisation

A lattice formulation of QCD can be considered as a bare quantum field theory with

a playing the role of the ultraviolet cut-off. Quantities computed directly in lattice

simulations therefore generally require renormalisation. These might be the QCD

parameters (see Section 3) or composite operators which appear when describing

physical quantities using the Operator Product Expansion (OPE). With a−1 ≤
4GeV it is not possible to simulate the entire standard model and so we have to

rely on the OPE and effective theories, writing physical quantities φ in the schematic

form:

φ =
∑

i

Ci(µ
2)〈f |OR

i (µ
2)|i〉, (7)

where the OR
i (µ

2) are renormalised composite local operators and µ2 is the

renormalisation scale. |i〉 and |f〉 denote the initial and final states respectively.

The long-distance non-perturbative physics is contained in the operator matrix ele-

ments. The Wilson coefficients Ci(µ
2) contain the short-distance physics and are

calculated in perturbation theory, generally in the MS scheme which is convenient

for perturbative calculations.

In lattice simulations we compute directly the matrix elements of the bare

operators OBi (a) in the discretisation of QCD which is being used. For sufficiently

large ultraviolet cut-off a−1 and renormalisation scale µ it is possible to relate the

bare and renormalised operators using perturbation theory and this was done in

the early days of lattice QCD. Calculating higher order perturbative calculations
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in lattice QCD is challenging however, and frequently leads to large corrections.

It is now common practice instead to impose the renormalisation conditions non-

perturbatively.15,16 In this way the renormalisation matrix Zij(µa) relating the bare

and renormalised operators,

ORi (µ
2) =

∑

j

Zij(µa)O
B
j (a), (8)

is determined numerically and often with excellent precision. Some element of per-

turbation theory is needed however, since the perturbative calculations of the Wilson

coefficients Ci are generally performed in schemes based on dimensional regularisa-

tion (such as MS) which cannot be simulated. A continuum perturbative calculation

is therefore needed to relate the operators renormalised in a scheme which can be

imposed in a lattice simulation and that used in the calculation of the Wilson

coefficients.

2.3. Heavy quarks

Weak decays of charm and bottom hadrons provide a particularly rich source of

information with which to perform precision studies in flavour physics. They are

sufficiently light to be produced copiously and yet heavy enough to have a huge

number of possible decay channels, many of which are very rare within the stan-

dard model and which can therefore be used to search for evidence of new physics.

It appears that the lattice spacings currently being used are sufficiently fine for the

charm quark to be simulated using a discrete version of the corresponding terms

in the QCD action, but for the b-quark mba > 1 and such simulations are inap-

propriate. Most approaches to B-physics rely on effective theories which then have

to be matched to QCD. The most common ones use (i) the Heavy Quark Effec-

tive Theory which is an expansion in ΛQCD/mB (see Ref. 17 for a recent review),

(ii) nonrelativistic QCD which is an expansion in the heavy quark’s velocity18,19 and

(iii) the relativistic heavy quarks approach of the Fermilab group20 and its exten-

sions.21 Some groups also extrapolate results from the charm to the bottom region,

using scaling laws where applicable and possibly using results in the static limit

in which the heavy quark is treated as being infinitely heavy. There are far fewer

calculations in heavy-quark physics than of light-quark quantities (although this is

currently changing) and so there has been less opportunity to check for consistency

of the different approaches.

3. Determination of αs and the Quark Masses

The strong coupling αs and the quark masses are input parameters into QCD. They

are not measurable directly, but have to be inferred from their effect on measurable

quantities such as hadronic masses or, as we shall see below, on other quantities

which can be computed in lattice simulations.
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To illustrate the procedure consider simulations with Nf = 2 + 1 flavours, i.e.

with a sea of u, d, s quarks with mu = md. This is a typical situation, although

increasingly charm quarks are also introduced into the sea. In each simulation

numerical values of the bare strong coupling constant g(a) and the bare quark

masses are entered into the computation. If computing resources were unlimited,

we would vary the bare quark masses until two dimensionless quantities agreed with

their physical values; e.g. a popular choice is mπ/mK and mπ/mΩ. Given that the

input bare quark masses are chose a priori and that resources are in fact limited,

such a procedure is adapted to include extrapolations or interpolations of results

obtained from several simulations and/or with the use of ChPT. To determine the

lattice spacing a, we take the lattice result for a dimensionful quantity obtained in

“lattice units”, e.g. amΩ, and write

a−1 =
1.672GeV

(amΩ)
, (9)

where the physical value of mΩ = 1.672GeV. Having determined the bare quark

masses mf (a), where f denotes the flavour, we need to renormalise them into a

standard scheme, such as the MS scheme. For the light-quark masses the FLAG

collaboration12 quotes from Nf = 2+1 simulations, mMS
ud (2GeV) =3.42(6)(7)MeV

and mMS
s (2GeV) =93.8(1.5)(1.9)MeV.

In order to obtain mu and md separately, rather than just their average, isospin

breaking effects must be included and this is beginning to be done. In the meantime

the FLAG results shown in Table 1 combine additional ChPT/Current Algebra

phenomenological input with lattice results obtained from isospin-symmetric com-

putations.

The traditional determination of the strong coupling constant αs without using

lattice QCD inputs relies on comparing experimental results for some short distance

quantities (such as hadronic τ decays, e+e− → hadrons, deep inelastic lepton-hadron

scattering and electroweak precision measurements) with the corresponding pertur-

bative expansion. This is reviewed by G. Dissertori in this Book.22 The PDG42 quote

α
(5)
S (MZ) = 0.1183±0.0012 for the MS coupling in the 5-flavour theory renormalised

at MZ obtained without using lattice inputs. The use of lattice simulations has the

advantage that the short-distance quantities do not have to be physically measur-

able. The procedure is therefore to determine such a quantity φSD nonperturbatively

in a lattice computation and to compare the result with the perturbation series:

φSD =
∑

i

ci(µ)α
i
S(µ) + · · · , (10)

where SD reminds us that the quantity must be a short-distance one and the ellipsis

represents power corrections which are sometimes modelled and included in the

fits. Choices for φSD include the heavy-quark potential, the correlation functions C2

evaluated at short-distances or large momenta, small loops composed of products of
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Table 1. Results taken from the summary table from the FLAG compilation,12

grouped in terms of Nf , the number of dynamical quark flavours in lattice
simulations. The quark masses are given in the MS scheme at running scale
µ = 2GeV. The columns marked � indicate the number of results that enter
the averages for each quantity having satisfied the quality criteria. Full details
of the analyses for each quantity can be found in the corresponding sections
of Ref. 12. The fP are the leptonic decay constants of the pseudoscalar meson
P (normalised so that fπ � 131MeV), the ˆ denotes the renormalisation
group invariant definition of the B-parameters and ξ = fBs

√
BBs/fBd

√
BBd

.

Quantity � Nf = 2 + 1 + 1 � Nf = 2 + 1 � Nf = 2

ms(MeV) 3 93.8(1.5)(1.9) 2 101(3)
mud(MeV) 3 3.42(6)(7) 1 3.6(2)
ms/mud 3 27.46(15)(41) 1 28.1(1.2)
md(MeV) 4.68(14)(7) 4.80(23)
mu(MeV) 2.16(9)(7) 2.40(23)
mu/md 0.46(2)(2) 0.50(4)

fKπ+ (0) 2 0.9661(32) 1 0.9560(57)(62)

fK+/fπ+ 2 1.194(5) 4 1.192(5) 1 1.205(6)(17)
fK(MeV) 3 156.3(0.9) 1 158.1(2.5)
fπ(MeV) 3 130.2(1.4)

B̂K 4 0.766(10) 1 0.729(25)(17)

BM̄S
K (2GeV) 4 0.560(7) 1 0.533(18)(12)

fD(MeV) 2 209.2(3.3) 1 208(7)
fDs(MeV) 2 248.6(2.7) 1 250(7)
fDs/fD 2 1.187(12) 1 1.20(2)

fDπ+ (0) 1 0.666(29)

fDK+ (0) 1 0.747(19)

fB(MeV) 1 186(4) 3 190.5(4.2) 1 189(8)
fBs(MeV) 1 224(5) 3 227.7(4.5) 1 228(8)
fBs/fB 1 1.205(7) 2 1.202(22) 1 1.206(24)

fBd

√
B̂Bd

(MeV) 1 216(15)

fBs

√
B̂Bs (MeV) 1 266(18)

B̂Bd
1 1.27(10)

B̂Bs 1 1.33(6)
ξ 1 1.268(63)

B̂Bs/B̂Bd
1 1.06(11)

α
(5)

MS
(MZ ) 4 0.1184(12)

gauge links, as well as quark–gluon vertices at large external momenta. Although the

perturbative coefficients are frequently known to impressive orders of perturbation

theory, the unavoidable truncation of the series in Eq. (10) is one of the main

sources of systematic error. A related limitation is the size of the typical lattice

spacing a−1 � 2−4GeV at which the coupling constant is still fairly large. This

can be overcome in principle, and increasingly frequently in practice, by the use of

step scaling. While lattices on which hadrons are studied necessarily have spacial

extents of a least a few fermi, this is not the case for the short-distance quantities
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used in determining αS , or in performing renormalisation in general. Step scaling is

the successive matching of one lattice with a finer one until we end up with a lattice

with a sufficiently small lattice spacing allowing for a reliable perturbation series.

The FLAG collaboration have critically reviewed the current lattice determinations

of αS and (conservatively) quote

α
(5)
S (MZ) = 0.1184± 0.0012, (11)

as their combined result. It should be noted that the result in (11) has a larger

uncertainty than those quoted in several of the publications analysed in arriving at

this result; the reasons for this are explained in Ref. 12.

4. Selected Quantities in Flavour Physics

It is not possible in this brief review to discuss every physical quantity and to

analyse every lattice computation. For many quantities in flavour physics this task

has been undertaken by the FLAG collaboration.12 I will comment on a number of

the quantities studied by FLAG, but start this section by reproducing in Table 1

part of the summary table of Ref. 12. The reader who is interested in specific

quantities will find a critical analysis of each computation and references to the

original literature in Ref. 12.

4.1. Leptonic decays of mesons

Among the simplest quantities for which the nonperturbative QCD effects can be

computed are the amplitudes for the leptonic decays P+ → 
+ν� where P is a

pseudoscalar meson and 
 a lepton. Lorentz and parity symmetries imply that all

the hadronic effects are contained in a single decay constant, fP , defined by:

〈0| q̄2γµγ5q1 |P+〉 = ifPpµ , (12)

where q1 and q2 are the charge 2/3 and −1/3 valence quark fields of P+ respectively.

In terms of fP the decay rate is written as

Γ(P− → 
−ν̄�) =
G2
F |Vq1q2 |2f2

P

8π
mP m

2
�

(
1− m2

�

m2
P

)2
. (13)

The decay constants are obtained from a calculation of two-point correlation

functions with suitable interpolating operators for the mesons. A recent compilation

of the results is presented in Table 1,12 from which I wish to make two points. The

first is to underline the remarkable progress in lattice calculations, which can be

seen in the very small errors, approaching 1% precision or even better. Secondly, if

the improved precision is to be reflected in an improved determination of the CKM

matrix elements Vq1q2 isospin breaking effects, including electromagnetic corrections

must be included.10,28
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4.2. Neutral-meson mixing and semileptonic decays

of pseudoscalar mesons

We have seen that from three-point correlation functions we can obtain matrix

elements of the form 〈f |O(0)|i〉 where O(0) is a local composite operator. As illus-

trations of the physics which can be studied this way, we will consider the mixing

of neutral pseudoscalar mesons P 0 ↔ P̄ 0 and the semileptonic decays P1 → P2
ν�,

where P1,2 are pseudoscalar mesons and 
 is a lepton.

Figure 3(a) shows the quark-flow diagram for neutral kaon mixing. In the stan-

dard model, the non-perturbative hadronic effects in the dominant contribution to

the indirect CP-violation parameter εK are contained in the matrix element of a

single ∆S = 2 four-quark operator

〈K̄0| (s̄γµ(1 − γ5)d) (s̄γµ(1 − γ5)d
) |K0〉 ≡ 8

3
f2
KBK(µ) , (14)

where fK is the leptonic decay constant of the kaon and it is conventional to

parametrise the matrix element in terms of BK . µ represents the scale at which the

operator has been renormalised. A summary of the lattice results forBK and the cor-

responding quantities BBd
and BBs for B-meson mixing is given in Table 1. The

impressive precision of these results is now such that subdominant contributions

need also to be evaluated and in Sec. 5.2 I briefly discuss the prospects for the eval-

uation of the long-distance contributions to εK which are expected to be O(5%).

Another important class of quantities which can be obtained from the evalu-

ation of three-point functions are electromagnetic and weak form factors of both

mesons and baryons. Within flavour physics, lattice evaluations of the weak tran-

sition form factors combined with experimental measurements of the decays rates

are used to determine the corresponding CKM matrix elements. Here we illustrate

this by considering semileptonic B → π
ν� decays from which the CKM matrix

element Vub can be determined. As is frequently the case, the main limitation on

the precision in the determination of Vub is due to that with which we can com-

pute the hadronic effects. These are contained in two invariant form factors f0,+

φ†
K

φK̄

O∆S=2

d s

s d

(a)

u

Vµ

φ†
B

φπ

b u

(b)

Fig. 3. Schematic illustrations of the correlation functions from which the BK parameter of
K0−K̄0 mixing and the semileptonic B → π form-factors are obtained.
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defined by

〈π(pπ)|b̄γµu|B(pB)〉 = f0(q
2)
m2
B −m2

π

q2
+ f+(q

2)

[
(pπ + pB)µ − m2

B −m2
π

q2
qµ

]
,

(15)

where q = pB − pπ. The form factors are obtained from the computation of the

three-point function in (5) with φ†H1
= φ†B , an interpolating operator with the

quantum numbers to create a B-meson, O(�y, ty) = Vµ(�y, ty) the b→ u weak vector

current and φH2 = φπ an interpolating operator which can annihilate the pion. The

evaluation of such form factors can readily be generalised to other pseudoscalar

mesons in the initial and final states and extended to form factors of other operators

and particles (e.g. to vector particles as in B → ρ semileptonic decays). In the case

of B → π
ν� decays, for much of the phase space the pions have momenta which

are large enough to resolve the discrete nature of the lattice. The calculations are

therefore restricted to small pion momenta, which corresponds to large values of q2.

Vub is obtained by combining the lattice results with a subset of the experimental

data:

∆ζ(q21 , q
2
2) ≡

1

|Vub|2
∫ q22

q21

dq2
dΓ

dq2
.

(The lattice results at large q2 can also be combined with theoretically motivated

parametrisations for the form factors at lower q2, including perhaps constraints from

analyticity and other general properties of field theory, to extend the range of the

predictions, but this is not discussed here.) The two longstanding results for the

form-factors are from the FNAL/MILC23 and HPQCD collaborations24 are these

are combined in the FLAG compilation to give12

∆ζ(16GeV2, q2max) = 2.16(50) ps−1 . (16)

Combining this result with the experimental data from the BaBar (Belle) exper-

iments, the FLAG collaboration find Vub = 3.37(21) × 10−3 (3.47(22) × 10−3).12

There is an interesting tension between results such as these obtained from exclu-

sive decays and those obtained from inclusive b → u semileptonic decays,42

|Vub| = (4.41 ± 0.15+0.15
−0.19) × 10−3. The determination from inclusive decays has

very different systematics and cannot be studied in lattice simulations. The

evaluation of f+(q
2) and f0(q

2) and the subsequent determination of Vub is a

major priority for several collaborations (see e.g. Refs. 25 and 29 for two recent

studies).

Until this year, the exclusive determination of Vub has been largely performed

by studying B-meson decays. A very interesting recent development has been the

determination by the LHCb collaboration of Vub = (3.27 ± 0.23) × 10−3 from the

baryonic decay Λ0
b → pµ−ν̄µ26 using form factors computed in lattice simulations.27
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4.3. Hadronic decays

Up to now we have considered matrix elements of the form 〈f |O(0)|i〉 where |i〉
and |f〉 are single-particle states or the vacuum. Much of standard model phe-

nomenology, whether involving decays or scattering, concerns multi-hadron states

and it turns out that these are considerably harder to deal with in Euclidean finite-

volume computations. Before studying the decays however, consider the propaga-

tion of a two-pion state with energy below the inelastic threshold. In a series of

pioneering papers Lüscher showed how the corresponding energy levels depend on

the finite volume and that they are given in terms of the physical scattering ππ

phase-shifts.30–32 For example, assuming that the s-wave ππ scattering is domi-

nant, the Lüscher quantisation condition for the (discrete) two-pion energies in a

finite-volume (Eππ) takes the form φ(p∗) + δs(p
∗) = nπ where n is an integer,

the relative momentum p∗ = 1
2

√
E2
ππ − 4m2

π, φ is a known kinematic function and

δs is the s-wave phase-shift in the appropriate isospin channel. The quantisation

condition can be generalised to include higher partial waves. This remarkable for-

mula allows for a determination of the elastic scattering phase-shifts from the mea-

sured two-pion energy levels in a finite Euclidean volume. The formalism applies

also to other two-body systems, including pion–nucleon states below the inelastic

threshold.

The generalisation to states with higher multiplicities is much more difficult and

so far has been restricted to theoretical studies of three-particle states with the

recent completion of a formalism to relate the finite-volume three-body spectrum

to the three-to-three scattering amplitude for a scalar quantum field theory.33

4.3.1. Two-body decay amplitudes

The finite-volume approach has been extended to the study of two-body decays.

A particularly important example is that of nonleptonic K → ππ decays in which

both indirect and direct CP-violation were first discovered. Bose symmetry implies

that the total isospin I of the final two-pion state is either 0 or 2. The evalua-

tion of the K → ππI=2 amplitude A2 has recently been achieved with physical kaon

and pion masses.34–36 Whereas for single-hadron states the finite-volume corrections

decrease exponentially with the volume, for two-hadron states they only fall as pow-

ers of the volume. These effects are also given in terms of the phase-shifts (or more

precisely of the derivatives of the phase-shifts with respect to the centre-of-mass

momentum) and can be corrected by a multiplicative factor, the Lellouch–Lüscher

factor .38–40

The evaluation of the K → (ππ)I=0 amplitude A0 is much more involved and

complicated and it has only been very recently that the first calculation, performed

with physical masses and kinematics, has been completed.41 The evaluation of the

K → ππ amplitudes, in particular A0, has for several decades been a seemingly

unattainable target for lattice computations. It is therefore particularly satisfying
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that this target has now been reached, albeit still with significant uncertainties41:

Re

(
ε′

ε

)
= (1.38± 5.15± 4.43)× 10−4, (17)

where the first error is statistical and the second is systematic. The Particle Data

Group compilation42 of the experimental results is Re(ε′/ε) = 1.66(0.23) × 10−3.

The matrix elements which contribute to the amplitudes are obtained with better

relative accuracy but, as expected, there is a significant partial cancellation between

the QCD penguin contribution to Im(A0)/Re(A0) and the electroweak penguin

contribution to Im(A2)/Re(A2) which amplifies the relative error in Re(ε′/ε).

4.3.2. On the difficulty of studying exclusive nonleptonic B decays

So far in this review we have discussed some of the many physical quantities which

can be studied using lattice simulations. It is instructive to examine the main dif-

ficulties in the evaluation of K → ππ amplitudes, because they underline why the

calculations cannot be extended to a very important set of processes, two-body B-

decays. A huge amount of data has been provided by the B-factories and is being

provided by the LHCb experiment on decay rates and CP-asymmetries of processes

such as B → ππ and B → πK and yet without new ideas we cannot compute the

corresponding hadronic effects and hence to use this data in studies of the unitarity

triangle.

We start the discussion by considering the evaluation of the amplitude A2 of

K → (ππ)I=2 decays illustrated in Fig. 4. We envisage creating a kaon by placing

an interpolating operator φ†K at time t = tK and taking a Fourier transform to

project to �pK = 0. The operators of the strangeness-changing ∆S = 1 effective

weak Hamiltonian are placed at tH , with tH − tK sufficiently large to suppress

the propagation of states heavier than the kaon between tK and tH . By integrating

the position of the operators over space, we ensure that the final state also has zero

three momentum. Finally at time t = tπ we place an operator which can annihilate

the two pions. A natural choice for the two-pion interpolating operator is a product

of two single-pion annihilation operators, one with momentum �q and the other with

momentum −�q (see Fig. 4). Among the difficulties in the calculation is that by using

Fig. 4. Schematic illustrations of the correlation functions from which the K → (ππ)I=2 decay
amplitude A2 (see text).
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time to isolate the lightest state, energy is not conserved and so Eππ �= mK unless

we engineer this very carefully. The correlation function sketched in Fig. 4 can be

written schematically as a function of tπ − tH in the form:

C = C0e
−E0

ππ(tπ−tH) + C1e
−E1

ππ(tπ−tH) + · · · , (18)

where E0
ππ and E1

ππ are the energies of the two-pion ground state and first excited

state respectively corresponding to the finite volume and boundary conditions used

in the simulation. The ellipsis represents the contributions of excited states with

energies greater than E1
ππ . The lack of energy conservation means that even if

the input momentum �q �= 0, C is dominated by the term with the lowest energy,

E0
ππ = 2mπ (up to finite volume corrections). The grey oval in Fig. 4 represents

the energy non-conserving ππ scattering from E0
ππ to an excited state. In the dis-

cussion so far we have implicitly assumed the use of periodic boundary conditions.

In such simulations the determination of the physical K → ππ amplitude requires

the study of an excited state with the volume chosen such that E1
ππ = mK and

the determination of C1; this is very difficult indeed. In the recent computations of

A2, antiperiodic boundary conditions were used instead and the volume was chosen

such that the ground state has energy equal to mK .34–36

The s-wave two-pion state |(ππ)I=0〉 has vacuum quantum numbers and so in

addition to the terms on the right-hand side of Eq. (18) there is a constant term

corresponding to the vacuum intermediate state which does not fall with tπ−tH and

which therefore dominates the correlation function. This complication is unavoid-

able in the evaluation of A0 and although the constant is calculable (it is the prod-

uct of two vacuum expectation values of the form in Eq. (1)) the subtraction of the

dominant term leads to a loss of precision. In addition of course, we would like

the lowest-energy two-pion state to be the one with Eππ = mK and this requires

the imposition of isospin-conserving G-parity boundary conditions.43 The vacuum

subtraction and the use of G-parity boundary conditions to ensure that the lowest

energy of an I = 0 two-pion state is mK were the major technical breakthroughs

allowing for the evaluation of ε′/ε.41

Apart from the intrinsic importance of evaluating ε′/ε from first principle, the

main reason for this discussion is to explain a significant limitation of lattice com-

putations; our present inability to calculate exclusive nonleptonic decays in general.

Imagine trying to evaluate B → ππ decay amplitudes and consider Fig. 4 but with

the kaon replaced by a B-meson. The pions in the final state each have momenta of

about 2.6GeV. In addition to the requirement of a very fine lattice to accommodate

such large momenta, a more serious difficulty is that this corresponds to a highly

excited two-pion state with total momentum zero, i.e. one which which is hidden

well inside the ellipsis in Eq. (18) and hence is very highly suppressed. One would

also need to deal with the power corrections in the volume with many possible

intermediate states. Without some novel ideas it is very unlikely that calculations

of nonleptonic B and D exclusive decays will be possible in the foreseeable future.
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5. New Directions

In the preceding section I described some calculations in flavour physics starting

with quantities which can be obtained by computing standard two and three-point

correlation functions and proceeding to the evaluation ofK → ππ decay amplitudes.

In this section I briefly mention some new developments which are likely to extend

the physics reach of lattice phenomenology.

5.1. Hadronic effects in the muon’s electric dipole moment

There is an intriguing 3–4σ discrepancy between the experimental measurement of

the anomalous magnetic moment of the muon

aexpµ = (11659208.9± 6.3)× 10−10 (19)

and the standard model prediction

aSMµ = (11659180.1± 4.9)× 10−10, (20)

(see for example Ref. 44 for a review and references to the original literature). The

experimental precision will be significantly improved by new muon g−2 experiments

at Fermilab and J-PARC. On the theoretical side, in addition to the dominant QED

perturbative contributions (and the small weak contributions) there are hadronic

effects through the hadronic vacuum polarisation (HVP) contribution, estimated

using e+e− experimental data to be (682.5 ± 4.2) × 10−10 and the hadronic light-

by-light contribution (HLbL), estimated using phenomenological techniques to be

(10.5 ± 2.6) × 10−10. It is these hadronic effects, both HVP45–49 and even HLbL

effects50 which can be estimated using lattice QCD, although it is a challenge to

compete with the above precision.

5.2. Long-distance contributions to hadronic processes

In Section 4 we have discussed the evaluation of matrix elements of composite

local operators. More recently calculations of long-distance effects have begun to

had

(a) (b)

had

Fig. 5. (a) Hadronic vacuum polarisation and (b) hadronic light-by-light contributions to the
anomalous magnetic moment of the muon. The curly lines represent photons and the straight lines

the muon.
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be evaluated, which involve the determination of non-local matrix elements of the

form
∫
d4x

∫
d4y〈h2|T {O1(x)O2(y)}|h1〉, (21)

where O1,2 are composite operators and |h1,2〉 are single-hadron states (one can also

exploit translational invariance and set either x or y to be the origin for example).

An important example is the long-distance contribution to the εK parameter.51 This

has been estimated to be at the level of a few percent,52 so since the precision of

the hadronic effects in the leading contribution is approaching this level of precision

(see the result for BK in Table 1) it becomes necessary to evaluate the long dis-

tance contributions and we can look forward to results in the next few years. Other

important quantities for which the long-distance contributions are beginning to be

evaluated include the KL−KS mass difference53,54 and rare kaon decays K → πνν̄

and K → π
+
−, where 
 represents a charged lepton.55,56

5.3. R(D) and R(D∗)

An intriguing tension between experimental observations and standard model pre-

dictions is provided by the quantities

R(D) =
Br(B̄ → Dτ−ν̄τ )
Br(B̄ → D
−ν̄�)

and R(D∗) =
Br(B̄ → D∗τ−ν̄τ )
Br(B̄ → D∗
−ν̄�)

(22)

where 
 = e or µ. Combining the results from Babar57 and Belle58 one obtains

R(D) = 0.388 ± 0.047 to be compared to the standard model prediction of

R(D) = 0.300 ± 0.010. Similarly, combining the Babar, Belle and LHCb59 results

gives R(D∗) = 0.321 ± 0.021 compared to the predicted value of 0.252 ± 0.005.

The role of lattice calculations is to evaluate B → D(∗) form factors with good

precision. So far this has been done for B → D form factors with the recent result

R(D) = 0.299± 0.01160 and we can anticipate improved precision and also a cal-

culation of R(D∗) in the near future.

6. Summary and Future Prospects

At the 1989 annual symposium on Lattice Field Theory held in Capri, Italy, Ken

Wilson the father of the subject, made the prediction that it would take about

30 years before Lattice QCD computations were sufficiently precise and reliable to

be useful to Standard Model phenomenology. Although this prediction appeared

to be too pessimistic at the time, for much of the intervening period, the sys-

tematic uncertainties, and in particular the large values of the u and d sea quark

masses in the simulations, meant that extrapolations and model input was nec-

essary to obtain physical results from the computations. This has now changed!

Theoretical and algorithmic developments, combined with increased computing

resources have led to enormous progress in recent years in the applications of lattice

 T
he

 S
ta

nd
ar

d 
T

he
or

y 
of

 P
ar

tic
le

 P
hy

si
cs

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 E
U

R
O

PE
A

N
 O

R
G

A
N

IZ
A

T
IO

N
 F

O
R

 N
U

C
L

E
A

R
 R

E
SE

A
R

C
H

 (
C

E
R

N
) 

on
 0

9/
20

/1
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



August 1, 2016 14:42 The Standard Theory of Particle Physics - 9.61in x 6.69in b2471-ch05 page 110

110 C. T. Sachrajda

QCD to Standard Model phenomenology. In this review I have summarised these

developments focussing on the determination of the parameters of the standard

model and on the applications to precision flavour physics. In the near future,

isospin-breaking effects (including electromagnetic corrections) will be included

more frequently taking the precision of lattice phenomenology beyond 1%. In addi-

tion to continuing to improve the precision of the results for standard quantities,

the community in also increasing the range of physical quantities and effects which

can be studied in lattice simulations. A selection of such extensions was presented

in Section 5. We can therefore look forward to an exciting period of time in which

new experimental results from the LHC, Belle-II, J-PARC and other facilities are

combined with improved lattice computations to explore the limits of the standard

model with ever increasing rigour and to help unravel the underlying theoretical

framework of the new physics once it is discovered.
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