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Deep-inelastic lepton-hadron scattering is analyzed in asymptotically free gauge theories
of the strong interactions. The renormalization-group equations for the coefficients of the
twist-two operators in the Wilson expansion are reviewed. A careful treatment of the mix-
ing of operators with identical quantum numbers and dimensions is given. The relevant
anomalous dimensions of the twist-two operators are calculated to second order in perturba-
tion theory. These are used to calculate the asymptotic q2 behavior of the moments of the
structure functions. It is shown that the approach to the asymptotic limit is logarithmic,
that Bjorken scaling is violated by powers of ln(-q2), and that the naive light-cone or parton-
model relations for the moments of the structure functions are true asymptotic theorems.
A new sum rule for the first moment of I'2, in terms of the energy-momentum tensor, is
derived. An example of a function whose moments have roughly the correct asymptotic
q behavior is constructed. The q behavior of the structure functions for a given x is
discussed.

I. INTRODUCTION

In a recent paper' we have constructed a class of
gauge theories of the strong interactions, which
have the remarkable feature of being "asymptot-
ically free. " The primary motivation for this
proposal is the evidence that Bjorken scaling re-
quires an asymptotically free theory, ' that only
non-Abelian gauge theories can be asymptotically
free, ' and that indeed many non-Abelian gauge
theories are asymptotically free. a u Deep-inelastic
scattering is therefore the natural arena in which
to test our theories. In this paper we shall dis-
cuss in detail the properties of lepton-hadron
scattering in asymptotically free gauge theories of
the strong interactions.

This paper is a sequel to Ref. 1 and should be
read in conjunction with it, although the phenom-
enological discussion of Sec. III can be understood
independen'. ly (hereafter Ref. 1 will be referred
to as paper I, and the prefix I refers to equations
of Ref. 1). The general features of deep-inelastic
scattering in asymptotically free theories were
already described in paper I. These include the
logarithmic approach to scaling, the calculable
logarithmic deviations from Bjorken scaling, and
the validity of the naive or light-cone parton-model
relations.

In Sec. II of this paper, we discuss in some de-
tail the application of renormalization-group tech-
niques to the Wilson expansion. This analysis has
appeared in many other places' "' and is included
here for the sake of completeness. In particular
we discuss the mixing of operators with the same
quantum numbers and dimensions. In gauge the-
ories this mixing is particularly annoying since

it would appear that "ghost" operators (i.e., oper-
ators involving Feynman-Faddeev-Popov ghost
fields"'") mix together with ordinary operators.
We argue that this mixing can be ignored. This
claim is further substantiated by a calculation,
which appears in Appendix A, performed in a gauge
which is free of Faddeev-Popov ghosts.

In Sec. III we calculate the anomalous dimensions
of the relevant operators in the Wilson expansion. "
Some of these were already presented in paper I.
We derive the asymptotic form for the moments of
the structure functions, as well as the various
relations and sum rules satisfied by these moments.
A sum rule for the first moment of the structure
functions, the "energy-momentum-tensor sum
rule, " is derived. An example of an explicit func-
tional form for the structure functions, with rough-
ly the correct asymptotic behavior, is presented
and the general features of this function are dis-
cussed.

Section IV contains some concluding remarks.

II. THE RENORMALIZATION-GROUP APPROACH
TO THE WILSON EXPANSION

In the deep-inelastic scattering of a lepton
off a hadron one measures the Fourier transform
of the commutator of electromagnetic or weak
currents. We define the standard structure func-
tions as follows:

dye ' " J„a;—,'y, J, b; ——,'y P

Pupv y(a, a) (& ~2) guv ~(a, ))) (& ~2)
mv ' "'

m

+f E ' (p tj )+''' (1)2mv
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where P is the momentum of the hadron, q is the
momentum transfer to the hadrons, v =p q, spin
averages have been taken, and we have suppressed
terms proportional to q„and q„which give terms
proportional to the lepton mass when contracted
with the leptonic currents. The label a denotes
the SU(3) x SU(3) character of the current. The
Bjorken limit corresponds to

Q2x=—fixed, Q'= —q'-+~
2v (2)

and probes the commutator for lightlike values of y.
The structure of the product of local operators

at short, and at lightlike, distances is given by
Wilson's operator-product expansion. In the case
of interest this expansion takes the form

2 q}o

q„(q, —.b}Z, (b, --.q)=-:q„.t
—', '. g QC), (q, b;q iqq} 0, . . . „(0}q""qq.

—ZCP0

+2 )b}(}y z 2 Z Z (4( b b y —icy(}) 0'(})) . . .
)b y y + ~ ~ ~ .(p) ~ ~ ~

~P 3 -~~3 n0 n=p
(3)

In this expansion we have neglected, as in Eq.
(1), gradient terms (involving s/sy" or & jsy").
The operator 0'„.. .„(x)has spin b (traceless

I qand symmetric) and dimension n+2 (or twist
= dimension —spin = 2). The label i denotes the
various operators of equal twist which might occur
in the expansion. C("~~(k =1,2, 3) are c-number
functions of x' and the coupling constants of the
theory. They have been normalized to be dimen-
sionless, so that naively (as in free-field theory)
they would be nonsingular as x2-0. The three
dots refer to other operators of higher twist,
whose contribution to the structure functions is
suppressed, to any finite order of perturbation
theory, by powers of q2. (In an asymptotically
free theory this suppression is guaranteed to all
orders in perturbation theory by the vanishing of
the anomalous dimensions of all operators at the
fixed point g = 0. One has logarithmic, but not
power, corrections to naive scaling. )

The structure functions F~ in the deep-inelastic
region are determined by the behavior of C@~~ for
small x, and by the hadronic matrix elements
of the operators 0'

(plo„', . . .„(0)lp&

=i —P P M (4)
'5 f

m

One cannot simply take the Fourier transform of
E(I. (3), since after Fourier transforming it does
not converge in the region of interest (0 & x & 1).
Instead the Fourier transforms of C@~~ are deter-
mined by the moments of the structure func-
tions. ~"

In fact

(p), 2

x yed4 &4.„C&4(ab b; y )
—&&Sp

In a free-quark model the operators 0„.. . „
are simply

(6)

O'„,. . .„(x)=Sf(x) r, , s, , s„}&''( I+r,) 0(x),
(7)

where S denotes symmetrization of the indices
p., ~ ~ p.„. In that case the functions C@ are con-
stants, independent of q', which can be deter-
mined by the light-cone commutator of the cur-
rents (see Ref. 14).

In an interacting theory the functions C~ will
be nontrivial functions of q' and the coupling con-
stants of the theory (g). To determine the q' de-
pendence of C@" we employ the renormalization-
group equations. Let us outline the derivation of
these equations for the Wilson coefficients. Con-
sider the contribution of an operator Oe) (x) to the
short-distance expansion of the product of A(x)
and B(x) (we suppress all tensor and quantum-
number labels):

J
1
dxx" E"(x q') =P C"'(a b'q')M""

0 t

J
I
dxx" F,"(x, q') =Q Ce,'(a, b; q')M";", (5)

0

J
1
dxx" E,"(x,q') =g C@,'(a, b; q')M";",

0 i

where

n

C",'(q, b; q') =l }(q')""(-
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A(x)B( x-) ~Ce (x', g)O„",. . . q
(0)x"& x~~.

x&m

(8)

If O~")(x) is the dominant operator for short dis-
tances (i.e., the operator of smallest dimension,
which we assume for the moment to be unique)
then the short-distance behavior of C" can be
determined by calculations performed as if all
masses and dimensional coupling constants were
zero (for details see paper I). Ih that case the
only dimensional parameter in the theory is the
subtraction point p, introduced to perform the re-
quired renormalization. A change in p. can be
reabsorbed by a change in the coupling constant
and the scale of all operators in the theory. If
we consider the effect on Eq. (8) of a change in p
we derive that

a a
v —,„+()()(), +& +~, -~,—)((*',z)=0, (())

C"' (q'/u', g) = Ce' ( I, df, g))
t

x exp — dx y" x, g . 14
0

The large-q' behavior of C@ will thus be deter-
mined by the large-t behavior of g(t, g}, which
in turn is determined by the fixed points of the
renormalization group Eq. (12). In an asymp-
totically free gauge theory

g'(t, g) ~ b, 't '+b, b, 't 'Int+O(1/t'),

r"(g) =r"g' O+(g') .
Therefore in an asymptotically free theory

C~'(q'/p', g} ~ const[in(-q')] "

(16)

(15)

where I), is given by Eq. I(4.9). The anomalous
dimension y" will behave for small g like

where P is given by Eq. I(4.9), and r» (rs, ro) is
the anomalous dimension of the operator A (B,0 "~).
Thus, for example,

x [C (1, 0) + O(1/In(-q'))],

(17}

8
r (g ') = v —,„.»&»

g0, h fixed
(10)

where

(18)

Z„ is the renormalization constant of the operator
A, where we have assumed that A is multiplica-
tively renormalizable (this is true for all the op-
erators that control the light-cone behavior of
current products).

In the case of interest this implies that the func-
tions C~) (q2/p, ', g) satisfy

(u +P(g) —r "(g)—C-" (q'/~', g) = o, (11)
8p, Bg

where again we assume a unique twist-two oper-
ator appears in the Wilson expansion of currents,
and C@ is related, by an equation similar to Eq.
(6), to the coefficient of the spin-n twist-two oper-
ator. Note that the anomalous dimension of con-
served or partially conserved currents (by which
we mean that the dimension of the divergence of
the current is less than four) vanishes for all g.

The solution of this renormalization group equa-
tion is expressed in terms of the effective coupling
constant g(t, g) defined by

From this expression we see that the approach
to the asymptotic region is logarithmic, i.e., the
corrections to the asymptotic form are suppressed
by ln(-q'). The asymptotic value of C~"~ does not
exhibit naive (Bjorken) scaling. Instead there are
logarithmic deviations, whose magnitude is cal-
culable in second-order perturbation theory.
Furthermore the tensor and quantum number
st~uctu~e of the operator-product expansion will
be that of free-field theory, up to logarithmic
corrections, since C~ is evaluated at g=0 on the
right-hand side of Eq. (17).

In general there will appear in the Wilson ex-
pansion many operators 0'."~ with the same quantum
numbers and twist. In that case a given O~"' is not
multiplicatively renormalizable, rather one must
take linear combinations of these to obtain oper-
ators which are multiplicatively renormalizable
and have definite dimensions.

Consider the Wilson expansion

J, (x)J, (-x) =Q Ca"~, (x' —iexo, g)

„,=P(i3, 80, z—)=g

where

t= —,
' In(-q'/g') .

In fact

(12)

(13)

xone'~

(0)„,. . .„x"~ ~ ~ x "I+...,

(19)

where again we suppress the tensor indices of the
currents. The label i runs over the set of oper-
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t ,„+—e(g), —«'.l =g rr",'(g) &Plc
8 a

The anomalous dimension is now a matrix

(20)

ators with spin n and dimension (n+2) pand the
label k denotes the tensorial and SU(3) xSU(3)
structure of the expansion. [In other words k
stands for the labels a, b, 1,2, 3 in Eq. (3}.] Since
the operators 0@& can mix, a change in p. will, in
general, entail a mixing of the various oper-
ators. The Wilson coefficients will obey the re-
normalization group equation

xC~J', ( I, g(t, g}), (23)

where T refers to the fact that the exponential is
to be t ordered. In an asymptotically free theory
g' vanishes for large t like bo

' t '. The anoma-
lous-dimension matrix y "~

(gg similarly vanishes
like 1/t. We define

form of C@~) is again most easily expressed in
terms of g(t, g)

2 t
—,, g =Q Texp — y~ (g(s, g)) dx

f 4f

re'(g)=r 'g'+~"'(g), (24)

Zo p. Zo
8

g f g,A rixea
(21) where r@~ (g) is of order ga, for small g. Then

the large-t behavior of C@„ is given by
and Zo is the matrix of wave-function renormal-
ization constants of the operators O~&, i.e., Ci@, (q'/ti, ', g) ~ g exp y ' M

t ~rSb &0—

(22)[ maormaliasd P j bars ( 0 }fl

p

The solution of Eq. (20} for the Fourier trans- where

xCe, 'a (1, 0), (25)

M = resp — dt exp —y "' r' (g(ttgtte"xp —,—yt"')(„)
" lnt lnt

b b0 0 0
(25)

8) 0) P& (27)

where P' are projection matrices

P'Pf = 5]fI,
(28)

Then we have

C;,'(q'/p, ', g} Q ln(-q')] '
r

where

x g(P'M'"&)„~C, ,'(1,0),
f

(29)

alfie) —
y 0)ar-2& yr ~

0
(30)

Thus we see that the large-q' behavior of the
Wilson coefficients is determined by the eigen-
values of y@ . These can be calculated by eval-
uating the wave-function renormalization matrix
Z to second order in perturbation theory. The
structure of Eq. (25) is more transparent if we
write the matrix y@) in terms of its eigenvalues

0)

The operator-product expansion has the form (in
momentum space)

J,Jb= Q [ln(-q )] '
i Q Oi [P'M " ),)

r

x Chai (1, 0) . (31)

The dominant operator for large q' will thus be
picked out by the smallest eigenvalue of y@ . The
coefficient of this leading operator is not, in gen-
eral, determined. Although the functions CPa~ (1, 0)
are known (equal to their free-field-theory values)
the matrix Me~ is not. It depends on the (unknown)
behavior of y for large coupling constant. The only
case in which the coefficient of the dominant operator
is known is when the matrix P'M "'vanishes identical-
ly for allg. This will be the case if we are considering
the coefficient of a conserved or partially con-
served current or the energy-momentum tensor.
In that case the (appropriately projected) matrix
M equals unity and the coefficient of the current,
or energy-momentum tensor is determined. In
addition a~r vanishes for these operators. These
are the only operators for which one is interested
in the numerical value of the coefficients since
only these operators have known hadronic matrix
elements. Also if a particular tensorial or SU(3}
xSU(3) structure holds for the operator-product
expansion when g=O, it will also be valid when
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IH. DEEP-INELASTIC SCATTERING
IN ASYMPTOTICALLY FREE

GAUGE THEORIES

%e nom supply the explicit results one obtains
by applying the techniques of Sec. II to an asymp-
totically free gauge theory. In order to ensure
sufficient generality me mill work with the La-
graDglan

I.,= --,' Tr E„„E""+$(ig-III)g, (82)

where V„=~„+i''8& is the covariant derivative,
the 0' being the matrices of the representation of
the Lie algebra of the gauge group G in the space
of fermions. %e retain the normalization of Eqs.
I(2.3)-(2.4) and omit for brevity the gauge-fixing
and ghost terms needed to define (32) properly
For simplicity me assume that G is simple, but
allow the fermions to transform according to an
arbitrary representation of G.

The class of theories described by (82) includes
the ease where 6 =SU(3) and g transforms as a
direct sum of three triplets. In this case me may
interpret G as the gauge group of "color" and the
group which mixes the three G-triplets as ordinary
SU(3), so the fermions are just the usual "colored"
quarks. As mas discussed in paper I, there is
some reason to hope that this theory provides a
model of hadrons. We mill adopt it in the following
for illustrative purposes. If m= 0 me also have
ordinary chiral SU(3). Mass terms, and in general
symmetry-breaking terms with operator dimen-
sion less than four, have no influence on the lead-
ing-order effects me discuss in most of this paper.
In particular, all symmetries broken by such
terms mill be reinstated asymptotically, so that
for instance a11 the operators in a given chira1
SU(3) xSU(3) multiplet have the same anomalous
dlmenslons.

More complicated models, with charm quarks or
a different gauge group (so long as it is non-Abe-
lian), are clearly allowed. It might be interesting
to see what the effects of Higgs scalars on the
light-cone behavior of asymytoticaQy free theories
are (asymptotically free theories with scalar par-
ticles were constructed in paper I). One would be
faced with some complications due to the presence
of at least two dimensionless coupling constants

-q'-~. This is because the tensorial and SU(3)
x SU(3) structure is totally contained in the labels
A of C~@~~ evaluated at g=0.

Consequently all current-algebra sum rules
(Adler, Gross-Llewellyn Smith, etc.) and relations
between moments of the structure functions derived
in the parton or naive light-cone models mill be
true asyIIlpto'tie 'theol'enls 1I1 ollI' 'theoI'Ies.

and more involved mixings of lowest-twist oper-
ators. %'e have not carried out this study.

Throughout this paper me shall assume that the
gauge group G commutes with the ordinary sym-
metry group H of the hadronic currents, e.g.,
chiral SU(8) xSU(3). This excludes models of the
Bars-Halpern- Yoshimura type." There are good
reasons for this assumption. The spin content of
the fundamental charged constituents of the nu-
cleon as measured by the Callan-Gross'6 sum rule
polIlts to spin-2 constltueDts. A shielding mech-
anism (like that contemplated in paper I) is im-
possible if one mishes to identify these particles
mith the observed vector or axial-vector octets,
since the shielding mechanism yields only sin-
glets of the gauge group for physical states. The
alternative complicated system of Higgs scalars
required in Ref. 15 almost certainly destroys as-
ymptotic freedom.

%e are interested in the light-cone behavior
of the product of weak (by this we mean electro-
magnetic or truly weak) currents. The operators
of twist two aypearing in the oyerator-product
expansion of tmo weak currents near the light cone
will be

0~ ...~ -g STr E~ ~V~ V~ F ~

—trace terms, (88)

"02"-' ~ p
=2i" 'SPW~ ~~ ' '~2 (I+y,)g

(34)

0jlI' ' ' 2 2 Si 721 Vp +Jl~(I +F2) 2 ~

(35)

where recall that V& is the covariant derivative,
which is ~„+ig&'I3& acting on fermions and 8&

+igr'B'„acting on vectors, while (34) and (35)
represent the SU(8) xSU(3) singlet and octet pieces
of the fermion operators. The A,', a = 1, ..., 8, are
the standard ~ matrices of Gell-Mann. The prod-
uct of two octet currents mill in general also have
decimet and 27-piet components; these correspond
to higher-twist operators and are therefore sup-
pressed. [The vertices associated with the oper-
ators (33)-(35) are given in Fig. 1.]

In addition to the operators "0","0 (we often
suppress in the following tensor and H indices)
there are composite operators formed from
Faddeev-Popov ghosts which may have the same
twist and therefore are expected to mix with H
singlet operators. Arguments to exclude the
ghosts on the basis of gauge invariance are un-
convincing because the ghosts do in fact mix with
the above operators in off-shell matrix elements,
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tv(b, k)"+ k 4+ b,„(&k) —k+&& (6k) - hpkv(b, k)

(a) (0)

y(Z k)" ' (,~')

(b) crossed + crossed

(b)

(c)
I

2 crossed

p~»a p&.

-o' 6+/ I (-) (b, p, ) (b p&) (
&

)
ab / )o

p, c

all momenta flow into vertices

(c)

crossed

FIG. 1. (a) The vertex for "Ov (order 0). (b) The
vertex for "0+ (order 0). (c) The vertex for "Ov (order
g). (d) The vertex for "0 (order g).

as is shown by explicit calculation.
It is argued in detail in Appendix A that one can

solve this problem by going to a gauge in which
no ghosts are present, so that the mixing does not

appear. Moreover, the anomalous dimensions of
the gauge-invariant operators "0,"0~ and their
mixing are gauge-independent, so they may be
calculated in the standard Fermi-type gauges.
In the remainder of the text we shall take the re-
sults of Appendix A for granted and ignore the
ghost mixings.

According to the prescriptions of Sec. II the
light-cone behavior of the coefficients in the
Wilson expansion, and thereby the high-q' be-
havior of the moments of the structure functions,
will be controlled by the renormalization group
Eqs. (20). The only missing ingredient in these
equations is the matrix y.

As was briefly mentioned in Sec. II, operators
of the same structure (tensor and symmetry prop-
erties) and twist will mix, and only certain linear
combinations of them will be multiplicatively re-
normalizable in the usual sense. This phenom-
enon appears already in Fig. 2(a), where we see
that "0", which in lowest order vanishes between
fermion states, acquires (logarithmically diver-
gent) contributions in higher order. In order to
compute the y matrix of Eq. (21}to second order
in g we must according to Eq. (22) express the
renormalized operators in terms of the bare ones.

(d)

FIG. 2. Graphs for computing p (radiative corrections
to matrix elements). (a) The matrix element of "Ov
between fermion states. (b) The matrix element of
"0+between vector states. (c) The matrix element of
"0 between vector states. (d) The matrix element of

between fermion states.

This is most easily done by taking matrix elements
between vector and fermion states, since the bare
operators have trivial matrix elements. We are
thus lead to computing the logarithmically diver-
gent pieces of the matrix elements of "0 and "0
with the same tensor structure (twist) as "0»,„
and "0~ „between these states. From this we
determine the wave-function renormalization ma-
trix and thereby y. The computations involve
evaluating the graphs of Figs. 2(a)-2(d}. Because
we want to amputate the external propagators
there will also be an order-g' contribution to the
diagonal elements of y due to the possibility of
seU-energy insertions on the propagators, as in

Eq. I(5.18).
To summarize the results we introduce the ma-

trix

"y=
yvv yvv

where "y~« is given by g(&/6 p) In(Z)~«and so
forth.

The results of the computations are (for n =even,
n) 2)
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8v' ' ' n(n- I) (n+ I) (n+2)

+4+ —. +~a T(B), (3V}

—g' 4(n "+n"+ 2)
8s' n(n+I) (n+2) (39)

r -g 2(n +n+2)
( )8v' n(n' I) (40)

as in papel' Is Cm(G} is the quRdl'Btic
Casimir operator of C evaluated on the adjoint
I'epl'esell'tR'tloll Cs(A) is 'the evRlllR'tloll of tile qllRd-
ratic Casimir operator of G on the irreducible
representation 8 of C to which the fermions be-
long, "and T(A) is the trace of the square of a
matrix in the Lie algebra of the representation R.
It should be remarked that the mixing terms (39)
and (40) vanish for fermion operators which are
not singlets under H (we have been suppressing
H labels on fermion operators, they should always
be understood). The remarkable feature of Eqs.
(3V)-(38), characteristic of gauge theories, ' is the

Q," I/j -in(n) term. It arises from the graphs of
2(c) and 2(d) with three lines coming out of the
vertex, which in turn corresponds to the fact that
A„occurs with ~& in the eovariant derivative.

These values of "y satisfy the constraints of
posl'tlvl'ty (the snlRlles't elgellvRlue of "p nlust in-
crease with n), gauge-invariance, and nonrenor-
malization of the energy-momentum tensor, which
provides a check on the calculation (and on the
argument of Appendix A).

Having calculated the y matrix we can now infer
the properties of deep-inelastic scattering accord-
ing to the methods outlined in Sec. II. First let us
review the genex'al features.

TA8 QPPJOQck to Ne Qs'tf/tPlPtot2c K8gvos t8
loga~sthm~c. In other words t e leading correc-
tions to the asymptotic forms for the moments of
the structure functions will be suppressed by pow-
ers of ln(- q'). These corrections arise from two
sources. Fix'st, the fact that the effective coupling
g'(t, g) vanishes logarithmically for large i (g'-I/O)
means that the order-g' corrections to the Wilson
coefficients will be suppressed by l/ln(- q') for
large —q'. It is hard to estimate how rapidly
these corrections vanish in a realistic model, since
this will depend on the unknown scale (il), the
actual value of the physical coupling constant, and
the large-g' behavior of P(g'}. The large-g'
behavior of P is, of course, totally unknown. If,
for example, P(g') = dg'/d& were to be linear in

g for large g~ then the effective coupling would
decrease rapidly (like a power of —q') from its
physical value to small values of g' and only then
approach zex'o logax'ithmieally. In that case one
might understand the rapid onset of scaling.

Additional logarithmic corrections occur when
more than one operator can contribute to a given
moment. This occurs in our theories for the H
singlet component of the struetux'e functions. In
that ease, as explained in Sec. II, the leading as-
ymptotic behavior of the moments will be given
by the lowest eigenvalue of the y matrix. However,
the other eigenveetors of y wiQ also contribute
terms, which will be suppressed by some (in gen-
eral nomnteger) power of ln(-q'). Thus a generic
structure function E(x q ) will BR'tlsfy

5

0
dxx" E(x, q') ~ Q(»-q') "

+ ~sso

xE1(ln(- q')) ~ ~ ~,

whex'e the a& are propox'tional to the eigenvalues
of y, and the E's approach constants (at an unknown

rate) as q'--~.
Z. Bjorken scaling is violated by finite posoers of

logari Nms. These logarithmic violations are
readily calculated in terms of the p matrix eval-
uated in second-order perturbation theory. Here
we must di,stinguish between the strong symmetry
group singlet and nonsinglet pieces of the structure
functions. The latter are easy to analyze since
there is only one operator, that given in Eq. (35),
that contributes. The relevant anomalous dimen-
sion is given in Eq. (38). lt is, of course, common
to all the SU(3) x SU(3) operators that appear in the
operator-product expansion. Therefore if E"s(x,q')
stands for the nonsinglet piece of E„xE„orxI'3
(independent of the quantum numbers of the cur-
rents) we have that

dxx" E"'{x,Q') ~ Cs@,'(in@'} "~+&, (42)
0 Q ~on

+4~-' 43
22C, (G) -8T(R) n(n+I) ~ b

In the "red, white, and blue" quark model [H
=SU(3)], we have

C,(G) =3,

C,{A)=~s,

T(a) =R.
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The numerical value of these coefficients is small,
i.e., A", =~» A4 =0.36, ete. An excellent inter-
polation formula, accurate to 1% already for n= 2,
ls

4"„s~ 0.296 ln(n) - 0.051 . (45)

In treating the singlet piece of the structure func-
tions we must take into account the mixing of the
vector-meson and fermionic operators. This mix-
ing occurs for H-singlet operators of both normal
and abnormal parity. In the ease of abnormal
parity the fermion operator mixes with a vector-
meson operator given by Eq. (33) with one E„, re-
placed by its dual. These operators contribute
to the parity-violating structure function F,. The
appropriate y matrix in this ease will be treated
in a subsequent publication. Here we will only
deal with H-singlet normal parity operators. Con-
sequently we must diagonalize the 2 matrix eval-
uated above. Fox n=2 this matrix has the form

(,) g' ~ C, (R) -vC, (R)
Bv' + T(R} & T(R)

Thus the smallest eigenvalue is zero, so that the
corresponding moments will in fact scale. If
E~(x,q') stands for the singlet pieces of E, or xE„
then

1
dxx" F (x,g') ~ C~("~(in@') "+2,

0 (P -+ ao

where

S I n E +n Y(y +&„
0

what might be called the approximate scaling re-
gion, the effective coupling constant becomes small
and the one-loop approximation to the renormal-
ization- group equation becomes valid. In this re-
gion we have scaling up to finite powers of loga-
rithms as previously computed. The rate of ap-
proach to this region is not determined by the
methods of this paper. In the second stage, which
might be called the true asymptotic region, quan-
tities suppressed by powers of logarithms become
effectively zero, and the sum rules (energy-mo-
mentum and parton-model sum rules) mentioned
below become valid.

Sum rules and relations between moments of
the structure functions which follow from the ten-
sorial and SU(3) xSU(3) structure of the free-(luark
model are true asymptotic theorems in our theories
[if H = SU(3)]. This transpires because we have
chosen the strong gauge group G to commute with
H [say SU(3)]. Therefore the vector mesons are
neutral with respect to the SU(3) xSU(3) charges,
and the coefficients C& vanish when g =0. Thus
the tensorial and SU(3) xSU(3) structure of the
Wilson expansion for large -q' will be identical to
that of free-field theory.

The Adler sum rule" is of course valid for all
q'. The Gross-Llewellyn Smith sum rule" holds,
since for this moment the appropriate anomalous
dimension vanishes for all g. It, however, is
approached logarithmically, i.e.,

l 1

dx[E,"'(x, q') +E,""(x, q')] = —6E(q'),
0

[(o E n v )2+4n Fn Y )1/2}

(48)

Since the off-diagonal matrix elements of y vanish
rapidly (like 1/n), we have to a very good approx-
imation (1% for n=4) that

The Llewellyn Smith relation'0 holds for individual
moments

1
dxx" {6[E;~(x,q') —E;"(x,q')]

0

—x[F,"(x,q') —EP(x, q')]}

A =A" -0 n&2
1

pg~ lnpg

(49)

The fact that A„&A„" is a simple consequence of
positivity; however, we note that the difference be-
tween these coefficients vanishes rapidly as n in-
creases. Already for n= 4 it is less than 1%, so
that one can hardly differentiate between the single
and nonsinglet parts of the structure functions
(except of course in the behavior of the first mo-
ment).

In asymptotically free gauge theories there are
then two stages in the approach to the asymptotic
region. In the first stage, when we have reached

as well as the various inequalities between mo-
ments of the structure functions discussed by
Llewellyn SmitP' and Nachtmann. "

All these are relations or sum rules for the
moments of the structure functions. As will be
shown below it does not necessarily follow that the
relations are valid for the structure functions
themselves. Thus the quantity in parentheses in
Eq. (51) does not necessarily vanish for a given
x like 1/ln(- q') as q'- —~.

Similar1y the Callan-Gross relation holds for
moments of the struetux e function. In other words
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the ratio of the moments of EI.=E2-2xE, and E2
vanishes logarithmically for large —q 2:

f,' dxx" E,(x, q'} 10
f,& (I "E,(,q') P „ ln(-q')

(52)

(O(2) O(2) ) P(2)E s v 0

where we have set P("M(" =P ') (since the anom-
alous dimension of the energy-momentum tensor
vanishes), Cr is the coefficient of the fermionic
part of 8„„(Or(')}, and the coefficient of the vector
contribution to 8„„(Or(")vanishes when g=0. The
projection matrix P(') is given from Eq. (46) as

(,) 1 T(R) 2C, (A)
2C,(ft)+ T(ft) r{ft) 2C, (ft)

so that the coefficient of 8„„=6)~[2'+8~' is given,
for large -q2, by

(54)

T (8)
2C, (ft) + r(ft) (55)

The net effect of the mixing of operators is to
multiply the free-field theory value by-r, where

T(ft)
2C, (ft) + r(jt)

=~» for the "red, white, and blue" quark model.

The contribution of the energy-momentum tensor
to the commutator of two vector (or axial-vector)
currents is thus (for a quark model)

[J'„(x},8'„(-x)] = (—,
' Tr X')).')

2
()'(x')r

However this does not necessarily. imply that
EI(x, q')/F, (x, q') vanishes like 1/ln(-q') for fixed
XI

Finally we can derive, in our models, a new sum
rule which is related to the matrix element of the
energy-momentum tensor. " The singlet piece of
the Wilson expansion will contain the energy-mo-
mentum tensor 8„„with vanishing anomalous di-
mension. According to the discussion in Sec. II
this will appear, for large —q', in the form

"red, white, and blue" quark model this has the
value ~25. This sum rule holds for any hadronic
target. However, the corrections to it, arising
from the nonsinglet operators, might be very
large. They vanish for infinite q2 but at a rate
governed by A2Ns =0.2 (in the "red, white, and blue"
quark model).

Similarly in the case of neutrino or antineutrino
the singlet contribution to F,'" ") satisfies (setting
the Cabibbo angle equal to zero) in the quark model

J
I

0

2 r I
+2~

The value of this sum rule for "red, white, and
blue" quarks is 0.48, whereas experimentally
one has 0.72+0.28.

We have determined the large-(-q') behavior of the
moments of the structure functions. What can one
say about the q2 behavior of the functions them-
selves'P It is useful to construct an example of a
function with roughly the correct anomalous di-
mensions. Consider the nonsinglet piece of
E,"s(x, q') for electroproduction. It satisfies Eq.
(42). If the constants CN~S) were known then one
could construct E," (x, q'). Since these constants
are not known there exist many functions which
satisfy Eq. (42). Let us approximate ANS by its
asymptotic form, ANS = ()(ln(n) —P. For the "red,
white, and blue" quark model @=0.296, P=0.051.
Then we have to find a function E"s(x, q') which
satisfies

1
lim (fxx" E(x, q') = C(") e's (n +2} "~,

oo 0

I.= ln ln(- q') . (61)

In addition we shall impose Begge behavior, in the
sense that for fixed q' we demand that E(x, q')
approach a constant as x-0.

A solution of this is provided by

To improve the convergence one can take linear
combinations of structure functions to obtain a
pure SU(S) singlet:

1

dx[6(Ef + E,")-(E,"'+F,"")] = vr (6.0)
0 40

x[x "8„,(0) x„+x"8„)x„
QI. C-ht X

E(x&q )=I.
( 1) Ae 3' (62)

-g„„x x 8 g].

As a consequence the singlet piece of I'2 for
eleetroproduction will satisfy

J
1

dxE; „., (x, q') = (q2)r,
0 2 ~ O

(5V)

where (())') is the average quark charge. In the

where c is an arbitrary constant. This solves Eq.
(61) with

c(n+1)e
(n +1)(n+2) '

One ean easily eonstruet additional solutions by
multiplying Eq. (62) by a polynomial in x. This
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function has Regge behavior, i.e.,

[ln(- q')]s . (63)
+2~~co

At fixed »40, 1 it behaves, for large -q', like

((c —lnx)) '
nI.

Accordingly F(x, q') will (a) for any »40, 1,
vanish faster than any power of ln(-q') for large
enough -q' (in fact E(x, q')&[ln(- q')] ~~"i +~),
and will (b) increase for intermediate values of
—q' for sufficiently small rand decrease for @close
to unity. Thetransitionpoint, at whichEdoesnot
change as —q' increases, is roughly x= 1/
[ln(- q')]~, where p is some positive constant.
(c) Finally, E(x, q') will show largest deviations
from scaling in the vicinity of x = 1.

Such behavior is more general than this par-
ticular example. Specifically (a) is a simple con-
sequence of positivity,

~ =1E(», q') =— drF(X, q')
2& x-e

(65)

and the fact that A„-inn as n-~.
This example also illustrates the rather Small

variation in q2 of the asymptotic form of the struc-
ture functions. To test for deviations from scaling
one mill require large variations of q2 and mea-
surements in the vicinity of x=1. One might
expect a 50% variation for x= 0.9 as —q' increases
from 10 to 50 BeV2.

This example further illustrates that two dif-
ferent solutions of Eq. (61) might have quite dif-
fel ent Q behavior fol a given value of x. Con-
sider the solution F' to Eq. (61) which is given by
Eq. (62) with c replaced by c'& c. Then, for large

2

E(x~ q )
[1 ( 2)]h, (c/~ ) c —sx

E(x, q') c —nx

By making the ratio c/c' large we can arrange for
E/E' to increase like a large power of ln(- q') for
x near unity.

As a consequence the parton-model relations
for moments of the structure functions, for ex-
ample Eq. (51), do not imply that these relations
are satisfied for the structure functions them-
selves. Also the fact that the moments of the lon-

gitudinal structure functions decrease like
1/ln(- q') relative to the moments of the trans-
verse structure function [Eq. (52)] does not imply
that B(q', x) = Ez(q', x)/E, (qm, x) decreases loga-
rithmically for all x. Indeed it might very well
increase for x close to unity. Without additional
input the only reliable predictions one can make
are with respect to the q2 behavior of the moments.

IV. CONCLUSIONS

A crucial test of asymptotically free gauge the-
ories of the strong interactions is the verification
of the q2 behavior of the moments of the structure
functions. In the best of all worlds one could con-
front an infinite number of these moments with
the predicted asymptotic forms (which are deter-
mined solely by the gauge group and the fermion
representation). An additional test is provided by
the energy-momentum sum rule derived above.

In reality, of course, it will be very hard to
determine the q~ behavior of the moments. More
than likely the most practical place to look for
violations of Bjorken sealing is in the vicinity of
threshold (x= 1). There we expect to see the
structur e functions decreasing like ever- increasing
powers of ln(- q').

Whether the picture described in the paper is
consistent w'ith experiment is an open question.
The fact that scaling appears to have set in already
for rather small values of' q' is neither explained
nor contradicted by our theories. The rate of
approach to asymptopia must be determined by
nonperturbative methods. This problem, as well
as the understanding of the low-energy and on-
mass-shell behavior of the theory, requires the
development of new theoretical techniques.

APPENDIX A: PROBLEM OF GHOST MIXING

One is tempted to argue thai only manifestly
gauge-invariant operators appear in the Wilson
expansion of the product of two gauge-invariant
operators. However, in the case of composite oper-
ators constructed from Faddeev-Popov ghost fields
it is not clear how to formulate the criterion of
gauge invariance. It does not seem that the ghost
fields have any simple transformation properties
under gauge transformations (in particular, one
can choose gauges in which the ghosts are entirely
absent). Moreover we will show in a simple ex-
ample that operators constructed from ghost fields

Dllx ln a highly nontrivlal way with the manifest-
ly gauge-invariant operators of lowest twist which
control the Bjorken limit, in the sense that the y
matrix appearing in the renormalization-group
equations for these operators has nonvanishing off-
diagonal entries. This appendix is devoted first to
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showing that a nontrivial problem is involved here,
and second to describing that argument we used to
convince ourselves that the calculations given in
the main test do indeed give the correct asymp-
totic behavior for products of currents in the
Bjorken limit. We argue that the anomalous di-
mensions (renormalization constants) of manifest-
ly gauge-invariant operators are independent of the
gauge in which they are computed, so since there
exist gauges in which no Faddeev-Popov ghosts are
present, the correct values are obtained in gauges
with ghosts by ignoring the ghost mixing.

An inst, ructive example of a gauge field theory is
quantum electrodynamics with the unusual gauge
chojce24

~„A" --ngA„A~ =0, (A1)

&v=0 (As)

We can now compute "y«, the diagonal term in
the y matrix for the operator 0~"), from the
radiative corrections to the vertex shown in Fig.
3(a). The result is

where g is the coupling constant and u is a gauge
parameter. The Feynman rules for this theory are
given in Ref. 24. Notice the presence of Faddeev-
Popov ghosts.

For simplicity we consider the theory without
fermions. In this case we are of course just deal-
ing with free-field theory. The manifestly gauge-
invariant operators of lowest twist are

where S denotes symmetrization with respect to
the p's. To compute y„, the anomalous dimension
of the vector field, to order g2 we need only con-
sider the logarithmically divergent parts of the
two self-energy graphs with vector and ghost loops.
The result is"

V
rvv =o. (A4)

To see whether these operators mix with the ghost
operators we need only check that the anomalous
dimension for "0", sandwiched between ghost
states y~~, does not vanish. A calculation exactly
like the one just described for the vectors involv-
ing the diagrams of Fig. 4(a) gives

~2g2 g ~2g2
16m' ' o~ n(n —1) 16m' ' (A5)

Notice for a =0 we are in ordinary Landau gauge,
and of course no ghost mixing can occur (there are
no ghosts}.

This shows there is an operator that mixes with
Oi"~ which to lowest order (go} is given by (p is

the ghost field)

'0„"...„(x)=Sp*(x)s„~ ~ s„p(x)+0(g). (A6)

In addition there might be order-g terms in which
one of the derivatives is replaced by gA„, arising
from the diagrams in Fig. 4(b).

To complete the picture we notice that y«, the
anomalous dimension of the ghost operator sand-
wiched between vector states, does not vanish.
This is readily seen by noticing that only Fig. 5(a)
can give a term of the structure g „„lnA' (notations
are as in Sec. III). So we know that if we failed to
consider other operators the y matrix

(A7}

could not have zero eigenvalues ("y~„=0, "yo«x0,
"y~~ x0, so detyx0). However, we know that we
are dealing with free-field theory, so there must
be an operator with zero anomalous dimensions.
Evidently there are even more operators which
mix, and there is a complicated cancellation mech-
anism among many operators which are not indi-
vidually gauge-invariant.

To verify that the same phenomenon occurs in

gpv~hk) +k bp, +v~~") "p~l ~" ~u"vhk)

(a)

(o)
n

(b)

FIG. 3. Graphs for computing yvvv in quantum electro-
dynamics in the gauge of Eq. (Al). (a) The vertex for
"O~"~. (b) The radiative correction to the matrix element
of "0 " between vector states.

FIG. 4. Mixing of vector and ghost operators. (a)
The zero-order contributions to ~0 " . (b) The order-g
contributions to 0 " .



ASYMP TOTICAI. LY FREE GAUGE THEORIES. II 991

(A9)

The theory in this gauge is not renormalizable by
power counting if e 40. From now on we will al-
ways assume that +=0 and simplify further by tak-
ing &" lightlike, n~ =0. Then the propagator is

(A10)

The calculation of y„and "y« is straightforward,
following the pattern of Sec. III. The same dia-
grams [Fig. 2(c)] are involved, except that there
is no ghost-loop contribution to the self-energy,
The results are

~v = -(g '/«')~. (G)~,

"Xrv = (Z'/«')~, (&)

(All)

1 4 4
3 n(n - 1) (n+ l, )(n+2) +j

In the calculations we have taken nk =~ =0 (k is
the external momentum). It turns out that the
dangerous-looking denominators in (A10) all can-
cel from internal yropagators, at least in our cal-
culation of logarithmically divergent pieces.

Although y„ is certainly gauge-dependent, the
"y~~„are not." In fact the "y~~ have the same val-
ues in the ghost-free gauges as in the Fermi-type
gauges. In the ghost-free gauges the operator-
product expansion for gauge-invariant operators
takes a simple form. Ih particular there appear
no ghost operators. The anomalous dimensions of

Yang-Mills theory we will work in a gauge where
there are no Faddeev-Popov ghostS. " Our gauge
is specified by

n"A'„= 0,
where n is a fixed vector and a is the group index.
(This gauge condition is not Lorentz-invariant. }
The absence of Faddeev-Popov ghosts is a conse-
quence of the fact that, under a gauge transforma-
tion

&&„(&)=s,x(&) -z[x(&),&,(&)1,

5(n "A'„}is independent ofA for fields satisfying (AS).
In order to implement gauge conditions like (AS)

we add a term -(I/2a)(n"A„) to the Lagrangian.
This leads to the standard Feynman rules for Yang-
Mills theories but without the ghosts and with the
propagator modified to be

-g' n " n"'D"'(P)= — ""+ . f "j"+-
~cjl pg 8 Q, p}2 n P

0

~, +crossed

crossed

FIG. 5. Contributions to "p ~&&. The coefficients of

g» arise from diagram (a).

the operators appearing in it can, however, be
computed in any convenient gauge. This demon-
strates why the calculations given in the text are
relevant for determining asymptotic behavior in
the Bjorken limit, despite the apparent problem
of ghost mixing. The same apparent problem
arises even in quantum electrodynamics in the
unusual gauge (Al), but here, of course, we know
the correct answer, and it is correctly given by
the arguments of this appendix.

APPENDIX B: SAMPLE CALCULATION, "OFFF

In this appendix we wi11 give details of the calcu-
lation of "y„"~. The techniques used here should
enable the reader to duplicate without too much
difficulty most of the numerical results in this
paper. The calculation will also clarify the origin
of the Q,"I/j terms in the anomalous dimensions
which are characteristic of gauge theories and give
pronounced violations of canonical scaling as n -.

The key tool in these ealeulations is the angular
average integral

dQ k~ k~

2 e e

(n+2)t t ~ &&(n&K&) &ctn-x)&st~) '
PslE'$

where on the left-hand side we have the average
over the unit sphere in Euclidean 4-space, while
on the right-hand side the sum runs over all pos-
sible ways of grouping the p's into pairs. This
formula holds for even n; for odd e the left-hand
side vanishes. The formula is readily proved by
induction.

Let us evaluate the first graph of Fig. 2(d). (&
is an arbitrary vector which is contracted into all
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free indices of the fermion tensor. ) In the
Feynman gauge it is, after some simple Dirac
algebra,

d4p 1
(2&)4 (p')'(p —k)'

x [2p2$ —4(p a)$](A p)" ' (B2)

symbolically

c,(A k)" 'g lnA'= ig'C, (R)

~(

d'p 2p'g-4(p a)ji(
~ (»)' (p')'(p- k)'

(B3)

We are interested in the (logarithmically divergent)
coefficient of (6 k)" '4( in the expansion of this in-
tegral. Throwing away other terms, we write

where A is an ultraviolet cutoff. Differentiating
(B3) on both sides n- 1 times with respect to k
and keeping only logarithmically divergent parts
gives

c,(n —1)l&, k, plnA&= ig C,(ft) 2, p, „„'p," p, (& p)" '[2p'$-4(p &)p']. (B4)

Now rotating into Euclidean space and using (Bl)
gives

Putting these results together gives

-g 2
16m n(n 1)) ' (B6)

6~' n(n+1) Zj
The second graph of Fig. 2(d) gives

I

d4p &2p
ig2C (ft) ' g(~ p)'(~ k)" ' '.

(2~)' p'(p- k)'—
(B6)

I=2
(BV)

with the obvious definition of &,.
The third graph gives the same number as the

second.

The reader who has worked through the previous
example carefully should be able to do this integral
"by inspection"; the answer is

and with our old result pz [Eq. I (4.19)]we get the
announced result for "y~~.

In this calculation it was clear that the origin of
the terms in "y growing logarithmically with &

arose from the replacement of ordinary by co-
variant derivitives. In terms of the "hand-waving
argument" of Ref. 2, it appears that covariant de-
rivatives do not "separate" in space the fields
they are sandwiched between.

The method outlined here is a very powerful one
for calculations of anomalous dimensions at the
one-loop level. Other methods have also been pro-
posed for this purpose. " It is doubtful that any
method of comparable simplicity exists for higher-
order calculations.
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The attractive (positive) and repulsive (negative) linear eigenvalues of the Lippmann-
Schwinger equation can become arbitrarily small in absolute value for sufficiently strong
interactions. In this paper we show that this cannot be the case for the Faddeev equations.
Three-body eigenvalues arising from the repulsive part of the two-body interaction must
have a certain minimum absolute value or the Faddeev equations can predict physical bound
states held together by this part of the interaction. It is shown that this limitation upon the
eigenvalues arises from the suppression in the 7 matrix of the repulsive part of the two-
body potential.

The linear eigenvalue' of the Faddeev equations
have been of considerable interest recently due
to their importance in iterative methods for de-
termining the three-body binding energy' and in
studies of the three-body D function. ' In this
paper we study the nature of the linear-eigen-
value spectrum of the Faddeev equations in the
presence of two-body interactions which contain
a repulsive part. Our primary result is that,
because the repulsion in the two-body potential
is strongly suppressed in the two-body T matrix,

the Faddeev eigenvalues arising from the repul-
sion in the interaction have a certain minimum
absolute value. Physical arguments also dictate
this behavior, for otherwise the Faddeev equa-
tions would predict bound states held together by
the repulsive part of the interaction.

The eigenvalue sPeeIrum

For three identical particles the linear-eigen
value problem can be expressed as'


