
PHYSICAL P. EVIEW D VOLUME 8, NUMB ER 10

Asymptotically Free Gauge Theories. P

15 NOVEMB ER 1973

David J. Gross~
Nationa/ Acce/erato' Laboratory, P. O. Box 500, Batavia, I/linois 60510

and Joseph Henry Laboratories, Princeton University, Pt'inceton, Net Jersey 08540

Frank Wilczek
Joseph Henry Laboratories, Princeton University, Princeton, N'ew Jersey 08540

{Received 23 July 1973)

A.symptotically free gauge theories of the strong interactions are constructed and analyzed. The reasons
for doing this are recounted, including a review of renormalization-group techniques and their

application to scaling phenomena. The renormalization-group equations are derived for Yang-Mills
theories. The parameters that enter into the equations are calculated to lowest order and it is shown

that these theories are asymptotically free. More specifically the effective coupling constant, which

determines the ultraviolet behavior of the theory, vanishes for large spacelike momenta. Fermions are
incorporated and the construction of realistic models is discussed. %'e propose that the strong
interactions be mediated by a "color" gauge group which commutes with SU(3) &( SU(3). The problem

of symmetry breaking is discussed. It appears likely that this would have a dynamical origin. It is

suggested that the gauge symmetry might not be broken and that the severe infrared singularities

prevent the occurrence of noncolor singlet physical states. The deep-inelastic structure functions, as well

as the electron-positron total annihilation cross section are analyzed. Scaling obtains up to calculable

logarithmic corrections, and the naive light-cone or parton-model results follow. The problems of
incorporating scalar mesons and breaking the symmetry by the Higgs mechanism are explained in detail.

I. INTRODUCTION

In recent years the renormalization group has
played an increasingly important role in the study
of the asymptotic behavior of renormalizable field
theories. This approach has acquired new impor-
tance due to the recent discovery that non-Abelian
gauge theories are asymptotically free. ' ' In this
paper we shall amplify and extend the results re-
ported in Ref. 1.

The renormalization group dates from the funda-
mental work of Gell-Mann and Low, ' who studied
the asymptotic behavior of the photon propagator
in quantum electrodynamics. The remarkable
discovery of Gell-Mann and Low was that the as-
ymptotic form of the photon propagator was deter-
mined by the zeros of a certain, calculable, func-
tion of the coupling constant and not by the actual
value of the charge. The renormalization-group
equations were extended by Bogolubov and Shirkov
to the vertex function' and employed to analyze the
ultraviolet and infrared behavior of quantum elec-
trodynamics and other field theories. " (For a
review of this work see Ref. 8.)

The basic idea underlying the renormalization-
group equations is very simple. A renormalizable
field theory contains two types of parameters—
masses or coupling constants with positive dimen-
sions of mass (i.e. , due to Mgp or ay' terms in
the Lagrangian) and dimensionless coupling con-
stants (i.e., due to A. Q' or g A, "gA„ terms in the

Lagrangian). Coupling constants with negative di-
mensions of mass give nonrenormalizable theo-
ries. .If one considers a Qreen's function for
large and spa.celfke momenta (so as to exclude any
Landau singularities), then one would expect that
the generalized mass terms in the Lagrangian
(ilfpg or A, p') could be neglected. In other words
the leading asymptotic behavior of the Green's
functions should be the same as would be calculated
in a massless theory. This can be proved, to any
finite order in perturbation theory, by using
Weinberg's theorem. ' The massless theory con-
tains no dimensional parameters to set the scale
of momenta, therefore one might expect that the
asymptotic behavior of the amplitudes would be
determined by pure dimensional analysis. This is
called naive or cannonical scaling. It does not
occur in practice, since the massless theory does
contain a hidden dimensional parameter. This
parameter, p, , must be introduced in order to
perform the subtractions necessary to renormalize
the theory and render it finite. Due to infrared
singularities these subtractions, for the massless
theory, must be performed off shell, say at some
spacelike momenta p' = —p,'. The subtractions
then define the physical coupling constants and the
scale of the fields (which are determined by the
wave- function renormalization constants). The
subtraction point, p, , is arbitrary. If we change
the subtraction point the net effect is to change the
value of the coupling constants and the scale of the
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fields. This fact is expressed by the renormaliza-
tion-group equations.

A change in the subtraction point, p, is equiva-
lent to a, change in the scale of all momenta since
p, is the sole parameter that fixes the momentum
scale. Therefore one can use the renormalization
group to relate Green's functions for one set of
momenta and coupling constant to Green's function
for a scaled set of momenta and different values
of the coupling constants. To do this one only
needs to know the functions which determine the
change in coupling constant and scale of fields due
to a change in p. . In particular the asymptotic
form of the amplitudes (for large spacelike mo-
menta) can be related to amplitudes at some fixed
momenta and an effective coupling constant (which
would be determined by performing the subtrac-
tions at asymptotic values of the momenta). The
asymptotic value of this effective coupling con-
stant will determine the ultraviolet behavior of
the theory. It is given by the zeros of a calculable
function, which are called fixed points of the re-
normalization group.

For about ten years there was little interest in
the renormalization group. " This was probably
due to the following reasons. First, the renormal-
ization group provided information about Green's
functions for large spacelike momenta, which are
of no direct physical interest. This approach is
much less informative about Minkowski momenta
and on-shell amplitudes —since we lack an exten-
sion to this region of Weinberg's powerful theo-
rem. ' Second, it was soon discovered, in all the
cases investigated at the time, that the ultraviolet
behavior was not calculable using perturbation
theory. Thus it appeared that the renormalization
group provided a framework in which one could
discuss, but not calculate, the asymptotic behavior
of amplitudes in a physically uninteresting region.

This situation has changed in the last few years
due to the following developments. First there
was an increased interest in the matrix elements
of local currents at short distances" (or their
Fourier transforms for large spacelike momenta).
This interest was further increased by the advent
of new experimerits on deep-inelastic lepton-had-
ron scattering at SLAC, and by Bjorken's predic-
tion and the experimental indications of scaling. "
The theoretical framework for the discussion of
products of currents at short distances was pro-
vided by Wilson's operator-product expansion. "
Although Wilson had emphasized that, in general,
one does not expect naive scaling, the experimental
indications of Bjorken scaling motivated the de-
velopment of phenomenological scaling models.
One approach was to abstract from free-field the-
ory, or interacting-field theories with an ultra-

violet cutoff, the short-distance structure of cur-
rent products, "the other was to hypothesize the
existence of pointlike constituents of hadrons
(partons). " Assuming aquarkfield-theoretic mod-
el, or that the partons had the quantum numbers
of quarks, many relations and sum rules were de-
rived. At present the experimental data. are con-
sistent with spin--,'- (Ref. 16) quarklike constituents.
All attempts to provide dynamical explanations for
these models were unsuccessful.

Meanwhile significant developments of the re-
normalization group techniques were made. The
equations that determine the change in momentum
scale of massive field theories were derived by
Ca lian" and Symanzik. " These equations, for
large spacelike momenta, reduce to the differen-
tial form of the renormalization-group equations
already derived by Orsiannikov in a little-noticed
paper in 1956." In addition it was realized that
the renormalization-group approach is the key to
asymptotic behavior of the coefficient functions in
Wilson's operator-product expansion, and thus the
related behavior of electroproduction structure
functions in the Bjorken region.

In particular it was realized that Bjorken scaling
could be understood within the framework of the
renormalization group if there was an ultraviolet-
(UV) stable fixed point of the renormalization
group. At the fixed point, however, the anomalous
dimensions of the relevant operators in Wilson's
expansion would all have to vanish. All the indica-
tions are that this can only occur if the value of the
fixed point of the renormalization group is zero.""
This has recently been proved in a large class of
field theories. " In such a theory the effective
coupling constant vanishes for large spacelike mo-
menta and we describe this phenomena by saying
that the theory is asymptotically free. An asymp-
totically free theory will exhibit Bjorken scaling
(up to, perhaps, logarithmic corrections) and in
addition will lead to all the naive light-cone- or
parton-model results. "

The possibility that a given field theory is as-
ymptotically free is easily explored by simple
perturbation-theory calculations. Quantum elec-
trodynamics was known, from the original work of
Gell-Mann and Low, not to be asymptotically free.
Zee extended this result to scalar-fermion theo-
ries involving one coupling constant. " Recently
Coleman and one of us (D.J.G.) have proved that
no theory zohich does not involve non-aphelian
gauge mesons can be asymptotically free.
Together with the recent discovery that non-
Abelian gauge theories are asymptotically free' '
these developments provide a compelling case for
a non-Abelian gauge theory of the strong interac-
tions. Indeed if one accepts the renormalization-
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group approach and the experimental reality of
Bjorken scaling as an asymptotic phenomenon then
there is, probably, no other choice." This pos-
sibility is explored in the following.

In Sec. II we shall outline the derivation of the
renormalization-group equations for pure Yang-
Mills theories (which involve only gauge fields).
These equations are discussed in greater detail in
Appendix A. We also discuss the notion of the ef-
fective coupling constant and exhibit the solution
of the renormalization- group equations.

In Sec. III we calculate the renormalization-
group parameters for pure Yang-Mills theories.

In Sec. IV we incorporate fermions into the gauge
theories, without destroying their asymptotic
freedom. The large-momentum behavior of the
effective coupling constant and Green's functions
is derived.

In Sec. V the construction of realistic physical
models of the strong interactions is discussed.
We analyze the structure functions of deep-inelas-
tic scattering and the total electron-positron an-
nihilation cross section in these models. These
applications will be explored further in a forth-
coming publication. " The major problem remain-
ing in these gauge theories is how to break the
gauge symmetry and provide masses for the vector
mesons. Various dynamical possibilities are dis-
cussed in Sec. V.

In Sec. VI we incorporate scalar mesons into
asymptotically free gauge theories. The difficul-
ties encountered in achieving this are described„
and the failure to construct models in which the

Higgs mechanism generates masses for all the
vector mesons is explained.

Section VII contains some concluding remarks.

Trft, ty]=2~, s . (2.4)

——Tr((S"B„)'J

+2»(sl A*el 4-gsp4*[Bp 4]] (2.5)

where p= p't, is a massless, complex, scalar
field which propagates in closed loops only and
obeys Fermi statistics. The resulting Feynman
rules are summarized in Fig. 1.

Due to the presence of massless particles and
the resulting infrared singularities it would appear
that the S matrix does not exist, at least in pertur-
bation theory, for the pure Yang-Mills theory.
One can however consider the off-shell Green's
function for such theories, at all but exceptional
momenta. " In the following, this restriction is
always to be understood. The large-momentum
behavior of such Green's functions is not without
physical interest since it bears directly on the
ultraviolet behavior of more realistic models with
symmetry-breaking and mass terms.

Up till now we have discussed the Yang-Mills

b
k

-i (g „-(I-a)
& 1/k 8

b

V propagator

This Lagrangian is singular due to its invariance
under the gauge group. Therefore a proper quan-
tization of (2.1) necessitates the addition of a
gauge-fixing term to the Lagrangian, say
-(1/n)TrOS" B„)2/t. The presence of this term
then requires the appearance of Feynman-Faddeev-
Popov ghosts. " The net result is that the effective
Lagrangian used to derive the Feynman rules is

L = ——,
' Tr((&„B,—B„Bq—g[B„B,J )'].

II. THE RENORMALIZATION-GROUP EQUATIONS
FOR YANG-MILLS THEORIES

0
k

I

k2 ab
G propagator

In this section we shall derive the renormaliza-
tion-group equations for a pure Yang-Mills theory.
The only restriction on the form of the theory will
be the requirement that the gauge group be non-
Abelian and semisimple.

The classical Yang-Mills Lagrangian density is

L = --,'Tr((s„B,—a „B„-g [B„B,] )'], (2.1)

b,P C,y

b, P

d, 8
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VVV vertex

i 2C
lac Ibd(~ap ~y& Oas ~py)

2
lad Ibc[ ap ys ~ay pS]

2
lab lcd( ay PS aS Py)

VVVV vertex

B„(x)=B'„(x)t, (2.2)

is a matrix of Hermitian vector fields (summation
over repeated indices is implied). The matrices
t, generate a semisimple Lie group G:

(2.3)

r i4,
bP cy

-Ig C
b q

GGV vertex

and are normalized according to
FIG. 1. The Feynman rules for a pure Yang-Mills

theory (aII momenta flow into the vertices).
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theory formally„ that is without regard to the nec-
essary renormalization procedure. There exist
two ways of regularizing these theories. The most
elegant method is that of dimensional regulariza-
tion as discussed by 't Hooft and Veltman. " Al-
ternatively, one can add gauge-invariant higher-
derivative terms to the Lagrangian„ following
Slavnov" and Lee and Zinn-Justin. " Both of these
methods have the necessary virtue of maintaining
explicit gauge invariance.

With such a regularization the only primitively
divergent amplitudes are the vector-meson and
ghost two- and three-point functions and the vector-
meson four-point function. The necessary subtrac-
tions are severely restricted by the Ward identities,
which render all divergences logarithmic and re-
late the various divergent amplitudes. This is
merely a reflection of the gauge invariance which
limits the renormalized couplings to those dis-
played in the Lagrangian (2.5).'

The theory is then determined by specifying the
subtraction constants at some convenient subtrac-
tion point. It is, of course, impossible to subtract
at zero four-momentum, due to the infrared sin-
gularities. One therefore performs the subtraction
at an (arbitrary) Euclidean point p2 = —p'.

We define the vector wave-function renormaliza-
tion constant Z, in terms of the unrenormalized
transverse vector propagator:

(2.6)

the ghost wave-function renormalization constant
Z3 in terms of the unrenormalized ghost propaga-
tor:

(2.7)

the vector charge renormalization constant Z, in
terms of the unrenormalized vector three-point
vertex:

and that the longitudinal part of the inverse vector
propagator is unrenormalized:

D„„'(k)q",= + —
krak,

,
Qu

(2.ii)

where Q„ is the unrenormalized gauge parameter.
The renormalized Green's functions are then de-

fined by scaling the fields according to

(2.i2)

and defining the renormalized charge to be

Z +3/2Z -z

and the renormalized gauge parameter to be

Qr Z3 Qu '

(2.13)

(2.14)

The renormalized one-particle irreducible (1PI)
Green"s functions I"„",. . .„(P, I'„) [r ' is theI' n
inverse propagator],

=Z ~~2I.&~) (@ .. .~ i3 P g tI rr' & fr~ unrenormahzed .& (2.15)

are then finite functions of the renormalized
charge g, the gauge parameter Q, and the renor-
malization point p, . (When g and n appear without
subscripts they will refer to their renormalized
values. )

The choice of renormalization point, p, , is arbi-
trary. Any change in p. can be compensated by a
corresponding change of the charge, the scale of
the fields„and the gauge parameter. The renor-
malization- group equations reflect this fact. These
equations are most simply derived" by noting that
the unrenormalized 1PI Green" s functions
ri„"'(A;g„) (we suppress the momenta and vector
index labels of these 1PI Green's functions), when
expressed as functions of the cutoff, the bare cou-
pling constant g„, and the gauge parameter Q„, are
independent of p. .'

r'„„"(p,q, &)„,~~. . . ,=z, 'r~A'R„(p, q, &)„,q, 8
p. r'„"'(A, g„, n„)=0. (2.16)

(2 6)

and the ghost-vector charge renormalization con-
stant Z, in terms of the unrenormalized ghost-
vector three-point vertex:

r'„:„''(p;q, ~)„~ =z, 'r;:„'„'(p;q,r)&.
p2 2- 2 p2

(2.9)

Using Eq. (2.15) and the chain differentiation rule
we have

8 Q 8
g —+P(g, n)——ny(g, o)+5(g, n)

Qg 8Q

where

z,/z, = z,/z, (2.10)

The Ward identities' "ensure that these con-
stants are related by

P(g, ~)=u —,

8 lnZ3
y(g, ~)=zv s gp, cf,Q fixed

(2.18)

(2. i9)
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()(g, o.) = p,
8W gp, o.„,z fixed

(2.20)

The fact that P, y, () are finite functions of g and n
is an immediate consequence of (2.17) and the fact
that l " is finite when expressed in terms of the
renormalized parameters.

The last term in the renormalization-group equa-
tion is peculiar to gauge theories. As a conse-
quence of Eq. (2.14) we have that

&u 8Z3
()(g, o.)= ",-p,

gp, &u, A fixed

=-2o.y(g, n) . (2.21)

r(n)() p ) p .g ~) ~4-nr(n)

so that (2.17) can be rewritten as

(2.22)

8 8
)).——P(g)——4+ nI1+ y(g)]

8& 8g

&&r(")()(P„.. . , )P„;g, u) =o. (2.23)

The general solution of (2.23) is most transpar-
ently expressed in terms of the effective couPling
constant g(t, g):

t = ink, ,

dt g(t, g) =p(g), g(o, g) =g.d— (2.24}

The renormalization-group equations assume a
particularly simple form in Landau gauge where
e„=n =0, for in that gauge 5=0. This is a reflec-
tion of the fact that the longitudinal part of the vec-
tor propagator vanishes in this gauge, and a
change in renormalization point does not change
the gauge parameter. In the following we shall
often restrict ourselves to this gauge. Ultimately
we are interested in the physical consequences of
these theories which are determined by gauge-
invariant amplitudes. For such amplitudes the
change in gauge parameter can be reabsorbed by
a change in coupling and scale of fields. This is
explained in some detail in Appendix A, where we

also show that the lowest-order terms (of order
g') in P(g, o.) are independent of o..

The utility of the renormalization-group equations
is that they determine the change in the Green's
functions as we scale all momenta uniformly. Con-
sider the 1PI amplitudes

r(")()p„)(p„.. . , )(p„;g, q)

(in Landau gauge), where P,. is some set of nonex-
ceptional Euclidean momenta, and A. is a nonvan-

ishing parameter. Pure dimensional analysis im-
plies that

This function is given implicitly by

dx
p(x)

(2.25)

and satisfies

8 8—p(g) —g(t, g) =o. (2.26)

lim g(t, g) =g„,
t~~

(2.28)

then we say that g„ is an ultraviolet-stable fixed
point. The asymptotic behavior of I " is then con-
trolled by g„according to

r(")(xp„.. . , )(p„,g, t()

r(n)(p p .g ~)~4-n-I) (g )

ink
xexp -n y g x, g -y g„dx 2 29

so that y(g„) is the anomalous dimension of the
field.

The fixed points of the renormalization group
are determined by the zeros of P(g); i.e., P(g„)
=0. However, not all such zeros are UV-stable.
Thus if P has a simple zero at g„ this will be UV-
stable if and only if

The physical meaning of the effective coupling
constant g(t, g) is that it equals the renormalized
coupling constant defined by performing the sub-
tractions indicated in (2.6)-(2.9) at the Euclidean
point

p' —
p.'x' —

p, 'e2t

It is expressed in terms of the renormalized
coupling constant g (which was determined by sub-
tracting at P' = —u'). The renormalization-group
equation (2.24) then determines the effect on g of a
change in the subtraction point.

In terms of g we have

()(Px ~~P, 4 g~ 0) =r "(Pj ~P,i g(tg g)p u))('
t

xexp -g d~y g g, g
0

(2.27)

Of particular interest is the large-~ limit of this
solution, for it determines the ultraviolet behavior
of the Green's functions even in the presence of
mass terms (which here must arise from symme-
try breaking}. This limit will in turn be controlled
by the large-t behavior of the effective coupling
constant g(t, g). If Eq. (2.4) admits a solution such
that

p(g„) =o; p(g„) &o .
dg

(2.3o)
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A zero of P at which dP/dg&0 is said to be an in-
frared- (IR) stable fixed point, since g approaches
such a fixed point when X-0 (t- -~).

A theory is said to be asymPtotically free if g„
vanishes. In that case y(g„) =0 and the Green' s
functions can be expanding for large Euclidean mo-
menta, in a asymptotic series in g(t ) I plus a
modification due to the integral in (2.29)]. Since
in all theories P(0) =0, the origin of coupling-con-
stant space is either UV- or IR-stable. It has
recently been proved" that no renormalizable field
theory without non-Abelian gauge fields can be
asymptotically free.

Asymptotically free field theories are clearly of
great theoretical interest. They provide one with
models in which the asymptotic behavior of am-
plitudes is calculable by ordinary perturbation the-
ory. In addition there appears to be evidence, ex-
perimental and theoretical, that such theories are
required to explain deep- inelastic scatter ing. The
phenomenon of scaling predicted by Bjorken" is,
up to logarithmic corrections, a true asymptotic
feature of asymptotically free theories. Further-
more, it now appears that Bjorken scaling can
only occur if the strong interactions are asymp-
totically free." The fact that the only theories
that can be asymptotically free are those involving
non-Abelian gauge fields and that, as we shall see
in the following, asymptotically free gauge theo-
ries can be constructed, is a strong argument for
a gauge theory of the strong interactions.

III. CALCULATION OF THE RENORMALIZATION-GROUP
PARAMETERS

We shall now proceed to calculate the renormal-
ization-group parameters P and y to lowest non-
trivial order in perturbation theory, that is to or-
der g' and g', respectively. To calculate these
functions one must calculate the renormalization
constants Z, and Z, to order g' and use Eqs. (2.18)
and (2.19). These constants can only depend on the
renormalization point p via the ratio A/g, where
A is the ultraviolet cutoff. It is therefore sufficient
to calculate the logarithmically diver gent terms
(of order g') in Z, and Z, . It then follows that

(3 1)

(a)
2

(b)
I

2

(c)

FIG. 2. The vector-meson self-energy graphs.

graphs shown in Fig. 2. We calculate from these
graphs and (2.6) that

(3.3)

c.„c„,= c,(c)6.„.
C,

(3.4)

in the case of SV(N), C,(SV(N)) =N
Similarly the charge renormalization constant is

determined by the Feynman graphs shown in Fig.
3 and yields

Z =1+ ———C (G) lnA .g 17 3+
$677 6 2

(3.6)

A useful check on the above calculations is pro-
vided by the Ward identity, Eq. (2.10), which re-
lates the vector-meson and the ghost-renormaliza-
tion constants. The latter are much easier to cal-
culate. The relevant graphs are shown in Figs. 4

(a)

I

2 + 2 crossed graphs

where C, (G) is the value of the quadratic Casimir
operator for the adjoint representation of the gauge
group G. Namely,

(3.2)

(We denote the anomalous dimension of the vector
mesons by y~. ) The calculations are thus greatly
simplified. In particular it is not necessary to
specify the regularization method employed.

The wave-function renormalization constant is
determined by the vector-meson self-energy

(c) crossed graph

FIG. 3. The trilinear vector-meson vertex correc-
tions.
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FIG. 4. The ghost self-energy graph.

and 5 and result in

2

(3.6)

(3.7)

The calculation of P and y» is then mere arith-
metic. The result is

(3.8)

r, (g, u) =-
l6, .(—".- o.)~.(G). (3.9)

It is obvious from the above that for these gauge
theories the origin is UV-stable. If g' is small
enough then the solution to (2.24) will approach
zero, as 1/t for large t. We shall explore the
consequences of this following the incorporation of
fermions. We cannot provide a deeper understand-
ing of why non-Abelian gauge theories are so dif-
ferent from all other field theories in this respect.
Perhaps the serious infrared singularities of Yang-
Mills theories are reflected in the IR instability,
and thus the UV stability, of the origin.

2

Z, = Z, =—,—', T(R) lnA, (4.2)

forms. The fermions may have nonvanishing, but
symmetric, masses since we are not considering
here chiral gauge groups.

In the presence of a fermion mass the renormal-
ization-group equations are no longer valid. In-
stead one can derive the Callan-Symanzik equa-
tions' '" which contain, in addition to the renor-
malization-group operator, an inhomogeneous
term arising from mass insertions. The renor-
malization-group parameters are unaffected by
these mass terms. For large Euclidean momenta
the Callan-Symanzik equations reduce to the re-
normalization- group equations. This is a conse-
quence, to any finite order in perturbation theory,
of Weinberg's theorem. More precisely consider
the large-A limit of a Green's function l" "~(Ap, ) for
nonexceptional Euclidean momenta. The leading
power in A. of I" " to any finite order in perturba-
tion theory is denoted by I'Ais~„(hp, .) and satisfies
the renormalization-group equation [e.g., Eq.
(2.23)] . We should emphasize that an important
assumption is being made here, namely, that the
leading-power behavior of perturbation theory is
identical with that of the actual solution.

The effect of the fermions on P and y is easily
calculated. The fermions contribute to Z, via the
graph shown in Fig. 6 and to Z, via the graph
shown in Fig. 7. These yield the contributions

IV. INCORPORATION OF FERMIONS

where T(R) is defined by

Tr(v' v') = T(R)Ei., (4.3)

We now consider a gauge theory which includes
matter fields. Fermions are easily incorporated
without introducing any new coupling constants,
and without destroying the asymptotic freedom.
We add fermions by adding to the Lagrangian the
term

i,~ =tj(i$-M —gv' ~ P')tj, (4.l)

where the o' are the matrices of the representation
R of the gauge group G according to which p trans-

ra (R) = d(R)C, (R), (4 4)

where d(R) is the dimension of the representation
R and x the dimension (number of generators) of
the group. For example, in the case of SU(N) we

have for the vector representation (N)

We note the elementary identity between the value
of the Casimir operator for the representation A
and T(R) given by

(a)

whereas for the adjoint representation T(ADS) =N
= c,(G).

(b)

FIG. 5. The ghost —ghost-vector-meson vertex cor-
rections.

FIG. 6. The contribution of the fermions to the vector-
meson self-energy.
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then the domain of attraction of the origin is given
by"

0&g &g (4.i2)

FIG. 7. The contribution of the fermions to the trilin-
ear vector-meson coupling.

Perturbation theory of course tells us very little
about the nonvanishing zeros of P. If we calculate
P to any finite order, we might expect zeros to oc-
cur at values

The equality of Z3~ and Z, is an immediate con-
sequence of the Ward identity, Eq. (2.10), and the
fact that Z, and Z, receive no contributions from
fermion loops to lowest order. The resulting con-
tributions to P(g) and y(g) are

(4.6)

8
(4.6)

d,
g'=2r&(i) =-b.i'+be'+ ", (4.8)

where

(4 9)

The structure of this equation assures us that as
long as g(0, g) is small enough then for large t we
will have

g'(t, g) = b, 't '+b, b, 't 'lnt+O(1/t') .

(4.10)

These contributions are opposite in sign to those
arising from the vector-meson loops. Thus the
fermions tend to destabilize the origin. However„
there is room to spare. As long as

(4.7)

the theory will be asymptotically free. This re-
quirement is not very restrictive as to the number
of fermions allowed in the theory. For example if
the gauge group is SU(3) (C, =8), one can accom-
modate as many as 16 triplets or 2 octets of fer-
mions without losing asymptotic freedom.

It is therefore possible to construct a large class
of theories in which the renormalization-group
equations for the effective coupling constant ~(t, g)
take the form

(4.18)

since this is the effective expansion parameter.
On the other hand such approximations to P are
totally unreliable for these values of g. It is per-
fectly possible that in gauge theories J3 is negative
semidefinite and all values of the coupling constant
are in the domain of attraction of the origin.
Clearly for such theories to describe the strong
interactions it is necessary that this domain be
relatively large. It would therefore be useful to
know the value of b„which we have not calculated.

The value of 5z would be interesting in another
context. Since it is possible, by including the req-
uisite number of fermions, to render bo very
small, one might hope to construct models for
which gz is very small. For example if the gauge
group is SU(3) and we have 16 or 17 triplets of
fermions, then b, will equal 1/24m' or -1/24'',
respectively. This value is suppressed by a factor
of roughly 30 compared to the "natural" scale of
b, . Therefore unless there are similar cancella-
tions in the calculation of b„we would expect g,'
to be rather small, and calculable to a good ap-
proximation from the two-loop expression for P.
If this is so one could construct models which have
UV-stable fixed points at zero or g, and IR-stable
fixed points at g, or zero, respectively. These
would provide interesting theoretical models in
which both the ultraviolet and the infrared asymp-
totic behavior would be calculable.

The physical consequences of asymptotic free-
dom will be explored in the following section and
in a subsequent paper. It is clear„ from the discus-
sion in Sec. II, that the ultraviolet asymptotic be-
havior of all Green's functions can be calculated.
Thus the n-vector-meson 1PI Green's functions
will behave, for large Euclidean momenta, accord-
ing to Eq. (2.29). If we define (we shall work in the
Landau gauge)

This will be the true asymptotic behavior of the
effective coupling constant as long as g(0, g) =g is
in the domain of attraction of the fixed point g=0."
The size of this domain is determined by the value
of the first zero of P(g), namely, if

i y(g) = Cog + Cyg

where

(4 14)

(4.15)

P(g) =0 for g =g, , (4.11) then
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I' "(Ap„. . . , Ap„;g, p, ) ~ A.
' "(ink) "'0 ()I„

(4.16)

where

I„=exp -n dx y~ x, g —c~' ~ const+0
0 g~ oo ink,

(4.1V)

2

o. C (R)+ ~ ~16'' (4.19)

Thus the fermion propagator behaves for large mo-
menta according to

(4.20)

It is an important feature of asymptotically free
theories that the Green's functions are not strictly
given by their free-field-theory expression for
infinite momenta, due to the presence of the loga-
rithmic term in (4.16). These arise because the
anomalous dimensions vanish like g', and g van-
ishes only logarithmically as ~- ~. This, of
course, is a consequence of the fact that P(g') has
a double zero at g' = 0. These logarithmic correc-
tions to free-field behavior are calculable and in-
dependent of the coupling constants. They can be
computed by calculating the relevant anomalous
dimension to second order. The above Green's
functions are of little physical interest due to their
gauge dependence. However, as we shall see
shortly, the physically interesting Green's func-
tions of gauge-independent operators (currents in
particular) exhibit essentially the same asymptotic
properties.

We emphasize that the derivation of the Green's
functions in asymptotically free theories does not
require the existence of a convergent perturbation
theory. It is sufficient to assume that perturba-
tion theory yields an asymptotic expansion, for
small coupling constant, of the relevant ampli-
tudes. In that case the renormalization-group

In particular, the transverse part of the vector-
meson propagator behaves like

D" (b)'„'„))., (g„„- ", " (Ink')"~" I, .kpk„

k

(4.18)

To calculate the asymptotic behavior of Green's
functions involving fermions we require the anom-
alous dimension of the fermion field y~. This is
readily calculated (except for group-theoretical
factors it is the same as in QED):

equations provide, for asymptotically free theo-
ries, a true asymptotic expansion of Green's func-
tions for large Euclidean momenta.

V. MODELS AND APPLICATIONS

In order to construct realistic non-Abelian gauge
models of the strong interactions one must con-
front the issue of symmetry breaking. The stan-
dard means of breaking the gauge symmetry is to
introduce scalar mesons explicitly into the La-
grangian. As will be explained in Sec. VI it is very
difficult to preserve asymptotic freedom while in-
corporating scalar mesons, and perhaps impos-
sible to include enough sealars to completely break
the gauge symmetry. This is not too disappointing
since the explicit introduction of scalar mesons,
whose only role is to break the symmetry, is not
very pleasing. An alternative is that the gauge
symmetry is dynamically broken. In other words,
a composite Goldstone boson is formed and is
eliminated by the usual Higgs mechanism. "
Another possibility is that the gauge symmetry is
exact. At first sight this would appear ridiculous
since it would imply the existence of massless,
strongly coupled vector mesons. However, in
asymptotically free theories these naive expecta-
tions might be wrong. There may be little connec-
tion between the "free" Lagrangian and the spec-
trum of states.

The possibility of dynamically induced spontane-
ous symmetry breaking has been considered by
many authors, "' although no realistic model has
been constructed which does not involve fundamen-
tal scalar fields. Of particular interest is the
work of Coleman and Weinberg. They show that
theories involving massless particles often become
unstable, due to infrared singularities, and ex-
hibit spontaneous symmetry breaking. The infra-
red singularities of a Yang-Mills theory are par-
ticularly severe. Furthermore, zer o coupling,
for such theories, is an ultraviolet-stable fixed
point and therefore infrared-unstable. This means
that (neglecting masses) as the momenta decrease
the effective coupling constant increases. Pertur-
bation theory is therefore totally unreliable inso-
far as the small-momentum behavior of an asymp-
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totically free theory is concerned. The same re-
normalization group techniques allow one~ to dis-
cuss the small- or large-classical-field behavior
of the "potential. " The infrared instability of the
origin indicates the unreliability of the classical
(free) approximation to this potential. Thus wheth-
er or not the theory exhibits symmetry breaking is
a difficult dynamical question, requiring nonper-
turbative calculations.

If the gauge symmetry is broken by a dynamically
induced Higgs mechanism then the vector mesons
will acquire masses (say 1-3 BeV) and the color
degeneracy will be split. In that case one would
still be faced with the fact that there is no experi-
mental evidence for the existence of such neutral
vector mesons, colored hadrons and especially
quarks. The proponents of "red, white, and blue"
quarks" as a mathematical abstraction argue that
the color SU(3) group should be exact, and that all
noncolor singlets should be suppressed completely.
One clearly requires a dynamical explanation of
such a miracle. It might very well be the violent
infrared singularities of an asymptotically free
gauge theory provide the requisite dynamical
mechanism.

To illustrate some of the strange things that
could occur in the region of small momenta con-
sider a pure Yang-Mills theory (no fermions).
Then the renormalization group equations, Eq.
(2.23), as well as the general solution, Eq. (2.27),
are exact. One can use them to discuss the on-
mass shell, or infrared behavior of the theory by
letting ~- 0, t=ln~- -~. The effective coupling
constant g, which controls the dynamics in this
region is given [in terms of g(t = 0, g) =g] as usual
by

coupling constant: diverges fox finite momenta, . In
fact, g(T, g) = ~.

The infrared behavior of Green's functions in
this case is determined then by the strong-coupling
limit of the theory. It may very well be that this
infrared behavior is such so as to suppress all but
color singlet states, and that the colored gauge
mesons as well as the quarks could be "seen" in
the large-Euclidean-momentum region but never
be produced as real asymptotic states. This is an
exciting possibility which requires further exami-
nation.

In any case it might be valid to assume that what-
ever happens to the theory for small momenta
does not affect the ultraviolet behavior. We shall
therefore construct models and calculate quantities
of physical interest leaving the problem of symme-
try breaking (or the lack of it) to further work.

Since we are not to worry about symmetry break-
ing, our models need not include scalar mesons.
We therefore have only to specify the strong-in-
teraction gauge group, G, and the fermion repre-
sentation R. We would like, of course, to pre-
serve Gell-Mann's (approximate) SU(3)xSU(3) sym-
metry. This is simply achieved by taking the
gauge group to commute with the ordinary SU(3)
xSU(3) generators, and having the fermions belong
to a representation of SU(3)xSU(3)x6.45 We shall
take the fermions to be ordinary triplet quarks.
The fermions can then be represented by a matrix
of spinor fields

(5.3)
dx

P(x)
(5.1)

The behavior of g as t- —~ will depend on the ac-
tual form of P(g). We can distinguish two cases:

A. P(g) vanishes atg=g, &~. In this case g(t)
will approach g, as t- -~, its rate of approach
will depend on the nature of the zero. This is the
simplest case to envisage, the Green's functions
will scale according to Eq. (2.29) with some anom-
alous dimension.

B. p(g) is always negative Here we mu. st fur-
ther specify whether the integral

(5.2)

is finite or not.
If T =~, then g(t) approaches infinite values as

t- —~. Indeed if P(x) =x", o. & 1, for large x then
g(t) -(-t)' ' for large i.

If on the other hand T is finite then the effective

L ~L ~L

The generators of SU(3)xSU(3) transform the col-
umns of this matrix, whereas the generators of G

transform its rows. The fermions thus transform
as an L-dimensional representation (R) of the
gauge group G.

In such a scheme the vector mesons associated
with the generators of G are neutral with respect
to SU(3)xSU(3). The labels 1, 2, . . . , I. which dis-
tinguish the different quark triplets can be thought
of as colors, so that the strong interactions are
mediated by colored gauge mesons. Colored
quarks have been considered before ' for other
reasons, and there is some evidence that three
colors would be welcome. We shall therefore con-
sider a model in which the strong gauge group is
SU(3) and the fermions are color triplets (I, =3)
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(although as far as asymptotic freedom is con-
cerned any group will do).

In this model 4 transforms under an infinitesimal
gauge transformation according to

+(x)- 0(x)+is.(x)a'@(x) (5.4)

and under an ordinary SU(3)xSU(3) transformation
according to

e(x)- e(x) + i e(x)X'e,

[the A.
' are the usual SU(3) matrices]. Our I agran-

glan ls

(5.5)

I, = L + Tr/P(iP —gg, A.')P —/AM), (5.6)

where I.„ is given by Eq. (2.5) and M is the fermion
mass matrix. This model is asymptotically free.
The numerical value of P(g) is

&o
P(g) = 'g'=+

2

functions. In fa.ct, the moments of the scaling
structure functions measure the Fourier transform

C

dxx" 'F, (x, q. ') ~ C',."'(q', g)( n ~o("'~ n)
~q 2 ~00

(5.10)

(where x is the standard Bjorken variable, x
= -q'/2 v, and F,. stands for vW, or xIV,). Of
course the moment is also proportional to the nu-
cleon matrix element of the operator 0 "'; however,
the q' dependence is contained in C "(q', g).

One can apply renormalization- group techniques
to Wilson's expansion to derive an equation relat-
ing the dependence of C" on x' and g."" If the
operator 0 " is multiplicatively renormalizable
(renormalization constant Z„), then one derives

g3 9
+ ~ 0 0

2 8g
(5.7) (5.11)

The ordinary SU(3)xSU(3) vector, V'„, and axial-
vector, A. '„, currents are given by

V~ = Tr(@yqgx'),
(5.8)

A'„= Tr(iy„y, ye) .

Let us now discuss deep-inelastic scattering in
such an asymptotically free theory. Due to the fact
that the vector mesons are neutral and that the the-
ory is asymptotically free one can derive all the
sum rules and relations previously derived in the

parton or light-cone models. In addition there will
be logarithmic deviations from Bjorken scaling
which can be calculated. The full analysis will be
given in a subsequent paper"; here we shall give a
simplified discussion.

The structure functions of deep-inelastic scatter-
ing are Fourier transforms of the product of elec-
tromagnetic currents. In the scaling region one

probes this product for lightlike separation of the
currents. To discuss this one employs Wilson's
operator- pr oduct expansion:

J(x),J( x) P C("'(x'-, g)x") ~ ~ x" 0(„"' ..„(0)
~0 n

P1

(5.9)

where y~ is the anomalous dimension of the "cur-
rent." J(x), and y„ the anomalous dimension of
0

8
y. (g) = u

—InZ„
d

(5.12)

In the case under consideration the currents
(linear combinations of V'„and A'„) are conserved
or partially conserved. They therefore have van-
ishing anomalous dimension, so that the solution
of Eq. (5.11) is

y„(g') = y.g'+ o(g');

then since g'-50 'f ', we have that

(5.14)

2
C(") = g ~ C(n)(] 0)(lnq') s« "0

~exp — y„g x, g dx . 5.13
0

In our asymptotically free models, g- 0 and y„(g)
vanishes as t- ~. However, y„(g) does not vanish
fast enough to render the integral in Eq. (5.13)
conver gent. Let

[where we have suppressed the vector and SU(3)
labels on the currents as well as the tensor and

SU(3) structure of the operator-product expansionJ.
The dominant operators in the scaling region are
those of twist (equal to dimension minus spin) 2.
These are denoted by 0 ". The e-number function,
C("l(x', g), contains the light-cone singularity and
controls the asymptotic behavior of the structure

xexp — y g &~ g —y~g dx
0

(5.15)

Therefore the logarithmic deviations from Bjorken
scaling are obtainable from the lowest-order cal-
culation of y„(g').

In general a given operator 0 " will not be mul-
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Oi"2~ = Tr(gyq(i 8, —2gB', X,)$)

+ (p, —v) —(trace terms) (5.15)

tiplicatively renormalizaMe. In particular if there
exists more than one operator with the same spin„
quantum numbers, and physical dimension then
one must take linear combinations of these to ob-
tain operators with definite dimensions. This mix-
ing occurs for the twist-2, SU(3)xSU(3) singlet
operators in our theory, since there exist more
than one such operator. Thus, for example, for
spin 2 both

{2)=-, ~ C 1 f1 (XB
OP I I I1Q I' gI QgP I EOfBEg

contribute to the operator-product expansion (E',
= B„B;—B,EP„—igf„„B„'B.'„). This mixing and the
calculation of the resulting anomalous dimensions
will be discussed in a forthcoming publication. "

The nonsinglet SU(3)xSU(3) twist-2 operators
however are uniquely given in terms of the fermion
fields, and have definite dimensions. Let us denote
these operators by 0~&",~.'. .

& (x, x)„where r (.= +1)
denotes the chirality of the operator. They are
given by

i"
Oi~".'. .„(x,r) =—g Tr(" (x)V~ ~ V„y„V& ~ ~ V„(1+my,)+(x)j —(trace terms), (5.17)

where V„=~„+igB'„~' is the covariant derivative.
We define I"o{„gto be an 1PI Green's function with
the insertion of the operator 0„".'. .

& (x). This am-
Pg PPI

plitude will satisfy a renormalization- group equa-
tion. In particular if O{"~' is inserted into the fer-
mion two-point function we obtain

then

)

dxx" 'N(x, q') ~ const(lnq') '~ 1+0
Q q 2.~ ~ oo in/

(5.20)

+P(a) —, +y:(~)-2y (r) ~,'('. .=o,

(5.13)

3C,(B) 2

22c,(a) —8r(R) nfn+1) P'
(5.21)

where y~ is the anomalous dimension of the fer-
mion field. Since P is of order g' we may calcu-
late the combination y„' —2y„ to order g' by evalu-
ating the logarithmically divergent contributions
to I'{'„,to order g . These are given by the Feyn-
man graphs of Fig. 8 and yield

y'(g)=y'g'+
2 n

= ~, C,(B) 1- — +4+- + ~ ~ ~

(5.19)

We note that the power of the log is independent of
the physical coupling constant and is determined
solely by the gauge group (G) and the fermion rep-
resentation (A). For the three-triplet SU(3) model
A, =—,"„A,=f'„and for large n, A„=—,', In(n).

In a forthcoming publication we shall analyze
lepton-hadron scattering ~n great detail; meanwhile
a few comments are in order.

a. The app'voach to asymPtopia in these theories
is logarithmic. All asymptotic relations will be
corrected up to terms of order

[in the three-triplet model C, (A) =—', J. As expected
the anomalous dimensions are independent of a and

Having performed this calculation we can now

compute the scaling behavior of the nonsinglet
pieces of the deep-inelastic structure functions ac-
cording to Eq. (5.15). If we denote by N(x, q') one
of these structure functions, say I"2P""'""—F,"'"""",

FIG. 8, The 1owest-order correction to I'o{„~,

The rate of approach to asymptopia depends on the
unknown low-momentum behavior of the theory.

b, Bj ovken scaling is violated by logarithmic
terms, as in Eq. (5.2O). These logarithmic correc-
tions are given by second-order perturbation-the-
ory calculations, and depend only on the gauge
group and the fermion representation. The only
case where such logarithms are absent is when
the relevant operator in the Wilson expansion has
zero anomalous dimension. This is the case for
vector and axial-vector currents as mell as the
energy-momentum tensor. Thus the first moment
of the isoscalar component of the structure func-
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tions does scale:

dxE,' '(x; q') ~ const+0
00 lnq'

(5.22)

f (lnq') „lnq
'

d. Electron-Positron annihilation at large ener-
gies is controlled by the identity operator in the
Wilson expansion of two electromagnetic currents.
Since these all have cannonical dimensions the
cross section scales, and the coefficient is deter-
mined by the free-field limit (s = center-of-mass
energy squared)

(e+s — a rona g q 1+0~ ln
'

& +e p+p-
(5.24)

Finally let us discuss the incorporation of weak
and electromagnetic interactions into our models.
After all the recent revival of gauge theories was
for the purpose of constructing a unified and re-
normalizable theory of the weak interactions. ' Is
there any problem in combining these theories?

whereas the higher moments decrease logarithmi-
cally as in Eq. (5.20). Similarly the total neutrino-
hadron cross section zoill scale, since it is
given by the same (spin-2) moment.

It is an open question whether such a picture is
consistent with experiment. The deviations of the
asymptotic forms of the moments from exact
scaling are quite small, and one would need rather
large variations of q' to see any marked change.
Verification of logarithmic deviations, as well as
the numerical values of a„, would be strong evi-
dence for the above class of theories.

c. Sum rules and other relations between the
various structure functions measured in electron
or neutrino scattering, which previously were de-
rived from current algebra, the parton model, or
a naive light-cone expansion, are all true theorems
in our models. This is because, as is seen in Eq.
(5.15), the SU(3)xSU(3) and tensor structure of the
Wilson expansion will be (for large q ') that of the
free-quark model —the coupling constant effective-
ly vanishing in this region. There is no point in
listing these predictions here —they have been re-
viewed by many authors. "" However, we note
that these relations are approached logarithmical-
ly. Thus, for example, since the charged consti-
tuents have spin —,

' (Ref. 16)

f F~(x, q )x dx 1
f(lm )+ 2dinq )f Er(x, q')x"dx, 2

(5.23)
where

Since in our models the strong gauge group com-
mutes with SU(3)xSU(3) one can easily incorporate
the weak plus electromagnetic interactions accord-
ing to any one of the various schemes proposed
recently. ~ In fact, as far as the weak interactions
are concerned there is no difference between our
models and an Abelian vector-gluon interaction.

One would have to go to extraordinarily high
energies to ascertain experimentally whether the
weak or electromagnetic interactions are asymp-
totically free [e' in(q'/M~') = 1]. If however we as-
sume that these theories are asymptotically free
(in which case one is restricted to semisimple
gauge groups and one must worry about symmetry
breaking as before) then the Baker-Johnson-Adler
approach to QED" would be unnecessary. The
ultraviolet behavior would be controlled by the
fixed point at zero coupling.

VI. THE INCORPORATION OF SCALAR PARTICLES

We shall now consider non-Abelian gauge theo-
ries which include scalar fields. There are a
variety of reasons for considering such theories.
One might want to incorporate spin-zero funda-
mental fields as such, or one might want to employ
such fields to provide masses for the vector me-
sons by means of the Higgs mechanism. Indeed
the only known way of breaking the gauge symmetry
spontaneously is via scalar mesons which develop
nonvanishing vacuum expectation values. We have
explored whether one can incorporate a sufficient
number of scalar mesons to break the gauge sym-
metry completely, or at least retain only an
Abelian gauge group. In both these cases one
would thereby have a theory which is both asymp-
totically free and which possesses an S matrix in
perturbation theory (and not just off-shell Green's
functions).

It is well known from the proofs of the renormal-
ization of Higgs theories" that their ultraviolet
behavior is tha. of the underlying symmetric theo-
ry. In other words the symmetry breaking is a
"generalized mass term" and does not affect the
asymptotic (Euclidean) behavior of the theory
The argument that this is so is implicit in the proof
of renormalizability of Higgs theories, " where
one shows that the subtractions which render the
symmetric theory finite are sufficient to make the
asymmetric theory finite.

Let I' "~(P„.. . , p„;v) be any Green's function of
the asymmetric theory, where v is the vacuum ex-
pectation value of a scalar field which breaks the
symmetry. 1 " may be represented as a function-
al derivative (n times), with respect to the fields,
of the generating functional of 1PI's. It is an im-
mediate consequence of this definition that
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I'"'(P„.. . , p„; v)

CQ j
=g —'. I'""'(p„.. . , p„;o, . . . , o;o},

0

(6.1}

where on the right-hand side of (6.1) the I'i""i are
the Green's functions of the symmetric theory with

j insertions of the scalar field carrying zero mo-
mentum. Now, by simple power counting the 1PI's
I "" are less and less divergent in the ultraviolet
region as j increases, so that the ultraviolet be-
havior of (6.1) is controlled by the first term, i.e.,
by the ultraviolet behavior of the symmetric theo-
ry. Thus the desirable properties of the symmet-
ric theories discussed below will remain intact in
the presence of symmetry breaking.

Before we plunge into the analysis an overview
is in order. In the case of pure gauge theories as-
ymptotic freedom provides no constraint. When
the theories include fermions a weak constraint
(not too many fermion multiplets) must be satis-
fied. On the other hand the requirement of asymp-
totic freedom will severely constrain gauge theo-
ries involving scalar particles. This is because
such particles will necessarily have their own self-
couplings. One must therefore investigate the
asymptotic freedom of these new (dimensionless)
coupling constants. It is well known that a scalar
field by itself, with a XP' coupling, is not asymp-
totically free. Therefore the only hope is that the
gauge mesons will help render the fixed point A. = 0
ultraviolet stable. This turns out to be very dif-
ficult to achieve —in fact, it is remarkable that it
is possible at all. Unfortunately in order to have
asymptotic freedom one is forced to large gauge
groups and representations. Furthermore we have
not been able to find any examples of models in
which the gauge symmetry is completely broken.
For these reasons the results presented below
reinforce our expectation that if asymptotically
free theories of the strong interactions are to be
sensible, then the symmetry breaking must be dy-
namical.

Let us now analyze the renormalization-group
equations for gauge theories involving scalar me-
sons. First we note that the scalars have essen-
tially the same effect on g as the fermions. In the
vicinity of the origin in coupling-constant space,
the renormalization-group equation for the gauge
coupling g does not involve the scalar self-cou-
plings. These would contribute terms to Eq. (4.8)
of order g'~', where g is some scalar self-cou-
pling. However, unless A ~O(g') the scalar
self-couplings are not asymptotically free (see be-
low} and thus these corrections are negligible.
The net effect of the scalars is to contribute to

0 g + 0 ~ ~
3 (6.2)

[where d(B) for the scalars equals the real dimen-
sion of the scalar representation 8]. There is,
therefore, no problem in retaining asymptotic
freedom for g, as long as the number of scalars
is not too big.

In addition we are now required to study the re-
normalization-group equations for the scalar cou-
plings. There are, in general, many such cou-
plings. We are, of course, only interested in the
quartic couplings. One such coupling exists for
any representation of the gauge group, namely the
square of the inner product (the quadratic Casimir
operator). If the representation in question is real
the vertex is given in Fig. 9, and if it is complex
the vertex is given in Fig. 10.

A general representation of the gauge group will,
in general, possess many additional quartic invari-
ants. For each such invariant there will be per-
force a dimensionless coupling constant (some ex-
amples will be given below). Therefore, in gener-
al, the renormalization-group equations will be a
set of coupled nonlinear differential equations. It is
useful to consider first a simple example in which
there is only one quartic self-coupling. This is
the vector representation (real dimension =2&) of
SU(X). If p denotes the(complex) scalar field
transforming according to this representation, the
scalar interaction is given by

(6.3)

The renormalization-group equation for A. will
now be

—,=p, (X,g}, ~(t=o, z)=x, (6.4)

where

8A,
Py =P.

, g„,g„,o.'„,P fixed
(6.6)

-iX (8 8 +8 8 +I} 8 )

FIG. 9. The canonical quartic scalar coupling for real
representations.

p(g) a term equal to & (~) of the fermion contribu-
tion if the scalars transform according to a real
(complex) representation of the gauge group. Thus

g ]y
( ) g Cp(R)d(R)

fermions

+ 1 C,(ft)d(ft)

sealars
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FIG. 10. The canonical quartic scalar coupling for
complex representations.

—-AZ'+B'Z g '+ Cg '
At

(6.6)

Once again it is sufficient to calculate the lc,ga-
rithmically divergent corrections, in the one-loop
approximation, to the quartic scalar vertex.
These are illustrated in Fig. 10. [The graphs in
Fig. 11(c) should be divided by 2 since it is the
square root of the wave-function renormalization
constant that enters the renormalization-group
equations. ] The terms illustrated in Figs. 11(a)-
11(d) contribute to P~ terms of order A.', Ag', Ag',
and g', respectively. We therefore obtain an
equation for the effective coupling constant g:

(b) I

2

(c)

(d)

c d
ll

a b

+ 5others

+ 5 others

+ crossed +—I

2

c d

+ crossed

a b

The values of A, B', and C' are readily calcu-
lated (they are gauge-independent, but it is sim-
plest to evaluate them in Landau gauge):

FIG. 11. The graphs that contribute to the P functions
for the quartic scalar couplings (the directed lines re-
fer to the complex scalar mesons).

, (N+ 4),
1

1 3(N' —1)
2

(6.7)

(6.6)

dt
—=g (An +Bn+C)

where

B=B'+Op .

(6.11)

(6.12)
3(N- i)(N'+ 2N- 2)

4N' (6.9)

Equation (6.6) is most easily analyzed by intro-
ducing the parameter

n = (g) '&; n(o) =g '& . (6.iO)

We note that g must be of order g'„ for if it were
larger then, since A&0, the theory would not be
asymptotically free. The coupling o. satisfies

The fixed points of (6.11) will be given by the
zeros of the quadratic form. These will be real
and positive if

-(4AC)' '&B = 0. (6.iS)

When this condition is satisfied (A and C are al-
ways positive) then there will exist two fixed points
n, and n, If the coup.ling constant A. = n(0)g' is
chosen so that

n, =—[-B-(B'- 4AC)'t']&n(0) &n, = —[ -B+(B' —4AC)'t'], (6.i4)

we will be driven to the value n=a, as t-~. In
other words o., is a UV-stable fixed point. Equa-
tion (6.11) can easily be solved by quadratures:

dx
A.x +Bx+C p I+5(g t

(6.15)

For large t we have

n(t ) n t -A(&s-~y) lb p (6.16)

and since g' = 1/t, A.(t) will approach zero like 1/t.

It is easy to see that the condition (6.13) will be
satisfied, for SU(N), as long as ¹3[not SU(2)]
and bp is small enough. We can alw'ays make 5p
small by including fermion representations, whose
only effect is to decrease bp. (We can exclude
Yukawa couplings by the discrete symmetry g
—-P.) In the case of SU(3) we must incorporate
16 fermion triplets in order to make bp equal to
-I/46''.

We see already in this simplest of all cases that
the UV stability of ~ is extremely deli;cate. Even
in the most favorable case, N»I and bp =0, we
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can accommodate at most two vector multiplets of
scalar fields. Moreover if we do not include
enough fermions to render 5, sufficiently small we
cannot include any scalars. Roughly speaking un-
less 5, is small the gauge mesons, which are sta-
bilizing the inherently unstable A. P~ coupling, van-
ish too rapidly as t- ~.

Clearly we cannot include enough vector repre-
sentations to break the gauge symmetry complete-
ly. We have also investigated many other models
with scalar particles (i.e., other groups and rep-
resentations). We shall just give a brief summary
of the more interesting results.

The adjoint and the symmetric tensor represen-
tation of SU(N), as well as the (N, N) representation
of SU(N)xSU(N), are examples of theories with two
scalar quartic couplings. They lead to renormal-
ization-group equations of the form (6.6), which
ean again be simplified by dividing by g' as in
(6.11). The result has the form

4H
g' dt
=,, —=A „o. +A„&nP +A~SP +B„a+C„,

(6.1V)

=, —=AH„o'+Asact13+Aesap'+ Bap+ C8 .1 dP

The fixed points of these coupled equations are
easy to analyze. For each value of cy there will
be two roots of dP/dt=0. If these roots are real
then the smaller, P (o.), is attractive whereas the
larger, P, (o.), is repulsive. Similarly we define
ot (P) and n, (P). The coupling-constant plane is
the pictured in Fig. 12, in the case where all roots
are real. We are clearly driven to the fixed point
0.~, Pz satisfying

(e.iS)

as long as the initial values are small enough:

(6.19)

In practice the simplest w'ay to search for a
fixed point is to solve Eq. (6.18) by iteration. We
have mapped out some coupling-constant trajec-
tories on a computer, a sample result is given in
Fig. 13.

We shall now briefly review the results for the
above-mentioned theories. The same Feynman
graphs as in the ease of the vector representation,
Fig. 12, must be evaluated, except that there are
now two types of scalar eouplings. In each ease
n = X/g' and P = q/g'.

(a) The adj oint rePresentation of SU(N). The
scalars are Hermitian traceless cVxN matrices

FIG. 12. An illustration of the fixed-point trajecto-
ries in the e-P coupling-constant plane. The cross in-
dicates the presence of an ultraviolet-stable fixed point.

L = --,'A(Tr{MM })'——,'g Tr((MMt)'}. (6.22)

The results are shown in Table I. The main re-
sult is that all these theories are asymptotically
free for N large enough. The UV stability is, as
before, delicate. One must make bo small, and
additional symmetrically coupled scalars destroy
the asymptotic freedom.

Our experience in these and other cases sug-
gests that it is the size of a representation, rather
than its detailed nature, that determines whether
the model will be asymptotically free or not. In-
deed in all the cases enumerated in Table I the re-
normalization-group equations are identical as N

If one considers larger representations the
numberof independent coupling constants rapidly
increases and the renormalization-group equations
become quite complicated. For example, we have
analyzed a theory involving an SU(N)xSU(N) gauge
group, with the scalars transforming according to
the (N, N)$(N, 1)$(1,N) representation. In this
model there exist five inde'pendent scalar coupling
constants. It is asymptotically free when N~ 5.

Our original motivation for studying theories in-
volving scalar mesons was to utilize the Higgs
mechanism to break the gauge symmetry and pro-
vide masses for the vector mesons. Some of the
models considered above would appear to have the
potential of accomplishing this aim. Take, for ex-
ample, the gauge group to be SU(N)xSU(N), and

M of fields. The quartic self-couplings are given
by

(6.20)

(b) The symmetric tensor representation of
SU(N). The scalars are represented by an NxN
symmetric matrix M of (complex) fields. Under
the group transformation they transform as M
—UMU~ . The quartic scalar interactions are

L = -A(Tr(MM" })'—q Tr((MM~)'} . (6.21)

(c) The (N, N) rePresentation of SU(N). The
scalar s are repre sented by an N x N matrix M of
complex fields. The quartic self-couplings are
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TABLE I. The renormalization-group parameters for two-coupling-constant models. The coefficients refer to Eq.
(6.17), The I3& coefficient is evaluated for P =0; otherwise B& must be modified accor ding to Eq. (6.12).

Representation

SU(N): ad joint
4N -6

N

A&g 8

6N'+18
N

2N —18
N2

c&
Stability
criterion

N~6

SU(N):
symmetric
tensor

SU(N) x SU(N):
(N, N)

N(N+1) +8
2

N +4
2

4(N+1)

2N +5

6(N +N —2)
N

6(N~ +N —2)
N

6(N'-1)

6(N' 1)
N

9N +24
N2

3N2 +12N —48
2N

9N +12

3N —24
2N

N —5

+ q Tr/(MMt)'). (6.23)

Now MM~ is a positive Hermitian matrix and the
potential is a function of the squares of its eigen-
values. When one minimizes (6.23) one finds that
these eigenvalues are all equal in magnitude so
that M, M, is a multiple of the identity. In that
case M, is, up to a constant, a unitary matrix.
There exists an SU(N) subgroup of gauge transfor-
matlonsq G = Gq +=Mo GMO q that leaves Mo in-
variant. Such a model will therefore contain N'
—I massive and N' —I massless vector mesons.

In a similar fashion the other two asymptotically
free models described above contain massless
vector mesons even when the scalars have a non-
vanishing vacuum expectation value. Basically the
problem is that asymptotic freedom requires large
gauge groups and small scalar representations.

the scalars to transform according to the (N, N)
representation (which is asymptotically free for
¹ 5). The scalars are represented by an NxN
matrix M of complex fields, and they transform
according to M- GMII . If the scalar mesons
develop a nonvanishing vacuum expectation value,
(0~M~0) =M„ the symmetry will be broken. The
criterion that the gauge symmetry be completely
broken and that all vector mesons acquire a mass
is that there be no subgroup of transformations
that leaves M, invariant. ' lf M, were an arbitrary
N&&N complex matrix this criterion would be sat-
isfied. However, M is not arbitrary, rather it is
determined by the form of the Lagrangian. Thus
in lowest order M, is determined by minimizing
the "potential"

I.,= —p.'Tr(MM )+—A Tr((MMt)'}

For such representations the potential in lowest-
order perturbation theory, being restricted to re-
normalizable couplings, is not sufficiently com-
plicated to allow for complete spontaneous sym-
metry breaking.

We clearly have not exhausted all gauge groups
and all scalar representations. One interesting
possibility that we have not fully explored is that
the syrr. metry breaking occurs beyond the tree ap-
proximation, following Coleman and Weinberg. ~
As we noted above a perturbation-theory calcula-
tion of the potential is unreliable for small values
of the classical fields (which corresponds to small
momenta). However, perturbationtheory is reliable
for asymptotically free theories, for large values
of the classical fields. Therefore there exists the
possibility that the potential has a stable minimum
for large vacuum expectation values of the scalar
fields and that these are calculable using the re-
normalization group. This possibility is rendered
more likely by the fact that in many models the
quartic scalar coupling constants (A, and q) can be
negative for p' =- p,

' but become positive as -p' in-
creases, approaching zero from above as p'- —~
(see Fig. 13). Another possibility is to include
Yukawa-like couplings between the scalars and the
fermions. In the absence of gauge fields Yukawa
couplings are never asymptotically free, "but it is
easy to see that this is no longer true in gauge the-
ories. We have not explored this possibility in
detail.

In conclusion it appears to be very difficult, if
not impossible, to construct theories which are
both asymptotically free and which contain no
massless vector mesons in perturbation theory.
Such a model would be of great interest in provid-
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dynamical symmetry breaking deserves much at-
tention.

What we have achieved so far is to find a large
class of asymptotically free theories. We have
shown that all semisimple gauge theories are in
this class, as well as many theories involving fer-
mions. We have explored the consequences of this
asymptotic freedom with respect to deep-inelastic
scattering and we have constructed some models
which contain scalar mesons. Finally let us recall
that the proposed theories appear to be uniquely
singled out by nature, if one takes both the SLA C
results and the renormalization-group approach
to quantum field theory at face value.

FIG. 13. The coupling-constant trajectories (e and P
move along one of the di. rected lines as t increases).
The gauge group is SU(6)x SU(6) and the scalars trans-
form according to the (6x 6) representation.

ing a theory which possesses an 8 matrix in per-
turbation theory and is asymptotically free. How-
ever, me do not believe that it mould be of physical
interest. First, if such a model exists it must be
rather complicated and almost unique. Second, as
we have seen above, in order to achieve asymptotic
freedom it is necessary to incorporate many fer-
mions and render P, very small. This might im-
ply that P has an IR-stable fixed point at a small
value of g', thus restricting the physical coupling
constant g(0, g) to be small if we are to remain
within the domain of attraction of the origin. Such
a model would probably not be useful as a theory
of the strong interactions. Furthermore if P is
small, for small g, then the approach to scaling,
according to Eq. (4.16), is very slow. This is
clearly not a desirable feature. Therefore, to con-
struct a physically meaningful model of the strong
interactions one probably must pin one's hopes on
the possibility of dynamical symmetry breaking.

VII. CONCLUSIONS

APPENDIX A: THE GAUGE DEPENDENCE OF THE
RENORMALIZATION-GROUP EQUATIONS

8 8 8
u +P(g,—o. )—+g r;(g, o.) 1-2o'—

(Al)

where we have used Eq. (2.21) and the sum runs
over the anomalous dimensions of the operators
0;.

The derivative with respect to the physical gauge
parameter can be eliminated using gauge invari-
ance. This implies that the unrenormalized ampli-
tude G„"~ is independent of the bare gauge parame-
ter e„:

G(n) (g A)
8

(A2)=0
g„,A fixed

When we recall Eq. (2.14) and express G~„"~ in
terms of the renormalized Green's function we
have

8 8
Ll —o'o(g, o')] + e(g, o')—++g,.(g, o')

8Q Bg

Let us consider the time-ordered product of
gauge-invariant operators 0,. which are multipli-
catively renormalizable. These could be, say,
gauge-invariant currents. This renormalized
Green's function, which we denote by t" ", mill sat-
isfy the renormalization- group equation:

The theories proposed in this paper are incom-
plete. The main problem which requires investiga-
tion is whether one can obtain an infrared sensible
theory without explicit Higgs mesons. One might
expect, on physical grounds, that the infrared sin-
gularities induced by the gauge charges (color) are
so strong that they must be completely shielded,
so that only objects neutral under the gauge group
could exist. This is an exciting possibility which
might provide a mechanism for having a theory of
quarks without real quark states. Whether this
ean be realized or whether the theory will exhibit.

where

xG (g o' p) =0 (A2)

8Z3
v(g, o) =

8 I gg, A fixed

8ln Z;
o,.(g, u) =z,

+I
I gg, A, fixed

Bg
e(g, n) =z,

8 &M g„,A fixed

(A4)

(A5)

(As)

This equation expresses the fact that a change in
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g ' =a"+ 0(z') . (Av)

The term of order g' might depend on o.; however,

gauge parameter for gauge-invariant Green's func-
tions can be reabsorbed by a change in coupling
constant and in the scale of the operators. It can
be used to eliminate the 8/8 n in Eq. (Al).

Finally let us note that to lowest order P(g, n) is
independent of n. This is essentially because, to
lowest order, the coupling constant is unique. In
other words if we change n we might change g to
g'; however, g' (being the value of the three-point
function at some point) can be expressed as a pow-
er series in g.

to lowest order g' and g must be equal. Therefore

=p(g)+o(g'). (A8)

Thus the lowest-order term, of order g', in p(g)
must be independent of n.

Similarly the lowest-order term, of order g',
in the anomalous dimension of a gauge-invariant
operator (say those discussed in Sec. V) must be
n-independent. This is, of course, not true of the
anomalous dimensions of the vector-meson and fer-
mion fields.
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The Bjorken-Johnson-Low limit is used in a canonical current-algebra framework to estimate the
magnitude of weak radiative corrections in second and fourth order of the weak coupling constants for
unified gauge theories with strong interactions accounted nonperturbatively. We study, in particular, the
question of violation of selection rules such as those for parity and strangeness i)dS~ = l to second
order and ~ES~ = 2 to fourth order) for a large class of models, in which strong interactions are
generated by Abelian gauges (the neutral-vector-gluon theory) or a special set of non-Abelian gauges,

l. 1NTRODUCTION

Unified gauge theories of weak and electromag-
netic interactions are threatened by the possibility
that they may, in general, lead to intolerable mag-
nitudes for the violation of selection rules such as
those for parity and strangeness via radiative
corrections. The root of the problem rests with
that appealing feature of the framework which
renders possible the description of a world of
interactions having radically different strengths
at low energies (momentum transfers) in terms
of the same coupling constants (g, g', . . . ). Within
such a, framework a hierarchy of "effective
strengths" emerges for the electromagnetic and
the weak interactions at low energies in the tree

approximation (i.e., o. =g'/4tt for the electromag-
netic and Gzm' =g'm'/lt' for the weak; m is some
typical hadronic mass and p is the typical mass
of a heavy weak gauge boson) as a consequence of
the la,rge difference of mass between the photon
and the weak intermediate vector mesons. How-
ever, this hierarchy, which also ceases to exist
at high energies, is not generally preserved by the
weak radiative corrections. The obvious reason
is that loop integrations appear which are either
divergent or slowly convergent and for which there
is not a significant numerical suppression cor-
responding to the large intermediate boson mass.
Such a suppression would indeed only be present
where loop integrations converge fast enough to
allow one to neglect, to a, good approximation, the


