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have large errors, are in complete agreement with the
physical-region plots obtained by other authors" as
well as our own I Fig. 7(a)j.

The results given here support the general validity
of the Chew-Low technique. They illustrate the strong
statistical requirements to which a meaningful applica-
tion of this technique is subjected; they also show that
pole effects seen in the physical region are confirmed by
extrapolation, as required. The reverse, however, is not
necessarily true: pole contributions obtained correctly
through extrapolations can be washed out in the physical
region by contributions other than those of poles. Extra-
polation results are therefore to be used in parallel with
physical-region plots. Physical-region plots, which re-
quire less statistics than do extrapolations in order to
be meaningful, are more useful therefore in detecting
the location, width, etc. of the eventual resonance.

Extrapolation results then give additional weight to
these conclusions and provide the ultimate proof that
the production process was indeed a peripheral one.
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Some proofs are presented of Goldstone's conjecture, that if there is continuous symmetry transformation
under which the Lagrangian is invariant, then either the vacuum state is also invariant under the trans-
formation, or there must exist spinless particles of zero mass.

I. INTRODUCTION
' "N the past few years several authors have developed
~ ~ an idea which might offer hope of understanding
the broken symmetries that seem to be characteristic
of elementary particle physics. Perhaps the fundamental
Lagrangian is invariant under all symmetries, but the
vacuum state' is not. It would then be impossible to
prove the usual sort of symmetry relations among
S-matrix elements, but enough symmetry might remain
(perhaps at high energy) to be interesting.

But whenever this idea has been applied to specific
models, there has appeared an intractable difficulty.
For example, Nambu suggested that the Lagrangian
might be invariant under a continuous chirality trans-
formation p —+ exp(ifi ~ps)lt even if the fermion
physical mass M were nonzero. But then there would

*This research was supported in part by the U. S. Air Force
under a contract monitored by the Air Force Office of Scientific
Research of the Air Development Command and the OAice of
Naval Research.

t Alfred P. Sloan Foundation Fellow; Permanent address:
University of California, Berkeley, California.

' Y, Nambu and G. Iona-Lasinio, Phys. Rev. 122, 345 (1961);
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be a conserved current J~, with matrix element

(p'
I
J~

I p) = f(c')~'vsbv~ —(2~/c') vi3~,

where q= p —p'. The pole at q'=0 can only arise from
a spinless particle of mass zero, which almost certainly
does not exist. Of course, the pole would not occur if

f(0) =0, which might be the case if we do not insist on
identifying Ji with the axial vector current of P decay.
But Nambu showed that this unwanted massless "pion"
also appears as a solution of the approximate Bethe-
Salpeter equation. '

Goldstone' has examined another model, in which the
manifestation of "broken" symmetry was the nonzero
vacuum expectation value of a boson field. (This was
suggested as an explanation of the AI=~ rule by
Salam and Ward. )' Here again there appeared a spin-
less particle of zero mass. Goldstone was led to con-
jecture that this will always happen whenever a con-
tinuous symmetry group leaves the Lagrangian but not
the vacuum invariant.

2 J. Goldstone, Nuovo cimento 1,9, 154 (1961).
3 A. Salam and J. C. Ward, Phys. Rev. Letters 5, 512 (1960).
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We will present here three proofs of this result.
The first uses perturbation theory; the other two are
much more general.

II. PERTURBATION THEORY

We will consider a multiplet of I spinless fields p,
which interact among themselves and perhaps also
with other fields. The Lagrangian is assumed to be
invariant under a set of infinitesimal transformations:

h "Q,= oTg"P, .

If the vacuum state were also invariant under these
transformations, the vacuum expectation values of the
p, would be subject to a set of linear relations,

T,,'(0,)o= 0.

(Usually, there would be enough such relations to
imply that all p; have zero vacuum expectation value.
This is the case in the example to be discussed at the
end of this section, where the p, transform as the
defining representation of the orthogonal group, so
that the T span the space of all antisymmetric matrices. )

We are going to examine the possibility that the
vacuum state is not invariant under these trans-
formations; in particular we will consider the conse-
quences that ensue if

T, Q,)ox0

for some 0. and some i. It is inconvenient to work with
fields with nonzero vacuum expectation value, we we
will define

It follows then that the sum Ii'~' of all connected
proper diagrams with X external lines i, j, . carrying
zero energy and momentum is (for 1V&2)

Fe ...&~& = (B~/oI), Bit;. .)F(it).

For /=2 the mass term in —I.o gives an additional
contribution, so

F,,t'~ = (8'/Bq;Bq;)F(g)+m'6;, (9)

As defined here, Ii&~' does not include the propagators
for its external lines or the over-all factor i(2~)'8(0).

It is clear from the definition of Ii") that

(10)

Here ioi'(p) is the complete propaga. tor given by

~' (p) = d' '"'(T(x'(*),x (0))) (11)

Because (x,)o vanishes, the most general improper
diagram for 6'(p) can be constructed by stringing
together proper self-energy pa, rts II*(p) into a, linear
chain; hence the inverse of the propagator is given as
usual by

(12)

by noting that the interaction Lagrangian density used
in calculating these graphs is

L'(»n) =L(X+n) —Lo(X),

Lo(x) = —-,'(a„x,) (a x,)——,'m'~, ».

where
4'= »+rl*, (4) For zero momentum,

II*,, (0)=F,,&'&, (13)

6 X =eT. X. (6)

Hence, the va, nishing of (&,)o provides a nontrivial
self-consistency condition which allows us to calculate
q; up to some unavoidable ambiguities. We will now
show that the value of g is such that propagators of
some of the X; have a pole at zero mass.

We begin by defining a, function F(q) as the sum of
all proper connected graphs with no external lines, and
with the over-all energy momentum conservation factor
i(2m. )'P(0) omitted. Every factor X; in each term of
F(X) represents a place where we might instead have
an external line of type i. This can be seen in general

so that X; is a quantum field with

(X,)o—=0.

In perturbation theory this means that we should
ignore all "tadpole" diagrams with a single external X
line.

The Lagrangian L(P), although invariant under (1),
will, in general, not be invariant under the "naive"
transformations

and so, using (9), we have

(~' ')' = —(~'/~n'~n )F(n)

We are going to prove that (14) has no inverse, so it
should be kept in mind that it is 6' '(0) and not d, '(0)
that is well defined.

To complete the proof, we now must make use of
the invariance of L(p) under the transformation (1).
This has the consequence that it is only the presence
of the q terms that breaks invariance under (6), and
hence that F(g) is inva, riant under the corresponding
transformations

Thus
(BF/Bq,)T,; q, =0.

Differentiating with respect to q, this gives

(O'F/Bg, Bq,) T,i, re+ (BF/Bg, ) T,, =0 (17).
For physically allowed values of q this relation

together with (10) and (14), yield. s at zero momentum

(0' '),;T,o go 0. ——
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%e see that for zero momentum the inverse of the
propagator becomes singular and so some elements of
the propagator become infinite. This does not prove
that there is a pole at zero mass, but we certainly
expect the propagator to be infinite at I"=0 only if
the theory involves particles of zero mass. The fieMs
with nonvanishing matrix element between the vacuum
and states of zero mass are

=T 'It QA:X

Clearly, none of this trouble would occur if it were
not for our assumption (3) that 7;2"ti2$0 It is. the
broken symmetry, and not merely the nonzero vacuum
expectation value g, that necessitates massless bosons. 4

To see how this all works in a specific example, let us
take as the Lagrangian

I (y) = 4(V~+—~)4 ;(~„y,)—(a—sy,) ', 224'y, y—, -
g4O—44' ') (4—A-')' (2o)

Defining p, = X,+q, , this becomes

where

5(P) =( ip—.v"+i('-f] ',

~' (p)=~' (p'+"~') '

d4p Tr{0,5(p) }=0, (23)

d'p Tr fO;5(p)O;5(p) }=8,,I.

Thus I&'(21) is a function of 4i2= (g,q,),
F (q2) =F(0)—-'22222vp —-'4)1ri4

It can be readily seen that the derivative of F(rl)
with respect to g; is the sum F;('& of the proper con-
nected diagrams with one external line, and that the
second derivative with respect to g; and v~; is the sum
of the proper connected diagrams with two external
lines, except that the n22rp term in F(rl) does not con-
tribute to F&'&.

We will now assume that L(p) is invariant under the
group SO(22) of orthogonal transformations on p. This
implies that the operators 0; are such that

The low-order contributions to the sum of all proper
connected vacuum graphs are

F(q) =F (0)—-', 2122 (2i,ri,) —-'4)t (q,q,)2+ i (22r)
—

4gri,

+i (22r) 4'(1+ 12n) d4p(P2+n22) —'

+ -',-i(2 )-~g~&21—i(2~)-9P&'(2+-,'~)

d4P (P'+222') —'(P'+422') —' —(2~)—) 'q'(2+42)

d'p Tr(O,S(p)}+i(2 ) ), (q„q,+-,'S„q„z„)-

z

X d'p &„(p)+-(2~)-'g'~,g; d'p
2

XTr fO,S(p)O,S(p) } i(22r) 4—V(q,ri+ 120;,212212)

X(n-ns+2Lsn. n.) d'P ~'-(P)~ s(p)

—(2~)-9,'S,,~,S.,~, d'p d'p'

X(~'.(P)~ (P')~ .(P+P')+~'. (P)~ (P')

X~,.(p+p')+~, s(p)~, .(p')~..(p+p'}, (22)

4 It is clear from (19) that the maximum number of zero-mass
6elds is L, the number of Lie generators. There may in special
cases be fewer than L zero-mass fields if not all helds x given
by (19) are linearly independent. This happens for example when
T;q" correspond to the "tensor" representations of simple Lie
groups. For this case T;z are antisymmetric for all three indices.
Therefore p p~=p T, I, pox;=0, and only (L—1) of the fields x~
are linearly independent. These results are unaltered even if we
allow in the theory more than one set of scalar fields @;with non-
zero vacuum expectation values. To tak. e a concrete case, the
spurion theory proposed by Salam and Ward (reference 3) to
explain the AI= —,

' rule rests on assuming (Eq )&0. This would
mean that the three companion fields to E1, i.e., E, E+, and
E2', must possess zero masses.

F ('&=2q;F', (26)

F "&2l = (m2+2F'')8, ,+4q, rl,F" (27).

(A prime denotes differentiation with respect to F2.)
'+le see that the contribution of the term —~~m~rj' in
F&2& is canceled by the term 22226,, in (27) arising from
—I.o.

We have shown that F,&" is proportional to (X,)2 and
so must vanish. This implies that either g is zero or it
must satisfy the consistency condition:

F'(rP) =0. (28)

Thus if g is not zero, it is determined up to an orthogonal
transformation; we certainly could not expect a more
unambiguous determination. '"

'Basic to the entire self-consistency procedure is, of course,
the conjecture that F'(p') =0 does possess a root for real q. By
considering classical field theories, Goldstone states that a real
root would exist provided the bare mass for the @i fields is pure
imaginary. It is interesting to note that if the Lagrangian (20)
contains no —-',X(@,@;)' term, an application of Lehmann's mass
theorem PH. Lehmann, Nnovo cimento 11, 342 (1945)j shows
that Goldstone's condition P(bare mass)'(0j can never be satis-
6ed. If, however, the —-',X(@i@;)'term is present in the Lagrangian,
Lehmann's theorem gives no indication of the sign of (bare mass)'.

d4p d4p (p2+ 4222)
—1 (p 2+2222) —1

X[(P+P')'+~'j ' (25)

The dependence on g' alone implies then that



GOL DSTONE, SALAM, AND WE IN BERG

We have also shown that

'(0) = zizz', , P—,,&"

= —2' '6;,—4q,g,P".

in the vacuum expectation value of the commutator of
J& with p;. Using the usual Lehmann-Kallen argu-
ments, this can be written

If q=0, there is no reason to expect that Ii'=0, so
that (6' '),, is the nonsingular ma. trix —2F'8,, But if

&40, then for physically allowed values of p we must
have P'=0 so,

(LJ& (x),y, (y)$)0= 8& dzzz' D(x —y, zzz') p,'(zzz'), (40)

(~' '(o)) v=- —4n'ized"

where 6 is the usual causal Green's function for mass

(30)

This is certainly a singular matrix. In fact

(6'—'(0)),,l, =o

for any u orthogonal to g. All such u can be expressed as

( '—zzzz) A(x —
y, zzz') = 0,

(2 ) 'P"&(P )p' (—P') = —Z&(P —P") (o I
~" ) I )

&&(~ I y, (o) I
o). (42)

+i= ~ij /j) (32) The current conservation condition (35) together
with (40) and (41) implies tha, t

by choosing T;, as an appropria, te antisymmetric
matrix. We see then that the space of u's is precisely
the space indicated by the general considerations above.

rrr. GzmzRAL PRoors

zlzp, '(zI') =0

p, (m') =Ã; 8(zzz'),

(P" (*)A'(y) j)o=&' ~"D(~—y),

(43)

(44)

(45)

fI&P„= eT, z Qz,

then there will exist a, set of conserved currents

(33)

If the Lagrangian is invariant under an n-dimensional
set of infinitesimal transformations which transform a
genera, l field @ according to

where D is 6 for m=0. We would normally expect no
singularity in p(zzz'), or in other words, X,~=o. (It is
well known, for example, that the pion-decay matrix
element would vanish if the axial vector current were
conserved. ) But because of (39) we can show that
E,. /0. For

(34)

(35)

E, = dzx 1V, O'D(x)

(46)

where
LQ A.l=T.z 4z (36)

The usual proof of the conservation equations (35)
makes use only of the invariance of the Lagrangian,
and hence should not be affected by the noninvariance
of the vacuum. Also, from the canonical commutation
relations we always expect that

Thus the sum in (42) must include states of zero mass.
It perhaps does not necessarily follow from the non-

invariance of the vacuum that there exists (or can be
constructed) a set of spinless fields p; with T,, (p;)o&0.
We therefore wish to offer a simple nonrigorous argu-
ment that if there were no massless particles in the
theory, then we would have to conclude that

Q = d'x J' (x) (37) o=ln)—=Q lo);

We will begin by assuming again that there exists a
set of spinless fields P; transforming according to Eq.
(1), i.e.,

T;,'Q, )Wo, (39)

then the theory must involve massless particles.
The place we will look for zero-mass singularities is

The fields P; need not be "fundamental" here; all our
remarks will apply equally well if the p; are synthetic
objects like $0,$.

We shall show that if the vacuum is not annihilated
by Q", so that

for the conservation of current implies that Q and
hence

I
n) is invariant under the inhomogeneous Lorentz

group. But then

so that
( I

J™(*)lo)=o, (48)

(nln) = d'x

(nlrb'(x)

Io)=0 (49)

Equation (47) follows from (49) and the positive-
definiteness assumption.

This "proof" is probably unobjectionable in ordinary
theories with no massless particles. But if there are
massless pa, rticles, the integrals in (37) and (49) become
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somewhat poorly defined, because then there are states
that are not Lorentz invariant but arbitrarily dose to
I.orentz inva, riance. If la) is such a state, the matrix
element (48) will be small, but may give a large value
to the integral (49).

As an example, let Ip) be a state containing a particle
of mass zero, and construct the wave packet

If&= d'p lfl 'f(lx I)lx»

The norma)ization condition is

(51)

so that if we wish we can choose f(0)&0. Lorentz
invariance requires that

(52)

where p"= Ipl.
For particles with mass, current conservation would

require that lV"=0, but no such conclusion can be
drawn for massless particles. For the wave packet (52),
we now have

so that

= (2~)'X~f*(0).

If we choose f(0) to be nonzero, then the fa,ctor
I pl

in (50) gives I f) a more-or-less Lorentz-invariant com-
ponent, which has nonzero matrix element with ln&.

This becomes a bit more understandable if we ask
ourselves what is the meaning of the state

Clearly, this state is degenerate with IO), and is in fact
another possible vacuum. It involves an infinitesimal
component containing massless bosons of preponder-
antly low momentum. The role of the massless particles
is apparently just to give meaning to the various
possible vacua.

IV. PROSPECTS FOR THE UNSYMMETRIC VACUUM

The general proofs of the last section rest entirely on
the assumption that there exists a conserved current,
and that the integral of its time-component satisfies
(38). This follows formally from the invariance of the
Lagrangian, but in a quumtgm field theory the non-
commutativity of the factors in the current, and the
possible nonconvergence of the integral of its time-
component, make our arguments essentially
nonrigorous.

Therefore, it seems reasonable to defer belief in the
necessity of massless bosons in a theory with unsym-
metric vacua until such a bet'e noire is found in an actual
calculation based on such a theory. We have already
shown in Sec. II that the massless bosons do appear
when we perform calculations using perturbation
theory, provided that the symmetry of the theory is
broken only by the choice of the vacuum expectation
value q of the boson field.

But this is not the most general possibility. The
original work of Nambu' indicates that the choice of a
fermion mass can also break a symmetry. In this theory
the fermion mass is

zp py, m]+z+5m2)

where (mi, m&) transform under chirality transfor-
mations like the components of a 2-vector. If m~ and
re2 are not zero they must satisfy a condition of form

F(mP+m, P) =0.
Any particular choice of direction for the vector
(mi, m2) breaks the chirality invariance. (It should be
noted that Nambu's choice F2=0 is purely arbitrary
and not dictated by parity conservation. For a general
mass we must simply de6ne the matrix associated with
parity transformations to be

I (mi+im2ys)/(mP+m2')']P,

rather then just P.)
In Xambu's theory there is no "bare" spinless boson,

but it is possible to construct a two-vector

p2 ipyif——

With Nambu s definition of parity (i.e., m2 ——0) the
vacuum expectation value of p2 but not of @i vanishes,
so the vector (P)o points in the 1-direction. An in-
finitesimal chirality transformation would rotate (P)o
towards the 2-axis, so we are led to conjecture that the
propagator of &2 has a zero-mass pole. In fact, just such
a pole was found by Nambu in an approximate treat-
ment of the bound-state problem. However, to show
that the pole remains at zero mass when more compli-
cated diagrams are considered would require a more
thorough understanding of the treatment of bound
states in perturbation theory. We are attempting this
at present.

In a more complicated situation we could have an
invariance broken both by the choice of a vacuum
expectation value of a "bare" field and also simul-
taneously by the choice of a mass. For example, if we
specialize the model discussed in Sec. II to the case of
chirality invariance, we must take

III=0, Og= 1, 02=its,
so that

In this case our conjecture would be that:
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(1) If part of the loss of symmetry is due to the
choice of a two-vector (P)~, then there must appear a
zero-mass pole in the part of P perpendicular to this
vacuum expectation value.

(2) If part of the loss of symmetry is due to the
choice of a nonzero Fermion mass m~+im2y~ then there
must appear a zero-mass pole in the propagator of

)Presumably this is the same pole as for (I). Parity
conservation would require (m&,m2) to be in the direc-
tion of (P)o.j

(3) If part of the loss of symmetry is due to the
choice of a noninvariant boson mass (i.e., if the residue
of the pole at mass m in the propagator of p, and g; is a
matrix which is not just a constant times 8,,), then
there must appear a two-bosom pole at zero mass in the
propagator of Q'.

These "conjectures" can be taken as proved if we

accept the arguments of Sec. III. We believe that we
will also soon be able to prove these conjectures, in

general, within the framework of perturbation theory.
If this is so, then there seem only three roads open

to an understanding of broken symmetries based on
the noninvariance of the vacuum:

(A) The particle interpretation of such theories
might be revised (as in the Gupta-Bleuler method) so
that the massless particles are not physically present
in final states if they are absent in initial states. How-
ever, all our attempts in this direction have failed.

(B) The massless particles might really exist. The
argument against this based on the Eotvos experiment

might not apply if the particles carry quantum numbers,
since then the scattering cross section of two macro-
scopic bodies due to exchange of the massless bosons
would be proportional only to the numbers of atoms in
each body and not (as for Coulomb forces or gravi-
tation) to the squares of the numbers of atoms. But
the couplings of these massless particles would pre-
sumably be quite strong, and would have shown up in
exotic decay modes.

(C) Goldstone has already remarked that nothing
seems to go wrong if it is just discrete symmetries that
fail to leave the vacuum invariant. A more appealing
possibility is that the "ur symmetry" broken by the
vacuum involves an inextricable combination of gauge
and space-time transformations.

Vote added im prooj. Recently, one of us (S. W. ,
Proceedings of the 1962 Geneva Conference on High
Energy Nuclear Physics) has developed a method of
rewriting any I agrangian in order to introduce fields
for bound as well as "elementary" particles. This allows
the proof of Sec. II to be extended to the case where the
6eld with nonvanishing vacuum expectation value is
any scalar function of the elementary particle fields,
hence completing our argument.
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