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Field Theories with ((Superconductor** Solutions. 

J.  GOLDSTONE 

C E R N  - G e n e v a  

(rieevuto 1'8 Settembre 1960) 

S u m m a r y .  - -  T h e  conditions for the existence of non-perturbative type 
~ superconductor ~) solutions of field theories are examined. A non-covariant 
canonical transformation method is used to find such solutions for a theory 
of a fermion interacting with a pseudoscalar bosom A covariant renor- 
malisable method using Feynman integrals is then given. A (~ supercon- 
ductor ~) solution is found whenever in the normal perturbative-type 
solution the boson mass squared is negative and the coupling constants 
satisfy certain inequalities. The symmetry properties of such solutions 
are examined with the aid of a simple model of self-interacting boson 
fields. The solutions have lower symmetry than the Lagrangian, and 
contain mass zero bosons. 

1 .  - I n t r o d u c t i o n .  

This paper reports some work on the possible existence of field theories 

with solutions analogous to the Bardeen model of a superconductor.  This 

possibility has been discussed by  NAMer (1) in a report  which presents the 

general ideas of the theory which will not  be repeated here. The present work 

merely considers models and has no direct physical applications bu t  the nature  

of these theories seems worthwhile exploring. 

The models considered here all have a boson field in them from the be- 

ginning. I t  would be more desirable to construct  bosons out of fermions and 

this type  of theory  does contain tha t  possibility (1). The theories of this paper 

have the dubious advantage  of being renormalisable, which at  least allows 

one to find simple conditions in finite terms for the existence of (( supercon- 

(1) y .  ~A~BU: Enrico Fermi Institute for l~uclear Studies, Chicago, Report 60-21. 
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duct ing )> solutions. I t  also appears  t ha t  in fact  m a n y  features  of these solu- 

tions can be found in very  simple models with only boson fields, in which the 
analogy to the Bardeen  theory  has a lmost  disappeared.  In  all these theories 
the  relat ion between the boson field and the  ac tual  particles is more indirect 

t han  in the usual pe r tu rba t ion  type  solutions of field theory.  

2.  - N o n - c o v a r i a n t  theory.  

The first model  has a single fermion interact ing with  a single pseudoscalar  

boson field with the Lagrangian  

L = ~ ( i 7  ~ f ~  -- m~) + ~ I  ~1[~ ~x~ ~q~ -#~qg)-- go~f175~p~- - -  ~-~1 ~o(P' • 

(The last  t e r m  is necessary to obta in  finite results, as in pe r tu rba t ion  theory.)  
The new solutions can be found by  a non-covar iant  calculation which perhaps  
m a y  show more clearly wha t  is happening than  the covar ian t  theory  which 

follows. 
Let  ~(x) = (1/~/V) ~ qk exp Ilk.x] and let Pk be the conjugate  m o m e n t u m  

t to qk. Le t  a~o , bk, be the creation operators  for Fe rmi  particles of mo-  

m e n t u m  k spin a and ant ipart icles  of m o m e n t u m  - - k ,  spin - - a  respect-  
ively. Re ta in  only the mode  k = 0 of the boson field in the Hamil tonian .  

(The significance of this approx imat ion  appears  below.) Then 

(1) H = H ~ + H  B + H  z ,  

Sx= ~. Ei(atia~ + b~b~), 
i 

(k, a is replaced b y  a single symbol  i) 

HB 1 2 ~ 2 
= ~CPo + ~oqo), 

go ~o H, = qo Z + b,a ) + 

When H~ is t rea ted  as a per turba t ion ,  its only finite effects are to al ter  the 

boson mass  and to sca t te r  fermion pairs of zero to ta l  m o m e n t u m .  These effects 

can be calculated exac t ly  (when V--> vo) by  writ ing + ~ + a~bi = c~ and t rea t ing  
t ci as a boson creation opera tor  (~). The Hami l ton ian  becomes 

1 ~ go H'= ~ 2E,e~c~ + ~ (po + #2q2) + ~ qo ~ (c~ + c~). 

(~) N. N. BOGOLIU•OV: 2urn. Eksp. Teor. Fiz., 34, 73 (1958); Soy. Phys. J.E.T.P., 
7, 51 (1958). 
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The (1/V)q~o t e rms  has no finite effects. Let  

e t, + e, 
V ~ E , ,  - q ' ;  i \ / ~ ( c  ~, - e , )  = p ,  , 

then  

H,=~ E 1  , ,  go (P~ q- K~q°~) -[- , 2 (p~ -F 4E, q,) -F ~ qo ~ v / ~ q ,  - -  ~ E , .  

H '  represents a set of coupled oscillators and is easily diagonalized. The fre- 
quencies of the normal modes are ogo, o9~, given by  the roots of the equat ion 

go ~ ~ 4Ei 

In  the limit as V-+  co, this becomes 

} ( 2 = ) ~ j 4 ~ -  o9~ (2~) j / ~  + ~ + ,~E~',4.~,-- o9~) • 

The first two terms in the integral diverge. This procedure corresponds exuct ly  

to the  covuriant  procedure of ealculuting the poles of the boson propaga tor  

. . . . . . . .  D(Ic, o9) = ~o ~ _ kS _ la~ - -  I I (k ,  09)' 
k6o kw 

Fig. 1. and including i n / /  only the lowest pola- 
rization par t  shown in Fig. 1. 

This comparison shows tha t  the two divergent terms can be absorbed into 
the renormalized mass and coupling constant.  The renormalizat ion is carried 
out  at  the point  k,  ---- 0 instead of as usual a t  the one-boson pole of D. Thus if 

then 

/7(0, o9) = A + Bo9 2 + g~//l(og~), 

Z 
D(O, o9) = 

o9 2 - -  f f l  - -  g i l l l ( o ~ )  ' 

1 /z~ _ f f ~ _ A  g~ g~o 
z =  i - ~  ' - 2 -  ' = 5 "  

Equa t ion  (2) becomes 

/t~ - -  o9~ 2g 1~ 4/" dsk = F(o9~). 
= (2~)~ o9 J 4 E ~ : 4 ~ - -  0)2) 
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2 is The isolated roo t  of this equat ion ,  ~Oo, 

W h e n  2 # l >  0, ~o o is the  square  of the  phys ica l  boson  mass.  

f ound  as shown in Fig.  2. 

W h e n  2 #~ 4 m  ~, 

this  roo t  d isappears .  This is 
t he  ease when  the  boson  can 

d e c a y  in to  a fe rmion  pair.  
There  is a lways  ano the r  roo t  

\ 2 

\ 
\ 

2 

for  m2 large and  negat ive .  This " \  I 

cor responds  to  the  wel l -known \ \  2 
(~ ghos t  )> difficulties ~nd will "x~ol . /  I 

be ignored  here.  W h e n  2 0 [ / z l  < 4m 2 

(but  no t  too  large), there  is \ 

a nega t ive  roo t  for  ~o ~. This #~ 
is usual ly  t aken  to  m e a n  s imply  

t h a t  the  t heo ry  wi th  td~ < 0 
does no t  exist. Here  it is t aken  Fig. 2. 

to  ind ica te  t h a t  the a p p r o x i m a -  

09 2 

t ion  used is wrong  and  t h a t  the  H a m i l t o n i a n  (1) m u s t  be  inves t iga ted  fur ther .  

This is done b y  a series of canonica l  t r a n s f o r m a t i o n s  based  on the  idea t h a t  

in the  v a c u u m  s ta te  the  expec ta t ion  va lue  of the  boson  field is no t  zero. Le t  

, A 
qo = qo + - v ' > ,  po = p'o, 

go 

A is a pa ran le te r  to be fixed later.  Also m a k e  a Bogo l iubov  t r a n s f o r m a t i o n  on 

the  ferinion field 

Oi Oi ^t 
ai : COS 2-  g i  - -  sin ~-  f l~ ,  

0~ 0_ 
bi = sin ¢ 4. cos ~ ~i 2 - ~ Z  i Z 

A 
tg  0i = - -  • 

Ei  

Then  

H = H o + H ~ + H 2 + H ~ ,  

A• 2~ A4 ~°=--Z(v~E~+~--Fi)+i ~v+ ~v, 

HI = qo V ~ #8 go + 
2o A ~ go A } 
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1 'o 1 , i  / ~ A s 

go , E i  ~ , 

, ,  ~. ~ x ,~ go , A (~, o~, + fl~ ~,) " Ho= f4-vq° + ~ c ' ~ q °  + c-~q°~ v 

Now choose A so t ha t  H1 = 0. Ho is jus t  a cons tant  propor t ional  to V and 

H3 has no finite effects. This leaves H2, which can be diagonalised b y  t h e  
me thod  used above  for the original Hami l ton ian  (1). 

One solution of H~ = 0 is A = 0. This gives the original app rox ima t ion ,  
which is no use when o # 1 <  0. Other  solutions are given b y  

(3) / 1 A 2 g~ ~ 1 3It + ggG(A2) f ' ~ + ~ ° ~ = V  ~E~+A0=(2 ~ ~; 2~  ' 

where G is a finite function.  Le t  

~ (2~) U E ~  = ~ '  

6g{ f d 3 k  21 ~ g] 
~o + (~y~)~j~ - ~ ,  g o = ~  

2 Pl, tt~ Z can be identified as the lowest order pe r tu rba t ion  theoret ic  valueg. 

of the  renormalized boson maSSy four-boson interact ion cons tant  and  w a v e  
funct ion renormalizat ion,  arising f rom the g raphs  in 

x , Fig. 1 and 3. 
\ / 

" / As before, the renormal izat ions  are carried out  a t  \ / 

> k = 0. Equa t ion  (3) becomes 

/ \ 
/ N 

/ N 

1 .  A 2 
(4) ~ I + ~ Z ~  ~ = g~G(A~), 

Thus an equat ion for A 2 is obta ined which is finite in 

Fig. 3. t e rms  of constants  which would be the renormal ized  
pa ramete r s  of the theory  in the  ord inary  solution. 

I t  will be shown below t h a t  when #1~ < 0, equat ion (4) has solutions for a 

cer tain range  of 21, and t ha t  then  there does exist a real boson. 
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3. - Covariant  theory .  

A first approach to a covariant  theory  can be made by  calculating the 
fermion Green's funct ion in a self-consistent field approximation.  In  per tur-  

bat ion theory  the term represented by  Fig. 4 vanishes 
by  reflection invariance. 

However,  suppose it  gives a contr ibut ion 75d to 
the fermion self-energy. Then 

Fig. 4. 

S ( p )  = 
1 

y , p ' - -  m - -  75X1 ' 

and evaluating Fig. 4 with this value of S gives 

A _ 1 g! ( d t p T r ~  5 1 4g] 1 f f l  4 Zl 
#~o (27~)4iJ y~p~--  m - -  75A --  tt2o (2~ )q  ~ p2 _ m 2 _ zl~, 

which is the same as equation (3) without  the 2 term, and again has the per- 
turbat ion solution gl = 0 and possibly other  solutions. 

A general covariant  theory  can be found by  using the F ey n m an  integral 
technique. This gives an explicit  formula for the fermion Green's function 

S(x' ,  x ) =  fS (x ' ,  x; qD) exp [--  iW(ss)] exp [ifL~(~s)d*x] 8~ 
f exp  [--  iW(T)] exp [ i fL~(~)  d 'x]  ~cp 

Here  S(x'xcf) is the fermion Green's function calculated in an external  boson 
field ~0 (and without  interact ing bosons). Exp  [--  iW(~)] is the vacuum-vacuum 
S-matr ix  ampli tude in an external  field and LM(~) is the boson par t  of the  
Lagrangian. The integrat ion are carried out  over all fields ~(x, t). 

Let  

1 
q~(xt) = D X cfk exp [ikx] 

where k is now a 4-vector and ~2 a large space-time volume. To obtain the  
Bardeen- type  solutions, first do all the integrations except  t ha t  over To (this 
has k - -  ~o = 0) and pu t  ~e = Q7~ (Z finite). Then 

S(x ' ,  x) --  j 'S(x',  x; Z) exp [--izQ_F(Z)] d Z 
.fe p [ -  iQF(Z)] dz 

F(z)=w(x)+2z +~z', 
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is the one part icle Green's  funct ion calculated in a constant  external  field 
~(x)----Z and including all the in teract ing boson degrees of f reedom except  
k = co = 0. E x p  [ - - i Q w ]  is the v a c u u m - v a c u u m  ampl i tude  calculated in the  

same  way. The idea is to look for s t a t ionary  points of F(Z ) o ther  th~n Z = 0. 
I f  F'(Z~)----0, then  in the l imit  ~2-~ co, S ( x ' x ) =  S(x 'x)5 ). 

- - i f 2 w ( z  ) is given by  the  sum of all connected v a c u u m  diagrams.  I t  is 
easy  to see t ha t  

Z2- 
w(z) = Z V,. 

,=o 2n!  

where V~. is the pe r tu rba t ion  theory  value of the 2n-boson ver tex  with  all 
ex te rna l  m o m e n t a  zero. For  example  V~ ---- / /(0).  I n  pe r tu rba t ion  theory,  

v(r) V2.---- -2.v(~)]7""~ where v /Z  is the boson wave funct ion renormal izat ion,  ~nd _ ~  

is finite provided the te rms  #~ and ~o are absorbed into V~ and V4. As be- 
fore, the renormal izat ions  are carried out  a t  k ~--0. Thus if 

Z = v 'ZZ(% then  /v(Z(r) ) ---- ;U ~" 
2n.  

an expression f rom which all the  divergences have  been removed.  I t  also 
follows tha t  if F'(Z(~ ")) = 0, the new values 

\% 

\ 

/ 

N 

I ,,% 
/ 

/ 
/ 

% 

Fig. 5. 

for the ver tex  pa ramete r s  V~ are given by  

3" 
V ' . -  F"  ~" 

I n  par t icular  the new boson mass  is given b y  

(This is really the mass opera tor  a t  k----0, 

not  the mass.) Thus one condition for the  
existence of these abnormal  solutions is t h a t  

F(Z ) should have  a m in imum at  some non- 

zero value of Z. 

F ' (Z  ) is in fact  easier to evaluate  than  F.  I t  is g iven b y  the sum of all 

d iagrams with one external  boson line. The previous approx imat ions  are re- 

covered by  pu t t ing  goz = A and including only the d iagrams in Fig. 5. 

This gives 

2.o Z3 4g °~ f_ Z 
F(Z) --= ff0Z2 ÷ 6- + (2~)4 iJP  ~ -  m ~ -  g~oz 2 d4p .  
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~ - [ e n e e  

A~2 [" (r)~4 (r)4 F,(Z(,)) 2 (,)+ 21 Z(r~ ~ i  ] _ g ~12: 

Thus A is given by  

d 4 p .  

Le~ 

Then 

= - ~ + ~  - - ~  1 +  log 1 +  
gl 6gl ~ m 2 m=J 

Z] 2 4~r2#~ 2 ~ 2  ).1 _ B ,  - -  = x .  
m~g2 = A , 3 g{ m ~ 

A ÷ B x  = ( l  ÷ x) log ( l  + x) - -  x = h(x) . 

The new boson mass  is given b y  

~ = F ' ( z )  = ~ x { B  - -  h'(x)}. 

I t  can be seen f rom Fig. 6 t h a t  there will be 

roots with/~-~ >. 0 only when /~ . 0 and B > Bcrit , 

where B¢~i~ is given by  h ' ( x ) =  B.  Thus the ab-  
normal  solutions exist when 

B > > O ,  O > A > , - - ( e ' ~ - - I - - B ) .  

/ (x) 

Fig. 6. 

X 

2 2 This calculation is exact  in the l imit  g~--~ 0 keeping #Jg l ,  21/g 4 and glx (r) 

finite. Thus in at  least one case a solution of the required type  can be estab-  

lished as plausibly us the more usual pe r tu rba t ion  theory  solutions. 

4.  - S y m m e t r y  p r o p e r t i e s  a n d  a s i m p l e  m o d e l .  

I t  is now necessary to discuss the principal  peculiar fea ture  of this type  

of solution. The original Lagrang ian  had  a reflection s y m m e t r y ,  t~rom this 

it follows tha t  F(•) mus t  be an even function.  Thus is Z--Z1 is one solution 
of F ' (Zl  ) = 0, ;/l------X1 is another.  By  choosing one solution, the reflection 

s y m m e t r y  is effectively destroyed.  I t  is possible to m a k e  a very  simple model  

which shows this kind of behaviour ,  and  also demons t ra tes  t h a t  so long as 

there  is a boson field in the  theory  to s t a r t  with, the  essential  features  of the  
abnorma l  solutions have  very  little to do with fermion pairs. 

11 - I I  N u o v o  C i m e n t o .  
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Consider the theory  of a single neutrM pseudoscalar boson interact ing with 
itself, 

L = 2 \~x/~ ~x ~ g~9~] - -  ~ 90~" 

Normal ly  this theory  is quant ized by  let t ing each mode of oscillation of the 
classical field correspond to a quan tum oscillator whose quan tum number  

gives the number  of particles. When  
2 tt0 < 0, this approach will not  work. 

However ,  if ~3 > 0, the function 

~ q  + ~  , 

is as shown in Fig. 7. 
The classical equations 

Fig. 7. ([[J~ + g~)90 + -6 90 = 0 ,  

now have solutions 90 =-4-~¢/~6/x~/X o corresponding to the minima of this 
curve. Infinitesimal oscillations round one of these minima obey the equat ion 

(E] ~ -  2/,0) 890 = o .  

These can now be quantized to represent particles of mass ~--2#2o. This is 
simply done by  making the t ransformat ion 90-  90'+ X 

Then 

6/~ 
23 

.5 = ~ \~x#  ~x ,  + 2~:o90 '5 - -  - ~  90', - -  90,3 + -5 ).-o " 

This new Lagrangian can be t rea ted  by  the canonical methods.  
In  any state with a finite number  of particles, the expectat ion value of 90 

is infinitesimally different f rom the vacuum expectat ion value. Thus the eigen- 
states corresponding to oscillations round 90 = Z  a r e  all orthogonM to the 
usual states corresponding to oscillations round 90----0, and also to the eigen- 
states round 90 = -  Z. This means tha t  the theory has two vacuum states, 

w i t h  a complete set of particle states buil t  on each vacuum, bu t  tha t  there  
i.s a superselection rule between these two sets so tha t  it  is only necessary to  
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consider one of them.  The s y m m e t r y  cp ~ - - q ~  has disappeared.  Of course 
it can be restored b y  introducing linear combinat ions of s ta tes  in the two sets 
but  because of the superselection rule this is a highly artificial procedure.  

Now consider the ease when the s y m m e t r y  group of the Lagrangian  is con- 

t inuous instead of discrete. A simple example  is t ha t  of a complex boson 

field, ~ = (fz'~-rip,,)/~/2 

L -  ~P* ~P 2 , ~o 
~x~ ~x:' t~ocp~v - -  ~ @*q~)~. 

The s y m m e t r y  is p -~ exp [i~]p. The canonical t r ans format ion  is ~s ---- P 'q-Z 

IX l ~ -  2o 

The phase of Z is not  determined.  Fixing it destroys the  symmet ry .  With  

Z real the new Lagrangian  is 

) + z = 2 \~x~, ~x ~ ÷ 2#~p'? 

The part icle corresponding to the p~ field has zero mass.  This is t rue  even 
when tile in teract ion is included, and is tile new way  the original s y m m e t r y  
expresses itself. 

A simple pic ture  can be made  for this theory  b y  thinking of the two dimen- 

sional vec tor  p a t  each point  of space. In  the  v a c u u m  sta te  the vectors  have  

magni tude  Z and are all lined up (apart  f rom the q u a n t u m  fluctuations).  The 
massive particles q/1 correspond to oscillations in the direction of Z. The mass-  
less particles p~ correspond to ~ spin-wave ~> excitat ions in which only the di- 

rection of ~v makes  infinitesimal oscillations. The mass  mus t  be zero, because 
when all the q~(x) ro ta te  in phase there is no gain in energy because of the 
symmet ry .  

This t ime there are infinitely m a n y  v a c u u m  states. A s ta te  can be spe- 
cified by  giving the phase of Z and then the numbers  of part icles in the two 
different oscillation modes. There is now ~ superseleetion rule on the  phase 

of Z. States with a definite charge can only be constructed artificially by 
superposing states with different phases. 

5 .  - C o n c l u s i o n .  

This result  is complete ly  general. Whenever  the original Lagrangian  has 

a continuous s y m m e t r y  group, the new solutions have  a reduced s y m m e t r y  

and  contain massless bosons. One consequence is t ha t  this k ind of theory  
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c a n n o t  be  a p p l i e d  to  a v e c t o r  p a r t i c l e  w i t h o u t  los ing  L o r e n t z  i n v a r i a n c e .  A 

m e t h o d  of lo s ing  s y m m e t r y  is of course  h i g h l y  des i r ab l e  in  e l e m e n t a r y  p a r -  

t i c l e  t h e o r y  b u t  t h e s e  theo r i e s  wil l  n o t  do th i s  w i t h o u t  i n t r o d u c i n g  n o n - e x i s t e n t  

mass l e s s  b o s o n s  (unless  d i sc re t e  s y m m e t r y  g roups  can  b e  used) .  SKYWAY, (3) 

h a s  h o p e d  t h a t  one set  of f ields cou ld  h a v e  e x c i t u t i o n s  b o t h  of t h e  u s u a l  t y p e  

a n d  of t h e  (~ s p i n - w a v e  ~ type~ t h u s  for  e x a m p l e  o b t a i n i n g  t h e  ~ - m e s o n s  as  

co l l ec t i ve  osc i l l a t ions  of t h e  fou r  K - m e s o n  fields~ b u t  th is  does  n o t  seem pos -  

s ib le  in  th i s  t y p e  of t h e o r y .  T h u s  if a n y  use  is to  be  m a d e  of t h e s e  s o l u t i o n s  

s o m e t h i n g  m o r e  c o m p l i c a t e d  t h a n  t h e  s imp le  m o d e l s  c o n s i d e r e d  in  t h i s  p a p e r  

wi l l  be  n e c e s s a r y .  

(3) T. H. R. SKYR~:  Proc.  Roy .  Soc., A 252, 236 (1959). 

R I A S S U ~ T O  (*) 

Si esaminano le condizioni per l 'esistenza di soluzioni (~ superconduttr ici  )~ del t ipo 
non per turba t ivo  delle teorie di campo. Si usa un metodo non covariante di trasfor- 
mazioni canoniche per t rovare queste soluzioni per la teoria di un fermione interagente 
con un bosone pseudoscalare. Si espone poi un metodo covariante rinormalizzabile 
usando integrali  di Feynman.  Si t rova un soluzione (~ superconduttrice )) ogniqualvolta 
nella soluzione normale del t ipo per turbat ivo ]a massa bosonica elevata al q u a d r a t o  

negat iva e le costanti  di accoppiamento soddisfano ad alcune ineguaglianze. Si esa- 
minano le propriet~ di s immetr ia  di ta l l  soluzioni con l ' a iu to  di un semplice modello 
di campi di bosoni auto-interagenti .  Le soluzioni hanno simmetria inferiore al lagran- 
giano, e contengono bosoni di massa zero. 

(*) Traguzioree a cura della Redazione. 


