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Summary. The conditions for the existence of non-perturbative type
« superconductor » golutions of field theories are examined. A non-covariant
canonical transformation method is used to find such solutions for a theory
of a fermion interacting with a pseudoscalar bogon. A covariant renor-
malisable method using Feynman integrals is then given. A « supercon-
ductor » solution is found whenever in the normal perturbative-type
solution the boson mass squared is negative and the coupling constants
satisfy certain inegualities. The symmetry properties of such solutions
are examined with the aid of a simple model of self-interacting boson
fields. The solutions have lower symmetry than the Lagrangian, and
contain mass zero bosons.

1. — Introduction.

This paper reports some work on the possible existence of field theories
with solutions analogous to the Bardeen model of a superconductor. This
possibility has been discussed by NAMBU (!) in a report which presents the
general ideas of the theory which will not be repeated here. The present work
merely considers models and has no direct physical applications but the nature
of these theories seems worthwhile exploring.

The models considered here all have a boson field in them from the be-
ginning. It would be more desirable to construct bosons out of fermions and
this type of theory does contain that possibility (*). The theories of this paper
have the dubious advantage of being renormalisable, which at least allows
one to find simple conditions in finite terms for the existence of «supercon-

(*) Y. NamBu: Enrico Fermi Institute for Nuclear Studies, Chicago, Report 60-21.



FIELD THEORIES WITH « SUPERCONDUCTOR » SOLUTIONS 155

ducting » solutions. It also appears that in fact many features of these solu-
tions can be found in very simple models with only boson fields, in which the
analogy to the Bardeen theory has almost disappeared. In all these theories
the relation between the boson field and the actual particles is more indirect
than in the usual perturbation type solutions of field theory.

2. — Non-covariant theory.

The first model has a single fermion interacting with a single pseudoscalar
boson field with the Lagrangian

L=y (iaf" % - WP) +3 (;ﬁ aa% — piig ) oYY PP — 2—14 Aot -
(The last term is necessary to obtain finite results, as in perturbation theory.)
The new solutions can be found by a non-covariant calculation which perhaps
may show more clearly what is happening than the covariant theory which
follows.

Let g(x) = (1/v/V) Y ¢, exp[ik-x] and let p, be the conjugate momentum
to g,. Let al,, b}, be the creation operators for Fermi particles of mo-
mentum k spin o and antiparticles of momentum — k, spin — ¢ respect-
ively. Retain only the mode k= 0 of the boson field in the Hamiltonian.
{The significance of this approximation appears below.) Then

) H=H,+H+H,,
H,= 2 Ei(a’:ai + bt‘bi) y

{k, o is replaced by a single symbol %)
H,= %(po + QO) ’

— YV ipt s
Hl—vvq ZZ( a;b} + b)) + 515 -

When H, is treated as a perturbation, its only finite effects are to alter the
boson mass and to seatter fermion pairs of zero total momentum. These effects
can be calculated exactly (when V —oo) by writing a's!=¢! and treating
c',f as a boson creation operator (3). The Hamiltonian becomes

1
=Z2E@rﬁﬂ%+uhﬁ+ S (et+e).

9
vy L

(®) N. N. Bogoriveov: Zurn. Eksp. Teor. Fiz., 84, 73 (1958); Sov. Phys. J.E.T.P.,
7, 51 (1958).
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The (1/V)q} terms has no finite effects. Let

et e,

=4 Ii\/E c:_ci): i
'\/4E Q7 ( p ?

then

1 1
'= b} (ps+ ,uo(IO )+ 25 pi + 4Eiq}) \/; % z V/4E idi — ; E;.

H’ represents a set of coupled oscillators and is easily diagonalized. The fre-
guencies of the normal modes are wy, w;, given by the roots of the equation

_wz__ 24E’2—w2'

In the limit as V — oo, this becomes

2g3 [ 4B, ’ [1 , o o
2 2 — " d3k = 3 VE LUV TR
@ m—o (2n)3[4E’§ — w? k (2n fd k &, T 4B 4E; + 4B} 4B; — 0’2)} '

The first two terms in the integral diverge. This procedure corresponds exactly
to the covariant procedure of ealculating the poles of the boson propagator

1
Dk =
T T R T IOk
Fig. 1. and including in I7 only the lowest pola-

rization part shown in Fig. 1.
This comparison shows that the two divergent terms can be absorbed into
the renormalized mass and coupling constant. The renormalization is carried
out at the point k,= 0instead of as usual at the one-boson pole of D. Thus if

110, w) = A 4+ Bw?+ g3 1T (w?),
then
VA
W — i~ gﬁUl(wz) ’

NI,

Equation (2) becomes

2¢3 d2k
2 2 4 = 2y,
M= 0= oy @ f B AT — oY) Flw?)
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The isolated root of this equation, wi, is found as shown in Fig. 2.
When x>0, o, is the square of the physical boson mass. When ui~ 4m?,

this root disappears. This is
the case when the boson can
decay into a fermion pair.
There is always another root
for w? large and negative. This
corresponds to the well-known
« ghost » diffieulties and will

Flw)?

be ignored here. When u;< 0
(but not too large), there is
a negative root for w? This
is usnally taken to mean simply
that the theory with wu;<<0
does not exist. Here it is taken Fig. 2.
to indicate that the approxima-

tion used is wrong and that the Hamiltonian (1) must be investigated further.
This is done by a series of canonical transformations based on the idea that
in the vacuum state the expectation value of the boson field is not zero. Let

! A I7 1
qo:q()‘i‘*V/V; Po= Do,
9o

A is a parameter to be fixed later. Also make a Bogoliubov transformation on

the fermion field

_ 01 . 07, +
a; = COSEO(Z'— Sln2— i

b, = sin - af + cos o By

A

Then

H :H0+H1+H2+H37
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A 4

H;= 21’0+ Q( +2 7

%)+ SVEE £ ale+ pl8) +

+ (“zﬁ: + ﬁ{“i) ’

V—Vq"g\/EHAZ

hd 1
H,= 3 — (o} t8).
3 24 q +6y '\/Vq \/Iqu 2\/_E2+A2 1“i+ﬂtﬂi)

Now choose A so that H, = 0. H, is just a constant proportional to ¥V and
H, has no finite effects. This leaves H,, which can be diagonalised by the
method used above for the original Hamiltonian (1).

One solution of H,=0 is A=0. This gives the original approximation,
which is no use when 43 < 0. Other solutions are given by

A2_93 _ 25 1 .
@ rghig =TI = a0 [g o)+ etean,

where @G i a finite function. Let

g 20 (A g5
W= ne | B, T 7’

6g0 [dk A,
bt Gy BT

Uiy %y, Z can be identified as the lowest order perturbation theoretic values:
of the renormalized boson mass, four-boson interaction constant and wave
function renormalization, arising from the graphs in
N + Fig. 1 and 3.
N / As before, the renormalizations are carried out at.
k,= 0. Equation (3) becomes

\
1, A4
(4) ptgh = o6,

’ N Thus an equation for A2 is obtained which is finite in

Fig. 3. terms of constants which would be the renormalized

parameters of the theory in the ordinary solution.

It will be shown below that when u:< 0, equation (4) has solutions for a.
certain range of A,, and that then there does exist a real boson.
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3. - Covariant theory.

A first approach to a covariant theory can be made by calculating the
fermion Green’s function in a gelf-consistent field approximation. In pertur-
bation theory the term represented by Fig. 4 vanishes

by reflection invariance.
However, suppose it gives a confribution ;4 to

Q the fermion self-energy. Then
1

S S
(p) yupﬂ —m— 75A

Fig. 4. and evaluating Fig. 4 with this value of § gives

1 g ] 1 _ gt 1 \ A
A= 1% (2n)“ifdpr %m”‘ m— y; A Mo (2n)4i/dpp*—m2—-dz’

which is the same as equation (3) without the A term, and again has the per-
turbation solution 4 = 0 and possibly other solutions.

A general covariant theory can be found by using the Feynman integral
technique. This gives an explicit formula for the fermion Green’s function

S, x) _fS(‘” z; ) exp [— tW(g)] exp [@fLM () A%7] 8¢
; fexp [— tW(p)] exp [zJ'LM ) d4z] S

Here S(z'zg) is the fermion Green’s function calculated in an external boson
field ¢ (and without interacting bosons). Exp [— ¢{W(g)] is the vacuum-vacuum
S-matrix amplitude in an external field and L,(¢) is the boson part of the
Lagrangian. The integration are carried out over all fields g(a, ?).

Let

> @5 exp [ika],

k

501*-‘

p(xt) =

where k is now a 4-vector and Q a large space-time volume. To obtain the
Bardeen-type solutions, first do all the integrations except that over ¢, (this
has k= w=0) and put @g,= Qy (y finite). Then

_ 8@, @; ) exp [— iQF(y)]dy
[exp[—iQF()]dy

2
F(x)=W(x)+’§xz+ ;’—;x‘,
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8 is the one particle Green’s function calculated in a constant external field
@(z) = x and including all the interacting boson degrees of freedom except
k=w=0. Exp[—iQw] is the vacuum-vacuum amplitude calculated in the
same way. The idea is to look for stationary points of F(y) other than y = 0.
If F'(y,) =0, then in the limit Q2 — oo, S(z'x) = S(x'wy,).

—iQw(y) is given by the sum of all connected vacuum diagrams. It is
easy to see that

o xzn
w(y) = Zovzn ont’

where V,, is the perturbation theory value of the 2n-boson vertex with all
external momenta zero. For example V,=7[(0). In perturbation theory,
Vo, =V |Z» where V/Z is the boson wave function renormalization, and V{?
is finite provided the terms ‘uzo and A, are absorbed into V, and V,. As be-
fore, the renormalizations are carried out at k= 0. Thus if

r)

‘T V n
¥ = VZyn, then Py =3 2_;' P

an expression from which all the divergences have been removed. It also
follows that if F'(yy’) =0, the new values

VX for the vertex parameters V, are given by
\
\
\ , o ,
///x V":WnF(X(l) -

In particular the new boson mass is given by

w=F'(") .
,/ X (This is really the mass operator at k=0,
/ not the mass.) Thus one condition for the
X existence of these abnormal solutions is that
F(y) should have a minimum at some non-
zero value of y.

F'(y) is in fact easier to evaluate than F. It is given by the sum of all
diagrams with one external boson line. The previous approximations are re-
covered by putting g,y = A and including only the diagrams in Fig. 5.

This gives

=

=
o=

(=3

A 445 ¥
' 4,2 0,3 — 4
F(l) = oy + 6 X +(2n)4ifp2_m2_ggxzdp'
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Hence

2 491 x(r) 94 x<r)4
T 2,(r 4+ M3
(X )= sy 6 V4 T (27&)4 /(pz me2)? (p? — me— Az)

Thus A4 is given by

2
251 M ( Az AZI
0=5 40 g2 21 log (1

g gt sl )Og(+ w) ]
Let

il _ 27 1y as _

mq: ! 3 gt ! m:
Then

A+ Br=(14+2)log(1+ 2) —2 = h(x) .

The new boson mass is given by
h(x)
F//( ) m gl {B /(m}}.
It can be seen from Fig., 6 that there will be >

roots with u?> 0 only when 43 < 0 and B> B, 1+ Bx
where B ; is given by hk'(x) = B. Thus the ab-
normal solutions exist when

B>0, 0>A> —(f —1—B). Fig. 6.

This calculation is exact in the limit g, — 0 keeping ui/gi, A/gi and g,%*”
finite. Thus in at least one case a solution of the required type can be estab-
lished as plausibly as the more usual perturbation theory solutions.

4, — Symmetry properties and a simple model.

It is now necessary to discuss the principal peculiar feature of this type
of solution. The original Lagrangian had a reflection symmetry. From this
it follows that F(y) must be an even function. Thus is y =y, is one solution
of F'(y1)=0, y;=—y is another. By choosing one solution, the reflection
symmetry is effectively destroyed. It is possible to make a very simple model
which shows this kind of behaviour, and also demonstrates that so long as
there is a boson field in the theory to start with, the essential features of the
abnormal solutions have very little to do with fermion pairs.

11 - Il Nuovo Cimento.
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Consider the theory of a single neutral pseudoscalar boson interacting with

itself,
Op 0p  , 5\ A
L= (é? W P ) T v

Normally this theory is quantized by letting each mode of oscillation of the
classical field correspond to a quantum oscillator whose quantum number
gives the number of particles. When
ue < 0, this approach will not work.
However, if 1,> 0, the function

+24q) 7

A

is as shown in Fig. 7.
The classical equations

A
Fig. 7. O+ )y + G o=

now have solutions ¢ = +v— 6ug/i, corresponding to the minima of this
curve. Infinitesimal oscillations round one of these minima obey the equation

(2 —2u0) 3 = 0.

These can now be quantized to represent particles of mass V' —2ui. This is
simply done by making the transformation ¢ = ¢'+ y

s _ b
==
Then
og' o¢’ A ﬂox - 3 ub
(800 o pip ¥ T +2)o'

This new Lagrangian can be treated by the canonical methods.

In any state with a finite number of particles, the expectation value of ¢
is infinitesimally different from the vacuum expectation value. Thus the eigen-
states corresponding to oscillations round ¢ = y are all orthogonal to the
usual states corresponding to oseillations round ¢ =0, and also to the eigen-
states round ¢ = — y. This means that the theory has two vacuum states,
‘with a complete set of particle states built on each vacuum, but that there
is a superselection rule between these two sets so that it is only necessary to
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consider one of them. The symmetry ¢ ——¢@ has disappeared. Of course
it can be restored by introducing linear combinations of states in the two sets
but because of the superselection rule this is a highly artificial procedure.
Now consider the case when the symmetry group of the Lagrangian is con-
tinuous instead of discrete. A simple example is that of a eomplex boson

field, ¢ = (¢1+i¢2)/\/§

_a¢* a(p 2 o 10 * 2
L_aw,u awlu—tuo(p (p_g(q? (P) .

The symmetry is ¢ — exp[ix]p. The canonical transformation is ¢ = ¢’y

The phase of y is not determined. Fixing it destroys the symmetry. With
x real the new Lagrangian is

_ 1{2g: og: A T I S
I“E(EWJ”#O% T o, e 6 PO T ) o ler )

The particle corresponding to the gv; field has zero mass. This is true even
when the interaction is included, and is the new way the original symmetry
expresses itself.

A simple picture can be made for this theory by thinking of the two dimen-
sional vector ¢ at each point of space. In the vacuum state the vectors have
magnitude y and are all lined up (apart from the quantum fluctuations). The
massive particles ¢, correspond to oscillations in the direction of y. The mass-
less particles (p; correspond to «spin-wave » excitations in which only the di-
rection of ¢ makes infinitesimal oscillations. The mass must be zero, because
when all the ¢(x) rotate in phase there is no gain in energy because of the
symmetry.

This time there are infinitely many vacuum states. A state can be spe-
cified by giving the phase of y and then the numbers of particles in the two
different oscillation modes. There is now a superselection rule on the phase
of y. States with a definite charge can only be constructed artificially by
superposing states with different phases.

5. - Conelusion.

This result is completely general. Whenever the original Lagrangian has
a continuous symmetry group, the new solutions have a reduced symmetry
and contain massless bosons. One consequence is that this kind of theory
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cannot be applied to a vector particle without losing Lorentz invariance. A
method of losing symmetry is of course highly desirable in elementary par-
ticle theory but these theories will not do this without introducing non-existent
massless bosons (unless discrete symmetry groups can be used). SKYRME (%)
‘has hoped that one set of fields could have excitations both of the usual type
and of the « spin-wave» type, thus for example obtaining the n-mesons as
collective oscillations of the four K-meson fields, but this does not seem pos-
sible in this type of theory. Thus if any use is to be made of these solutions
something more complicated than the simple models considered in this paper
will be necessary.

(®3) T. H. R. SKYRME: Proc. Roy. Soc., A 252, 236 (1959).

RIASSUNTO (%

Si esaminano le condizioni per 1’esistenza di soluzioni « superconduttrici » del tipo
non perturbativo delle teorie di campo. Si usa un metodo non covariante di trasfor-
mazioni canoniche per trovare queste soluzioni per la teoria di un fermione interagente
con un bosone pseudoscalare. Si espone poi un metodo covariante rinormalizzabile
usando integrali di Feynman. 8i trova un soluzione « superconduttrice » ogniqualvolta
nella soluzione normale del tipo perturbativo la massa bosonica elevata al quadrato
& negativa e le costanti di accoppiamento seddisfano ad alcune ineguaglianze. Si esa-
minano le proprietd di simmetria di tali soluzioni con l’aiuto di un semplice modello
di campi di bosoni auto-interagenti. Le soluzioni hanno simmetria inferiore al lagran-
giano, e contengono bosoni di massa zero. i

*) Traduzione a cura della Redazione.



