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Squaring (1), averaging over spin, and performing the
phase-space integration, we obtain for the total K-
production cross section at threshold
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where o5,:(n) is the singlet (triplet) total Ap cross section
at total c.m. kinetic energy 7, and p is the c.m. momen-
tum of the initial protons.®

6 Equation (2a) is formally different from Eq. (8a) of Ref. 1
because relativistic kinematics are used here; also, we include a
factor, 4(n/mx)'2, erroneously omitted from Eq. (8b) of Ref. 1.
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The inelasticity of the off-shell Ap scattering is
accounted for in (2a) by a correction factor—viz., the
ratio of the final to initial Ap c.m. momentum. This
factor, which multiplies the elastic Ap cross section,
approaches unity at the higher energies but is important
near threshold.

The cross section is estimated using an effective-range
approximation for o,,.(y). Results, using effective-range
parameters obtained from both hypernuclei data and
Ap scattering data,” are shown in Fig. 2. The lowest-
energy K-production data known to us occurs at
P1a,=2.807 GeV/c,® which is well outside the region of
validity for this calculation. Further experimental work
is needed in the region of P1p=2.40 GeV/c.

It is clear that the above analysis also applies to the
process pp— pZK; however, since the square of the
pZK coupling constant is an order of magnitude less
than that for pAK,> the predicted cross section near
threshold is probably too small (~0.2 ub) for experi-
mental verification.
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By combining the go— ¢ method for asymptotic sum rules with the P — o« method of Fubini and
Furlan, we relate the structure functions W; and W1 in inelastic lepton-nucleon scattering to matrix elements
of commutators of currents at almost equal times at infinite momentum. We argue that the infinite-momen-
tum limit for these commutators does not diverge, but may vanish. If the limit is nonvanishing, we predict
vWa(v,g®) — fa(v/¢?) and Wi(v,¢®) — fi1(v/¢*) as v and ¢? tend to «. From a similar analysis for neutrino
processes, we conclude that at high energies the total neutrino-nucleon cross sections rise linearly with
neutrino laboratory energy until nonlocality of the weak current-current coupling sets in. The sum of »p
and 7p cross sections is determined by the equal-time commutator of the Cabibbo current with its time
derivative, taken between proton states at infinite momentum.

I. INTRODUCTION

NELASTIC lepton-nucleon scattering at high-
momentum transfer is a very direct means of probing
small-distance nucleon structure. Reflecting this fact
is the profound state of theoretical ignorance on what,
even qualitatively, can be expected in this process.!
Some small inroads have been recently made using the

* Work supported by the U. S. Atomic Energy Commission.

1For a good example, see J. Bjorken, in Proceedings of the
International School of Physics “Enrico Fermi,” Course 41, edited
by J. Steinberger (Academic Press Inc., New York, 1969);
Stanford Linear Accelerator Center Report No. SLAC-PUB-338
(unpublished).

techniques of current algebra.? In particular, Cornwall
and Norton® have written down a large class of asymp-
totic sum rules, valid at large ¢2, for inelastic electron
scattering. Of these, the sum rule of Callan and Gross*
relating an asymptotic integral over electron scattering
cross sections to a piece of the commutator of electro-
magnetic current with its time derivative is of special
interest. The purpose of this paper is to discuss such sum
rules in a slightly different language—that of the infinite-

*J. D. Bjorken, Phys. Rev. 163, 1767 (1967), and references
quoted therein.

3 J. M. Cornwall and R. E. Norton, Phys. Rev. 177, 2584 (1969).
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(1968).
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momentum method. We show that the electron scatter-
ing data is related in a direct way to matrix elements of
electromagnetic current commutators at infinite nucleon
momentum.®® In particular, we find that the structure
functions Wa(q%») and Wi(¢?%») describing inelastic
scattering” tend to simple limits for large ¢2:

m  oWalgty)=MFy(—g/My), (1.1)
2>, v/q? fixed
lim MW(g?p)=F(—q¢*/ Mv), (1.2)
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where w=—¢2/Mv. The existence of these limits (aside
from the Brandt-Sucher disease®) is guaranteed by a
finite value of the integral appearing in the Callan-Gross
sum rule. Although the present data® appear to indicate
that F, is nonvanishing at g>~1-2 BeV?, it is still pos-
sible that Fo— 0 and the infinite-momentum commu-
tators in (1.3) and (1.4) vanish in the limit. In such a
case the content of this paper is empty.

Sum rules such as Cornwall and Norton have written
down?® may be obtained by taking the sine transform of
(1.3) and (1.4) and expanding both sides in a power
series in 7. For example, for n=1, 3, 5-- -,
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with a similar expression for F; or W,. However, the
content of these results is more succinctly discussed in
terms of (1.1)-(1.4).

Although a straightforward generalization of these
relations to different currents and momentum states is
not difficult, what is not straightforward is the inter-
pretation of the almost equal-time commutators appear-
ing in (1.3) and (1.4). In particular, the spectrum of in-
termediate “frequencies” w= —¢?/M is bounded above,
corresponding to at most the intermediate energy ap-
propriate to the single-nucleon Z diagram (see Tig. 1).
Assuming that the limit (1.1) and (1.2) is nontrivial
(nonvanishing), it will be most interesting to construct
models with the kind of asymptotic behavior expressed
in (1.1)-(1.4). This, however, is beyond the scope of this
paper.

In Sec. II, a simple derivation of the result is given.
Section III remedies the swindle perpetrated on the
reader in Sec. II, by providing a more honest deriva-
tion. In Sec. IV, we attempt a generalization to an arbi-
trary kinematical situation. In Sec. V, we apply the
same method to neutrino reactions and find that »p and
vp total cross sections should rise linearly with energy.
The sum of »p and 5p cross sections is determined by the
equal-time commutator of the Cabibbo current with its
first time derivative. Section VI summarizes our
conclusions.

II. SIMPLE DERIVATION OF THE
ASYMPTOTIC LIMIT

The inelastic scattering cross section from an un-
polarized nucleon may be written? as

do a?

d0dE’ 4T sink(30)
X[Wa(g?) cos®(56)+2W1(g%») sin(36)], (2.1)

where E,E is the energy of incident and scattered elec-
tron, § is the scattering angle of electron, ¢? equals
—4EE' sin?(36), v equals ¢-P/M=(E—E'), P is the
momentum of target nucleon, ¢ is the momentum of
virtual photon, and
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M2 q:) g2

quqv
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_Po d4xi'P!] 700071 P 2.2
_ﬂfgewtxmxm>. (2.2)
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p
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I1¢. 1. Single-nucleon
Z diagram. :
R —
q -p

In all matrix elements (P|---|P), an average over
nucleon spin is implied. Now consider the limit of
(2.2) as Py—, go—®©, qo/Py— —w fixed, q fixed
(w=—¢*/Mv). Notice that ¢— + o (timelike) in this
limit.

Choosing p#0, v#0, we find

s /d%/
Py M —w

Xemh=X(P|[J(x,Pot/ P0),J (0)]| P),

ij

(2.3)

or, using (1.1) and (1.2) and the assumption that the
commutator vanishes outside the light cone,

Fy(w)

- 61'36_73 + 51]F1(w)

= lim

Pz>x

/d%/ — e~n(P|[Ji(x,7/Po),J;(0)]]| P)

d3x / dt sinwr

X(P|[Ji(x,7/P0),J;(0)]| P) (2<0).

=— hm
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(2.4)

Now (2.4) defines F; and F, for positive w as well as
negative; therefore we let w=+|¢%|/M»>0, as ap-
propriate for inelastic scattering. Then we get

—1 00
Fiw)=F1(w)=— lim /d%/ dr sin|w| 7
T P> 0

X(P|[T=(x,7/P0),J0)]| P) (w>0) (2.5)

an

Fy(w) 1 oo
Filw)= o] —Fi(w)=+4— ;im d%/ dr sin|w|r
r Pz 0

X(P|[T(x,7/Po),J0)]| P) («>0). (2.6)

This is the desired result given in (1.3) and (1.4). Both
F, and F,; are positive; notice the curious sign change
between the transverse and longitudinal commutators.

The reader should have noticed the swindle that has
been perpetrated in letting w — —w. There has been no
justification that w<<0 can be extrapolated from w>0.
Section IIT is devoted to providing such a justification.

III. JUSTIFICATION OF THE RESULTS

In order to provide a better derivation of the preced-
ing results, we consider the covariant current correlation
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function

1 l) . "
T,w*=—( P qqu)(
M2 q?
qugy
(gw'_'—“)Tl(‘Z )
¢

l‘Po
“u / @ ¢ () (P| [7,(4),7,(0)]| P
+polynomials in ¢, (3.1)

-fgi)n(q )

where, as always in this paper, an average over nucleon
spin is implied. According to the dictum of Harari,
T, satisfies an unsubtracted dispersion relation in v,
while 7'y requires one subtraction, provided ¢°<0, i.e.,
spacelike.

- 1 /“” dv'? ImT5(v',q?)
2 s e (3.2)
T1(v,g")=T1(0,¢%
® dv'? ImT1(v,q?)
t— | oo (<0). (3.3)

T Jo V(2 —v2—ie)

We choose to express the 7'; in terms of the variables q*
and w=(—¢?/Mv). Using the fact that

1
—ImT(n,¢*) =Wi(v,g?) , (3.4)
™
we obtain
4d0),2W (wl, 2
Tl(w,g2)= Tl(oo,qz)~/ _*;Q) ) (3.5)
0 (W?—w+tie)
4 dw'2W2(w', 2
To(w,g’) = —w? / - ?) : (3.6)
o 2(60'2—-0)2—{—1'6)

We now take the limit go— i, q fixed and P tem-
porarily fixed. In this limit

—q¢?
N
quD

g .
— — —jo

Py ’

Tl - Tl(oo,q2)— ] ! / dw/ZWI(w ,92) )
do

4 2
To— +/ “*Wz(w ,0%) .

9H. Harari, Phys. Rev. Letters 17, 1303 (1963).
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On the other hand, from (3.1),

Ty = / B f dt 19K P| [7,(x),7,(0)]| P)

—(-polynomlal
Py
o [0, O1P+
qo | I do l
% f Bx(P (81 u(50) /T O ]| Phocot-- . (3.7)
~+polynomial

Specializing to x and »#£0, and P in the z direction, we
find

P

_° / d3x(P|[3J +(x,8)/94,J :(0) ]| P) o+ polynomial

M

4
= lim ig*T1( )+ iPy? / dWi('\g?)  (3.8)
¢%>—o0 0

Py

— /dsx(Pl [0 .(x,8)/34,J :(0)]| P)eo

M

e o)

P2 ptd?
= lim i¢*— —*Wz(w %) -
2 J, o

q2~>~oo

(3.9)
Hereafter, we shall assume that
Jim[¢?] / "W’z(w )
00 dV/
= Jim_2[¢] f Wil g) <w . (3.10)
g2>—w 0 v

For fixed ¢?, the integration in » converges, if the Harari
dictum® is correct. The [¢?|—> e limit is that taken by
Callan and Gross?; in particular, (3.10) is an integral in-
volved in their sum rules. It is unlikely the inelastic
scattering is so large that this Callan-Gross integral does
not exist; such a circumstance would oversaturate the
sum rules for J'dv W, from current algebra.! More
likely is the vanishing of (3.10). If the Callan-Gross in-
tegral exists, i.e., (3.10) holds, we can show that almost-
equal-time commutators (1.3) and (1.4) necessarily exist
as well. To show this, we observe from their kinematical
definitions in terms of transverse and longitudinal cross
sections'! that in our limit

Wi v? g; v?
e
W, ||/ Not-ai/  |g|?

U For a definition of ¢, and oy, see L. Hand, in Proceedings of the
1967 International Symposium on Electron and Photon Inieractions
at High Energies (Stanford Linear Accelerator Center, Stanford,

(3.11)
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which implies

" dy’ dv’
q‘*/ —W;i< [q"’{/ —Wa< oo, (3.12)
V’3 VI
In other words,
4
lim AW 1(w',q?) < o , (3.13)
¢%->—
0
hm [qZI/——Wg(w <, (3.14)

and because Wi and W, are positive semidefinite, it
follows that for |w|>2,

$1(w)=

tdw W (w 2)
hm/ L e (3.15)

and ¢ therefore by analytic continuation exists through-
out the cut w plane, barring extreme pathology in the
behavior of Iy in the limit. Similarly, we have

| \ 4 do" W 5(w’,g?)
- 2 R

)= fim_ [l [ =T e 310
throughout the cut w plane. These results are then suffi-
cient to guarantee the existence of Fi, Fy, and the
almost-equal-time commutators (1.3) and (1.4). We go
back to 7',,* as defined in (3.1), (3.5), and (3.6) and let
Pr—ew, go—iw, q fixed, w=—go/Po=—1i|qo/Py|
fixed.

.k
ij

o] / AT )
w0+ [w?])
4dw'2W1 w', 2
+6¢j|:T1(oo,q2)—/ m—(—i)] (3.17)
o (0 +]w?])

In terms of #, and F,, we find, from (1.1), (1.2), and
(3.1),

Pipj [w“’{ 4 dw’ng(w’)
T,L'j* - R —
lg?l M Jo |w’!(w’2+|w2!)
o] i) Wwwl)]
ij 1 sq o . w’2+ [(,o2f

~111m 7 /dsx/ dr e\ (P|[Ji(x,7/E),J;(0)]| P)
(3.18)
Calif., 1967). The connection between W1, W, and a4, oy is

weoe (1P rte) G—g/2m)
Y i 2M )’ dra (1422 |2]) *

Notice that F; and F;, Egs. (1.3) and (1.4), are proportional to o
and oy in the limit: 4nal/v — (1—}w)o:, 4r%l1/v — (1—1iw)o..

-+polynomial.
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In the limit,

Pin P02 6136]3
— 0;303|——
¢l gl e
an
T1( ,g%) — polynomial. (3.19)

The existence of the commutator in (3.18) is guaranteed
by the existence of an inverse Laplace transform of
(3.18). Having taken the limit |g2| —«, etc., we may
continue (3.18) into the cut w plane, and obtain

4 dw'?Fy(w’) 1 dw'?F (")
6i36j3/ e gy 31;,-/ e s -
0 o' (w'2—w2—1ie) 0 w2—wi—1e

= lim ¢fd3x[ dr
Pzo>0 0

Xe(P|[Ji(x,m/Po),J;(0)]|P). (3.20)

Upon taking the imaginary part of this relation, we
reproduce (2.5) and (2.6). This justifies the short deriva-
tion given in Sec. II.

IV. GENERALIZATION

The preceding analysis can be generalized to arbitrary
currents and momenta of the states. As an example, we
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consider the case of two different SU(3)XSU(3) cur-
rents (g1,g2) sandwiched between spin-zero hadron
states (p1,p2) of the same parity. We use the notation of
Bander and Bjorken'?:

p1tq1— patga,
P=p1+p2,
A=pe—p1=q1—¢2,
Q = gl+g2 )

I=A? 5=A‘Q=Ql2*‘922 y

“.1)

V=P'QJ
and take the limit

Expy,=po, —>0,

Qo—iwo, Q=0 (4.2
such that

w= —QQ/P():N:J"‘Q2/V (4.3)
remains finite. Encouraged by the reasonableness of this
limit in the special case of Secs. I-III, we assume that
it exists in this case as well.

Under these circumstances, the new general invari-
ants & and ¢ tend to a finite limit:

0=0-A— —w[(pa®+m?)— (pr.24+m2)], (4.4)
I=A'— —(pas—pu1.)?.

The covariant amplitude M ,,*#* tends, in the limit, to

M % = — (2% (deoys) /2 / d*x e7129(x0) (P2 | [7u%(x),7,5(0) ]| Py)

- ‘“(27)37:(2E)/d3x/ dt e~ 1l Il)im (P,,Pgll[]',,“(X,l),j,ﬂ(())],Pz,Pu>
0 2>

— ~2i(2r)3fd3x/ dr el 11)im (P.Pau|[ju(x,7/E),5,5(0)]| P,P1)(4polynomials).  (4.5)
o z"’m

This last expression is a function of pay, pui, and w alone.
Upon writing out M ,,® in invariants (suppressing in-
dices af3)
M y=P,P, A1+ (P04 P,Q,) At (P.Qv—PiQ,) A3

+(PMA,,+P7A“)A4+ (PMAV'_'P”AI‘)A5

+ (Q#AV+QVAP)A 6+ (QuAV_' QvAu)A 7

+QnQvA 8+ A[.LAVA 9+g[wA 10, (46)

we see that A4, 45, Ag, and A7 would have to tend to
(Q®)72 in order that the limit be nonvanishing and
finite. We consider this unlikely, but cannot exclude it.
Here we assume that in the limit these 4; do not

contribute.
We write

1
A iaﬁ.__) ~———F,~°’5(w,t,e), i= 1; 2) 31 8
% (4.7)
Q()A iaﬁ_) Oa

4 iaﬂ - Fiaﬁ(w:[,ve)7

i=4,5,6,7
i=9, 10

where we introduce the variable

e=—8/w= (pa+ms?)— (pri+mi?). (4.8)

When these limits (4.7) are inserted into (4.6), we find
in the asymptotic infinite-momentum limit

0.0, (0 ) ) (0 Ny =01
u P » . Py u ) )
w? w w ’

Myt —

+ nMnVF8+ AuAyF9+ g[-H'FID y (4.9)

where 8,=(1,1,0,0), n,=(1,0,0,0).

We are now free to identify various combinations of
these form factors in terms of the almost-equal-time
current commutators at infinite momentum. Using i or

2 M. Bander and J. Bjorken, Phys. Rev. 174, 1704 (1968).



1552 J.

7 to indicate transverse components,

Flaﬂ 2F 28
M oo™ —

+Fs*f+ F 0%,

w? [2)

—Fy*+F3of
MOzaﬂ —_ )
w

—FyaB— [ ab
Mzoaﬂ e b
w

Moi*8— 0,
Recall

M 8 — —2i(2r)? / o f w dr e 1P| [,%(x,7/E), 5,5(0)]| Pis) py o
0

Thus all invariant functions F; can be determined in
terms of the various current correlation functions, which
then play the central role. Similarly, an infinite set of
convergent sum rules, whose right-hand side involves
commutators of J, with d,"J,, can be obtained by ex-
panding (4.10) and (4.11) in inverse powers of w, and
comparing coefficients as w — . These are independent
of the asymptotic sum rules of Bander and Bjorken,2
because in this case § does not tend to zero, but rather
to . We do not know what to do with these results,
and shall not pursue them further here.

V. NEUTRINO PROCESSES

If we write the analog of (2.1) for the process 7,+P —
wt+hadrons as?:13:14

T do Mdos
EE' dSZdE' d|g?|dv
E' G?
= '——[Wz cos?(30)+2W, sin2(36)
E 2%

(E+E')

W, sini’(—%ﬂ)] G.1)
with kinematics as in Sec. II, and

Py d%x
— | — e #(P[[j.(x),57(0)]| P)
M 2

P,P,

€ a,gP“q’s
= 2*‘&»“1_1 s
M?

Wot---, (5.2)

where j, is the Cabibbo current,' it follows from the

13T, D. Lee and C. N. Yang, Phys. Rev. 126, 2239 (1962).
14 S, Adler, Phys. Rev. 143, 1144 (1966).
15 Qur normalization is j, ="y, (1 —vs)(n’ cosf+N’ sing).
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I8
M"aﬂ - '“Floaﬂ )
w?
Mizaﬁ —0 )
(4.10)
M i — (A;AF ¢80 — 8,3 19%F)
Mi()"ﬂ — 0.
(4.11)

(4polynomials)

arguments in Sec. IV that under our assumptions

1 _g? _g?
W2—9 —F2< > , MW1 - F1<_—“> ,
v \Mv Z

1 /—¢?
)
v My

(5.3)

as ¢>— — o, y—x, ¢*/v — constant.
Introducing the variables w=—¢2/Mv and x=»/E,
the total cross section coming from (5.1) becomes (for

EXM)

GME
(Ttut"—)/ dw/ dx( )

X[(1—=x)Fa(w)+35%0F 1 (w)+3x(1— 1x)wF3(w) ]
G*ME
= / do[Fa(w)+30F1(w) +30F;(w)]. (5.4)

Therefore, the cross section is predicted to rise linearly
with laboratory neutrino energy. The coefficient is con-
trolled again by the behavior of the current commuta-
tors at almost equal time and at infinite momentum.
To determine this, we take various components of (5.2)
in the gy, P,— limit, in parallel with the discussion
leading to (2.5):

® dr
ddx /

Xe=er(P|[ ja(x,7/E), 7.1 (0)]]| Py=F1(w),

* dr
- / a5 f z
Pz o 21I'

lim

Py

lim

Fz(w)] ’

xw'wu’l[jz<x,¢/E>,»fz*(0>JlP>=[Fdw)“*'

® dr
d3x /

Xe= " (P|[ja(x,7/E), 5} (0)]| P)=

lim

.—)00

—3iFs(w).  (5.5)
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Substituting (5.5) into (5.4) we find, upon extending the w integration to =,

G:ME
Otot —> / dww/
—w 2T

C(r)= lim f &*(P;|§L7a(x,7/ E), jo(0)]—Lia(x,7/E), 1 (0) 1431 7o(x,7/ E), 5,1 (0) ]| ).

where

— eiorC(7), (5.6)

5.7

An interesting result is obtained upon taking the sum of antineutrino and neutrino cross sections. By crossing

symmetry,
GME r® ©dr G*ME aC(7)
Giot’ P+ 040’ P = [ wdw — e %7C(r)= (—1)
dr  J_o o 2T T a7 lre0
GME
=== lim (=) / 22 14005 0x0) /01,40
™

- [sz(x,t)/at,j)(O)]—l-%—i[aj,(x,l)/at, ]‘yT(O)] l Pz>t=0 .

Therefore, we predict not only that #p and »p total cross
sections depend linearly on energy, but that the sum of
the total cross sections is determined by the equal-time
commutator of the Cabibbo current with its time
derivative at infinite momentum.

The linear rise of cross sections predicted here would
be cut off, were there an intermediate boson W ex-
changed, with the cutoff at E~Mw?/M ,. Data from
the deep-mine cosmic-ray neutrino experiments'®:'7 are
as yet inconclusive; however, a linear rise of neutrino
cross sections up to 10-100 BeV is not inconsistent with
the data.!®

VI. CONCLUSIONS

By combining the go— ¢ asymptotic limit with the
infinite-momentum method, we have shown that in a
certain limit, the inelastic electron scattering structure
functions

p dim MWAG)=F(-¢/M),  (6D)
Fi(—¢*/Mv)
Llm [(—gIWalg) = Walg) J=—— ——
(6.2)

are directly related to Fourier transforms of almost-
equal-time commutators at infinite nucleon momentum,

16 M. Menon éf al., Can J. Phys. 46, S344 (1968).

17 F. Reines ef al., Can J. Phys. 46, S350 (1968).

18 For neutnno-scattermg from a neutron the term in (5.8)
proportional to [J,,J,'] changes sign, and the others are equal to
the corresponding terms for the proton, in the approximation of
ignoring |AS=1] transitions. Thus the deep-mine experiments
melasure mainly the diagonal commutators [J,,J-] and [J,,J.1]
only.

(5.8)

given in (2.5) and (2.6). Provided the Callan-Gross?
integral is finite,

lim
| g% >0

¢l ] “Wibg)<o,  (63)

we have shown that these commutators are not infinite,
but may be zero (or ambiguous). The hypothesis that
these commutators are indeed finite is equivalent to the
prediction

MW1_qz:jF1(“92/MV), (6.4)
Wa 2 P =/ M), (6.5)
gé—>0

Under similar assumptions, total 7p and »p cross sec-
tions are predicted to rise linearly with laboratory neu-
trino energy. Of particular interest is the behavior of the
sum of cross sections, dependent, according to (5.8),
only on the equal-time commutator of the Cabibbo
current with its time derivative, evaluated between
nucleon states at infinite momentum.

An extension of this technique to more general kine-
matical conditions, presented in Sec. IV, is possible, but
by itself does not seem to lead to further insight into the
nature of this limit. A more physical approach into what
is going on is, without question, needed.
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