
Graduate School Form 9
(Revised 8/89)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis Acceptance

This is to certify that the thesis prepared

BY
Jianhua Zhou

Entitled

Visualization of Four Dimensional Space

and Its Applications

Complies with University regulations and meets the standards of the Graduate School for
originality and quality

For the degree of
Doctor of Philosophy

Signed by the final fiamining committee:

, chair

A ~ ~ r o v e d bv: , .

jdLd2.QL.4i~&J -1
0 De&rtment Head /

U is
This thesis a is not to be regarded as confidential

Q R k @-I
Major Prbfessor

VISUALIZATION OF FOUR DIMENSIONAL SPACE

AND ITS APPLICATIONS

A Thesis

Submitted to the Faculty

Purdue University

Jianhua Zhou

In Partial Fulfillment of the

Requirements for the Degree

Doctor of Philosophy

November 1991

To my parents,

Wenlong Zhou and I'uexian Chen

ACKNOWLEDGMENTS

I am most grateful to my advisor, Professor Christoph M. Hoffmann, for his

constant encouragement and guidance, and for his reading the whole manuscript and

making many valuable suggestions. He has significantly influenced my professional

conduct and training. I want to particularly thank Professors David C. Anderson,

Robert E. Lynch, and Concettina Guerra for serving on my thesis committee. I am

also thankful to Professors Chanderjit Bajaj, Helmut Pottmann, Kokichi Sugihara,

and George VanEek, Jr. for discussions on CAGD and visualization. Although

the Interactive 4D Visualization System was designed and programmed by myself, I

cordially appreciate the kind help from William Bouma and Ravi Pradhan in making

pictures and video tapes. My thanks are also due to all the friends who have helped

and encouraged me during my stay at Purdue. Among them are Ching-Shoei Chiang,

Jung-Hong Chuang, Neelam Jasuja, Honghai Shen, Jyh-Jong Tsay, Pamela Vermeer,

and Jiaxun Yu.

My wife Yi Liu and daughter Vicky deserve special thanks for their love, support,

and taking care of Karen who was born while I was writing this thesis. Such as they

are, my accomplishments belong equally to them.

Finally, to my parents Wenlong Zhou and Yuexian Chen, who seemed to be proud

of what I did, I would like to express my deepest gratitude. This thesis is dedicated

to them.

This research has been supported in part by the National Science Foundation

grant CCR 86-19817 and DMC 88-07550 and by the office of Naval Research under

contract' N00014-90- J- 1599.

TABLE OF CONTENTS

Page

. LIST OF FIGURES vi

ABSTRACT . x

. 1 . INTRODUCTION 1

. 1.1 Relatedwork 1
. 1.2 Proposed Method 3

. 1.3 Dimension Analogy 8

. 1.4 Thesis Organization 10

. 2 . FUNDAMENTAL CONCEPTS 12

. 2.1 OrientationSpecification 12
. 2.1.1 Euler Angles in n-space 13

2.1.2 Directions of Projection by Euler Angles 14
. 2.1.3 Quaternions 17

2.1.4 Directions of Projection by Quaternions 26
. 2.1.5 Relations between Euler Angles and Quaternions 28

. 2.1.6 Animation by Quaternions 30
. 2.2 Silhouettes and Envelopes 32

. 2.2.1 Silhouette Points 33
. 2.2.2 Envelopes 36

2.2.3 The Silhouette Surface of a Hypersurface in 4-space 37
. 2.2.4 The Normal of a Projected 2-Surface 38

. 2.3 Visibility 40

. 3 . VISUAL PHENOMENA AND THEIR MEANING 44

. 3.1 Interpretation of Some Viewing Positions 44
3.1.1 Viewing Positions That Keep 2D Image Invariant 44

. 3.1.2 Viewing Positions with Special Effects 45
3.2 Interpretation of the 3D Images of Hypersurfaces 50

Page

3.2.1 Procedural Construction of the 3D Image of a Hypersurface . 50
. 3.2.2 Understanding by analogy 54

. 3.3 Observing the Curvature of a Hypersurface 59

. 4 . SYSTEM ARCHITECTURE 68

. 4.1 System Overview 68
. 4.2 Polygonalization of Implicit 2-Surfaces in 4-Space 73

. 4.2.1 The Basic Algorithm and Data Structure 74
. 4.2.2 Newton Iteration for Point Refinement 77

. 4.2.3 Merging Polygons 82

. 4.3 Visibility Determination 84
. 4.3.1 Intersection of 2-surfaces in the Image Space 85

. 4.3.2 Determining the Partition Function on a 2-Surface 89
. 4.3.3 Sight Number Calculation and Propagation 94

. 5 . APPLICATIONS 97

. 5.1 Understanding Differential Geometry 98
. 5.2 Collision Detection and Analysis 104

. 5.3 Scalar Fields in 3-Space 107
. 5.4 Generalized Offset Curves 109

. 5.4.1 Motivation 109

. 5.4.2 Definitions 115

. 5.4.3 Properties 116
. 5.4.4 Finding Optimal Q-offset Curves 128

. 6 . CONCLUSION AND FUTURE WORK 131

. 6.1 Concepts and Intuitions 131

. 6.2 System and Applications 133
. 6.3 Toward the Fifth Dimension 134

. BIBLIOGRAPHY 136

VITA . 142

LIST OF FIGURES

Figure Page

1.1 A torus projected into a plane and then projected into a line 8

2.1 Euler Angles: (a) 6,, 63 in R4 (b) Bs, 65 in R3 (c) 6~ in R2 15

2.2 Thebody-fixedvector1anditsprojectionsinR3andR2 16

2.3 Rotation of quaternions .

2.4 The projections of the world base vectors i and 1 in the 3D image space.

2.5 Ambiguities in conversion to quaternions

2.6 Visibility .

3.1 A square plate ~rojected into a line. (a)viewing positions. (b)eye, at B,
eye, at A. (c)eye, at A, eye, at B. (d)eye, at A, eye, at C. (e)eye, at D,
e y e 2 a t E .

3.2 Bracket viewed from 6 = (0,0,0,45,60,0) degrees

3.3 Bracket viewed from 6 = (0,0,0,45,60,0) but shaded by color scale rep-
resenting w-values .

3.4 Bracket viewed from 6 = (45,60,90,0,0,0); Positions of eye, and eye, are
exchanged .

3.5 Bracket cut by z-clipping plane to display isosurface w = constant . . .

3.6 The 3D image viewed from a different eye, direction: 6 =
(45,60,90, -75,45,0) .

3.7 The 3D image viewed from a different eye, direction: 6 =
(45,60,90, -75,90,0) .

3.8 Bracket viewed from 0 = (45,45,45,105,90,0). Only three surfaces in the
grid with constant x, y and z values are displayed

vii

Figure Page

3.9 Three isosurfaces~ on the hypersurface x2 + y 2 + z -- w 2 = 0 51

3.10 The silhouette surface of the hypersurface 52

3.11 The boundary surface z + 0.5 = 0 of the hypersurface 52

3.12 The hypersurface viewed' from 8 = (45.105.78.90.81. 0) with visibility
determination . 53

3.13 The hypersurface viewed from 8 = (45.75.102.90.81. 0) with visibility
determination . 53

. 3.14 Surface x 2 + y . z2 = 0 with two different views 55

3.15 Hypersurface x2 + y 2 + z2 . w 2 . 1 = 0 viewed from 0 =
(-165.45.75.-165.84. 0) . 55

3.16 The dimension reduction of the silhouette surface in 3D image space . . 56

. 3.17 The same silhouette surface viewed from another direction 56

. 3.18 The hypersurface viewed from 8 = (- 165.45.15. - 165.84. 0) 57

. 3.19 Surface x 2 + y2 z2 1 = 0 with three different views 57

3.20 Curvature of a Hypersurface . 61

3.21 Hypersurface of Gauss Distribution . 65

3.22 Hypersurface of Gauss Distribution Clipped by a Plane 65

4.1 Systemarchitecture . 71

4.2 Point Refinement in 3-Space . 78

4.3 Point Refinement in 4-Space . 79

4.4 Silhouette Surface Before and After Visibility Determination 90

. 4.5 Intersection of Two Boundary Curves in Image Space 90

4.6 Intersection of Two Boundary Surfaces in Image Space 91

4.7 An Isosurface trimmed by the Silhouette Surface in Image Space 93

4.8 Function f (A) near X = 0 . 96

Figure Page

5.1 Curves (a) y . x2 = 0 and (b) y2 . x3 = 0 and their offset curves by 1 . 99

5.2 The Offset Curve (a) traced in R4 viewd from 6' = (0.0.0.0.0. 0) 101

5.3 The Offset Curve (a) traced in R4 viewd from 6' = (45.105.45.75.165. 0) 101

. . . . 5.4 The Offset Curve (b) traced in R4 viewd from 6' = (0.0.0.0.0. 0) 102

5.5 The Offset Curve (b) traced in R4 viewd from 6' = (45.40.60.105.75. 0) 102

5.6 The Offset Curve (b) traced in R3 viewd from 0 = (0.0.0.0.0. 0) 103

5.7 The Offset Curve (b) traced in R3 viewd from 6' = (0.0.0. -40.60. 0) . . 103

5.8 A cylinder and a sphere in motion . 105

5.9 Intersection of a cylinder and a moving sphere with the same radius.
viewed from 0 = (0.18.9.120.75. 0) . 106

5.10 The cylinder has a larger radius. viewed from 6' = (0.30.105. -105.30. 0) 106

5.11 The cylinder has a smaller radius. viewed from 6' = (0. -15.123.120.90. 0) 110

5.12 A snub dodecahedron . 110

5.13 Contour and slicing surfaces show the structure of a virus 111

5.14 Contour and slicing surfaces within a subcube 111

5.15 The contour and slicing surfaces viewed from 6' = (0.0.15.315.60. 0) . . 112

5.16 The contour and slicing surfaces viewed from 6' = (0.0.90.315.90. 0) . . 112

5.17 A comparison between two cutters . 113

5.18 Cutter moving direction . 114

5.19 Q-offset curveof (t . t2) .a=0.25.b=0.125.6 '=30. 117

5.20 Q-offset curve of (t. t2). a = 0.25. b = 0.086.0 = 30 118

5.21 Q-offset curve of (t. t2). a = 0.25. b = 0.04.6' = 30 119

5.22 Interference near a cusp . 124

5.23 The hypersurface P(t . b. 6') . 126

Figure Page

5.24 The curvature ~ (t , b, 0) . 126

5.25 Optimal Q-offset curve of (t , t 2) , a = 0.25 129

ABSTRACT

Zhou, Jianhua. Ph.D., Purdue University, December 1991. Visualization of Four
Dimensional Space and Its Applications. Major Professor: Christoph M. Hoffmann.

In this thesis a method has been proposed to visualize curves, surfaces and hyper-

surfaces in four-dimensional space. Objects in 4-space are first projected into the 3D

image space and further projected into the 2D image space. Four topics have been

investigated: (1) Fundamental Concepts. (2) Visual Phenomena and Their Meaning.

(3) System Architecture. (4) Applications.

The orientation of the 3D and 2D image spaces can be specified by a set of six

Euler angles or a pair of quaternions. Since the the quaternion pairs representing

4D rotations are not unique, three useful forms have been discussed. Each form

is suitable for rotation combination, for conversion between quaternions and Euler

angles, or for user interface. The silhouette point of an m-surface with respect to

a projection from n-space to 1-space (m 5 1 < n) has been defined. The close

relationship between silhouette and envelope turned out to be useful in explaining

some phenomena with a surface defined by the envelope theorem and in understanding

the image of a hypersurface.

Several geometric properties and phenomena in 4-space have been demonstrated

by computer generated pictures and animations. They include the ambiguity caused

by projection, the degeneracy of the silhouette surface of a hypersurface, and the

principal curvatures of a hypersurface.

The architecture of an interactive 4D visualization system has been presented.

The system was built on z-buffer based graphics workstations. Algorithms and data

structures for polygonalization, point refinement, merging polygons, and visibility

determination in 4-space are discussed.

Finally several examples have been presented to illustrate the application of the

visualization system: tool path generation for NC machines, collision detection and

analysis for robot motion planning, and visualization of electron density data of a

virus for molecular biology.

Supplementary media for this thesis, a video tape and a set of color slides, is

available in the Film Library of Purdue University.

1. INTRODUCTION

High-dimensional space is playing an increasing role in computer-aided geomet-

ric design (CAGD) and solid modeling. Applications include describing the motion

of 3D objects, modeling solids with nonuniform material properties, deriving spline

curves uniformly, and formulating constraints for offset surfaces and Voronoi surfaces

[Cam84, Hof89, Ros89, SeigOa]. Apart from the modeling aspects, it is important

to develop visualization tools for high-dimensional space, for these tools can provide

insights and methods for investigating geometric phenomena and dynamic systems

[Ban86, KBBL861. This thesis investigates this topic with a view towards CAGD and

solid modeling, concentrating on four-dimensional space.

In this introductory chapter the previous related work is briefly reviewed. Then

a proposed method is sketched. To facilitate the understanding and explanation of

visualization of 4-space, an analogous example in 3-space is presented in the third

section. The organization of the thesis is given in the last section of this chapter.

1.1 Related Work

High dimensional geometry and its visualization can be dated to the last century.

In those books dedicated to geometry of four dimensions [ForSO, Man56, Cox471,

concepts are often illustrated by figures from Cspace. A recent book by Banchoff

[Bango] contains rich materials about the history and approaches to visualization of

four dimensional space. Here we review the various techniques for visualizing the high

dimensional space by means of computer graphics.

In his book [Eck68] Eckhart proposed a method to project an 4D object into

several planes that are orthogonal to different pairs of coordinate axes. The 2D

images so obtained can be put together in a systematic way in analogy to the principal

views in traditional engineering drawings. For example, a plane is divided into four

quadrants by X- and Y-axes. Each quadrant is considered as a 2D image plane in

4-space, namely, (x, y)-, (y, z)-, (z, w)-, or (w, 2)-plane. This method can be used to

project scattered data by computers [TTSl], and it can be extended so that the 2D

image planes are the support plane of the faces of a regular polytopes, not necessarily

pairwise orthogonal. However, since this method only displays points or curves that

are four or three dimensions lower than the dimension of the ambient space, and since

the viewer must gather information from several different views, it may be very hard

to interpret such pictures.

No11 introduced computer animation to visualize hyperobjects in his pioneering

paper [No167]. With animation the viewer can connect mentally the consecutive

pictures of slightly different views. At least it is easier than connecting several static

pictures of quite different views as in the above method. Noll's movie also made use of

stereoscope, trying to get the depth feeling of the image in 3-space. His hyperobjects

were represented by discrete points connected by line segments (edges). It relied

therefore on perspective projection to get the depth feeling in 4-space.

Banchoff and his colleagues used computer graphics and animation to investigate

geometric phenomena related to complex function and dynamics systems [Ban86,

KBBL861. They displayed 2-surfaces in 4-space by two projections. 3D shading

was added to the second projection. By using stereographic projection as the first

projection, a hypersphere except for one point is mapped to the whole 3D space. The

structure of the hypersphere is displayed via a set to flat tori which are the inverse

images of circles on a sphere under the Hopf map [KL87].

The advantages of using two step projections was discussed by Rossignac [Ros89].

Several common CAD and solid modeling problems were reformulated in 4-space. He

also proposed a method to display polytopes with light sources in 4-space. The visi-

bility in 4-space was also mentioned in the context of projected polytopes. A different

algorithm for visibility problem in general n-space was presented in [BS82]. It only

considered the hidden lines of polytopes. As we discuss in this thesis, however, curved

surfaces require a more elaborated notion of visibility, and the simple techniques that

suffice for polytopes must be significantly changed.

All the above methods are based on projection, and so preserve the properties

studied in projective geometry. However, a picture so obtained by projection from 5

or higher dimensional space seems hardly comprehensible [No167]. There are a few

methods that have been tried for higher dimensions. They are based on nonprojective

maps. Inselberg proposed a method called the plane with parallel coordinates [Ins85,

InsSO]. In the (X, Y)-plane n lines parallel to the Y-axis are drawn representing the n

Cartesian coordinates of Rn. The figure drawn is basically the image of objects under

a nonprojective map from Rn to R2. Several nice dualities were found related to this

map. Another method presented by Mihalisin is suitable for displaying multivariate

functions [MGTS89, MTSSl]. It can be understood as though the sampled function

values a.re stored in an n-dimensional array and then displayed as a univariate function

after enumerating the array elements linearly. It treats the high dimensional space

inhomogeneously. For example, exchanging the role of x and y will drastically change

the 2D graph.

In summary, projective methods are enhanced by animation, shading, and visibil-

ity determination, and so reveal more information about the 4D geometry; nonpro-

jective methods have been proposed in an effort to handle much higher dimensions.

There seems to be no one method suitable for all the problems, and there are many

aspects in which existing methods can be improved. To the author's knowledge, the

correlation between silhouette and the visibility of curved hypersurfaces have not been

thoroughly discussed in the context of 4D visualization.

1.2 Proposed Method

Our method is based on the two-step projection approach. The objects in 4-

space, i.e. curves, 2-surfaces and hypersurfaces, are first projected into 3-space and

then further projected into 2-space. Since the second projection is quitefamiliar to us,

we put emphasis on understanding the first projection and the combination of the two

projections. The central part of the work is dealing with 2-surfaces in 4-space. The

projected 2-surface in 3-space is again a surface and can be shaded in a standard way.

Curves in 4-space are displayed as curves on 2-surfaces, e.g. the silhouette curves of

2-surfaces. Hypersurfaces in 4-space are displayed through their silhouette surfaces,

boundary surfaces, intersection surfaces, and isosurfaces that are all 2-surfaces. Even

though we do not display the whole hypersurface, some of its geometric properties

can be so recovered.

The method is basically an extension of certain 3D graphics techniques. The

crucial difference is that when we look at the 2D images of 3D objects, we are outside

the image space, but when we look at the 3D images of 4D objects, we are inside the

image space. This fact causes difficulties in that we can look at all parts of the 2D

image at the same time, but we cannot do this in a 3D image since, e.g. parts of it

are occluded by other image objects. So we include the following functionalities:

r The orientation of the first and second projections is controlled and coordinated

in a systematic way so that the image is more predictable.

r The silhouette points of 2- or 3-surfaces with respect to one or two projections,

and their relationship to the envelopes, are discussed. Silhouette surfaces or

curves turn out to be crucial in sketching the shape, determining visibility, and

recognizing certain geometric properties of 2- or 3-surfaces in 4-space.

r The visibility with respect to both projections are explored. Ambiguities could

be caused by the first and/or the second projection. An algorithm is presented

for the visibility determination associated with the first projection.

These functionalities are further explained as follows.

Orientation. It is well known that the orientation of a rigid body in 4-space can

be specified by six independent parameters. But how these parameters affect the

images in 3-space and 2-space, i.e. in the 3D image space and the 2D image space,

respectively, have not been well studied. Suppose an object is rotating in 4-space and

its 3D image is inspected. Since we are in the same space as the 3D image, in order to

see it from all sides, the 3D image has to be further rotated. Do we need another set

of three parameters to specify the orientation of the 3D image before it is projected

into 2D image? The answer depends on how the image space is defined. To specify

systematically the orientation of objects, of the image space, and of the projection,

we use generalized Euler angles. The centers of the first and second projections are

called eye, and eye,, respectively. The 3D image space is defined to be orthogonal to

the direction of eye,, and the 2D image space is orthogonal to both the eyes' direction.

They are arranged so that their orientation can be concisely expressed by a set of

six Euler angles. Three of them are used for the control of eye,, and two are for the

control of eye,. The last one would be used for control of eye,, the center of the third

projection, but it is not necessary for us since we live in 3-space. Interpretation of

some useful angle choices will be given with examples. The generalized Euler angles

have other advantages such as keeping the vertical directions, and being compatible to

existing 3D graphics user interfaces. However, the Euler angles have some drawbacks

such as the singularities encounted in converting matrices to Euler angles, and the

difficulties in animation by interpolation of Euler angles [SeiSOb].

Quaternions. To overcome the problems of Euler angles, many authors have advo-

cated the use of quaternions for orientation specification, especially in 3D animations

[Mar85, Sho85, SeiSOb]. Likewise, the quaternions can be used for orientation spec-

ification in 4-space and 4D animations. The difference is that any 3D rotation is

representable by one quaternion while any 4D rotation is representable by a pair of

quaternions. To make use of quaternion for 4D visualization, we need to understand

how a quaternion rotates in $-space, a task that is much more confusing than the

case of 3-space. For example, it is well known that a 3D rotation always has an axis

and any vector parallel to this axis is invariant under the rotation. We will show that

the 4D rotation by a nonreal quaternion has no fixed-point at all. The best we can

do is to decompose the the rotation into two orthogonal subrotations. Moreover, the

quaternion pair to represent a 4D rotation is not unique. We will discuss the three

most useful forms. The first is suitable for rotation combination and interpolation.

The second is suitable for conversion between quaternions and matrices or between

quaternions and Euler angles. The third one has a simpler interpretation, and so it

is suitable for the user interface.

Silhouettes. When a surface in 3-space is projected into a plane, those points on

it where the surface normal is orthogonal to the ray from eye to the point are called

the silhouette points. The concept is extended to surfaces of dimension m in Rn with

respect to a projection from Rn to R' (1 5 m < 1 < n). Particularly, the silhouette

points of a 3-surface (hypersurface) in R4 with respect to the first projection comprise

a silhouette surface of the hypersurface. The silhouette points of a 2-surface in R4

with respect to the combined first and second projections comprise a silhouette curve.

In modern 3D graphics workstations, the silhouette curve of a surface need not be

constructed explicitly. When the polygons representing the surface are small enough,

the picture with hidden surfaces removed shows the approximate silhouette curve by

the discontinuity of shading. This technique cannot be extended into 4-space. If all

the points on the hypersurface are shaded and projected into 3D image space, we

get a 3D volume. Each point in the volume has its own color of different intensity

according to some kind of shading model in 4-space. Such an "emitting" volume

cannot be seen clearly due to the fact that we are in the same space as the 3D image.

For the same reason showing a hypersurface by dense isosurfaces is unsuitable. A

good method for visualizing the hypersurface is to construct the silhouette surface

explicitly, and to display it with boundary surfaces, self-intersection surface (if any)

and a sparse set of isosurfaces.

Envelopes. In 2-space, the envelope of a family of curves is another curve tan-

gent to every curve in the family. The definition generalizes to arbitrary n-space

straightforwardly. What is its use in visualization? We show that in some sense the

envelope and silhouette are equivalent concepts. This link of silhouette and envelope

provides several applications. First, in CAGD and solid modeling the dimensionality

paradigm is suitable for representing exactly complex surfaces that satisfy prescribed

constraints, such as offset surfaces, blending surfaces, and equal-distance or Voronoi

surfaces [HofSO, HV911. The equations of constraint can be formulated by the enve-

lope theorem. From another point of view, these surfaces are the sets of silhouette

points of surfaces in higher dimension projected into lower dimension. Visualization

helps explain some phenomena that may occur during the surface interrogation. Sec-

ond, 4D visualization is subtle in that often the pictures look dazzling. Although the

silhouette surface of a hypersurface can be generated by computer from its definition,

it will be more comprehensible if the silhouette surface can also be constructed by

the viewer in his/her mind. Envelopes offer a conceptual tool in such a construc-

tion. In fact, most of the pictures of the hypersurfaces presented in this thesis had

been qualitatively predicted by the author before there were generated by the system.

Third, the correlation between envelope and silhouette reveals the singularities in the

intersection of surfaces on a hypersurface, necessitating some precautions in designing

the algorithms for visibility determination.

Geometric Properties. Visualization has been frequently utilized for observing ge-

ometric properties, such as coincidence, collinearity, tangency, continuity, convexity,

and curvature. These properties can also be observed in 4-space through 4D visual-

ization. Among them, observing the curvature seems hardest. We will discuss how

to infer the curvature of a hypersurface qualitatively through its 3D image. Again,

the silhouette surface of the hypersurface plays an important role in curvature obser-

vation.

Visibility. Projection is a many-to-one map and causes ambiguity when the image

is interpreted. An effective technique to eliminate the ambiguity is called the hidden

surface removal, or the visibility determination. Visibility is a concept associated with

a projection down one dimension. In the case of a projection composed of several

steps, visibility associated with each step has to be considered. Another problem is

the dimension of the potentially visible objects and the dimension of the potentially

hiding objects. Here object refers to a surface of any dimension and its image under

any projection. For example, a solid in 3-space, i.e. an object of dimension 3, can be

Figure 1.1 A torus projected into a plane and then projected into a line

the image of 3-surface in 4-space, or the image of 3- or 4-surface in 5-space, and so on.

If these surfaces can be potentially hiding objects in 3-space, most 2-surfaces could

be hidden. Our solution is that for a projection from Rn to Rn-', the hypersurface

in Rn is the potentially hiding object. Its image in Rn-' is neither the potentially

visible object nor the potentially hiding object. Applying this rule to 4D visualization,

although in 3D image space a hypersurface is invisible, the 2-surfaces on it can be

partially or totally hidden by the hypersurface.

1.3 Dimension Analogy

When we try to visualize 4-space, the situation is similar to the inhabitants of 2-

space, called the flatland in [Abb63], who try to visualize 3-space. It will be helpful if

we first investigate an analogous situation with reduced dimension, called the dimen-

sion analogy, and see what problems may happen. As an example let us investigate

the silhouette with respect to the projections from 3-space to 1-space.

Consider a torus projected into a 2-space that contains the page on which Fig-

ure 1.1 is printed. The center of this projection, eye,, is somewhere in the first octant

of the (x, y, 2)-coordinate system above the page. Imagine now that we live in that

2-space and try to "see" the picture in a 1D projection. This is the second projection

which produces a 1D image of the torus, on a line. The center of the second projec-

tion, called eye,, is then confined to the plane orthogonal to the direction of eye,, i.e.

orthogonal to the vector from the origin to eye, in 3-space.

Figure 1.1 actually is not the projection of the whole torus but the projection of

the silhouette curve of the torus with respect to the first projection. A point on a

surface becomes a silhouette point if the tangent plane of the surface at that point is

projected into a line. This happens when the ray from that point to eye, falls into the

tangent plane. Clearly, when eye3 is moving, the silhouette curve changes its shape

and so does its projection. Now let us fix the eye, position and concentrate on this

silhouette curve as an ordinary space curve C. A point on a curve becomes a pinch

point if the tangent line of the curve at that point is projected into a point.1 This

happens when the ray from that point to eyes coincides with the tangent line. The

four cusps in figure 1.1 are such points. They may cause trouble in determining the

normal of the projected curve, which is necessary if shading is added to the second

projection. The second projection may also introduce pinch points, for instance the

point P on C in Figure 1.1. It appears as a discontinuity of shading in the 1D image.

Note that the ray from P to eye, does not necessarily coincide with the tangent line

of C at P in 3-space. Also note that the tangent plane of the torus at P is mapped

to a point under the two projections. So it could be called a doubly silhouette point

of the torus with respect to the two projections. The concepts of silhouette, doubly

silhouette and pinch point have the common feature that at such points the tangent

space of an object reduces in dimension under the projection.

lFor the definition of pinch points on a Zsurface in 4-space see [Ban86].

1.4 Thesis Organization

In this thesis the proposed method is elaborated in both theoretical and practical

aspects. Chapter 2 defines the fundamental concepts for our method of 4D visu-

alization: the specification of the orientations of objects and projections by Euler

angles and quaternions, the silhouette point of an m-surface and its relationship with

envelopes, and the visibility determination for elimination of ambiguities caused by

projections. All these concepts, except for the quaternions, are given in general form

valid for arbitrary dimensions, as well as in special form suitable for 4D visualization.

In Chapter 3, Visual Phenomena and Their Meanings, several pictures generated

by our interactive 4D visualization system are presented. We explain how to adjust

Euler angles to achieve special visual effects, and how to construct the image of a

hypersurface in one's mind so as to understand the computer generated pictures. The

possible degeneracy of the silhouette surface is explained by the dimension analogy.

Finally, a method for the curvature observation is derived and illustrated by examples.

Chapter 4 is devoted to the architecture of the interactive 4D visualization system.

The input to the system can be the functions defining implicit or parametric 2-surfaces

in 4-space, or discrete function values representing a 3D scalar field. Algorithms are

presented for polygonization and visibility determination. The various singularities

caused by the projection, and the desingularization techniques based on geometric

intuition are also discussed. The discussion would be extremely complicated, if not

impossible, without the pictures which are the result of 4D visualization. The design

of the system architecture has met its original goal: interactivity, flexibility, and

compatibility to 3D graphics.

The wide applicability of 4D visualization can only be sampled in Chapter 5.

Examples include the offset curves displayed as the silhouette curve of a 2-surface with

respect to the projection from 4-space to 2-space. Rotation in 4-space reveals that

some apparent singularities do not really exist in 4-space. Collision of 3D objects can

be detected and analyzed in (x, y , z , t)-space. The intersection of two moving surfaces

is thus a 2-surface in 4-space. Some precautions are drawn for the initial colliding

point problem from observing the pictures. The 3D scalar field display is common

in 3D graphics. Here it is put in 4-space and seen from a different view. The final

example, tool path generation for 5-axes milling machines, discusses a problem in

5-space using some simplifications. Then the problem and its solution are visualized

in 4-space.

Chapter 6 summarizes our results and presents some considerations for future

work: toward the fifth dimension.

2. FUNDAMENTAL CONCEPTS

In this chapter we discuss some fundamental concepts in visualization of high

dimensional space via projection: orientation specification, silhouettes and envelopes,

and visibility. In each of the following sections, after the general form applicable to

arbitrary n-dimensional space, a specific form for 4D visualization is presented.

2.1 Orientation Specification

To visualize objects in n-space, it is necessary to specify and adjust interactively

the orientation of objects, projection directions, and light source directions. They

can be uniformly considered as the orientations of rigid bodies. The orientation of

a body-fixed coordinate system with respect to the reference coordinate system can

be expressed by an n x n orthonormal matrix A = (aij) called the direction cosine

matrix:

p = A q

where p = (pl , . . . ,p,)T is a vector expressed in the reference coordinates, and q =

(ql, . . . , qn)T is the same vector in the body-fixed coordinates. Among the n x n

elements in A only n(n - 1)/2 of them are independent. It will be convenient to

specify the orientation by a set of n(n - 1)/2 + m parameters with m constraints,

where m is a small number, say 0, 1 or 2. This problem is called the parameterization

of the rotation group. In [Stu64] a number of methods for parameterizing the 3D

rotations are reviewed. Not all of the methods can be generalized into arbitrary n

dimensional spaces. In this section we discuss two methods: the generalized Euler

angles for rotations in arbitrary n-space, and the quaternions for rotations in 3- and

4-space.

2.1.1 Euler Angles in n-space

The matrix A can be written as the product of n(n - 1)/2 basic rotation matrices.

The basic rotation is a one-parameter rotation within a plane spanned by two base

vectors of the coordinate system. The basic rotations should be chosen systematically

so that the geometric relationship is easy to explain and to remember. Some common

choices in 3D are the Euler angles and Bryant angles lWit771.l

In 3D kinematics, Euler angles specify the orientation of objects by three successive

basic rotations:

P = R:,(oI)R;,(o2)R:,(o3)q

where Rig(.) is the basic rotation matrix in the (a, y)-plane. The number superscript

indicates the rotation phases, explained as follows.

We conceptualize 3D Euler angles as two separate rotation phases: In the first

phase, specified by R:y(d1)R~z(62), the body-fixed z-axis is oriented into its final

position in 3-space. In the second phase, a single rotation, RE,(&), brings the body-

fixed a- and y-axes into their final positions within the the 2D subspace orthogonal

to the (oriented) body-fixed z-axis.

It is clear that with this conceptualization Euler angles can be naturally extended

into arbitrary n-space. The Euler angles in (n + 1)-space can be considered as n

rotation phases:

1. The first phase orients the body-fixed axis by n basic rotations in the

(a1, x2)-plane, (2 2 , as)-plane, . . ., (a,, xn+l)-plane.

2. The remaining n - 1 phases orient the n-dimensional subspace orthogonal to

the xn+l-axes by the Euler angles in n-space.

In particular, the orientation of objects by Euler angles in 4-space is expressed as:

'These angles are all referred to as the Euler angles. Here we use the name convention in [Wit771

Figure 2.1 shows the three rotation phases. The body-fixed axes after the i-th rotation

are denoted by xi, y;, z;, w;.

To calculate Euler angles from the direction cosine matrix A we need the inverse

Euler angle formula. Since the definition is recursive, it is not hard to derive the

formula for arbitrary n-space as follows:

1. Calculate the angles 01, . . . , from the last column of A via

2. Calculate the remaining angles recursively from the n - 1 x n - 1 submatrix of

Within each rotation phase only the angle of R:,,, has a full range of 27r. The

others are restricted to a range of 7r so as to eliminate ambiguities. That is why there

is no f before the square root in (2.2).

The i-th column of the direction cosine matrix can be considered as the reference

coordinates of the i-th base vector of the body-fixed coordinate system. From (2.1)

and (2.2) we see that the angles in i-th rotation phase are the polar coordinates of

the (n - i + 1)-th base vector of the body-fixed coordinate system. Figure 2.2 shows

the case of 4-space, where 1 is the fourth base vector (in the direction of w-axis) of the

body-fixed coordinate system. The orthographic projection from R4 to R' is denoted

as 7r;.

Note that numerical difficulties arise when both the numerator and the denomi-

nator in the argument of arctan are close to zero. This is a well-known drawback of

Euler angles [Wit77].

2.1.2 Directions of Projection by Euler Angles

In 4-space, we assume a world coordinate system as the reference coordinate sys-

tem. Each object is translated and rotated by specifying a transformation relating

Figure 2.1 Euler Angles: (a) 81 , 02, 63 in R4 (b) 04, e5 in R3 (c) 66 in R2

Figure 2.2 The body-fixed vector 1 and its projections in R3 and R2

its body-fixed coordinate system to the world coordinate system. The 4-space is first

projected into the 30 image space orthogonal to the first projection direction. Then,

the 3D image space is projected into the 2D image space orthogonal to both the

first and second projection directions. The first and second centers of projection are

called eye, and eye,, respectively. They can be at finite or infinite distance from the

origin. We require that the origins of the three coordinate systems of the 4D world,

of the 3D image, and of the 2D image space coincide. Thus, the relationship between

the coordinate systems can be expressed by pure rotations with only six independent

parameters.

We specify the projection directions in the same way as object orientation. A

single set of Euler angles specifies the orientation of both eye, and eye, because we

can think of the two lines from the origin to eye, and eye, as the w- and z-axes of a

rigid object. Thus, the projection is determined by 0 = . . , 06) and by the pair

r = (r4, 7'3) of the reciprocal distances of eye, and eye, from the origin. In figure 2.1,

(x, y, z, w) is the world coordinate system. (x3, y3, z3) is the 3D image coordinate

system, and (x5, y5) is the 2D image coordinate system.

The position of eye, in the world coordinate system is controlled by dl , d2, 6, and

r4. The position of eye3 in the 3D image space is controlled by 64, d5 and r3. Strictly

speaking, The last angle 66 is useless unless we want to project the 2D image down to

ID image. It is included for compatibility with the existing 3D graphics, to specify

the twist of the 2D image.

There is a nice property of Euler angles to specify the directions of projection,

keeping the vertical directions. Look at Figure 2.1. The three axes w, w3 and z3 are

coplanar. That means no matter how we rotate eye,, the world w-axis is always kept

vertical in the 3D image space. It is upward when -: 5 d3 5 and downward

otherwise. Similarly, no matter how we rotate eye,, the world w-axis is again kept

vertical in the 2D image space, as long as 66 = 0.

A drawback of Euler angles is that at certain critical values the inverse Euler angle

formula encounters numerical difficulties. Fortunately, in a visualization system we

mostly calculate the direction cosine matrix from Euler angles. The inverse Euler

angle formula is used only in a few cases which will be discussed in Section 3.1.

Bryant angles can also be extended into n-space. For example, the orientation of

objects by Bryant angles in 4-space is expressed as:

They also have the critical values, though different from those of Euler angles. For

example, since (0,. . . , 0) is not a critical value, Bryant angles are more suitable to

represent small variations in orientation. But this is not important in visualization.

Moreover, since Bryant angles do not keep the vertical direction, they are harder to

be grasped, and so less suitable in the user interface.

2.1.3 Quaternions

The quaternions, an algebra invented by Sir William Rowan Hamilton in 1843,

were originally defined as the angular relations (quotient) between pairs of vectors

in 3-space [Ham69]. Algebraically the quaternions are an extension to the complex

numbers [PS74]. Their geometric interpretation is equivalent to that of Euler pa-

rameters or Cayley-Klein parameters in mechanics [Wit 77, Go1801. The quaternions

have recently been advocated by a number of authors for 3D computer graphics

[BM90, Mar85, Sho85, SeiSClb]. Mathematically, any rotation in 4-space can be rep-

resented by a pair of quaternions [Por81]. However, their use in 4D computer graphics

has not been exploited.

A quaternion q E 7-t is defined as2

where q,, q,, q,, q, are real numbers and i , j, k are symbols obeying the following

product rules:

For example, the quaternion product of p and q is

Note that the quaternion product is associative but not commutative. We will discuss

the quaternions from the viewpoint of geometry instead of algebra. It is convenient

to identify the symbols i , j, k with the base vectors i , j, k, respectively, and the real

number 1 with the fourth base vector 1 of R4. Then a quaternion q can be written in

matrix form:

2Note that our convention is nonstandard. We put the real part q, as the last component instead
of the first in order to be consistent with the rest of the thesis.

where V, = (q,, q,, qz)T denotes the vector part and S, = q, denotes the scalar part

of q. A quaternion q is said to be real if V, = 0, and to be pure if S, = 0. Consider

I/, and V, as vectors in R3. Their dot product I/,. V, is written in matrix form bTh.
Their cross product V, x V, is written in matrix form X,V, where

Note that X , is skew-symmetric and that

Now Equation (2.3) can be written in matrix form as

The quaternion product is thus interpreted as the linear transformation of a vec-

tor in 4-space. The choice of (2.5) or (2.6) depends on whether p and.q are inter-

preted as coordinates or as transformations, although as quaternions they are not

distinguishable. Note that L, # Rp because of pq # qp. Since (pq)r = p(qr) we

have R,L,q = L,R,q. That means L, and R, commute. This can also be ver-

ified from their definitions and (2.4). For example, the matrix form of p1p2qr2rl

can be L,, L,,R,, R,,q or Lp,Rrl L,, R,,q, etc. Also note that L,,,, = L,, L,, and

Rr2r1 = Rrl Rr2

The conjugate of q = qxi + q,j + qzk + q, is -qxi - q,j - qzk+ q, denoted by q, or in

matrix form, q = (-6, Sq)T. The norm of q is the real number qij = qZ+q:+q,2+qi =

qTq. The set of all unit norm quaternions is a 3-sphere in R4 denoted by S3. Let

V , = . The axis of q is defined as A, = 3 if JV,I # 0. Otherwise A, is IV,l

undetermined. The angle of p is defined as a, = arctan u. The meanings of these s9

quantities in 4D rotation will be explained shortly. Note that A,- = -Aq and a,- = a,

according to the definitions.

Lemma 2.1 Let p be a unit quaternion.

(a) Both L, and R, are rotations in R4.

(b) If p # 1, for all q E R4, Lpq # q and Rpq # q.

Proof: (a) It is straightforward to calculate that LTL, = RTR, = I and det(L,) =

det(R,) = 1. (b) The eigenvalues of L, and R, are S, & ,,/m and are not real if

p is not real. When p = -1, all vectors in R4 are mapped to their opposites. 0

The lemma above can also be proved with the quaternion algebra as shown in

[Por8 I].

The property (b) in Lemma 2.1 cannot hold for 3D rotations because the 3 x 3

rotation matrix always has a real eigenvalue 1. We discuss the 4D rotations defined

by L, and R,. Let m and n be two nonzero orthogonal vectors in R4. We denote

a rotation in the plane span(m,n) by an angle a as Rot (m, n , a). The direction of

the rotation is defined by requiring Rot(m, n , ;)m = n. For notational convenience,

we may put a vector in R3, say A,, in place of m or n. In such cases, the vector is

assumed to be embedded in R4 with its fourth component being zero.

Theorem 2.1 Let p be a unit nonreal quaternion. The rotations L, and R, can each

be decomposed into two rotations, one in the plane of span(1, A,) and one in the

plane orthogonal to the former. More specifically,

LP = Rot(1, A,, a,)Rot(m, n, a,)

RP = Rot (1, A,, a,)Rot(m, n , -a,)

where m, n and A, in that order form a right-handed orthonormal frame in R3, a

subspace orthogonal to 1 in R4.

(a)
Decomposition of p

tb)
Decomposition of q

tc)
Rotation of q' and q"

Figure 2.3 Rotation of quaternions

Proof: Since p is nonreal, V, is a nonzero vector. It can be normalized into A,; see

Figure 2.3(a). Any q E 7-1 can be decomposed into two parts q = q' + q" such that

The vector parts of q' and q" can be calculated from 411 = (A, . V,)A, and V,, =

Vq - Vqll; see Figure 2.3(b). Rotating the two parts separately we get

cos a,Vqt + sin a,A, x V,I

0

(COS Q, 1%" I + sin crpSqlt) A,

= (- sin ~ , (V , I I I + cos ~,S,II
= Rot(l,A,,a,)q~'

The rotations of q' and q" are shown in Figure 2.3(c). Combining them yields

The case of R, can be proved similarly.

This theorem described the rotation caused by one quaternion. That the two

subrotations are orthogonal and have the same magnitude is not surprising because

the quaternion contains no more information than a vector and a scalar. Since V,- =

-Vp and a,- = a,, any combination of L,, L,-, R,, R,- are expected to be a simple

rotation. They can be worked out using Theorem 2.1 with little effort.

First, the rotations L, and L,- cancel each other. This is obvious because L,- =

L: = L;'. It can also be verified by computing the quaternion product. When p is

a unit quaternion, its conjugate equals to its inverse, i.e. pp = pp = 1.

Second, L,L, = Rot(1, A,, 2ap)Rot(m, n , 2ap). This is due to the fact that the

two subrotations are in orthogonal planes and therefore commute. The result can be

extended to arbitrary X E R:

(L,)' = L,A = Rot(1, A,, Xa,)Rot(m, n, Xa,) (2.7)

This property is similar to that of complex numbers.

Third, the famous representation of 3D rotations is

This is because the rotation in span(1, V,) is canceled while the rotation in the or-

thogonal plane is doubled.

Finally, another rotation that is less known is given by

Although this rotation is restricted to a plane, it is not in R3 and so has not been men-

tioned in most papers dealing with quaternions. We will show in the next subsection

that it is useful for a user friendly interface of a 4D visualization system.

While a single quaternion can only represent certain simple 4D rotations and every

3D rotation, a pair of unit quaternions (p, r) is powerful enough to represent every

rotation in R4. More specifically, we define the product of two pairs of quaternions

as a map . : N2 x N2 t N2 defined by

It is clear that the product so defined is associative. The identity in N2 is naturally

(1,l). The inverse is defined as

(p, 7.1-1 = (p-l, r-l)

Since we concentrate on unit quaternions, we define

Thus (N2, a) is a group and ((S3)2, -) is a subgroup of it.

Theorem 2.2 The map pl : S3 x S3 --+ SO(4) defined by pl (p , r) = Lp R,- is a group

surjection with kernel (1, I) , (-1, -1).

A proof can be found in [Por81]. Briefly, that it is a group homomorphism is shown

by

For any 4D rotation T, suppose T rotates the base vector 1 to s, i.e. T1 = s. Then

L,T will fix 1 and so it is a 3D rotation, expressible as L,R,-. Therefore T = LsLTRr.

Writing s r = p, the rotation is then LpRF.

We call the quaternion pair (p,r) with the map pl(p, r) = LPRF the first form of

4D rotation representation. In this form, two or more 4D rotations can be efficiently

combined into one. Hence it is suitable for the internal representation in a system.

The discussion above suggests that (s, r) can be used also for representations of

4D rotations. The map is defined as p2(s,r) = L,LT&-. We called it the second

form which will be shown handy in conversion between quaternions and matrices

or between quaternions and Euler angles. However, to make p2 preserve the group

structure, the product - : 3-1' x l-t2 7-12 has to be redefined as3

It can be shown that the product so defined is also associative. Again (1 , l) is the

identity in 7-12. From it we define

(s, r)-I = (r-Is-lr, r-l)

(s, r) = (Fsr, F)

So, under the redefined product the (7d2, .) is also a group. The computation is more

involved than for the first form. Therefore, it is better to convert to the first form

before rotations are combined.

Since L,R, has a clean interpretation, we want to define the third form (u, v) with

the map p3(u, v) = L,&L,RB. This representation is equivalent to the first and

second forms, shown from the relations

The product should also be redefined to make p3 a homomorphism. This is omitted

here. Like the second form, the third form is not well suited for rotation combination.

But it is ideal for a user interface as will be discussed next.

The three forms are summarized in the following table.

3Strictly the different product definitions should be denoted by -1 and - 2 . We distinguish them
instead through context.

2.1.4 Directions of Projection by Quaternions

2 6

Recall that the world coordinate system, the 3D image coordinate system and the

2D image coordinate system are related by a 4D rotation. By means of quaternions,

the user interface can be designed in a fashion different from that using Euler angles.

Suppose the 4D rotation is expressed in the third form (u, v). Let q be a vector

expressed in the world coordinate system, and q' be the same vector in the body-fixed

coordinate system. They are related by

The 2D image space is defined as span of the body-fixed x- and y-axes. eye, is on the

body-fixed w-axis and eye, is on the body-fixed z-axis. Since LVRv is a 3D rotation,

it represents the relation between the 3D image and 2D image coordinate system. In

other words, let

q = LuRuq
It

3rd.

(u, 4
uvqVu

LuRuLvRg

user interface

Form

quaternion pair

quaternion expression

matrix expression

suitable for

Then a map cp : R4 -+ R3 will project q" into the 3D image coordinate system as

cp(qft). When eye, is at infinity, i.e. r4 = 0, the projection is simply the drop of the

fourth coordinate, called the natural projection T, written as ~ (q ") = GI,. Now the

image of q in the 3D image coordinate system is

Defining t = ii to simply the notation it becomes Kqt.

We investigate how the axes of the world coordinate system move in the 3D image

space in response to the rotation LtRt. According to Theorem 2.1 the rotation matrix

1st.

(P, r)

P ~ F

LpR,-

rotation combination

2nd.

(s, 7')

srqF

L,L,Ri:

conversion

Figure 2.4 The projections of the world base vectors i and 1 in the 3D image space

is Lt Rt = Rot(1, &, 2at). When t = 1, Lt Rt = I, the world x-, y- and z-axes coincide

with those of the 3D image axes. The world w-axis is invisible. When t # 1 and 6

is nonzero, it determines a direction At in the 3D image space. The plane orthogonal

to At is denoted by P; see Figure 2.4. The image of world w-axis can be calculated

from the base vector 1 as

n(LtRtl) = n(Rot(1, &, 2at)l)

= sin 2at)At + (cos 2at)l)

= (sin2at)At

It is in the direction of At. That offers a convenient way to put the world w-axis in

any desired direction in the 3D image space. The image of the world x-axis needs a

little more effort. First the base vector i is decomposed into i = if + i" with if in the

plane P and i" parallel to At.. Then

n(LtRti) = n(LtRt(if + i"))

= n(Rot(1, Vt , 2at)(i1 + i"))

= i f + (cos2at)i11

When at = 0, the image of the world x-axis coincides with the 3D image x-axis.

As at increases, the image of the world x-axis moves toward the plane P and falls

into P when at reaches :. Meanwhile, the length of the image of the world w-axis

increases from zero to its maximum. The behavior of the world y- and z-axes under

this rotation is similar to that of the x-axis.

An interface based on this idea lets the user control two independent quaternions

u and v. The positions of the axes of the world coordinate system in the 3D image

space are controlled by u. The positions of the axes of the 3D image coordinate system

in the 2D image space are controlled by v. Note that the rotations are explained in

terms of the axes and angles of u and v. These concepts are comprehensible without

the knowledge of quaternions.

2.1.5 Relations between Euler Angles and Quaternions

We have shown that 4D rotations can be represented by Euler angles, quaternions

and matrices. User interfaces employing Euler angles and quaternions may coexist in

a 4D visualization system. The internal representations are usually matrices, but they

could be quaternions as advocated by some authors [Mar85, SeiSOb]. It is therefore

necessary to find ways for converting among these representations. For 3D rotations

the conversion problem has been discussed in [She78, Sho85, SeiSOb].

Given a pair of unit quaternions (p, r) , the corresponding matrix form is simply

obtained from L,R,-. Conversely, suppose that A = (aij) = L,RF is given, to find the

corresponding (p, r) directly from A is possible but tedious. It is better found using

the second form (s,r) . Define M = (mij) = L,R,-. Since M is a 3D rotation matrix

we have m;4 = m4; = 0 for i = 1,2,3 and m44 = 1. Now from A = L,L,R,- = L,M

we immediately get s = (~ 4 1 , a42, a43, ~ ~ 4) ~ . Then M can be obtained by L,A. From

the upper left 3 x 3 submatrix of M, r can be calculated by the methods described

in [She78, Sho85, SeiSOb]. Finally, (p, r) = (sr, r).

Given Euler angles 6 = (61,. . . , e6) a matrix can be calculated. Then the quater-

nions can be obtained by the above method. But it is more convenient to find the

quaternions directly from 0 . Recall that the rotation by Euler angles is defined as

According to Theorem 2.1, it can be written in quaternion form

where

01 01)T
rl = (0,0,sin -, cos -

2 2
0 2 0 2 T

1-2 = (sin-,O,O,cos-)
2 2

r3 = 03 03 T (0,0, - sin -, cos -)
2 2

0 4 04 T
rq = (O,O, sin -, cos -)

2 2
0 5 0 5 T rg = (sin -, O,0, cos -)
2 2

06 &),
r6 = (0,0,sin-,cos-

2 2

Rewrite it into srqr of the second form. Then r and s can be calculated by r =

2- - T ~ ~ ~ F ~ T ~ T ~ T ~ and s = r1r2r3r2rl. Note that r123 = T ~ T ~ F ~ and T456 = rqrgrg have the

same pattern.

(sin % cos \

\ COS % COS y)
(sin 4 cos I

r123 =
- sin 4 Sin *

2

cos $ sin 9

r456 =
- sin b sin -8'fss

2 2

cos 4 sin y

(sin $ cos 9 cos -81+83+84+8a 2 + cos 9 sin + cos 81 +84 -ea
2

(cos $ cos + cos 81+"+84+86 2 - sin $ cos , COS +03+84 2 -8a I

r =

- sin B1 sin e2 sin B3

cos B1 sin B2 sin B3
S =

- cos B2 sin B3

Conversely, given a pair of quaternions (p, r) , to find the corresponding Euler

angles we first get the second form (s, r). This step is useful because s is unrelated to

Bq, B5, B6. Hence el, B2, 03 can be found from s by (2.17) and (2.2). Then r123 is formed

by (2.14), from which r456 can be obtained by G r . Finally, B4, B5, B6 are found from

r456 by (2.15).

- sin 9 cos % sin -81+h+84t86 + cos % sin $ sin 8 1 + 8 3 ~ 8 4 - 8 ~ 2

cos $ cos , sin bte3 ie4 +06 + sin $ sin $ sin +03+04 2 -4

2.1.6 Animation by Quaternions

(2.16)

In computer animation the position and orientation of objects and eyes are spec-

ified as functions of time t. They can be given explicitly in symbolic form, but more

often are given as a set of function values at discrete time instances, and the inter-

mediate values are obtained through interpolation. The interpolation of orientation

can be done by the interpolation of matrices, of Euler angles, or of quaternions. It

has been argued that quaternions are best for this purpose [Sho85, SeiSOb].

Given two unit quaternions ql,q2 E S3, the great arc is defined as the curve on

the intersection of S3 and the plane passing through the two points and the origin.

The spherical linear interpolation, abbreviated as slerp, from ql to q2 with parameter

X E [0, 11 is defined as[Sho85]:

or equivalently,
sin(1 - X)B sin XB

'1''~ (q1, q2 ; A) = sin q1 + - sin 0 42

Figure 2.5 Ambiguities in conversion to quaternions

where ql q2 = cos 8. Based on slerp, the spherical splines and Bkzier curves and be

constructed. The higher order continuity makes the animation smoother.

The method can be extended to the interpolation of 4D rotations. Given a pair

of quaternions, no matter in which form, the two components are independent from

each other. Therefore, they can be interpolated separately. However, there are several

problems worth discussing.

First, it is well known that the quaternion representation of 3D rotation is not

unique. The same statement holds for 4D rotation. q at he ma tic ail^ speaking, the

maps from (S3)2 to SO(4) are not bijections. It can be proven that pl and p2 are

2-to-1 maps while ps is a 4-to-1 map. To verify this, it is easy to check that

The geometric interpretation is that, by Theorem 2.1, the double appearances of r, u

and v or their conjugates cause the angles to be doubled. In practice, we need to find

the sources of ambiguity in the conversion from the matrices to quaternions. When

converting matrix A to the second form (s, r) the quaternion s is uniquely determined

by the fourth column of A. In the calculation r from M = L,-A there is a square

root of a real number. A suggestion by [She781 is to choose ST > 0. However, such a

choice will cause a jump during animation when ST 0; see Figure 2.5(a). A practical

solution by [Sho85] is to make sure that r at adjacent time instances are close to each

other. Converting the second form to the first form encounters no trouble at all.

A simple quaternion product p = sr completes the task. The conversion from the

second form to the third form involves a square root of a quaternion. From u2 = s we

get u = f sl/'. Theoretically we could choose the positive root, called the principal

value in [Ham69], as we did in (2.13). But this also causes a jump during animation

when s m -1 as shown in Figure 2.5(b). Worse than that, the quaternion square root

near -1 is ill behaved because the axis is indeterminate. Consequently, in practice the

conversion to the third form should be avoided. The animation by interpolating (u, v)

can be done only if the third form is directly available from, say, the user interface

based on it.

Another question is whether the interpolations by the three forms are equiv-

alent. More precisely, let pl(p;, r;) = p2(s;, r;) = p3(u;, v;) for i = 1,2, and

let p12(A) = slerp(pl,p2; A), etc., we want to know whether pl(pI2(A), r12(A)) =

p2(~12(A),r12(A)) = p3(u12(A),v12(A)) for all A E [O, 11. The answer is no because

in general slerp(s1, SZ, A)slerp(rl, 7-2, A) # slerp(slrl, ~ 2 ~ 2 , A), and so on. However, the

difference is slight if the successive quaternion pairs in the sequence are reasonably

close.

2.2 Silhouettes and Envelopes

The concept of silhouette is important in 4D visualization for the following reasons:

First, from the silhouette surfaces or curves we can infer the shape and some geometric

properties of the 3-surfaces or 2-surfaces in 4-space. Second, a 3-surface in 4-space

is better displayed by the silhouette surfaces and other 2-surfaces on it than by a

shaded volume. So, we wish to generate the silhouette explicitly. Third, the silhouette

surfaces determine how the visibility of points on a hypersurface in 4-space changes.

The concept of envelope is closely related to the silhouette, and turns out to be

very useful in explaining the 3D image of the hypersurfaces in 4-space.

2.2.1 Silhouette Points

We use the term m-surface M as an m-dimensional manifold in n-dimensional

Euclidean space Rn (n 2 m). Particularly, a 1-surface is also called a curve; an

n-surface in Rn+l is also called a hypersurface; a 2-surface in R3 is also called a

surface.

We define silhouette points of an m-surface M C Rn with respect to a projection

Rn + R' (m < l < n) as those regular points p on M such that the tangent 'Pn .
space of M at p reduces its dimension under the projection 'P;. In the following we

always assume that:

1. ' ~ f , : Rn + R' is a projection with the centers on the xn-,. . ., xl+l-axes at

finite or infinite distances from the origin, specified by their reciprocal distances

rn, . . . , r1+1. Thus

When all the centers of projection are at infinity, ' ~ f , is an orthographic projec-

tion and is denoted n;.

2. p is a regular point on an m-surface M. The point p is not mapped to infinity

under the projection. t . . . , t, are m linearly independent tangent vectors of

M at p. nl , . . . , n,-, are n - m linearly independent normal vectors of M at

P.

3. rl+l,. . . , rn are vectors in the direction from p to the centers of projection on

the x1+1-, ..., xn-axis, respectively. If the center of projection on the xk-axis

(1 + 1 5 k < - n) is at infinity, then r k is the k-th base vector ek. Otherwise,

1
r k = -ek - p. Let m l , . . . , ml be 1 linearly independent vectors in the subspace

f k

orthogonal to span(rl+1, . . . , r,).

A differentiable mapping cp: Rn -, R1 will induce two linear transformations (see

e.g. [AM63]):

cp,(tangent vector to y) = tangent vector to poy

cp* (normal vector to f) = normal vector to f o cp

where y : R -, Rn is a curve in the domain of cp, and f : 72' -, R is a function on

the range of cp. The matrix forms of the two linear transformations cp, and cp* are the

Jacobian matrix J(cp) and its transpose J(cp)T, respectively.

Lemma 2.2 The null space of cp,, viz. cp;l(O), is ~ p a n (r l + ~ , . . . , r,).

Proof: Let p = 1 - C:=[+, rix;. The Jacobian matrix J(cp) is

It is easy to verify that J(cp)rk = 0 for k = 1 + 1,. . . , n. The null space of J(cp) must

be ~ p a n (r l + ~ , . . . , r,) if we can prove that its dimension is at most n - 1.

Let (el , . . . , en) be a vector base of Rn. We know that any nonzero vector in

span(el, . . . , el) will not be projected into a zero vector. If the null space has dimen-

sion greater than n - 1, its intersection with span(el, . . . , el) must have dimension

greater than 1. Then any nonzero vector in the intersection contradicts the definition

of the two sets. u

Theorem 2.3 p is a silhouette point with respect to cp: if and only if

t &, . . . , tm, r~+l , . . . , rn are linearly dependent.

Proof: First we assume that tl, . . . , t,, rl+l,. . . , r, are linearly dependent, and so

altl + . . - + a,t, + ,Bl+lrl+l + + Pnrn = 0 where at least one of all . . . , a ,

is not zero. Applying the linear transformation cp, and using lemma 2.2, we get

alcp,(tl) + - - - + amcp,(tm) = 0. That means the tangent space of M reduces its

dimension under the projection, and so p is a silhouette point. Conversely, assume

that p is a silhouette point. Then the vectors cp,(tl), . . . , cp, (t,) are in the tangent

space of dimension less than m. So we have alcp,(tl) + - - + a,cp,(t,) = 0 with

al . a, # 0. Again by Lemma 2.2 we get altl + . . + a,t, + r = 0 where r is any

vector in ~ p a n (r ~ + ~ , . . . , r,), i.e. t l , . . . , t,, r ~ + ~ , . . . , r, are linearly dependent.

Corollary 2.1 When 1 = m, the condition in Theorem 2.3 is equivalent to that

m l , . . . , ml, nl , . . . , n,-, are linearly dependent.

Proof: It is sufficient to prove that t l , . . . , t,, rl+l,. . . , r, are linearly independent

if and only if m l , . . . , ml, nl , . . . , n,-, are linearly independent. Assuming that

t l , . . . , t,, rl+l,. . . , rn are linearly independent, they form a base of Rn. Then

nl , . . . , n,-, are linear combinations of rl+l,. . . , r,, and ml , . . . , ml are linear com-

binations of tl, . . . , t,. Therefore, m l , . . . , ml, nl , . . . , n,-, must be linearly inde-

pendent. The converse direction is symmetric.

For example, a regular point p on a 2-surface is a silhouette point with respect to

cp: if t l , t2, r4 are linearly dependent, which is equivalent to n l . r4 = 0 and n2 .r4 = 0.

Adjoined to the two equations defining the 2-surface, the solution is usually a 0-

dimensional set. At such a silhouette point, the normal of the projected 2-surface

cannot be determined, and this has to be taken into account if shading is to be added

to the projection cpi. A regular point p on a 2-surface is a silhouette point with

respect to cpi if det(t l , t2, 1-3, r4) = 0, or equivalently, det(n1, n2, m1, 1112) = 0. The

solution is usually a 1-dimensional set called the silhouette curve of the 2-surface.

A regular point p on a hypersurface in R4 is a silhouette point with respect to

cp: if det(tl , t2, t3, r4) = 0, or equivalently, det(nl, m l , m2, m3) = 0. Adjoined to

the equation defining the hypersurface, the solution is usually a 2-surface called the

silhouette surface of the hypersurface.

2.2.2 Envelopes

Given a family of hypersurfaces in Rn7 then a hypersurface M is called the en-

velope of the family of hypersurfaces if: (a) At every point M is tangent to some

hypersurfaces of the family; and (b) M touches all the hypersurfaces of the family.

A family of hypersurfaces in Rn can be expressed in implicit form as

or in parametric form as

where u l , . . . , u rn and v are the parameters of the family, and t17 . . . ,tn-1 are the

parameters of the llypersurfaces. The envelope of a family of hypersurfaces can be

computed by the envelope theorem [Spi79] :

Theorem 2.4

(a) Suppose that a family of hypersurfaces is defined by (2.18). Then every point

of the envelope satisfies (2.18) adjoined by:

where
a f ouf = (%,..., af -IT durn

(b) Suppose that a family of hypersurfaces is defined by (2.19). Then every point

of the envelope satisfies (2.19) adjoined by:

Notice that the hypersurface obtained by eliminating the parameters 111,. . . , urn

from the (2.18) and (2.20) is called the discriminant hypersurface that consists of

the envelope and the locus of all singular points on the hypersurfaces of the family.

Because singular points cannot be silhouette points by definition, from Corollary 2.1

and Theorem 2.4(a) we have:

Corollary 2.2 The envelope of a family of hypersurfaces in .R1 is the image of the

silhouette of a I-surface in R1+" with respect to the orthographic projection T:+,.

The offset curves or offset surfaces can be formulated by the envelope theorem.

The envelope can be traced numerically in R1 or in R1+". The former corresponds

to tracing the silhouette in image space and the latter to tracing the silhouette in

object space. The latter is more stable since the projection will cause apparent cusps,

self-intersections of the silhouette. This issue will be discussed in Clnpter 5.

2.2.3 The Silhouette Surface of a Hypersurface in 4-space

Let M be a hypersurface in R4 in parametric form given by

and cp : R4 -+ R3 be a projection. Assuming that p = s (t l , t2 , t3) is a regular

point, the Jacobian matrix J(s) has rank 3, representing three linearly independent

tangent vectors. By definition p is a silhouette point with respect to cp if and only if

det(J(cp)J(s)) = 0. On the other hand, the hypersurface can also be considered as a

family of 2-surfaces by setting one of the parameters, say t3, as the parameter u of

the family, written as s (t l , t2 , u). After projection, it becomes a family of 2-surfaces

in R3, cpos(tl, t2, u). By Theorem 2.4(b), the envelope of the family of the projected

2-surfaces satisfies det(J(cpos)) = det(J(cp) J(s)) = 0. Thus we get the following

corollary:

Corollary 2.3 The silhouette surface (in image space) of a hypersurface with respect

to a projection from R4 to R3 can be obtained from the envelope of the family of the

projected isoparametric 2-surfaces on the hypersurface.

The corollary above is useful in understanding the 3D image of hypersurfaces.

Using it we can draw qualitatively the silhouette surface of a hypersurface in image

space without calculation, even without knowing the position of the projection center.

Examples will be given in Chapter 3.

2.2.4 The Normal of a Projected 2-Surface

In 3D graphics, illumination and shading of surfaces is computed from the surface

normal and the light directions. Since a 2-surface in 4-space has two independent

normal directions, the generalization of 3D illumination models to $-space is more

complicated than merely illuminating the 3D image of the 2-surface after the first

projection step by standard methods. Furthermore, the critical problem in 4D vi-

sualization is to gain insight into the properties of the first projection step, f ~ o m

4-space to 3-space. Therefore, we obtain maximum information about the shape of

the 3D image when shading in 3-space, and can concentrate on understanding the

first projection step.

One way to find the normal of the projected 2-surface is to calculate it from

the equation representing the projected 2-surface. Another way is to calculate tlie

normal directly from the tangent or normal plane of the 2-surface before projection.

The latter is usually more efficient because the construction of the equation of the

projected 2-surface could be expensive [Hof9O].

If the 2-surface is in parametric form and so the tangent vectors are directly

available, it is easy to calculate the normal vector n of the projected 2-surface by first

transforming the tangent vectors and then a.pplying the cross product:

If the 2-surface is in implicit form and so tlie normal vectors are directly available,

we can first use the cross product in R4 to find the tangent vectors and then follow

the same procedure as that for parametric 2-surfaces.

Let i, j, k , l be the base vectors of R4, and a, b , c be three vectors where a =

(a,, a,, a,, and so on. The cross product @ is defined as:

From linear algebra we know that @(a, b , c) is orthogonal to the subspace span(a, b , c)

if a, b , c are linearly independent. From two normal vectors n l and n2 we can find

two tangent vectors tl and t2, and vice versa, as follows. Given n l and n2, choose

any two vectors a and b such that 111, n2, a, b are linearly independent. A base of

the tangent space is then

A more efficient way is to find the normal of the project 2-surface directly from

the two normal vectors without calculating the tangent vectors first.

Theorem 2.5 Suppose that p is a regular point on a 2-surface, and is a nonsilhouette

point with respect to y i . Let n = a n 1 + ,ha satisfy n . rl = 0. Then r i (n) is the

normal vector of the projected 2-surface at the point y i (p) .

Proof: Assume that ii is the normal vector of the projected 2-surface at the point

cp;(p). From the Jacobian matrix J (y i) we know that ~,3(yZ*(ii)) is parallel to ii. It

suffices to show that n as defined above is parallel to yi*(ii) in R 4 . The vector ii

satisfies

The last equation is actually satisfied when fi is any vector in R3. These three

equations are equivalent to

Since p is a nonsilhouette point, t l , t2,r l are linearly independent by Theorem 2.3.

Hence n is parallel to cp;*(n).

Theorem 2.5 can also be applied to calculate the normal vector of a projected

silhouette surface of a hypersurface. The silhouette surface S of a hypersurface f

with respect to vi is a 2-surface in 4-space:

As a 2-surface, S has its own silhouette points with respect to vi. According to

Corollary 2.1, they should satisfy:

Note that (2.23) is redundant. Therefore, (2.24) determines on S a curve C where the

projected S is singular. Except for the points on C, by Theorem 2.5, the normal to

the projected silhouette surface is n;(anl + /3n2) = n,3(anl) because p is obviously

zero. We state this result as the following corollary:

Corollary 2.4 Let S be the silhouette surface of a hypersurface f = 0 with respect to

vi. Suppose that p is a regular point on S, but not a point satisfying (2.24). Then

n: (v f) is the normal vector of cp;(S) at the point cp;(p).

2.3 Visibility

Theoretically we can project objects in arbitrary n-space into 2-space and produce

their 2D images. But the mapping is not one-to-one. A point in the image space can

have infinitely many poii~ts as its preimage. To resolve this ambiguity, the concept of

visibility has to be introduced.

The visibility associated with the projection from 3-space to 2-space is directly

taken from our experience of seeing the real world. For the higher dimensional space,

however, visibility is only a mathematical definition. There are many ways to extend

the visibility into high dimensional space. To choose a suitable one, several factors

have to be considered:

1. The definition of visibility can be extended from vz to arbitrary ~ 2 - ' . Taking

a point in the image space, its preimage points lie in a line in the object space.

The visibility information is obtained from the order of those points in the line.

For the projection however, the preimage points lie in a plane, with no

natural total order. The visibility has to be considered step by step, first with

respect to yi- l , then to cp:~?, and so on.

2. The dimension of the potentially visible objects with respect to v ~ - l could be

restricted to n - 1 and n as advocated by [BS82]. But in some applications,

lower dimensional objects such as curves and 2-surfaces need to be displayed

as well. On the other hand, an object of dimension n will definitely reduce

dimension during projection. Its image is indistinguishable from the image of

its bounding (n - 1)-surface. Therefore, the dimensions of potentially visible

objects range from 0 up to n - 1.

3. The dimension of the potentially hiding objects with respect to P:-' could be

n - 1 and n. Again, a point hidden by an object of dimension n must also be

hidden by its boundary (n - 1)-surfaces. Therefore, the dimension of potentially

hiding objects is limited to n - 1.

4. It will be helpful if we can display transparent objects, which a,re actually im-

ages produced by previous projections. Therefore, we choose the definition of

quantitative visibility [SSS74, EC90, WalSO]. The visibility of a point is quan-

tified as the number of hiding objects intersecting the line segment from this

point to the center of projection.

In the following the term object can also refer to the image of an object produced

by the previous projections. Consider the projection cpE-' with the center c. A point

The

Figure 2.6 Visibility

p on an object of any dimension less than n has a sight number which is the number

of intersections of the ray from p to c (excluding p) with objects of dimension n - 1.

The total visibility information of the point is expressed as a list of sight numbers.

Visualization of 4-space involves only two projections, For the first projection we

remove those points with nonzero sight numbers. For the second projection we use

the sight numbers to show transparency. If all the objects in R4 are 2-surfaces or

curves, then every object is visible with respect to the first projection. Hypersurfaces

in R4 will make points on other objects invisible, but after the first projection, their

images are totally transparent. The shapes of the hypersurfaces are shown mainly by

their silhouette surfaces, boundary surfaces, intersection surfaces, and isoparametric

surfaces, that are all considered as objects of dimension 2.

Suppose that all objects in R4 are contained in a hypercube that contains neither

eye, nor eye,. A point in the 2D image space, together with eye, and eye,, determines

a plane. The plane will intersect in general with a 2-surface in a point and with a

hypersurface in a curve. All of the intersection points and curves will be projected

to the same point in the 2D image space. Fig. 2.6 shows an example. Each point

is associated with a pair (a, b), where a is the sight number with respect to the first

projection, b is the sight number with respect to the second projection if a = 0. When

a > 0, the point will be removed after the first projection, and so b is undefined as

denoted by an asterisk.

The explanation above suggests a ray tracing method for 4D visualization. Instead

of tracing a line segment, we can construct a plane and calculate its intersection with

objects. Instead of finding the roots of a single equation, we need to solve a system

of equations, which could be overdetermined in the case of curve-plane intersection

in R'. Presently, this method is not suitable for interactive display.

Other methods are based on the following theorem that is an extension to those

presented in [EC90, IYa1901.

Theorem 2.6 In the 3D image space, the silhouette, self-intersection, and boundary

surfaces of a hypersurface partition the hypersurface into regions such that all points

in the same region have the same sight number.

The silhouette, self-intersection, and boundary surfaces are called the active su r -

faces. Consider a point moving on a hypersurface. Its sight number changes when

its image, in 3D image space, passes through an active surface. The change of sight

number can be calculated by several methods, such as the differential method de-

scribed in [Iia190], or the propagation rules described in [EC90]. Once we find the

sight number of a point, it is propagated into the whole region without any further

calculation. The implementation will be discussed in Chapter 4.

3. VISUAL PHENOMENA AND THEIR MEANING

One of the major tasks of 4D visualization is to interpret the 3D images of objects

in 4-space. Through the visual phenomena explained in this chapter, we want to show

that the 3D images of the objects in 4-space can expose some geometric properties

in 4-space. We will explain how to choose viewing positions, how to interpret the

3D images of hypersurfaces, and how to observe the curvature of a hypersurface in

4-space.

3.1 Interpretation of Some Viewing Positions

3.1.1 Viewing Positions That Keep 2D Image Invariant

Let L be the line in R4 passing through the two centers of projection eye, and

eye,. If we fix the 2D image space and let eye, and eye3 move on the line L, the

hasic 2D image, i.e. the image without considering visibility, will not change. This

phenomenon can be observed by setting O,! = O5 = o6 = 0 and rotating in (2, z ~) - ~ l a n e ,

i.e. changing 0,. Meanwhile, the distances of eye, and eye, have to be modified to

keep them on the fixed line L, according to:

r3 = a cos 0, + b sin &

r, = -asin03 + bcos03

Particularly, if O3 changes from 0 to f ;, correspondingly (r4,r3) changes from

(b, a) to (~ a , f b), so that the positions of eye, and eye, are exchanged.

For nonzero 04, d5, 06, the positions of eye, and eye, can be exchanged as follows.

Suppose the first picture is obtained by 0 = (al, C Y ~ , a 3 , a 4 , as , a g) and r = (b, a) . To

B D images

:A - -
1D images

(b) (c)

Figure 3.1 A square plate projected into a line. (a)viewing positions. (b)eye3 at B,
eye, a t A. (c)eye, at A, eye, a t B. (d)eye3 at A, eye, at C. (e)eye, a t D, eye, at E

obtain the second picture we can set the rotation matrix as:

and set r = (~ a , f b). We can use the inverse Euler angle formula (2.1) and (2.2) to

find the Euler angles corresponding to the above rotation matrix.

3.12 Viewing Positions with Special Effects

Consider a bracket of nonuniform material density that is divided into cubic ele-

ments by a grid of planes x = constant, y = constant, z = constant; where the w-value

represents the density. The "planes" in the grid are actually 2-surfaces in 4-space. In

order to facilitate understanding the different situations, Figure 3.1 shows a compan-

ion example of a surface in 3-space that is projected into a line. In this companion

example, a square plate of nonuniform material density is shown, where the z-value

represents density.

Figure 3.2 Bracket viewed from 6 = (070707457607 0) degrees

Figure 3.3 Bracket viewed from 0 = (070707457607 0) but shaded by color scale
representing w-values

Figure 3.4 Bracket viewed from 8 = (45,60,90,0,0,0); Positions of eye, and eye, are
exchanged

Figure 3.5 Bracket cut by z-clipping plane to display isosurface w = constant

Figure 3.6 The 3D image viewed from a different eye, direction:
0 = (45,60,90, -75,45,0)

Figure 3.7 The 3D image viewed from a different eye, direction:
8 = (45,60,90, -75,90,0)

1. By ignoring the w-values, a normal 3D image is obtained: Set r = (0, a) and

6 = (O,O, 0, a l , a2,O). By varying a l , a 2 and a we obtain the usual 2D pic-

tures of the 3D object (Figure 3.2). Note that it is still possible to see the

w-value on the boundary of the 3D object using a color scale (Figure 3.3).'

Compare Figure 3.l(b). -Moreover, the same effect can be achieved by setting

0 = (a l , an, O,O, 0,O) and r = (0, a). This is possible because Rj,(O) is the

identity matrix and R:,(al) Rlz(a2) = Rz,(al) Riz(a2).

2. Assume that 0 = (a l , a2, &$, 0,0,0) and r = (~ a , 0). Then we obtain the

same basic 2D image as before because of the exchanged eye, and eye, posi-

tions. However, the w-value displayed through color is the maximum, or the

m i n i m ~ r n , ~ of all w-values on a line tlirough the bracket from eye,. The situ-

ation is analogous to looking at a mountain from atop (Figure 3.4). The base

of the mountain is the projected bracket shape, and the height is the w-value.

Compare Figure 3.1 (c).

3. Once we have generated the picture of (2), an isosurface (w=constant) can be

obtained by z-clipping (Figure 3.5). The isosurface is not displayed explicitly

but implied by the curves that are the intersection of the isosurface with the

grid surfaces. These intersection curves would have the same shape if they were

displayed in Figure 3.3.

4. The 3D image implied by the picture of (2) can also be seen from other direc-

tions, with 0 = (a l ,a2 , &;,P1,P2,O) and r = (~ a , b). Using the analogy of the

mountain, we fix the base and height of the mountain (corresponding to the

first projection) but view it from a different direction. Figures 3.6 and 3.7 show

the cases p2 = % and p2 = :. Compare Figure 3.1 (d).

'Here the pictures are shown in monochrome to comply with the university thesis format. For
color pictures see [HZ91].

=The maximum and minimum are approximate if a # 0.

5 . Because Os only rotates the 2D image on the screen, we have the most general

case with 8 = (a l , a 2 , a g , Dl, P2, 0) and r = (a, b). When a s is varied from 0

to f ;, intermediate w-values are seen. The situation is analogous to viewing

the mountain from different perspectives, except that now the shape of the

mountain changes as well, because of the 4D motion. In Figure 3.8 only three

surfaces in the grid, namely x = constantl, y = constant2, and z = constant3

are displyed. Compare Figure 3.l(e).

3.2 Interpretation of the 3D Images of Hypersurfaces

3.2.1 Procedural Construction of the 3D Image of a Hypersurface

To understand the computer-generated pictures of hypersurfaces, we describe how

to construct in one's mind the 3D image of a hypersurface. The procedure is explained

with an example: the hypersurface in R4 defined by x2 + y2 + z - w2 = 0. One of its

parametric forms is

x = r sin s

y = r cos s

2 2 z = t - r

w = t

1. Select a point as the origin of the 3D image space. From the origin draw

four incoplanar vectors as the 3D images of the four base vectors of the world

coordinate system. As explained in Section 2.1, the upward direction is the

projected world w-axis.

2. Fix one of the parameters of the hypersurface and draw a set of isosurfaces.

This is essentially the same way as we draw a 2-surface in 3-space except that

there are four base vectors and they no longer form an orthogonal system. In

Figure 3.9 three isosurfaces, w = -0.5, w = 0, and w = 0.5 are drawn.

Figure 3.8 Bracket viewed from 0 = (45,45,45,105,90, 0). Only three surfaces in the
grid with constant x, y and z values are displayed

Figure 3.9 Three isosurfaces on the hypersurface x2 + y2 + z - w2 = 0

Figure 3.10 The silhouette surface of the hypersurface

Figure 3.11 The boundary surface z + 0.5 = 0 of the hypersurface

Figure 3.12 The hypersurface viewed from 0 = (45,105,78,90,81,0) with visibility
determination

Figure 3.13 The hypersurface viewed from 0 = (45,75,102,90,81,0) with visibility
determination

3. According to Corollary 2.3, the silhouette surface in the image space is the

envelope of the family of the isosurfaces. So, we can construct the the silhouette

surface, as shown in Figure 3.10, following the shape of the isosurfaces.

4. Add boundary surfaces, if necessary. In Figure 3.11 a boundary surface z = -0.5

is shown. The isosurfaces w = -0.5 and w = 0.5 also serve as boundary

surfaces. The boundary surfaces and silhouette surface enclose a volume in 3D

image space. This volume is the 3D image of the portion of the hypersurface

we are displaying.

5. Trim the 2-surfaces to show the visibility. In Figure 3.9, as the w value changes

from -0.5 to 0.5, the isosurface sweeps a volume. Within the volume some

points are swept twice by the isosurface at different w values. The ambiguity

can be resolved by making a choice a t those points, either the first sweep hides

the second sweep, or vice versa. The result of the two choices are shown in

Figures 3.12 and 3.13. They correspond to two different viewing directions.

3.2.2 Understanding by analogy

Another way to understand the 3D image is to create an analogous example in 3-

space and project it into 2-space. Figure 3.14(a) and (b) show a surface x2 + y - z2 =

0 from two different views. The silhouette curve, isocurves, and boundary curves

are the counterparts to the silhouette surface, isosurfaces, and boundary surfaces in

Figure 3.12 and 3.13.

Let us examine another hypersurface x2 + y2 + z2 - w2 - 1 = 0. Figure 3.15 shows

its silhouette surface, five isosurfaces with constant w values of -1, -0.5,0,0.5,1.

Two of them also serve as the boundary surfaces. A curve on the hypersurface is also

shown, with the parametric form

x = d-'cos2t

y = d W c o s t s i n t

z = d-sint

(a) (b)

Figure 3.14 Surface x 2 + y - z2 = 0 with two different views

Figure 3.15 Hypersurface x 2 + y2 + s2 - w 2 - 1 = 0 viewed from
8 = (-165,45,75, -165,84,0)

Figure 3.16 The dimension reduction of the silhouette surface in 3D ima.ge space

Figure 3.17 The same silhouette surface viewed from another direction

Figure 3.18 The hypersurface viewed from 0 = (-165,45,15, -165,84,0)

Figure 3.19 Surface x2 + y2 - z2 - 1 = 0 with three different views

The analogous example is x2 + y2 - z2 - 1 = 0 as shown in Figure 3.19(a). From the

comparison it is easy to understand why in the 3D image space part of the isosurface

w = 0.5 appears to be inside the boundary surface w = 1.

The interpretation by analogy has some limitations: The curve in Figure 3.15 has

no counterpart in the 3D example. This is because the curve is only partly visible.

According to its dimension, its counterpart should be a point, but a point cannot be

only partly visible. The limitation illustrates the fact that 4D visualization really has

some phenomena that have no analogy in 3D visualization.

Another phenomenon we observe is the dimension reduction of the silhouette sur-

faces in image space. In Figure 3.15, the hypersurface is viewed from O3 = &a. As

eye, rotates in the (z,w)-plane towards O3 = :, the silhouette surface shrinks. It is

reduced to a circle at O3 = 2. In the 3D image space it is still the envelope of the

isosurfaces as shown in Figure 3.16. But in 4-space it is a cylinder swept by the circle

in the direction towards eye,. This can be seen by fixing the silhouette surface while

rotating eye,; see Figure 3.17. To understand this phenomenon, a similar situation

is shown in Figure 3.19(b). When ey% is at an angle of with the (x, y)-plane, the

silhouette curves of the surface x2 + y2 - z2 - 1 = 0 are reduced to two points. In

3-space they are actually two lines on the surface.

As eye, rotates from O3 > : to O3 < :, the 3D image of the silhouette surface

changes from hyperboloid to ellipsoid. In addition, the volume that is the image of the

hypersurface changes from "inside" the silhouette surface to "outside" the silhouette

surface. See Figure 3.18 where eye, is at O3 = 5. The analogous case is shown in

Figure 3.19(c).

These observations indicate that except for a few critical directions, the shape

of silhouette surface is insensitive to small variations of the eyed's orientation. This

property might be useful for matching hypersurfaces in 4-space. Suppose one hyper-

surface is constructed from experimental data, and another hypersurface is accurately

predicted by theory. Then their silhouette surfaces and the volume of the projected

hypersurfaces are expected to be similar even if their orientations do not perfectly

coincide.

3.3 Observing the Curvature of a IIypersurface

Graphical methods have been used successfully in analyzing the intrinsic shape

and curvature properties of surfaces in 3-space [Far87]. We discuss how to infer the

curvature properties of a hypersurface in $-space from the image of its silhouette

surface. Notice that given a regular point on a hypersurface, it is always possible to

make i t a silhouette point by adjusting the projection direction.

Let M be a hypersurface in R", and N be a unit normal vector field on M . For

each point p of M, the shape operator of M at p is a linear operator Sp: Tp(M) +

Tp(M) given by

Sp(v) = - v u N

It is a symmetric operator because it can be shown that Sp(v). w = Sp(w). v for any

pair of tangent vectors v and w at p [O'N66].

Let a be a curve on M with a(0) = p and a'(0) = v. By Meusnier's theorem

[dC761,

Sp(v) v = a" (0) . N(p)

The normal curvature of M in the direction of a unit vector u is defined as

The extreme values of the normal curvature k(u) of M at p are the principal curvn-

tures of M at p, and are denoted by kl , kp, k3. The directions in which these extreme

values occur are called principal directions of M at p. Unit vectors in these directions

are called the principal vectors of M at p [O'N66, Tho791.

Lemma 3.1 The principal curvatures of M at p are the eigenvalues of the shape

operator Sp and the principal vectors of M at p are the eigenvectors of S,.

S, is positive definite if k l , k2, k3 > 0, negative definite if kl, k2, k3 < 0, and indef-

inite otherwise. If the principal curvatures are distinct, then the principal directions

are orthogonal. If they are not distinct, say k l = k2 # kg, then the principal direc-

tions corresponding to kl, k2 can be chosen arbitrarily in a plane orthogonal to the

third principal direction.

Theorem 3.1 Let p be a silhouette point of a hypersurface M in R\vith respect to

the projection y : R4 -+ R3. Consider the image of M in the neighborhood V of p.

The images of the silhouette surface and the tangent hyperplane are denoted by y (S)

and y (T) , respectively.

(a) If p(S) is a plane and p (V) is contained in p (S) , then kl = k2 = k3 = 0.

(I >) If v(S) is a plane and y (V) is on one side of cp(S), then k1 = k2 = 0 and

k3 # 0.

(c) If y (S) is a cylindrical surface, cp(S) and cp(D) are on the same side of cp(T),

then kl = 0 and k2k3 > 0.

(d) If y (S) is a cylindrical surface and is on one side of y (T) , (p('i3) is on both

sides of y (T) , then k1 = 0 and k2k3 < 0.

(e) If cp(S) is an elliptic surface with positive Gaussian curvature, y (S) and p (V)

are on the same side of Y(T), then b1b2k3 # 0 and all have the same sign.

(f) If p(S) is an elliptic surface with positive Gaussian curvature, cp(D) is on both

sides of p(T), then b,;, < 0 < k,,,.

(g) If p(S) is a surface similar to a hyperbolic paraboloid with negative Gaussian

curvature, then k,;, < 0 < k,,,.

The cases (a) to (g) are shown in Figure 3.20. In the pictures (a) and (b) a planar

y(S) is drawn. An isosurface is drawn in picture (b) to show that p(D) is on one

side of y (S) . The isosurface is trimmed due to the visibility change at the silhouette

surface S. In pictures (c) and (d) a cylindrical p(S) is drawn. An isosurface shows

on which side is y(V). Although cp(T) is not drawn in the pictures, it can be inferred

from the shape of p(S) and the position of p. In pictures (e) and (I) an elliptic p(S)

Figure 3.20 Curvature of a Ilypersurface

and an isosurface are drawn. Picture (g) is the only case when q (S) is similar to

a hyperbolic paraboloid. If in picture (g) q(V) is on the other side of cp(S), it still

represents the same case.

To prove Theorem 3.1, we use two lemmas. Recall that an active surface is a

silhouette surface, a boundary surface, or a self intersection surface of a hypersurface.

Lemma 3.2 Suppose that a curve 6 in the volume of q (M) does not cross any pro-

jected active surfaces. Then there is a curve a on M such that 6 = q(a) .

Proof: Assume that the hypersurface M is expressed in implicit form

f (x l , x2 , 2 3 , x4) = 0 and the curve ti is expressed in parametric form

(l i l (t) , e 2 (t) , 63 (t)) . Then we can consider t as known and solve the system

of four equations in four variables: f (x l , x2 , x3, x q) = 0 and q (x l , x2 ,x3 , x 4) =

(el (t) , c 2 (t) , e 3 (t)) . There must be at least one solution (x l , x2 , 23 , x 4) =

(al (t) , a2(t) , a3(t), a4(t)) that is continuous in t because ii does not cross any pro-

jected active surfaces.

Lemma 3.3 Suppose that the curve a on a hypersurface M passes through a sil-

houette point p with respect to a projection cp. Let a (0) = p. Then a"(0) - n is

proportional to (p o a) " (0) - n, where n is the normal vector of M at p and n is the

normal vector of q (S) at q (p) .

Proof: The curve a = (al, . . . , 0 4) is projected into R3 as

Its first and second derivatives are:

(a , a , a) 27-4 (a; , a;, a;) (q ~ a) ~ I =
1 - ra4

+
(1 - ra4)2

+

By Corollary 2.4 the normal vector ii of y (S) at y (p) is parallel to n (n) = (nl , n2, n3).

We can choose it as ii and get

The ray from p = (al(0) , . . . , crq(0)) to eye4 is r = (-cul(0), -a2(0), -a3(0), -

a4(0)) . By Theorem 2.3 we have r . n = 0, i.e.

Also we know that cul(0) . n = 0, i.e.

Substituting (3.2) and (3.3) into (3.1) yields

Now we prove Theorem 3.1. From Lemma 3.2 we can choose an arbitrary curve

in cp(M) as y (a) . Let p (a) pass through the point y (p) and assume that cu passes

through p . By lemma 3.3 we know that al1(O) . n is proportional to (y~cu)~~(O) n. We

cannot estimate quantitatively the normal curvature of M in the direction of cul(0)

from (yocu)I1(O) . n because we do not know if cu is a unit speed curve. Nevertheless,

we can obtain information about the sign of the normal curvature of M at p.

(i) If (yocu)'I(O) . n # 0, then at least one of the principal curvatures of M is

nonzero. If (cpoc~~)~~(O) - ii and (y ~ a ~) ~ ~ (O) . n are nonzero and have the opposite sign,

then M has two principal curvatures of opposite sign.

(ii) In the neighborhood of y (p) if y (a) is contained in cp(T) n y (S) where cp(T)

and y (S) coincide or tangent to each other, then one of the principal curvature of M is

zero. To see this, notice that all the points in Sncu share the same tangent hyperplane

T. Now a is contained in T and hence IN = 0, or equivalently, Sp(al) = 0. That

means one of the eigenvalue of the shape operator Sp is zero.

Now we analyze the cases (a) to (g):

(a) Since ~ (2 7) c v(S) = v(T), we know that 27 is part of a hyperplane, and so

kl = k2 = kg = 0.

(b) We choose two curves, cp(al) and cp(a2) in cp(S), intersecting transversely at

the point ~ (p) . From (ii) above, and that span(ai , a',) has dimension two, we obtain

that S, has two zero eigenvalues. We choose one more curve v(a3) with nonzero

curvature at ~ (p) . From (i) above, the third eigenvalue is nonzero.

(c) The fact that p(S) n cp(T) is of dimension one implies that there is only one

zero eigenvalue. Any other curve cp(a) in v(V) , intersecting cp(T) only at cp(p) will

have the same sign of (cpocr)I1(O) . n. From Lemma 3.3 we obtain that k2 k3 > 0.

(d) Like (c) we have bl = 0. But now we can find two curves cp(a) in p(M) with

opposite signs of (cpoa)I1(O) . n. From (i) above we obtain that k2k3 < 0.

(e) Any curve p(a) in 27 must bend in the same way at cp(p), which implies

kl , k2, b3 have the same sign.

(f) We can choose two curves cp(a) in ~ (2 7) with opposite signs of (cpoa)I1(O) . n.

Since we have no information about the third eigenvalue, we conclude kmin < 0 <

kmaz-

(g) NO matter on which side of p(S) is cp(M), we can always choose two curves

y (a) in ~ (2 7) with opposite signs of (cpoa)I1(O) n. Hence k,;, < 0 < k,,,. •

Take the hypersurface x2 + y2 + z2 - w2 - 1 = 0 as an example. No matter how we

rotate eye,, except for 03 = f :, the 3D image of the hypersurface is similar to either

Figures 3.15 or Figure 3.18. The images fall into the cases (g) and (f) , respectively. We

conclude that every point on the hypersurface has both positive and negative principa.1

curvatures. This can be verified by calculation from the hypersurface definition.

Figures 3.21 and 3.22 show another example, the Gauss normal distribution in

R3. The hypersurface is defined as

Figurc 3.31 Hypersurface o l Gauss Distribution

Figurc 13.22 IIypcrsurface of Gauss Distribution Clipped 11)- a Planc

where a is a constant. The volume displayed is -2 5 x, y, z, <_ 2. Five isosurfaces

with z = constants of -2, -1,0,1,2 and the boundary surfaces with x, y = constants

of -2 ,2 are shown. Notice that if eye, is a t infinity on the world w-axis, the picture

is simply a box with several planes inside it. Even the isosurfaces w = constant are

trivial concentric spheres. In Figures 3.21 and 3.22 the viewing direction in Euler

a x * angles is 8 = (O ,$, ;i, , , ,,, 0). The silhouette surface appears due to the inclination

of eye,. The top of the bell-shaped silhouette surface is the part of the hypersurface

near p = (O , O , 0, a) . It is the case (e) of Theorem 3.1. The principal curvatures

satisfy kl, k2, it3 > 0 or k l , k2, kg < 0 depending on the choice of the normal vector

of the hypersurface. The case (g) of Theorem 3.1 can be observed near the rim of

the bell-shaped silhouette surface. The principal curvatures at those points satisfy

k1 < 0 < k3. Notice that the hypersurface is mapped to both sides of the silhouette

surface, but in R4 only those points whose images are inside the bell can be in the

neigliborhood of a silhouette point. This can be seen from the trim of the isosurface

z = 2 a t the top of the cube. The isosurface is occluded by the points on and inside

the bell, but they are distant in R4 . Theorem 3.1 only observes the neighborhood of

a silhouette point in R 4 .

In [NFI-ILSl] the curvature of a trivariate function was calculated from the defini-

tion and then displayed using a color scale. The curvature was defined as I< = bl k2k3,

an extension to the Gaussian curvature. It seems hard to use a scalar quantity to rep-

resent the curvature of a 3-dimensional hypersurface. For example, when klk2k3 < 0

it could be the case kl < 0, k2 < 0, k3 < 0 as shown in Figure 3.20(e), or the case

kl < 0, k2 > 0, b3 > 0 as shown in Figure 3.20(f) and (g). Our method of displaying

curvature is more intuitive in that the curvature is inferred from the hypersurface's

image rather than by a calculation of a scalar value from its equation.

The idea of our method is adjusting the viewing direction so that at the point

the normal of the hypersurface is orthogonal to the viewing direction. An alternate

nlethod would be adjusting the viewing direction so that at the point the normal

of the hypersurface is parallel to the viewing direction. Then the curvature can be

observed from the 2-surface that is the intersection of the hypersurface and its tangent

hyperplane. This method is an extension to the Dupin curve or Dupin indicatrix of

a surface in R3 [dC76, O'N661. We think that further investigation of this method

will produce useful and interesting results.

4. SYSTEM ARCHITECTURE

\Ve have implemented an Interactive 4D Visualization System, named IView, on

a conventional z-buffer based 3D graphics workstation. In this chapter some related

algorithms, data structures, and efficiency considerations are discussed. After an

overview of the system in the first section, two major issues, namely polygonalization

and visibility determination, are presented in successive sections.

4.1 System Overview

There are several goals determining the design of the system:

1. Interactive response. If the frame modification does not involve a 4D opera-

tion, the response should be as fast as in ordinary 3D graphics. For example,

when eye3 rotates or the z-clipping plane moves, a scene of about five thousand

polygons takes a few tenths of second to update.' The response time to an

eye, motion is about two or three times that of an eye, motion. According to

our experience, to examine a 4-D object, after one motion of eye,, many motion

steps of eye, are necessary to understand fully the shape of the 3D images.

For complicated 4D operations like silhouette surface generation plus 4D visi-

bility determination, as shown by the hypersurface examples in Chapter 3, the

response time is still within a tolerable range up to fifteen seconds.

2. Flexibility. All 2-surfaces and curves are considered independent objects, and so

can be translated and rotated. They can be grouped into arbitrary levels. They

can also be shaded by different methods, e.g. wire mesh, opaque or transparent

surface, depth-cueing, or shaded by 4D lighting. The visibility mode can be

lExperiments were conducted on a Silicon Graphics Inc. Personal Iris 4D/35

controlled independently of the shading method. Currently the system supports

three visibility modes: eye,-visible, eyej-visible, and invisible modes. The ey%-

visible mode shows the conventional hidden surface removal in 3D image space.

The eye,-visible mode shows the visibility associated with both the first and the

second projections. This mode is useful to display a hypersurface in 4-space.

A hypersurface is considered a special group consisting of silhouette surface,

boundary surfaces, self-intersection surfaces, and isosurfaces. When shown in

eye,-visible mode, all the 2-surfaces on the hypersurface are trimmed according

to the visibility associated with the first projection. The generation of the 2-

surfaces on a liypersurface can be controlled independently. For example, it is

possible to fix a silhouette surface while rotate eye, to show the phenomenon in

Figure 3.17. A similar example, fixing the silhouette curve of a 2-surface with

respect to the projection from 4-space to 2-space while rotate both eye, and

eye,, will be given in Chapter 5 . It is also very useful to turn off some of the

objects by making them invisible. Note that objects behind eye, are typically

culled by the projection algorithm.

3. Compatibility with 3D Graphics. As mentioned in Chapter 2, the three Euler

angles controlling eye, are just the ordinary azimuthal, incidence and twist

angles in 3D graphics, and the three Euler angles controlling eye, are their

natural extension. The 3D image of 4D objects can be shaded according to a

3D lighting model. In our system, objects in 3-space can be displayed in two

ways. By setting w = 0 the objects exist in the subspace spanned by the world

x-, y-, and z-axes. When eye, rotates, the shapes of these objects could be

changed. Another way is to put those objects into 3D image space. Then eye,

motion has no effect on them at all. This is not only compatible with existing

3D graphics, but also useful for understanding 4D objects. For example, we can

display several 4D objects together with a 3D cube. While eye4 is moving, the

3D images of 4D objects change, but the 3D cube remains unchanged, giving

clues how the 3D images are changed in response to the eye4 motion.

The system architecture is shown in Figure 4.1.

The objects in this system are classified into the following types:

1. CURVE3 and CURVE4. These are parametric curves in 3D ima.ge space and

4D world space, respectively. They are transformed into types P T 3 a.nd PT4,

a list of points in 3-space and 4-space, respectively.

2. SURF4P and SURF4I. These are parametric and implicit 2-surfaces defined in

4-space. The functions defining the surfaces may be arbitrary C1 continuous

functions. After polygonization, they become types POLY4T and POLY4N7 a

list of polygons, each vertex attached with two tangent vectors or two normal

vectors, respectively. If the 2-surface is defined by a complicated procedure,

it can be polygonalized by a separated program and sent to the system as

type POLY4T or POLY4N. Another type, POLY4, without tangent or normal

vectors, can be used to define polytops in 4-space.

3. SURF3P and SURF3I. These are parametric and implicit 2-surfaces defined in

3D image space. They are polygonized into type POLY3N, i.e., 3D polygons

with a normal vector at each vertex. The type of 3D polygons without normal

vector is POLY3.

4. GROUP. Objects of all types can be grouped together. For example, a set of

isosurfaces, or a 2-surface with silhouette curves. All objects in the system are

thus organized into a tree structure. The effect of moving the aim point could

be achieved by translating the root object.

5. HYPER. This is the type to represent a hypersurface in 4-space. Similar to the

type GROUP, it contains as members the silhouette surface, self-intersection

surfaces, boundary surfaces, isosurfaces and curves on a hypersurface. When

displayed in eye,-visible mode, it is used for trimming the 2-surfaces and curves

on the hypersurface according to the definition of 4D visibility. Ilow the member

Input

1 Equations

Polygonalization A - J
4D Polygons

Visibility
Determination

User I
1 I I Trimmed 4D

Interface

Projection

3D Polygons

3D Graphics

I Library I

Polygons

with Normals

1 2D Polygons

Figure 4.1 System architecture

surfaces and curves are to be generated is not automatic in order to increase

flexibility.

The top level algorithms are the following:

1. Polygonalization. Polygonalizing parametric surfaces and 3D implicit surfaces

has been discussed extensively in the literature, e.g. [BloSS, IIWSO, LC87,

RFID89, VlaSCI]. So, we will concentrate on the polygonalization of 2-surfaces

in 4-space. We adapt the algorithm presented by Allgower [AGS7] with some

special considerations for 4D visualization. After the polygons are generated,

Newton iteration is applied to bring the points onto the '-surface. Finally, tiny

polygons or those of poor aspect ratios are merged with adjacent polygons to

reduce the total number of polygons.

2. Visibility determination. First, generate all the intersection curves between

those pairs of 2-surfaces, in which at least one of them is an active surface,

in 3D ima.ge space. The intersections tend to be singular, e.g. intersecting

tangentially, or several intersection curves meeting at a common point. This

was predicted by the discussion in Chapter 2 and was illustrated by the pictures

in Chapter 3. The intersection curves divide the 2-surfaces into regions. Then,

for each region choose one point to calculate the sight number and propagate

it across the whole region. Invisible parts of polygons are trimmed away.

3. Projection and Shading. To make full use of the 3D graphics capacity, the

coordinates and normals of polygon vertices in 3D image space are calculated

and stored in memory. They are updated only when the objects are translated

or rotated in 4-space, or when the position of eye, is modified. The wire mesh,

flat, and Gouraud shading can be performed by the 3D gra.phics library. But

other shading methods have to be implemented by the system. For examples,

When using the depth cueing in 4-space, the color and intensity a t a point is

determined by the distance from that point to eye,. When shaded by 4D lights,

the intensity at a point is determined by the dot product of the hypersurface

normal and the vector from that point to eye,.

4.2 Polygonalization of Implicit 2-Surfaces in 4-Space

An implicit 2-surfaces in 4-space is defined by two equations in four variables:

f (x, y, z , w) = 0, g(x, y, z , w) = 0. Although all 2-surfaces have to be projected into

3D image space before they can be displayed, we prefer polygonalization in 4-space for

the following reasons. First, polygonalization usually requires more computation than

projection. Therefore, polygonalizing the 2-surface as a preprocessing step means

that a better response can be obtained when changing the projection parameters

repeatedly. Most of the 2-surfaces need only to be polygonalized once. Second, the

silhouette surface is determined by the eye, position. It has to be repolygonalized

whenever eye, moves. However, we may wish to keep its polygonalized form in 4-

space in order to show a "fixed" silhouette surface during eye, rotation. Third, the

visibility calculation must be based on the positions of polygons in 4-space, similar to

the situation in 3D graphics. Finally, polygonalization in 4-space can better account

for the intrinsic geometric properties of the 2-surface. Some of these properties are

distorted by the projection to 3-space.

If f and g are restricted to polynomials, algebraic methods such as resultants could

be used to eliminate one variable, followed by a parameterization in 3-space. It is also

possible to parameterize certain algebraic hypersurfaces in 4-space and then display

a set of isosurfaces [BajSO], but it seems hard to directly parameterize a 2-surface in

4-space.

If f and g are general functions, or even defined by discrete function values on

grid points, direct polygonalization in 4-space is more appropriate. A few methods

have been proposed to polygonalize implicit 2-surface in high dimensional space.

Categorized by the space the algorithm subdivides, they are: Allgower's simplicia]

continuation method [AS85, AGS7] which subdivides the object space, Rheinboldt's

moving-frame method [Rhe87] which subdivides the tangent space of the object, and

Chuang's method based on the local degree 2 approximation [Chu9O] which subdi-

vides the image space. Rheinboldt and Chuang's methods require tangent or normal

vectors while in Allgower's algorithm the first order partial derivatives are used only

for an optional point refinement step. It is possible to apply Allgower's algorithm

without the point refinement step, and this is useful for visualizing functions defined

by the values on grid points. Another advantage of Allgower's algorithm is that by

triangulating the object space it can handle the case where the projection introduces

apparent singularities (see the discussion in Chapter 2), and the case where the 2-

surface is closed in the object space. The disadvantage of the algorithm is that its

complexity is exponential in the dimension of the space, but this is not an issue here

since the dimension is fixed at 4.

The simplicia1 continuation method described in [AGS7] has been tailored to a

version dealing with 2-surfaces in 3-space [AG90]. In the following three subsections

we will discuss some considerations for applying the algorithm to 2-surfaces in 4-space:

the basic algorithm and data structure, the Newton iteration for point refinement,

and the merging of polygons to reduce the total number of polygons.

4.2.1 The Basic Algorithm and Data Structure

The following definitions are briefly cited from [AGS7] with a restriction in 4-space.

The Freudenthal Triangulation of R4 is a set of 4-simplices a = [vo, . . . , v4] where

[.I denotes the convex-hull, and the vertices vi satisfying

In the definition above z is an integer vector in R", T is a permutation of (1,. . . ,4),

(e l , . . . , e4) is the base of R4, and S is the uniform mesh size. The triangulation is a

subdivision of the grid in R4 with size 6. Each hypercube in the grid contains 4! = 24

simplices. Each 4-simplex contains c:+' i-faces, also called vertices, edges, faces, and

facets, respectively. Two adjacent simplices share 4 vertices, 6 edges, 4 faces and 1

facet. The number of simplices containing a common face is either 4 or 6.

The pivoting of a vertex v; across the facet i is given by 6 = vi- - v; + v;+

where i+ = (i + 1)mod 5 and i- = (i + 4)mod 5 . Ry this operation a simplex

a = [vO,. . . , vi, . . . , v4] js pivoted to 8 = [vo, . . . ,c,. . . , v4].

Let T = [v0, v1,v2] be a face, and let H : R4 + R2 define the 2-surface I-l(x) =

(f (x) , s(x))T = 0. Then T is completely labeled if the labeling matrix

has a lexicographically positive inverse, which means that in each row of A-I the

leading nonzero element is positive. When T is completely labeled, the first column

of A-', written as (Ao, X I , X2)T, gives an approximate intersection point x = Xovo +
Xlvl + X2v2 of the 2-surface with the face. A simplex, a facet, or a fa,ce is called

transverse if it is or contains a completely labeled face.

Algorithm 4.1 Simplicia1 Continuation Method

itzput: A 2-surface defined by N : R4 + R 2 , and a regular point x on the 2-surfa.ce.

Also a domain D c R4 and a mesh size 6.

output: A list of polygons that is the piecewise linear approximatjon of 11.

a 0 = The first transverse simplex containing the seed x;

L = list(ao);

LC = L; / * LC is a pointer */
while LC # nil do

a = head of LC;

LC = rest of LC;

Step in a along the chain of trailsverse faces;

Construct the polygon, i.e. the linear approximation of II in a ;

for each transverse facet T of u do

(10) ~r = pivot a across T;

(11) if Zr c D and Zr @ L then

(12) append 8 to the end of L;

(13) endfor

(14) endwhile

The data structures involved in the algorithm are simplex, face, and vertex. A

facet is represented equivalently by the missing vertex. Moreover, we need to repre-

sent polygons and their vertices also. To avoid confusion, a polygon vertex is called

a point since initially it is a point on a face of a simplex. There is a one-to-one cor-

respondence between a simplex and a polygon, and between a transverse face and a

point. The adjacency information between simplices and transverse faces also repre-

sent the adjacency information between polygons and points. Therefore we have three

types of data structures: VERTEX, FACEIPOINT, and SIMPLEX/POLYGON. In

a VERTEX the function values of f and g at the vertex are stored to avoid repeated

evaluations. A FACE/POINT contains the 3D and 4D coordinates and normals, and

a set of pointers to all the adjacent simplices/polygons. In SIMPLEX/POLYGON

there is a set of pointers to all the adjacent faces/points.

The information about faces and vertices could be stored locally in the simplex,

or globally in a table, say a hash table, to make sure there is only one copy in the

memory. The latter is preferable for efficiency, robustness, and convenience when

constructing connected polygons.

Given an n-simplex in Rn, a = [vO,. . . ,vn], its i-face (i = 0, . . . , n) is T =

[tiO,. . . , ZL;] where { Z L ~ , . . . , u;} c {vO,. . . , v,}. TO address the face T without referring

to the simplex a, its code is defined as

where zj is the integer vector such that u j = 6zj. To recover the vertices of an i-face

from its code, the following equations could be used.

C zj = +I+ ek J' = 1, . . . , z
C,[k]rnod(i+l)=i-j+l

A special case is when i = n, and recovers the simplex a, as discussed in [AGS7].

Given a lower dimensional face T in a simplex a, it is impossible to identify the

original simplex a from the code C, of T . This represents the global nature of C,.

The face T is no longer associated with a particular simplex.

We use as example the silhouette surface shown in Figure 3.15, and compare the

global versus the local storage strategies.

global

Total number of vertices evaluated

Singular A matrices encountered

Time in seconds

local

Total number of simplices constructed

Total number of transverse faces evaluated

4.2.2 Newton Iteration for Point Refinement

After a transverse face is found, an initial estimate of the intersection point of

the 2-surface and the face can be obtained via xO = Xovo + X l v l + X2v2. Then

Newton iteration could be used to refine the point onto the 2-surface if the first order

partial derivatives are available. In polygonalization of a %surface in 3-space, such

refinement is usually restricted to the transverse edge because the 2-surface intersects

all the transversal edges by the mean value theorem; see Figure 4.2. Such a restricted

refinement method has the advantage that each refined polygon is still within the

simplex originally containing it. But this is no longer the case for polygonalizing

2-surface in 4-space. Now a transverse face need not have intersection point with the

%surface, as illustrated by the following example.

3834

2918

Example 4.1 A silhouette surface is defined by

3834

5590

+
Linear approximation
before point refinement

normal direction

Figure 4.2 Point Refinement in 3-Space

where f is a hypersurface and g is a condition for the silhouette surface when

eye, is at 8 = (n / 4 , n / 4 , 7 ~ / 1 2) and r4 = 0 . The faces we are going to examine

is T = [vO, v l , v 2] , where vo = (0.75,0.75,0, - 0 . 2 5) ~ , vl = (0.75,1,0.25, - 0 . 2 5) ~ ,

v2 = (0.5,0.75,0, - 0 . 2 5) ~ . A point p on the face in barycentric coordinates is

p = ~ ; = ~ a ; v ; with c,?,~Q; = 1. The functions f and g substituted by (ao, a l)

yields

The two solutions are (ao = -0.10091, a1 = 0.39952) and (ao = 3.60716, a1 =

-2.22249). Both are outside the face T . But the face is transverse since the matrix

A-I has a positive first column (0.063497,0.283271,0.653232)~.

Three point refinement methods based on Newton iteration are considered. We

call them iteration i n the support plane, iteration within the face, and iteration in the

normal plane, as shown in Figure 4.3

Final point by
iteration in the
normal plane / I\ '

iteration in the
the face \- - - . support plane

Figure 4.3 Point Refinement in 4-Space

Let T be a face and P be its support plane, viz. T c P. The method of iteration

in the support plane is just the Newton iteration of the point in P without checking

the boundary of T:

a k + l = ak - (~ (~) (a ~)) - l R (a ~)

where a = (00, H(a) = (f (a), ~ (a)) ~ , and

f a o f a ,

J(j-Q(a) = (G f f o)

Applying this method to an initial estimated point inside the face T, the iteration

could converge to a point outside T as in Example 4.1. Experiments with this method

showed that about one percent of the refinement converged to points outside the

face. Moreover, a few points were far away from the face. In that case, the 2-

surface looks smooth except for a few bumps. Worse, if the 3D graphics engine

cannot handle nonconvex polygons, cracks may appear in the projected 2-surface.

Another drawback is that the refined polygons can cross the boundaries of simplices.

In visibility determination or rendering by ray tracing, the algorithms may use the

structure of the space division. The existence of crossing polygons will make those

algorithms much more complicated.

To confine the final polygons within the originally enclosing simplex, the method

of iteration within the face could be applied. The process does not find an actual

zero of H but finds an optimal approximation defined by2

min & (a)

s.t. a E R

This is a constrained nonlinear programming problem and many methods are avail-

able. For example, the steepest descent method can be used when only the first order

partial derivatives are available. At each iteration step, a linear search is conducted

in the direction of the negative gradient of h:

IYhen ak is at the boundary edge of R and the dk calculated by Equation 4.2 is toward

the outside, the d%hould be replaced by its projection on the edge. If the the length

of the projection is zero, a local optimal point is found.

2The abbreviation s. t . s tands for "subject to"

The steepest descent method converges only linearly. Since ninety-nine percent of

the points are really on the face, the method wastes time. Therefore, we consicler a

modification of the iteration in the support plane.

14'11en a q s at 80 and dk is toward outside, the iteration stops since there is no

criterion of optimization. For those points that are really on the faces and the initial

points are sufficiently close to them, this method converges a t the same rate as the

method of iteration in the support plane. For those points outside the face, however,

the iteration is stopped and the points stay at the edges of the faces and do not cross

the enclosing simplices. The overall speed is found to be almost the same as that

of iteration in the support plane. However, this method has the following problem.

The points in the iteration aO, a', . . . may go in and go out of the face several times.

When simply terminating the iteration the convergent point may be lost. Therefore,

the visual effect of this method may be better or worse than that of iteration in the

support plane depending on the surface geometry.

If crossing polygon is allowed, a better method is the iteration in the normal plane

of the 2-surface. Let p = (x, y , z, w) ~ and pk be a point close to the 2-surface H(p) =

(f(P),g(p))T = 0. Then v f(p" and vg(pk) are two approximate normal vectors

of H(p) = 0 passing through pk. Let a = (a o , ~ l) ~ . A point in this approximate

T k normal plane is pk + a 0 v f($) + a1 v g(pk) = pk + J(II) (p)a. Define k(a) =

H(p" a. v f (pk) + a1 v g(pk)). Expanding near a = 0 yields

H (a) = ~ (0) + J (~ I) (0)a + o(a)

By setting ~ (a) = 0 and rewriting J(H)(o) in terms of J(H) the follo\ving iteration

is obtained:

pwl = pk - J(H)[J(H)~J(~I)]-~(~~)H(~~)

The same result can also be derived by the least-squares method. Based on this

geometric explanation we make two observations. First, since in each step of the

iteration the refinement of the point is in the direction within the normal plane,

faster convergence is expected than in case of iteration in the support plane. Second,

in most situations the normal plane is different from the face support plane, so this

method generates much more crossing polygons than iteration in the support plane.

Visually this method delivers the best pictures among the three methods. The system

lets the user choose one of these iteration methods. Note that in consequence the

structure of the space subdivision cannot be assumed by any algorithm applied after

the refinement stage.

4.2.3 Merging Polygons

The polygons generated by the simplex method contain some tiny and skinny

polygons. Merging them with adjacent polygons could be done before or after the

point refinement stage. The former could make use of the underlying space subdivision

structure, but the curvature information is not available since the points are not yet

on the 2-surface. The latter is independent of how the polygons are generated, and

so it can also be applied to polygons of parametric 2-surfaces. RiIoreover, from the

normals a t the refined points, the flatness of the 2-surface can be estimated, a more

important criterion than the size of polygons. The system offers an optional operation

to merge polygons after the point refinement stage.

The operation to merge polygons can be done in 4-space or in the 3D image space.

Since only the 3D images are seen, We thought it is better to merge polygons accord-

ing to the normals of the projected 2-surface. However, the operation performed

in $-space has its advantages. All the 2-surfaces except the silhouette surface are

independent of eye, position. Therefore, the merging of 4D polygons needs to be

done only once. The saved final version of 4D polygons could be projected into 3D

image space repeatedly. Our experiments comparing the operations done in 4-space

versus 3D image space showed little difference in the visual effect and the number of

polygons merged.

Tiny or skinny polygons have at least one short edge, so the basic operation is

to merge two vertices of a short edge. The two vertices 211 and v;! of an edge can be

merged into one if the following condition is satisfied.

where E and 17 a.re user defined tolerances, and Nl and N2 a.re two unit normal vector

fields of the 2-surface. This condition is conservative in that the coincidence of two

normal planes does not require the coincidence of the normal vectors. The meaning of

(4.3) is that each hypersurface in the definition of the %surface has almost coincident

normal vectors at vl and v2. For parametric 2-surfaces, the Nl and N2 in (4.3) are

substituted by TI and T2. That is, we base merging on the tangent plane instead of

the normal plane. We do not calculate the normal vectors of a parametric 2-surface

from the tangent vectors since the the calculated normal vectors do not bear their

own meaning.

It has been proved that each polygon generated by the simplex method has at most

5 vertices, and that each vertex is shared by at most 6 polygons [AS85, AG871. It is

useful for data structure and algorithm design if these limits are kept when vertices

are merged. Suppose v1 and v2 are merged into v. All the polygons adjacent to vl

or vz will not increase their number of sides. But deg(v), i.e., the number of edges

incident to the new vertex v, could be larger than deg(vl) or deg(v2). So, another

condition for merging two vertices is

where tri(v1,v2) is the number of triangles (polygons with 4 or more sides are ex-

cluded) adjacent to the edge (vl,v2). The new v could be one of vl or v2 provided

that a boundary vertes is never removed.

Algorithm 4.2 Merging Polygons

input: A list of polygons in 4-space, each vertex is attached with two normal vectors

or two tangent vectors.

output: A list of polygons with the total number possibly reduced.

(1) for each edge (vl, v2) in the polygon list do

(2) if Conditions (-1.3) and (4.4) are t.rue and

(3) vl or v2 is not a boundary vert,ex then

(4 merge(v1, v2);

(5) remove triangles containing edge (vl , v2)

(6) endif

(7) endfor

Tlle algorithm can be applied repeatedly until the number of polygons cannot be

further reduced. The system lets the user apply t.his operation and inspect the results

interactively. Usually one application is enough. For example, applying Algorithm 4.2

once with E = 0.01 and 77 = 0.0001 to the 2-surface defined in Example 4.1 reduces

the number of polygons from 3534 to 31 10 without any noticeable change in the 3D

image. With the same E and 77 t,he minimum number of polygons, 3046, is reached

by repeating the algorithm four times.

4.3 Visibility Determination

As discussed in Chapter 2, the visibility to eye, needs to be done only if there

are hypersurfaces. In our system a hypersurface is represented by a,n object of type

IlYPER that is a group of 2-surfaces and curves on that hypersurface. The group con-

tains active surfaces including silhouette surfaces, boundary surfaces, self-intersection

surfaces, and inactive surfaces and curves, including isosurfaces. An algorithm based

on Theorem 2.6 is as follows:

Algorithm 4.3 Visibility Determination of a I-Iypersurface to eye4

input: The equations defining implicitly the hypersurface and its silhouet ter surface,

boundary surfaces, and self-intersections (if they exist). The piecewise linear

approximations of all the 2-surfaces and curves on the hypersurface, in the form

of a list of connected polygons, or a list of conn'ected line segments. Besides,

the projection cp from 4-space to the 3D image space, and the position of eye,

in the local coordinate system.

output: The polygons or line segments in the piecewise linear approximation of the

',-surfaces and curves having been trimmed according to the visibility to eye,.

for each active surface S do

for each 2-surface or curve R do

construct the intersection of cp(S) and v (R) , put on R

end for

end for

for each 2-surface or curve R do

for each region of R divided by the intersection constructed in (3) do

choose a point in the region and calculate sight number

propagate the sight number to the whole region

endfor

endfor

In the following two subsections step (3) of Algorithm 4.3 is elaborated for the

general case, the special case when S is a silhouette surface, and the special case

when S is a boundary surface. The last subsection deals with steps (8) and (9) of the

algorithm.

4.3.1 Intersection of 2-surfaces in the Image Space

Given two 2-surfaces R and S in R4, after projection their images cp(R) and cp(S)

are surfaces in R3. The intersection of two surface in R3 has been studied for a

long time. The problem can be solved by algebraic, analytic, and numerical methods

[PGS6, CK87, OR87, BHHL8S1. Here it is discussed in the context of 4D visualization.

\Ve distinguish three basic methods: (I) Both 2-surfaces are in symbolic form. (2)

Both are piecewise linear. (3) One is in symbolic form and one is piecewise linear.

We outline the first two methods and concentrate on the third method in greater

detail because in our experiments we have found that the third method is usually

superior.

The first method uses the symbolic definition of the 2-surfaces. For a pair of

parametric 2-surfaces sl, s 2 : R2 -+ R4, the intersection of them in the ima.ge space

is expressed as three equations in four variables:

To represent self-intersections, the above equations should be adjoined by (ul - u ~) ~ +
(vl - v2)2 # 0, which is equivalent to an additional equation with an additional

variable:

2 X[(ul - ~ 2) ~ + (vl - v2)] - 1 = 0

For a pair of implicit %surfaces fl = Ongl = 0 and f2 = Ong2 = 0 where f l , f2, gl , g2 :

R4 -+ R , the intersection in the image space is expressed as seven equations in eight

variables:

The self-intersection problem can be tackled similarly. In contrast to the 3D case,

one parametric 2-surface and one implicit 2-surface do not yield the simplest case. It

still needs five equations in six variables:

Any variable elimination methods could be used to solve the system of equations and

obtain an intersection curve. But usually it is nontrivial to solve, especially when

they are not restricted to polynomials. The curve can also be traced numerically in

high dimensional space [BHHL88]. After the intersection curve is generated it should

be mapped onto the piecewise linear approximation of the 2-surfaces. That is, the

curve should have points exactly on the the edges of those polygons which are divided

by the curve. This step can be done by slightly moving the points on the curve.

Since the 2-surfaces have already been polygonalized, an alternate method is to

project the polygons into 3D image space and then find the piecewise linear intersec-

tion curve from the two sets of polygons. Starting at two intersecting polygons, one

from each 2-surface, the adjacent polygons are searched and a new pair of intersect-

ing polygons are formed. In this fashion the pair of polygons marches until a loop is

detected or the boundary is reached, generating a piecewise linear curve exactly on

the two sets of polygons.

This method works well only if the two ')-surfaces intersect transversally in the

3D image space. However, Corollary 2.3 tells that in the image space the isosurfaces

intersect the silhouette surface tangentially. In such a case intersecting the piecewise

linear approximation of the 2-surfaces is difficult. Instead of a smooth intersection

curve, the method generates a lot of small loops scattered near the true intersection

curve. Visibility displayed by trimming the polygons based on these small loops will

be incorrect. Therefore, a third method that operates in $-space is considered.

In the third method the active 2-surface S is given in the form of two equations

f = 0 n g = 0 where f is the definition of the hypersurface. Another 2-surface R is

given the piecewise linear approximation, which is readily available. We distinguish

the intersection of cp(S) and cp(R) into true and apparent intersections. The true

intersection is the projection of the intersection of S and R in 4-space. The apparent

intersection is an intersection of cp(S) and v (R) in the 3D image space to which there

is no corresponding intersection in 4-space. Apparent intersection is an artifice of the

projection.

In order to determine apparent intersections, we introduce partition functions h

that map points of R to real numbers as follows. Let p be a point on R and q be the

position of eye,. Recall that S is defined by f = 0 n g = 0. Then a partition function

is the function

1 4 ~) = f ((1 - Xo)P + Xoq)

where X o is the solution of g ((1 - X)p + Xq)) = 0. Note that the solutions X o corre-

spond to the points in which the line pel intersects the hypersurface g. Clearly if h

changes sign as p ranges over a curve on R, then this curve passes a true or apparent

intersection. We will discuss how to represent h after describing the algorithm for

generating the intersection of y (S) and y (R) as follows:

-4lgorithm 4.4 Generating Intersection Curve on a 2-surface

input: A list of connected polygons which are the piecewise linear approximation of

a 2-surface R in R4. A partition function h : R -+ R.

output: A list of connected points which is the piecewise linear approximation of the

curve on R defined by h = 0.

a0 = the first polygon with a transverse edge TO = (vo, v l) , i.e. I L (V ~) ~ (V ~) < 0

find the second transverse edge r1 of a0

find zeros of h on 70 and T I and construct a line segment connecting them

a = (70, T = To

while r is not a boundary edge of R and

(a = pivoting a across T) has not been visited do

find the second transverse edge of a and construct a line segment

7 = 7 1

end while

(7 = 0 0 , T = 7 1

redo steps (5) to (9)

When the intersection curve has more than one branch, the algorithm has to be

applied to each of the branches.

4.3.2 Determining the Partition Function on a 2-Surface

When S is a silhouette surface and R is an isosurface, their images in 3D image

space intersect tangentially. Their intersection constructed in 3D image space will

often be incorrect due to roundoff errors. Working in $-space using Algorithm 4.4,

the partition function h can be chosen as the second equation for S, i.e. 12 = v f . r4.

In R q h e hypersurface h = 0 intersects with R transversally, and so no numerical

problems occur. The resulting trimming curve is smooth as shown in Figure 3.12 and

3.13.

For the silhouette surface there is another special problem that needs to be con-

sidered. Recall the discussion following Corollary 2.1 in Chapter 2. A 2-surface

f = 0 n g = 0 usually has a 0-dimensional silhouette point set with respect to the first

projection cp, determined by the equations v f .r4 = 0 and g g . r 4 = 0. If the 2-surface

is a silhouette surface, however, one of the equations is redundant and the zero set is

a 1-dimensional curve. This curve signals visibility changes on the silhouette surface,

just like a self-intersection curve would. To find the curve, Algorithm 4.4 can be

applied. The 2-surface R being trimmed is the silhouetter surface and the partition

function is h = v g . r4 = ~ (v f . r4) . r4. As example consider the Gauss distribution

hypersurface shown in Figure 3.21 and 3.22. The silhouette surface is redrawn in

Figure 4.4.

In the case that cp(S) and cp(R) have an apparent intersection curve, the definition

of the partition function h is more complicated. The method is better understood by

a 3D analogy. Figure 4.5 shows a surface S : f (x , y, z) = x2 + y - z2 = 0 with its

boundary curves C1 and C2. Curve C1 is in the plane B1 : gl(x, y , z) = y + 0.5 = 0,

and Cz is in the plane B2 : g2(x, y, z) = z - 0.5 = 0. Points a and b denote the true

iiltersection of C1 and C2 in R3. Point c denotes their apparent intersection, in the

2D image space. In R3 the point c is actually on Cz, and another point c', exactly

behind c in Figure 4.5(a), is on C1 as can be seen in a different direction (b). As the

point p moves on C2, it occlude a corresponding point p' on the plane B1, so forming a

curve Ci in B1. When p passes through c, the function value f (p') will pass through

Silhouette Surface Cross Section Cross Section
Before Trimming After Trimming

(a) (b) (c>

Figure 4.4 Silhouette Surface Before and After Visibility Determination

Figure 4.5 Intersection of Two Bou

(b)

.ndary Curves in Image Space

Figure 4.6 Intersection of Two Boundary Surfaces in Image Space

zero. Therefore the partition function on C2 can be defined as h(p) = f(p') such

that g(pf) = 0 and that p,p' and eye, are collinear. When g is linear, this constraint

is easily solved and expressed as a linear function p' = l(p). Hence h(p) = f (l(p)).

The zero point of h can be the true intersection such as a and b, or the apparent

intersection such as c. These 0-dimensional zero points are separated on C2.

The method can be extended into R4. Again we use the hypersurface in Fig-

ure 3.12 and 3.13 as example. The hypersurface is f (x, y, z , w) = x2 + y2 + z - w2 = 0.

The active 2-surface S is defined as f = 0 and gl(x, y, z, w) = z+0.5 and the 2-surface

R being trimmed is defined as f = 0 and g2(z, y, z , w) = w - 0.5. The 2-surfaces S

and R are redrawn in Figure 4.6. A linear function 1 maps a point p on R to a point

p' on the hyperplane gl = 0. The partition function is then h(p) = f(l(p)). The zero

points of h are 1-dimensional curves that could be true intersections of S and R in R4

shown as C1 in Figure 4.6(a), or apparent intersections shown as C2. The two curves

Cl and C2 intersects a t points a and b. They are the singular points of h and will

cause numerical difficulties in Algorithm 4.4. Figure 4.6(b) shows some polygons near

the intersection point b. The signs of h at each vertex of the polygons are marked.

.Point b is on an edge where h is constant and equals to zero. Point c is on a,n edge

with one zero and one nonzero h value at the two vertices, but the vertex with zero

h value is not the desired point. heref fore, desingularization has to be considered

when an edge has at least one vertex with zero h value.

There are several algebraic or analytic desingularization techniques [BHHL88,

Hof89, 0R871. We use a technique based on geometric intuition. Tlie basic idea is

to divide h by a function h1 which has zero value at the true intersection points of S

and R, but has nonzero value at their apparent intersection points. The construction

of h' is explained by the 3D analogy in Figure 4.5. The point p on curve C2 is

orthographically projected to plane B1. Its image p" on B1 is called the foot point

of p. Clearly there is another linear map 1' such that p" = l1(p). We claim that the

two linear maps 1 and 1' cannot be the same. Suppose l(p) r ll(p), the projection by

eye, must also be orthogonal to B1. In such a case, the two curves C1 and C2 cannot

have apparent intersection, and so Algorithm 4.4 need not be applied. Using the two

maps 1 and l', the partition function on C2 can be defined as j (, , (p)) , although it is

not necessary because the true and apparent intersection points are separated.

The technique above extended into R4 works as follows. The partition function in

Algorithm 4.4 is still f (l(p)). But steps (3), (4), (7) and (8) are modified. Whenever

there is an edge with at least one zero function value, the desingularization procedure

is called. At each vertex v of the edge, the partition function value is calculated via

At a singular point it is an indeterminate form and l'H6pital's Rule can be applied.

The modified algorithm works well as shown in Figure 3.12. The visual effect is better

than that produced by intersecting polygons in 3D image space.

When S has a nonlinear g, the map from R to hypersurface g = 0 cannot always

be expressed explicitly. Nevertheless, the point p' can still be calculated numerically.

Let p be the point on R and q be the position of eye,. Then p' can be found by an

iterative search for g(pl) = 0 on the line L : p' = Xp + (1 - X)q, say, using the secant

Cross Section

Figure 4.7 An Isosurface trimmed by the Silhouette Surface in Image Space

method. The partition function is defined as h(p) = f (p'). There are two problems

to be addressed.

First, the line L may have no intersection with the hypersurface g = 0. In this

case p' is undefined, and so is h(p). In Algorithm 4.4 an edge is then considered as

not transverse when at least one of its vertex has an undefined value of 12. TO make

the algorithm work correctly the polygonalization of R should be fine enough so that

the actual transversal edges do not fall into the region where h is undefined.

Second, the line L may have more than one intersection point with the hypersur-

face g = 0. To make h a continuous function over R, the parameter X found by the

iterative search should also be continuous over R. This can achieved by the homotopy

continuation method [A1190]. Suppose point pl has a known X I , to find the unknown

X2 of point p2 a curve smoothly connecting pl and p2 is formed conceptually. By

moving along the curve from pl to pg, the result X is smoothly changed from X1 a t

pl to X 2 a t pg. In our algorithm X is found by iteration. If the polygonization is fine

enough, the initial value of X can be taken from an a.djacent vertex with known X

value. In this way the calculation of X is propagated from a point to the whole R.

As an example see the hypersurface of Gauss distribution in Figure 3.21. The

isosurface R with constant z value z = 2 is trimmed by the silhouette surface S : f =

0 n g = 0 where both f and g are nonlinear. The isosurface is redrawn in Figure 4.7.

In the 3D image space R intersects with S on two circular curves Cl and C2. Curve

Cl is the true intersection of R and S while C2 is their apparent intersection. The ray

from a point p on R to eye, can intersect with g = 0 in 0, 1 or 2 points. Figure 4.7(a)

and (b) show the sign of the f (p') when p' is chosen on the front and back portions of

g = 0, respectively. In the 3D image space the hypersurface g = 0 is a solid cylinder

with its axis parallel to the projected world 211-axis. Its intersection with v(R) is the

region with defined partition function values.

4.3.3 Sight Number Calculation and Propagation

The trimming curves divide a 2-surface into several regions. For each region a

point p is selected. To calculate the sight number at p, a ray from p to eye, is formed.

It is then clipped by the domain of hypersurface being displayed. The domain is

usually a hyperparallelogram. The number of intersection points of this clipped ray

with the hypersurface is the desired sight number at p. In our display scheme, only

those points with zero sight number are visible. That means there is no transparent

hypersurface in R4. SO the task is to find if there is any intersection, instead of

how many intersections. Note that the second sight number must be calculated

quantitatively since we need to display transparent surfaces in the 3D image space.

This is a typical 3D graphics problem that we will not discuss.

Let p and q be the two end points of the line segment and f = 0 be the hypersur-

face. We want to find if the function f (X) = f (p+ X(q - p)) has zero points X E (0 , l) .

The behavior of the function f at X = 0 is summarized in the following lemma.

Lenlina 4.1 Suppose that p is a point on the hypersurface M : f (x, y, z, w) = 0,

and that the line segment p + - p) is in the direction from p to the center of the

projection cp : R4 4 R3. Then the function f (X) = f (p + X(q - p)) has 0 as its

(a) zero point for all p E M;

(b) at least double zero point for all p E S , the silhouette surface of M with

respect to 9;

(c) at least triple zero point for all p E C , the silhouette curve of S with respect

to $9.

Proof:

(a) trivial.

(b) f'(0) = v f (p) . (q - p). It is zero if p is a silhouette point of M with respect

to $9 according to Theorem 2.3. Therefore 0 is at least a double zero point of f .

(c) Let g (p) = v f (p) (q - p) . The silhouette surface S can be defined as f =

o n g = o .

By Theorem 2.3 f"(0) = 0 if p is a silhouette point of S with respect to cp.

Using this lemma we can analyze how the local behavior of f affects the siglit

number. Assume that p is on a 2-surface other than the silhouette surface. If p is in

the vicinity of the true intersection curve with the silhouette surface, then Jf'(0:11 is

almost 0, and the sign of its numerical value cannot be trusted. Figure 4.8(a) and

(b) show two possible situations with Jf'(0)I FZ 0 and f"(0) >> 0. The sight number

for (a) is greater than that for (b) by 1. But from the numerical values at point p

the two situations cannot be distinguished. Therefore, the sight number should be

calculated a t a point away from the intersection with the silhouette surface, and then

propagated to the entire region including those points close to the intersection curve.

A criterion for selecting the point is thus Jf'(0)) > €1. Once we have eliminated the

possibility that a zero point is very close to but not exactly at X = 0, the sight number

can be found by numerical methods such as linear search or interval subdivision.

Figure 4.8 Function f (A) near X = 0

Assume that p is on a silhouette surface. By Lemma 4.1, f'(0) is always zero.

Although the numerical value of f'(0) can be of small magnitude, the ambiguity

shown in Figure 4.8(a) and (b) cannot happen for silhouette surface. This is because

by the definition of silhouette surface the situation (a) can be eliminaked. If p is close

to the silhouette curve, however, ambiguities may occur as shown in Figure 4.S(c) and

(d), where f'(0) z 0, f"(0) z 0 and f"'(0) >> 0. A Similarly, a criterion for selecting

the point is that I ~ (O) (> E Z . No extra calculation of the second order derivatives is

needed, because f"(0) = v g (p) . (q - p). That is the partition function values used

to construction the silhouette curve.

5. APPLICATIONS

Visualization of high dimensional space has found wide spread applications in

science and engineering, as listed in Chapter 1. The visualization of four dimensional

space is more suitable for the problems naturally defined in 4-space, such as 3D objects

in motion, and 3D scalar fields. For a problem defined in arbitrary n-dimensional

space, to get intuition by visualization, the usual way is to examine the problem of

reduced dimension in 3-space or 2-space. But sometimes when the problem is reduced

to 3-space or 2-space it becomes a trivial one. Then the visualization of 4-space can

serves as a bridge from the "trivial cases" to the "nontrivial case". Such an example

already appeared in Chapter 4, where we discussed and displayed the singularity

on the intersection curve in image space of two adjacent boundary surfaces of a

hypersurface in 4-space. This kind of singularity clisappears when the dimension is

reduced.

Several examples will be presented in the following sections that illustrate the

applications of our 4D visualization system. The first section is about understanding

differential geometry by two examples of planar offset curves. Although offset curve is

a problem in %space, by the envelope theorem it can be defined in higher dimensional

space. Some comparisons will be drawn between 2-, 3- and 4-spaces. The second

section shows the intersection 2-surface of two moving objects in 3-space. Although

the moving objects are simple, their intersection surface in 4-space is surprisingly

complicated. A 3D scalar field, the electron density field of a virus, is shown in

the third section. By putting it in 4-space, the concepts of contouring and slicing are

unifornlized. The 3D scalar field can be manipulated in several ways by simply moving

eye,. The final example is the tool path generation for 5-axes milling machines. The

original problem is defined in 5-space, and can be treated by algorithms working in

.5-space. We put emphasis on intuitions by visualization. The problem is simplified

and illustrated in 4-space.

.5.1 Understanding Differential Geometry

In Chapter 2 the relationship between silhouette and envelope was discussed. In

this section it is explained and illustrated by the example of offset curves.

Given a curve f (x , y) = 0 in R2, its offset curve by distance r > 0 can be formu-

lated by the envelope method [FN90, HofsS] as a set oi equations:

where

If the parametric form of the curve f is available, the set of equations can be simplified

Note that the condition C' is equivalent to = 0. If the greatest common divisor

$(t) = GCD(ul(t),v'(t)) is not a constant, the condition C' can be further simplified

as [FN90]:

cl1 : (x - u(t))p(t) + (y - o(t))q(t) = 0

where

An implicit equation for the offset curve can be determined by the resultant method

[FN90], or using Grobner bases [HofSg]. The offset curve can also be traced numeri-

cally in R4 or R3 by the method described in [BHHLsS].

Figure 5.1 Curves (a) y - x2 = 0 and (b) y2 - x3 = 0 and their offset curves by 1

It is important to note the following points about the envelope method for formu-

lating offsets:

1. The offset curve may have cusps and/or self-intersections in (x, y)-plane (see

Figure 5.l(a)). But the singularities often disappear when the curve is traced

in higher dimensional space.

2. The equations may describe additional points which have a distance r from the

singular points on the curve f (see Figure 5.l(b)).

We now explain these phenomena by means of 2-surface visualization. The equa-

tions g = 0 and f = 0 are two 3-surfaces in (z, y , u, v)-space and their intersection S

is a 2-surface. Moreover, at the point p = (x, y, u, v) on S, the two normals are:

n l = v g (p) = (2(x - u), 2(y - v), -2(x - u), -2(?J - v)) ~

They are linearly independent as long as nz is a nonzero vector since (x - ti) and

(y - v) cannot be both zero. The condition C can be rewritten as d e t (i , j , n l , n a)

= 0. If p is a nonsingular point on S, by' Corollary 2.1 it is a silhouette point with

respect to an orthographic projection with two centers along the u- and v-axes. The

silhouette points form a curve on the tubular surface S in R4. In Figure 5.2 and 5.3

we show the 2-surface S and the silhouette curve corresponding to the offset curve

in Figure 5.l(a). In R4 the curve is smooth without cusps or self-intersections as we

can see in Figure 5.3 from a different viewing direction.

On the other hand, if p is a singular point, then nl and n2 are linearly dependent,

and so n2 must be a zero vector. Surely condition C is satisfied, but according to

our definition p cannot be a silhouette point. These singular points are exactly the

additional points described above as the second phenomenon. In Figure 5.4 and 5.5

the 2-surface S and the silhouette curve corresponding to the offset curve in Fig-

ure 5.l(b) are shown from different viewing directions. The silhouette curves are still

smooth ~vithout cusps or self-intersections. But the 2-surface is not a smooth tube.

The singular points form a circle corresponding to the dashed circle in Figure 5.l(b).

If the curve f has a parametric form, the offset curve can be traced in (x, y , t)-

space. The two equations h = 0 and 2 = 0 are two surfaces and their intersection is

a curve. Note that in this case 2 = 0 is equivalent to v h - k = 0. This means that the

intersection curve is the silhouette on the surface h with respect to an orthographic

projection along the t-axis. But the surface h = 0 is smooth without any singular

points because 2 and cannot be zero simultaneously and so v h is always a nonzero

vector. The dashed circle in Figure 5.l(b) is actually another branch of the silhouette

curve as shown in Figure 5.6 and 5.7.

If the greatest common divisor d(t) is not a constant, the condition v h k = 0 is

equivalent to:

d(t>[(x - u(t))p(t) + (Y - v(t))q(t)l = 0

The factor d(t) = 0 represents those silhouette curve branches that are circles result-

ing from intersecting the tubular surface h = 0 with the planes t = ti perpendicular

to the t-axis, where ti's are the zeros of $(t). The other factor is the same as condition

C", and represents the silhouette curve branches corresponding to the offset curve.

Figure 5.2 The Offset Curve (a) traced in R4 viewd from O = (0,0,0,0,0,0)

Figure 5.3 The Offset Curve (a) traced in R4 viewd from 0 = (45,105,45,75,165,0)

Figure 5.4 The Offset Curve (b) traced in R4 viewd from 8 = (0,0,0,0,0,0)

Figure 5.5 The Offset Curve (b) traced in R4 viewd from 0 = (45,40,60,105,75,0)

Figure 5.6 Thc Offset Curve (b) traced in R3 viewd from 0 = (0 .0 ,0 ,0 ,0 ,0)

Figure 9.7 The Offset Curve (11) traced i n R3 viewd from 0 = (0.0.0: -40. G O . 0)

5.2 Collision Detection and Analysis

The advantage of using 4D geometry to deal with the collision detection problem

has been explained in [Cam84, Ros891. The basic idea expressed by Cameron is that

"if an object can be represented by a set-combination in a CSG scheme, and the

primitive objects can be extruded (into 4-space) in this scheme, then the extrusion

of the object is the set-combination of the extrusions of the primitives" [CamS4].

The extruded object means the object in motion considered in (x, y, z , t)-space. Two

moving objects collide if and only if the intersection of their extrusions is nonempty.

The problem is then reduced to testing the intersection of each pair of primitive

extrusions.

3D objects are bounded by surfaces in 3-space. The extrusion of such a surface

is a hypersurface in 4-space. The intersection of two hypersurfaces is a %surface

S : f (x, y, z, t) = 0 n g (z , y, z, t) = 0, and can be examined by our system. When the

2-surface is nonempty, in applications such as physical objects simulation or robotics

motion planning it is necessary to find the initial colliding point, i.e. the point p on

the 2-surface with the smallest value of t. Assuming p is a nonsingular point of the

2-surface S, the natural projections of the two normals at p into (x,y, 2)-subspace

are parallel.

Together with f = 0 and g = 0 this condition determines a zero-dimensional solution

set on S. To solve the nonlinear equations describing these points, one may relax

the condition and use numerical methods such as curve tracing. Condition C can be

rewritten as:

C' : (Vn = (n,, n,, n,, nt)')

0 0 0 1

n x 72, n z nt

a f j a x af/ay af/az a f p t
= 0

Figure 5.S A cylinder and a sphere in motion

By Corollary 2.1, p must be on the silhouette curve of the 2-surface with respect

to any orthographic projection with two centers both inside (x, y, 2)-subspace. The

point on the silhouette curve with the smallest t is the initial colliding point.

Consider a cylinder of radius r, about the x-axis moving in the positive y-direction

at a constant speed v,, and a sphere of radius r, moving in the negative z-direction

at a constant speed v,. At the time t = 0 both are at the origin as shown by the

dashed cylinder a,nd sphere in Figure 5.8. Their extrusions into 4-space are the two

hypersurfaces defined as:

The intersection 2-surfaces in different cases are displayed in Figure 5.9 through 5.11.

The curves on the 2-surface are the silhouette curve branches with respect to the

orthographic projection with two centers along the x-, y- or z-axes but now seen from

different viewpoints.

Figure 5.9 shows the case where the cylinder and the sphere have the same radius,

r, = r, = 1, vc = 0, v, = 1. Since eye,'s position is just a little off the the t-axis,

Figure 5.9 Intersection of a cylinder and a moving sphere with the same radius,
viewed from 0 = (0,18,9,120,75,0)

Figure 5.10 The cylinder has a larger radius, viewed from 0 = (0,30,105, -105,30,0)

the 2-surface resembles the sweep of the intersecting curve in (x, y , 2)-subspace. The

two singular points are due to the fact r, = r,, and will be present no matter how

eye, rotates in 4-space. Figure 5.10 shows the case where the cylinder has larger

radius, r, = 1, r, = 0.7, v, = 0.2, v, = 1. Note that the 2-surface has two separate

components. This is because at t = 0 the sphere is totally inside the cylinder. If tlie

curve tracing algorithm starts at a point on the component with larger t values, it

will end up with an incorrect answer. Figure 5.11 shows the case where the sphere

lias larger radius, r, = 1, r, = 1.2, v, = 0, v, = 1. Note that although the 2-surface

is connected, the silhouette curve branches can be separated. It has a "hole" due to

the fact that at a certain time period the sphere and the cylinder intersect in a curve

wit11 more than one branch.

Even for such simple objects as cylinder and sphere, the intersection 2-surface in

4-space could be fairly complicated. When numerical method is used to search for

the initial colliding point, the phenomena mentioned above have to be considered.

5.3 Scalar Fields in 3-Space

A 3D scalar field is a lunction defined on a subset of R3: w = f (x, y, 2). Displaying

3D sca1a.r field is very common in science and engineering, such as the material density

of a nonuniform solid, the temperature or pressure distribution in the atmosphere,

and the electron density data of virus. The basic techniques used for displaying 3D

scalar fields are volume rendering [Sab88, ST90, UI<88], contouring [GN89, LC871,

and slicing [SK90].

Put into 4-space, the 3D scalar field is a hypersurface defined by w - f (x, y, z) =

0. Conceptually there is no difference between contouring and slicing.' Both of

them are considered as a 2-surface obtained by intersecting the hypersurface with a

hyperplane. If the concept is extended further, the hyperplane can be replaced by

curved hypersurfaces. Moreover, by rotation in 4-space, the extreme value of f and

'Note that tlie implementation could be different so that the most efficient algorithm can be used
for each special case.

their distributions can be displayed by their relative spatial positions, in addition to

the conventional color scales. When eye,'s direction is not orthogonal to the (x, y, 2)-

subspace, or its distance to the origin is finite, the shape of the 3D image is different

from what we are used to see. Since this is an interactive system, we usually start

at a normal view of the 3D scalar field, i.e., with eye, at infinity along the direction

of w-axis. Then eye, moves in a series steps of small rotation and/or zooming. The

animation helps keeping track of how the 3D image changes its shape in response to

the eye, motion. The ideas are explained by an example of the electron density data

of virus.

Some research in microbiology processes electron density field in complex

inolecules such as virus. The virus is first crystallized, then measurements are taken,

for example, at CIIESS (Cornell Iligh-Energy Synchroton Source), followed by a

Fourier analysis that quantifies the densities. The resulting data are essentially a

scalar field in 3-space. In this example the graphics data is obtained by interpolat-

ing the electron density values that have been measured at the 8 million nodes of

a 200 x 200 x 200 grid and ranging from -14161 to 17880. Figure 5.13 shows the

contour surfaces w = 12000 and w = -12000, and the slicing surface x2 + y2 + z2 = 1.

The actual radius of the sphere is 120A. The contour surfaces look like dust particles

floating around the sphere. On a computer screen the contour surfaces of level 12000

are painted in orange and those of level -12000 are painted in blue. In monochrome

pictures they can be distinguished by the size. Those of level 12000 are larger than

those of level -12000. This is because of the density distribution of this virus, which

will be discussed shortly. Another way to distinguish contour surfaces of different

levels is to move eye, from infinity toward the origin. As the reciprocal distance of

eye, to the origin is changing from 0 to positive, the contour surfaces of positive level

will move away from the origin while those of negative level will move towards the

origin. The picture also shows a symmetric structure of the virus. The contour sur-

faces are clustered around the 60 vertices of a snub dodecahedron (see Figure 5.12).

The snub dodecahedron is an Archimedean polyhedron, which means that every face

is a regular polygon, though the faces are not all of the same kind [CRGI]. In the

case of the snub dodecahedron, there are 12 pentagonal faces and 80 triangular faces.

Figure 5.14 shows the contour surfaces of level 12000 a.nd the same spherical slicing

surface within a subcube, covering four triangular faces of the snub dodecahedron.

By rotating eye, it can be seen that the slicing surface passes through all of the six

contour surfaces. The density value on the slicing surface can be shown in color scale,

and the locations of the contour surfaces match the areas where the density values

are high. Here we use the 4D rotation to show their relationship. When eye, rotates

in the (z, w)-plane the vertical direction becomes the extra density axis, a.nd so the

density values are seen from the height of points lifted from the original slicing surface.

See Figure 5.15. Notice that the contour surfaces stick to the slicing surface at their

original locations. If eye,, rotates by so that it is inside the (x, y, z)-subspace, a side

view is obtained. See Figure 5.16. Now we can see the distribution of the 3D sca1a.r

field on the slicing surface. It is clearly observed that most density values are in the

range of -6000 to 6000. There are six positive peak values (two of them are close

to each other) and twelve negative peak values. The positive peaks are higher in the

density direction and larger in the (x, y, z)-subspace than the negative peaks. This

explains why there are more but smaller contour surfaces of level -12000 than those

of level 12000 in Figure 5.13. It is also clear that we cannot find a negative value

generating contour surfaces that match in number and size the level 12000 contour

surfaces.

5.4 Generalized Offset Curves

5.4.1 Motivation

When machining curved surface by CAR4 system, ball-mills and end-mills can be

used.' A comparison can be found in [VQ89]. Using an end-mill has the advantage

"They are also called ball-ended mills and flat-ended mills, respectively. Besides, there are toroidal
cutters, also known as filleted mills and corner-radius mill.

Figure 5.11 The cylinder has a smaller radius, viewed from O = (0, - 15,123,120,90,0)

Figure 5.12 A snub dodecahedron

Figure 5.13 Contour and slicing surfaces show t h c s t ructure of a

Figure 5.1'1 C:ontour ant1 slicing surfaces witliin a subcubc

Figure 5.15 The contour and slicing surfaccs viewed from 0 = (0,O. 15,315, GO: 0)

Figure 5.16 T h e contour and slicing surfaces vieiveil horn 0 = (0,0.90,315,90.0)

Ball Mill End Mill

Figure 5.17 A comparison between two cutters

of smaller surface roughness and faster cutting speed. See Figure 5.17. The ball-

mill has a low speed cutting region at its bottom, and the processed surface has a

greater cusp height h. However, the control of end-mill is much more complicated

than that of ball-mill. The tool path of a ball-mill is on the offset surface, and so it is

controlled by three coordinates (x, y , z) on a 3-axis machine. To control an end-mill,

in addition to the position coordinates, two angles are necessary for the orientation of

the tool. So the end-mill is usually controlled by a 5-axis machine. Theoretically the

five independent parameters form a 5-space and the possible motion of an end-mill

is on a manifold in 5-space, called the generalized oflset sur j~ce . But so far it has

not been discussed in the literature in depth. A typical way to investigate a problem

in high dimensional space is to study its dimension-reduced version first. Farouki

[Far861 gave an example in 3-space with the restriction that the orientation of the

tool is fixed. With some different restl.ictions, we reduce the problem into a generalized

offset curve in 4-space, and visualize it by our system. The definitions and properties

of the generalized offset curve will be discussed in the following subsections. Here we

first explain and justify the restrictions.

Figure 5.18 Cutter moving direction

I11 [Mar871 it was shown that to obtain the widest machining strips, the contact

point of the cutter on the surface should move along a curvature line with minimum

normal curvature. See Figure 5.18. Here the outward normal of the surface is used. So

a negative curvature means convexity with respect to the cutter. When the minimum

normal curvature of the surface is always nonpositive, or the radius of the end-mill

is small enough, it is possible for the end-mill to follow the surface exactly along its

moving direction. In such cases, more attention is paid on the plane orthogonal to

the moving direction.

The projection of the cutting edge of an end-mill in the plane orthogonal to the

moving direction is an ellipse with major radius a , minor radius b and rotated by an

angle 8. The relationship between (a, b, 8) and the orientation of the end-mill depends

on how the coordinate systems are specified and rotated. In any case, a is always

equal to the radius R of the end-mill. Sasaki [SasSO] proposed an algorithm to fit the

ellipse according to the curvature or the rate of change of the curvature. However,

the interference problem needs to be solved.

The term interference refers to the phenomenon when the surface is overcut by

the tool. In the case of the ball-mill, the interference can be detected from the self-

iiltersection of the offset surface by analytical or algebraic methods [AUSO, FN901.

Then the offset surface must be trimmed. However, the resulting tool path will cause

an undercut. If the undercut is not tolerable, a subsequent process by a smaller radius

ball-mill is necessary [CJSS]. On the other hand, the effective curvature of an end-

mill can be adjusted during the process to match the curvature of the surface. With

two more degrees of freedom, the interference is very hard to calculate. It is often

detected by simulation [SasSO, MYGPSO]. In this research the generalized offset curve

is used for matching, in the plane orthogonal to the moving direction, the effective

curvature of the projected cutting edge with lhe curvature of the intersection curve

of the surface and the plane while avoiding interference.

5.4.2 Definitions

An ellipse in R2 is expressed as xTQx = 1 where Q is a symmetric positive definite

matrix. The two eigenvalues of Q are denoted by 5 and $ satisfying 0 < 5 _< $.
The rotation operator by 90 degree with respect to Q is a matrix J defined by

tillere R(.) is a matrix representing rotation in R2.

It is easy to verify that x T Q J x = 0, J T Q J = Q , and J J x = -x .

Let a (t) = (a l (t) , ~ ~ (t)) ~ be a regular curve I -t R2, called the generator curve.

The Q-o$set curve of cr is a curve ,B defined by

where

Each generator curve has two Q-offset curves. Together they satisfy the envelope

equations:

(P - c . (t)) T ~ (P - 4)) = 1

The Q-curvature of curve cr is defined as

The superscript CY will be dropped if it is clear from the context.

An interference point is defined as 7 E I such that

An interference segment is defined as the open interval (r l , 7 2) of interference points,

where r1 and TZ are not interference points. They are called the endpoints of the

interference segment.

When the generator curve a (t) at r satisfies K Q (T) = 1 and K ~ (T) # 0, the point

on the Q-offset curve, P (T) , is a cusp. When K Q (T) = 1, K ~ (T) = 0 and K $ (T) # 0,

P (r) is an extraordinary point. When ~ b (r) = K ; (T) = 0, These definitions can be

extended using higher order derivatives. T h e situations are essentially the same, but

they will not be further addressed to simplify discussion. When the Q-offset curve

satisfies P (T ~) = P (T z) and TI # 7 2 , P (T ~) = P (T ~) is a self-intersection point.

In Figures 5.19 through 5.21, three Q-offset curves of (t , t 2) with different b values

are shown together with their Q-curvatures. An extraordinary point occurs when

b = 0.086 as shown in Figure 5.20. When b < 0.086 there is a self-intersection point

as shown in Figure 5.21.

5.4.3 Properties

In the following discussion of some properties of Q-offset curves, a few conditions

are always assumed. The regular generator curve a has no self-intersection points.

T h e Q-offset curve to be considered is totally on one side of a. There is no global

interference such as that caused by the narrow neck of a bottle-shaped surface. For

NC tool path generation, these conditions are usually satisfied.

Figure 5.19 Q-offset curve of (t , t 2) , a = 0.25, b = 0.125,O = 30

Figure 5.20 Q-offset curve of (t , t 2) , a = 0.25, b = 0.086, O = 30

Figure 5.21 Q-offset curve of (t , t 2) , a = 0.25, b = 0.04,O = 30

We first discuss the Q-offset curve with a fixed Q. When Q is the identity matrix,

the results are the same as those of ordinary offset curve. We prove them for an

arbitrary Q in order to discuss the family of Q-o$set curves with b and 6 as the

parameters of the family.

Lemma 5.1 The tangent vectors and the Q-curvatures of the generator a (t) and Q-

offset P(t) are related as:

P.roof: Recall the definition of P(t):

Differentiating P(t) yields:

Pt(t) is parallel to a f (t) because:

Therefore, the tangent vector of ,B is:

Differentiating again we get:

Therefore, the Q-curvature of P(t) is:

Lemma 5.2 Let KQ(T) be the Q-curvature of a (t) a t point T.

(a) if KQ(T) > 1, or tiQ (7) = 1 and K ~ (T) # 0, then for any E > 0

(b) i f ~ ~ (7) < 1, or tiQ(7) = 1 and K ~ (T) = 0 and K ~ (T) < 0, then there exists

E > 0 such that

Vt E (7 - C , T + E) , ((a (t) - P(T)\(Q 2 1

Proof: The derivatives of KQ can be expressed as:

Define function d(t) and calculate its derivatives:

Evaluation at t = T yields

When ~ ~ (7) < 1, d (t) reaches a local minimum at t = T . When r ;Q(r) > 1, d (t)

reaches a local maximum at t = T . When ~ ~ (7) = 1 we get d1'(7) = 0 and

Then K I Q (T) # 0 implies d"'(7) # 0, which means that there exists a t close to T

such that JJa(t) - P (T) J J Q < 1. Finally, when K Q (T) = 1 and K ~ (T) = 0, we have

d ' ' (~) = d1"(7) = 0 and

d (4) (~) = - I ~ C Y ' (T) I ~ & K S (T)
Then K ; ~ (T) < 0 implies d (4) (~) > 0, which means that d (t) reaches a local minimum

at t = T .

Lemma 5.3 If ,f3(rl) = P(72) is a self-intersection point of the Q-offset curve P (t) such

that ,B1(71) and P1(72) are not parallel, then for any E > 0 there is an interference

point in (71 - E , 71 + E) and in (72 - E , 72 + 6) .

Proof: We calculate the first order approximation of P (t) in the neighborhood of TI:

Now the distance from P (t) to 4 7 2) can be expressed as:

Clearly d (~ ~) = 1 and, by Lemma 5.1, # 0. Hence it is always possible to find

a t close to such that t is an interference point. The analysis for 72 is similar.

Lemma 5.4 Suppose that the endpoints of I are not interference points. If T is an

endpoint of an interference segment, then ,B(T) is a self-intersection point, and K Q (T) <

1.

Proof: First, we eliminate several possibilities.

An extraordinary point cannot be an endpoint of an interference segment. By

Lemma 5.2, 'dt E (T - E , T + E) I ~ ,B (T) - c r (t) l lQ 2 1. If 3t E I ll,B(r) - c r (t)) IQ < 1 then

r is an interference point but not the endpoint of an interference segment.

A cusp point is itself an interference point by Lemma 5.2, and so cannot be the

endpoint of an interference segment. The situation is subtle and deserves detailed

analysis. See Figure 5.22. Suppose K Q (T) = 1 and K ~ (T) > 0. We can fi~lcl > r

such that ((,B(T) - C Y (T ~) ~ ~ < 1. Let E be an ellipse defined by llx - c r (~ ~) l l = 1. There

must be an intersection of ,B and I3 at ,B(r2) where < r . If TI is an endpoint

of I, then is an endpoint of the interference segment. This case is eliminated

by the assumption of the lemma. If t goes furthcr beyond T I , the endpoint 73 of the

interference segment must satisfy 73 < 7 2 . Similar analysis can be done for K ~ (T) < 0.

Consequently, a t the endpoint T of an interference segment S (T) < 1.

Now assume T is an endpoint of an interference segment. From the discussion

above and Lemma 5.1 there exists an interval (T - c, T + E) on which ,B is regular.

Let 71 be an interference point in (T - E , T + E) . There must be a T: 4 (T - E, T + E)

such that ll,B(rl) - CY(T;) /IQ < 1. Since ca.n be arbitrarily close to T , there must

Ile a T' @ (T - E, T + E) at which IJ,B(T) - c r (~ ') (I ~ = 1. The point P (T) is on the

curve segment ,B(t) t E (7' - E', T' + E') if we can prove that ((,B(T) - c r (t) (IQ achieves a

local minimum at t = 7 ' . This is obvious because otherwise r is an interference point

which is a contradiction.

The lemmas above all deal with the Q-offset curve with a fixed Q. The matrix Q

depends on parameters a , b and 19. Since a is fixed because of the fixed radius of the

tool, we consider a familiar of Q-offset curves ,f3 with parameters b and 0 , written as

(~ 1 , x2) = P (t , b, 0) .

Figure 5.22 Interference near a cusp

Lemma 5.5 The family of Q-offset curves forms a hypersurface in (x l , 3 2 , b, 0)-space.

The self-intersection points compose a 2-surface on the hypersurface.

Proof: The family of Q-offset curves can be written as (x l , x 2) = P(t , b, 4). The map

x : (t , b, 0) H (P (t , b, 0) , b, 0) defines a (parametric) 3-surface if it is differentiable

[clC76]. It suffices to calculate the partial derivatives of P .

Note that the denominator will never vanish and so x is differentiable everywhere

in its domain. But the Jacobian matrix of x reduces its rank at the point (t , b, 0)

satisfying ~ ~ (t) = 1. These are the singular points of the 3-surface.

The self-intersection points satisfy the following equations:

f (t l , t2, b, 0) = P(t1, b, 4) - P(t2, b, 0) = 0

Suppose that po = (r1, r2, bo, 60) is a self-intersection point, and that s (r l , $, 4) and

z (7 2 , b0,60) are not parallel, then

By the implicit function theorem of advanced calculus, in the neighborhood of po

there is a differentiable function 77 such that (t l , t2) = ~ (b , 0) and f (~ (b , 0), b, 6) = 0.

Now the set of self-intersection points in the neighborhood of po can be expressed as

/3(q1(b, 0), b, 0) that is a 2-dimensional patch on the 3-surface. Other patches can be

constructed similarly. Together they compose a 2-surface.

Lemma 5.6 The family of Q-curvatures, written as ~ . (t , b, O), is differentiable to order

m i f cr is differentiable to order m + 2.

Proof: This can be easily verified by the partial derivatives.

O I I (~) ~ Q ~ d (t) c ~ l / (t) ~ ~ (;) a l (t)
&(t,b,O) = - -

llal(t)ll; abll~'(t)ll;
d~ - - -

~!" ' (t)~R(;) (~l (t) - 3 ~ l ~ (t) ~ Q c r l (t)

d t ablbl(t)ll$ Ibl(t) 11; .(t, b, 6)

d~ Ta& I 1 3cr1(t) xcr (t)
- (- - - - -

db b 21b1(t) 11; >.(t, b, 0)

d~ - - - - 3 ~ ' (t) ~ %

88
as (t) ~ (t , b, 0)

211a1(t) 11;
Continuing the differentiation shows that the denominators are in the form

ui&llal(t)lJk, and so they will never be zero. The matrix Q is also differentiable

to any order.

As a simple example, let a (t) = (t , t2). Tlle hypersurface P(t , b, 0) in (xl , 2 2 , b, 8)-

space is shown in Figure 5.23. The hypersurface ~ (t , b, 6) in (t , b, 0, &)-space is shown

in Figure 5.24. The parameter a is fixed at 0.25. The domain shown is -1 5 t 5 1,

0.025 5 b 5 0.25, -2 5 6 5 $. The isosurfaces on these hypersurfaces have the

constant values 0 = -$, -:, 0, :, %. The curves on the hypersurfaces will be explained

later.

Figure 5.23 T h e l ~ ~ ~ e r s u r f a c e 13(1,6, 0)

Figure 5.24 T h e curvature ~ (t , 6 .0)

Now we discuss the interference related to the hypersurface P(t , b, 8). A point

(t, b, 8) is said to be an interference point if and only if t is an interference point of

the Q-offset P(t) where Q is determined by b and 0.

Theorem 5.1 Suppose that the hypersurface P(t, b, 8) is defined on a convex domain

D c R3, and that for any pair of (b, 8) the two endpoints of the domain, tmi,(b, 0)

and t,,,(b, O), are not interference points. If P(t l , bl , e l) is an interference point

while P(t2, b2, 02) is not, then any curve segment on the hypersurface P(t, b, 0) and

connecting them will pass through a self-intersection point or an extraordinary point.

Proof: Assume that the curve segment connecting the two points is

P(t, 6(l), 8(t)) t 1 5 t 5 t 2 with b(tl) = bl , 6(t2) = t2 and 8(tl) = 01, 0(t2) = 02. From

the continuity of the hypersurface and the curve, it is possible to find a T such that

Vt < T (t , b(t), O(t)) is an interference point while (T, b (~) , O (T)) is not. Consider the

Q-offset curve in the neighborhood of T where Q is fixed by b (~) and O(T), namely, the

curve p (t , b (~) , O(T)) . There are two cases. In the first case, those points with t < T are

interference point while those points with t > T are not. By Lemma 5.4 P(T, b (~) , O(T)

is a self-intersection point. In the second case, both sides of T are not interference

point, we claim that P(T, b (r) , 8 (~)) is an extraordinary point. If K(T, b (~) , O(T) < 1,

by Lemma 5.2 and 5.6 there is a neighborhood of (T, b (~) , 8(7)) containing no inter-

ference point. This contradicts the definition of T. Hence K(T, b (~) , 8(7)) = 1. The

cusp can be ruled out because it is an interference point. The remaining case is

an extraordinary point. It is possible because slightly perturbing b and 0 will cause

interference.

When b and 8 can vary, the situation is more complicated than the Q-offset curve

of a fised Q. This theorem states that if a curve on the hypersurface P(t , b, 0) never

touclles a self-intersection point or an extraordinary point, interference can be avoided.

5.4.4 Finding Optimal Q-offset Curves

There are infinitely many interference free curves on the hypersurface if its domain

is suitably large. We establish a criterion for choosing one curve among them. The

optimal Q-o$set curve is defined as a curve on the hypersurface P(t, b, Q) , denoted by

P(t , b(t), 0(t)) such that t is never an interference point, and that

reaches its minimum, where w(t) is a positive weight function.

The optimal Q-offset curve represents the most efficient and interference free tool

pa,th. We need to find b and 0 of the ellipse as functions of t such that interference

never happens. Besides, the curvature of the ellipse and the curvature of the generator

curve match as close as possible at the contact point. This is equivalent to that the

Q-curvature of the generator is close to 1.

It is not practicable, and perhaps impossible, to find the explicit form of b(t) and

O (t) for an optimal Q-offset curve. Therefore, a numerical method will be applied.

Consequently we may find a solution which is only locally optimal.

When the curve a (t) has only one peak value of tiQ(t) for any Q in the domain,

or the peaks of ~ ~ (t) are separated enough so that their interactions can be ignored,

a method to find a locally optimal curve works as follows.

For each high Q-curvature region, the curve follows the extraordinary points de-

fined by

Since the only peak value of ~ (t , b ,Q) is kept as 1, it is interference free and its

contribution to the integration of (5.1) is 0.

Figure 5.23 shows such a curve segment. It consists of the extraordinary points

of P(t , b, 0). The curvature ~ (t , b, 0) is shown in Figure 5.24. The fact that

$(t, b(t), B(t)) = 0 can be observed at the intersection of the curve and the 2-surfaces

in the hypersurface ~ (t , b, 8). The projection of the optimal curve segment in R2 is

Figure 5.25 Optimal Q-offset curve of (t , t 2) , a = 0.25

shown in Figure 5.25, together with the corresponding ellipses. The orientation and

minor radius of the ellipse change according to the shape of the generator curve.

Figure 5.23 also shows that the curve segment ends at the boundary of the domain.

This can happen when the orientation of the ellipse 0 fails to match the slope of the

generator curve, or the minor radius b causes the ellipse not to match the curvature

of the generator curve. In such cases the pa.rameter b and 0 could be fixed to their

values at the intersection of the curve with the domain boundary.

6. CONCLUSION AND FUTURE WORK

In this thesis a method has been proposed for visualizing I-, 2-, and 3-surfaces

in 4-space. The research has been done on a conceptual level as well as validated

experimentally. The work is summarized in the following two sections. The last

section discusses some considerations on visualization of 5-space.

6.1 Concepts and Intuitions

Orientation. The generalized Euler angles have been shown to be suitable for spec-

ifying the orientation of objects and the projections. The two centers of projections,

eye, and eye,, are controlled by one set of Euler angles. The arrangement guarantees

that (a) eye, is inside the subspace, called the 3D image space, orthogonal to eye,'s

direction; (b) the projected world w-axis can be simply kept vertical in the 2D im-

age space which is always orthogonal to both the eyes' directions; (c) the control of

eye3 is consistent with 3D computer graphics. The use of quaternions can overcome

the difficulties with Euler angles. Although the theory of 4D rotation can be built

by quaternion algebra, we prefer a geometric interpretation for the application pur-

pose. We have shown that the 4D rotation can be decomposed into two orthogonal

subrotations. Since the quaternion pairs representing 4D rotations are not unique,

some useful forms have been discussed: (a) the first form pl(p, r) = L,R,- is suitable

for rotation combination and interpolation; (b) the second form p2(s, r) = LsL,RF

is suitable for conversion between quaternions and matrices or Euler angles; (c) the

third form p3(u, v) = L, R , L, R6 is suitable for user interface.

Silhouette and Envelopes. The silhouette point of an m-surface with respect to

a projection v k from Rn to R' has been defined. Some special forms, such as the

silhouette surface of a hypersurface with respect to 92 and the silhouette curve of a 2-

surface with respect to cp: are discussed in detail. The relationship between silhouette

and envelope finds its applications in (a) the explanation of some phenomena in

the interrogation of a constraint surface defined by the envelope theorem; (b) the

construction of an image of hypersurface in mind; (c) the design of algorithms for

visibility determination. In the definition of envelope, the locus of singular points

is excluded. Correspondingly, the singular points on an m-surface are excluded as

proper silhouette points. The set of singular points on a hypersurface can be called

the singular surface or the discontinuity surface. They might be visualized by shading

in 4-space or could be explicitly constructed and then shaded in 3D image space. The

l~ehavior of the discontiiluity surface under projection and the relationship with the

discriminant hypersurface needs to be investigated.

Visibility. It has been shown that visibility determination is necessary to eliminate

the ambiguities caused by projection. Figure 3.12 and 3.13 are a pair of pictures of

the same hypersurface from different viewing directions. They will be identical if

the visibility in 4-space is ignored. The definition of visibility has been carefully

considered so that (a) curves, 2- and 3-surfaces can be displayed altogether; (b) a

3-surface can hide other surfaces in 4-space but not in 3-space; (c) the visibility is

quantified for displaying transparency. Although the definition of visibility is valid

for spaces of any dimensions, the practical limit seems to be 5 or 6.

Geometric Properties and Phenomena. Several geometric properties and phenom-

ena in 4-space have been demonstrated by computer generated pictures and anima-

tion. They include the ambiguity caused by projection, the dimension reduction

(degeneracy) of the silhouette surface, and the principal curvatures of hypersurfaces.

The emphasis is put on observation instead of calculation. Currently the curvature

observation depends on silhouette surfaces. For those points not on a silhouette sur-

face, one way is to adjust the viewing direction to make them silhouette points. Other

ways might be using a generalization of Dupin's indicatrix, or a generalization of light-

ing models in high dimensional space. Another challenging problem is to visualize

the CO, C', C2 continuities of patches or hyperpatches in 4 or higher space.

6.2 System and Applications

Polygonaliration. Fire have ada.pted Allgower's algorithm [AG87] for polygonaliz-

ing implicit 2-surface in 4-space. Three types of Newton iteration for point refinement

have been considered. An algorithm for merging polygons has been presented. The

methods chosen for point refinement and polygon merging affect the available meth-

ods for the following stages of visibility determination and rendering. Currently the

speed of polygonalization are sufficient for interactive display. Since the number of

simplices grows exponentially with the dimension, it might be very slow if extended

into 5 or higher dimensions. Polygonalization for visualization is different than for

other purposes. For example, the polygons generated need not be connected if the

visibility determination algorithm does not depend on it. Special efficient algorithms

can be expected.

Visibility Determination. An algorithm for visibility determination in 4-space has

been presented. The basic operation is to find the intersection curves of pairs of

2-surfaces in 3D image space. But the nature of projection caused several kinds of

singularities. So the intersection is actually done in 4-space. \Ve discussed the special

cases when one of the intersecting 2-surface is a silhouette surface or a boundary

surface. Several desingularization techniques are found based on geometric intuitions.

The special cases when one of the intersecting 2-surfaces is a self-intersection surface

of the hypersurface, or an intersection surface of two hypersurfaces have not been

studied in detail. Also, there is room left for the improvement of the efficiency and

robustness of the algorithms.

Applications. Four examples have been presented to illustrate the use of 4D vi-

sualization: understanding differential geometry, collision detection and analysis, 3D

scalar field display, and tool path generation for 5-axes milling machines. It should

be pointed out that the emphasis is put on explaining the problems and techniques

through 4D visualization tools rather than on a complete analysis of each problem.

The solution to each of the problems deserves a separate thesis. There are other

research topics of CAGD and solid modeling where 4D visualization might be useful.

An example is the skeleton in 3-space. As defined in [HV91], the i n t e r i o r skele ton

of a 3D solid is the locus of the centers of all inscribed maximal spheres. To make

it an informationally-complete representation, each point on the skeleton should be

associated with its distance from the boundary of the 3D object. So the skeleton is

composed of 2-surfaces in 4-space. Moreover, it is the singular surface of a hypersur-

face that is the t r i m m e d cyclographic m a p of the boundary surfaces of the 3D solid.

When eye, is off the w-axis (the distance axis) by more than $, part of the skeleton

will be occluded by the hypersurface as can be inferred from the pictures in [HV91]

by the dimension analogy. Visibility in 4-space is therefore necessary.

6.3 Toward the Fifth Dimension

The definitions defined in Chapter 2 all have a general form that is valid for

spaces of any dimensions. Theoretically, it is possible to project objects in any high

dimensional space down to the final 2D image space. But it is extremely hard to

interpret the pictures so generated. Let us explain how we can interpret the pictures

from 5D visualization.

It is helpful to think of the 5D world space, and the 4D, 3D and 2D image spaces,

as related by a 5D rotation. The rotation can be specified by ten parameters such

as the Euler angles. The recursive definition of Euler angles also suggests how these

image spaces are related. The generalization of quaternion seems much harder.' The

group of 2 x 2 quaternion matrices is a double cover of the rotation group in R5.

The ten independent real parameters of the 5D rotation can be arranged in this way:

four parameters form a unit vector in 5-space called the axis of the rotation, and t,he

'Next to the quaternions is the algebra of octonions, called the Cayley algebra, which is nonas-
sociative [Por81].

remaining six parameters, a pair of unit quaternions, form the 4D rotation orthogonal

to the axis.

Displaying I-, 2-, 3-surfaces in 5-space will not be too much different from dis-

playing them in 4-space. iVe only need to consider the distortion introduced by the

additional projection from 5-space to 4-space. The most difficult task will be dis-

playing the 4-surface, i.e. the hypersurface in 5-space. Tlle 4-surface is displayed in

4D image space via its silhouette 3-surfaces, boundary 3-surfaces, and so on. The

visibility determined by eye, will cause these 3-surfaces trimmed. Therefore, in the

4D image space there sl~ould be several trimmed 3-surfaces. The techniques pre-

sented in this thesis can be estended to the simultaneous display of several trimmed

3-surfaces. After further research and training, we might be able to recognize these

trimmed 3-surfaces from their 3D and 2D images. Finally, putting together the in-

formation revealed by these trimmed 3-surfaces, the hypersurface in 5-space could be

visualized.

BIBLIOGRAPI-IY

BIBLIOGRAPHY

[.4bb63] E. A. Abbott. Flatland - A Romance of hlany Dimensions. Barnes &
Noble Books, Inc., 1963. (First Edition 1884).

[AGS7] E. L. Allgower and S. Gnutzmann. An algorithm for piecewise linear ap-
proximation of implicitly defined two-dimensional surfaces. SIAM JOUT-
nal on Numerical Analysis, 24(2):452-469, 1987.

[AG90] E. L. Allgower and S. Gnutzmann. Polygonal meshes for implicitly de-
fined surfaces. Colorado State University, 1990.

[A11901 E. L. Allgo~ver. Numerical Continuation Methods: an Introduction.
Springer-Verlag, 1990.

[AM631 L. Auslander and R. E. MacKenzie. Introduction to Differentiable hfani-
folds. MaGraw-Hill Book Company, Inc., 1963.

[ASS51 E. L. Allgower and P. H. Schmidt. An algorithm for piecewise linear ap-
proximation of implicitly defined manifold. SIAh1 Journal on Numerical
Analysis, 22(2):322-346, 1985.

[AU90] S. Aomura and T. Uehara. Self-intersection of an offset surface. Computer
Aided Design, 22(7):417-422, 1990.

[Baj90] C. L. Bajaj. Rational hypersurface display. Computer Graphics,
24(2):117-127, 1990.

[Ban861 T. F. Banchoff. Visualizing two-dimensional phenomena in four-
dimensional space: A computer graphics approach. In E. J. Wegman
and D. J. DePriest, editors, Statistical Image Processing and Gmphics,
pages 187-202. M. Dekker, New York, 1986.

[BangCI] T . I?. Banchoff. Beyond the Tlzird Di,mension: Geometry, Computer
Graphics, and Higher Dimensions. Scientific American Library, 1990.

[BHHLSS] C. Bajaj, C. Hoffmann, J. Hopcroft, and R. Lynch. Tracing surface in-
tersections. Computer Aided Geometric Design, 5:2S5-307, 1988.

[BloSS] J. Bloomenthal. Polygonization of implicit surfaces. Computer Aided
Geometric Design, 5:341-355, 1988.

S. B. M. Bell and D. C. Mason. Tesseral quaternions for the octtree. The
Computer Journal, 33(5):386-397, 1990.

R. P. Burton and D. R. Smith. A hidden-line algorithm for hyperspace.
SIAM Journal on Computing, 11(1):71-80, 1982.

S. A. Cameron. Modelling Solids in Ahtion. PhD thesis, University of
Edinburgh, 1984.

J. 11. Chuang. Surface Approximations in Geometric Afodeling. PhD
thesis, Purdue University, 1990.

B. Ii. Choi and C. S. Jun. Ball-end cutter interference avoidance in NC
machining of sculptured surfaces. Computer Aided Design, 21 (6):371-378,
1989.

V. Chandru and B. S. Icochar. Analytic techniques for geometric inter-
section problems. In G. E. Farin, editor, Geometric ~lfodeling: Algorithms
and New Trends. SIAM Publications, 1987.

EI. S. M. Coxeter. Regular Polytopes. Pitman Publishing Corporation,
1947.

H. M. Cundy and A. P. Rollett. hfathematical Afodels. Oxford University
Press, 1961. (First edition 1951).

Manfredo P. do Carmo. Diflerential Geometry of Curves and Surfaces.
Prentice-Hall, Inc., 1976.

G. Elber and E. Cohen. Hidden curve removal for free form surfaces.
Computer Graphics, 24(4):95-104, 1990.

L. Eckhart. Four-dimensional space (in German, 1929). Indiana Univer-
sity Press, 1968. English translation by A. L. Bigelow and S. M. Slaby.

R. T . h rouk i . The approximation of non-degenerated offset surfaces.
Computer Aided Geometric Design, 3:15-43, 1986.

R. T . Farouki. Graphical methods for surface differential geometry. In
R. R. Martin, editor, The hfathematics of Surfaces II, pages 363-385.
Clarendon Press, Oxford, 1987.

R. T. Farouki and C. A. Neff. Algebraic properties of plane offset curves.
Computer Aided Geometric Design, 7:101-127, 1990.

A. R. Forsyth. Geometry of Four dimensions. The University Press,
Cambridge, 1930.

R. S. Gallagher and J . C. Nagtegaal. An efficient 3-D visualization tech-
nique for finite element models and other coarse volumes. Computer
Graphics, 23(3):185-194, 1989.

Herbert Goldstein. Classical Alechanics (Second Edition). Addison-
Wesley Publishing Company, Inc., 1980.

William R. I-Iamilton. Elements of Quaternions (Third Edition). Chelsea
Publishing Company, 1969. (First Edition 1866, Ed. by Charles J. Joly).

C. hl. Hoffmann. Geometric and Solid Afodeling: An Introduction. hlor-
gan Kaufmann Publishers, Inc., 1989.

C. hl. I-Ioffmann. A dimensionality paradigm for surface interrogations.
Computer Aided Geometric Design, 7:517-532, 1990.

C. M. I~Ioffmann and G. VanEek, Jr. Fundamental techniques for geo-
metric and solid modeling. In C. T. Leondes, editor, Advances in Control
and Dynamics. Academic Press, 1991. to appear.

hl. Hall and J. Warren. Adaptive polygonalization of implicitly defined
surfaces. IEEE Computer Graphics & Applications, pages 33-42, Novem-
ber 1990.

C. M. Hoffmann and J. Zhou. Some techniques for visualizing surfaces in
four-dimensional space. Computer Aided Design, 23(1):83-91, 1991.

A. Inselberg. The plane with parallel coordinates. The ITisual Computer,
1(1):69-91, 1985.

A. Inselberg. Parallel coordinates: A tool for visualizing multi-
dimensional geometry. In Proceedings of the First IEEE Conference on
Visualization, pages 361-373, San Francisco, Calfornia, October 1990.

H. Koqak, F. Bisshopp, T. Banchoff, and D. Laidlaw. Topology a.nd
mechanics with computer graphics: Linear hamiltonian systems in four
dimensions. Advances in Applied Alathematics, 73232-308, 1986.

H. Iioqak and D. Laidlaw. Computer graphics and the geometry of S3.
The Alathematical Intelligence, 9(1):8-10, 1987.

W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D
surface construction algorithm. Computer Graphics, 21 (4):163-169, 1987.

[Man561 Henry P. Manning. Geometry of Four Dimensions. Dover Publications,
Inc., 1956. (First Edition 1914).

[Mar851 R. R. Martin. Rotation by quaternions. n/Iathematical Spectrum, pages
42-48, March 1985.

[Mar871 Krzysztof Marciniak. Influence of surface shape on admissible tool posi-
tions in 5-axis face milling. Computer Aided Design, 19(5):233-236, 1987.

[Rf GTSSS] T . Mihalisin, E. Gawlinski, J. Timlin, and J. Schwegler. Multidimensional
graphing in two-dimensional space. Computers in Physics, pages 32-39,
November 1989.

[MTS91] T. Mihalisin, J. Timlin, and J. Schwegler. Visualization multivariate func-
tions, data, and distributions. IEEE Computer Graphics & Applications,
pages 28-35, May 1991.

[MYGP9O] E. McLellan, G. M. Young, R. J. Goult, and M. J. Prat t . Interference
checking in the 5-axis machining of parametric surfaces. Technical report,
Department of Applied Computing and Mathematics, Cranfield Institute
of Technology, Cranfield Bedford, MI<43 OAL, England, 1990.

[NFE-IL911 G. M. Nielson, T. A. Foley, B. Hamann, and D. Lane. Visualizing and
modeling scattered multivariate data. IEEE Computer Graphics & Ap-
plications, pages 47-55, May 1991.

[No1671 A. M. Noll. A computer technique for displaying n-dimensional hyperob-
jects. Communications of the AChI, 10:469-473, 1967.

[O'N66] Barrett O'Neill. Elementary Digerential Geometry. Academic Press,
1966.

[OR871 J. C. Owen and A. P. Rockwood. Intersection of general implicit surface.
In G. E. Farin, editor, Geometric A4odeling; Algorithms and New Trends,
pages 335-34.5. SIAM Publications, 1987.

[PGSG] M. J. Prat t and A. D. Geisow. Surface/surface intersection problems. In
J. Gregory, editor, The hfathematics of Surfaces, pages 117-142. Oxford
University Press, 1986.

[PorSl] Ian R. Porteous. Topological Geometry (second edition). Cambridge Uni-
versity Press, 1981.

[P S 741 G. Pickert and H.-G. Steiner. Complex numbers and quaternions. In
H; Behnke, F. Bachmann, I<. Fladt, and kV. Siiss, editors, Foundations
of Ahthematics The Real Number System and Algebra, volume 1, pages
456-482. The MIT Press, 1974. (in German 1962, translated by S. H.
Gould).

[RHDSS] A. Rockwood, I<. Heaton, and T. Davis. Real-time rendering of trimmed
surfaces. Computer G,raphics, 23(3): 107-1 16, 1989.

[SeigOb]

[She781

[S 110851

[S I< 9 01

[Spi79]

[SSS74]

[ST901

[St u64]

[Tho79]

[TTSI]

IV. C. Rheinboldt. On a moving-frame algorithm and the triangulation
of equilibrium manifolds. In R. Seydel T. Iciipper and H. Troger, editors,
Bifurcation: Analysis, Algorithms, Application. Brikhaser Verlag Basel,
1987.

J . R. Rossignac. Considerations on the interactive rendering of four-
dimensional volumes. In Proceedings of Volume Visualization Workshop,
pages 67-76, Chapel Hill, NC, hlay 1989.

P. Sabella. A rendering algorithm for visualizing 3D scalar fields. Com-
puter Graphics, 22(4):51-58, 1988.

Nobuo Sasaki . Five axis control of machining freeform surfaces. School
of Mechanical Engineering, Purdue University, 1990.

FI. P. Seidel. Geometric constructions and knot insertion for @-splines
of arbitrary degree. Technical report, Department of Computer Science,
University of Waterloo, 1990.

H. P. Seidel. Quaternionen in der computergrapllik und robotik. Infor-
mationstechnik, it-32260-275, 1990.

S. \V. Shepperd. Quaternion from rotation matrix. J. Guidance and
Control, 1 (3):223-224, 1978.

Ken Shoemake. Animating rotation with quaternion curves. Computer
Graphics, 19(3):245-254, 1985.

D. Speray and S. Kennon. Volume probes: Interactive data exploration
on arbitrary grids. Computer Graphics, 24(5):5-12, 1990.

Michael Spivak. A Comprehensive Introduction to Diflerential Geometry.
Publish or Perish, Inc., 1979.

I. E. Sutherland, R. F. Sproull, and R. A. Schumacker. A characterization
of ten hidden-surface algorithms. Computing Surveys, 6(1):1-55, 1974.

P. Shirley and A. Tuchman. A polygonal approximation to direct scalar
volume rendering. Computer Graphics, 24(5):63-70, 1990.

John Stuelpnagel. On the parametrization of the three-dimensional rota-
tion group. SIAlLl Review, 6(4):422-430, 1964.

J. A. Thorpe. Elementary Topics in Diflerential Geometry. Springer-
Verlag New York Inc., 1979.

P. A. Tukey and J. VJ. Tukey. Graphical display of data sets in 3 or more
dimensions. In V. Barnett, editor, Interpreting Ilfultivariate Data. John
LViley & Sons, 1981.

[UI<88] C. Upson and Michael Iceeler. V-buffer: Visible volume rendering. Com-
puter Graphics, 22(4):59-64, 1988.

[Vla90] V. Vlassopoulos. Adaptive polygonization of parametric surfaces. The
I.i'sual Computer, 6:291-298, 1990.

[VQ89] G. JV. Vickers and K. \V. Quan. Ball-mills versus end-mills for curved
surface machining. Trans. ASibfE, Journal of Engineering for Industry,
111(1):22-26, 1989.

[IVa190] R. \i7alter. Visibility of surfaces via differential geometry. Computer
Aided Geometric Design, 7:353-373, 1990.

[Wit771 J. Wittenburg. Dynamics of Systems of Rigid Bodies. B. G. Teubner
Stuttgart , 1977.

Jianhua Zhou was born in Shanghai, China on November 2, 1952. He received the

B.S. and IL1.S. degrees in computer engineering from Shanghai University of Tech-

nology, China, in 1982 and 1984, respectively. Then he worked with the Artificial

Intelligence Laboratory in Shanghai, China for two years. He continued his education

at Purdue University in West Lafayette, Indiana, where he received the M.S. degree

in computer science in 1988. While at Purdue, he was supported as a graduate in-

structor and as a research assistant under the supervision of Professor Christoph M.

Hoffmann.

His research interests include computer graphics, scientific visualization, geometric

and solid modeling, simulation, computer aided design and computer aided manufac-

turing. He is a member of ACM and SIGGRAPH, and a member of the Honor Society

of PHI KAPPA PHI.

