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ABSTRACT 

Zhou, Jianhua. Ph.D., Purdue University, December 1991. Visualization of Four 
Dimensional Space and Its Applications. Major Professor: Christoph M. Hoffmann. 

In this thesis a method has been proposed to visualize curves, surfaces and hyper- 

surfaces in four-dimensional space. Objects in 4-space are first projected into the 3D 

image space and further projected into the 2D image space. Four topics have been 

investigated: (1) Fundamental Concepts. (2) Visual Phenomena and Their Meaning. 

(3) System Architecture. (4) Applications. 

The orientation of the 3D and 2D image spaces can be specified by a set of six 

Euler angles or a pair of quaternions. Since the the quaternion pairs representing 

4D rotations are not unique, three useful forms have been discussed. Each form 

is suitable for rotation combination, for conversion between quaternions and Euler 

angles, or for user interface. The silhouette point of an m-surface with respect to 

a projection from n-space to 1-space (m 5 1 < n) has been defined. The close 

relationship between silhouette and envelope turned out to be useful in explaining 

some phenomena with a surface defined by the envelope theorem and in understanding 

the image of a hypersurface. 

Several geometric properties and phenomena in 4-space have been demonstrated 

by computer generated pictures and animations. They include the ambiguity caused 

by projection, the degeneracy of the silhouette surface of a hypersurface, and the 

principal curvatures of a hypersurface. 

The architecture of an interactive 4D visualization system has been presented. 

The system was built on z-buffer based graphics workstations. Algorithms and data 

structures for polygonalization, point refinement, merging polygons, and visibility 

determination in 4-space are discussed. 



Finally several examples have been presented to illustrate the application of the 

visualization system: tool path generation for NC machines, collision detection and 

analysis for robot motion planning, and visualization of electron density data of a 

virus for molecular biology. 

Supplementary media for this thesis, a video tape and a set of color slides, is 

available in the Film Library of Purdue University. 



1. INTRODUCTION 

High-dimensional space is playing an increasing role in computer-aided geomet- 

ric design (CAGD) and solid modeling. Applications include describing the motion 

of 3D objects, modeling solids with nonuniform material properties, deriving spline 

curves uniformly, and formulating constraints for offset surfaces and Voronoi surfaces 

[Cam84, Hof89, Ros89, SeigOa]. Apart from the modeling aspects, it is important 

to develop visualization tools for high-dimensional space, for these tools can provide 

insights and methods for investigating geometric phenomena and dynamic systems 

[Ban86, KBBL861. This thesis investigates this topic with a view towards CAGD and 

solid modeling, concentrating on four-dimensional space. 

In this introductory chapter the previous related work is briefly reviewed. Then 

a proposed method is sketched. To facilitate the understanding and explanation of 

visualization of 4-space, an analogous example in 3-space is presented in the third 

section. The organization of the thesis is given in the last section of this chapter. 

1.1 Related Work 

High dimensional geometry and its visualization can be dated to the last century. 

In those books dedicated to geometry of four dimensions [ForSO, Man56, Cox471, 

concepts are often illustrated by figures from Cspace. A recent book by Banchoff 

[Bango] contains rich materials about the history and approaches to visualization of 

four dimensional space. Here we review the various techniques for visualizing the high 

dimensional space by means of computer graphics. 

In his book [Eck68] Eckhart proposed a method to project an 4D object into 

several planes that are orthogonal to different pairs of coordinate axes. The 2D 

images so obtained can be put together in a systematic way in analogy to the principal 



views in traditional engineering drawings. For example, a plane is divided into four 

quadrants by X- and Y-axes. Each quadrant is considered as a 2D image plane in 

4-space, namely, (x, y)-, (y,  z)-, (z, w)-, or (w, 2)-plane. This method can be used to 

project scattered data by computers [TTSl], and it can be extended so that the 2D 

image planes are the support plane of the faces of a regular polytopes, not necessarily 

pairwise orthogonal. However, since this method only displays points or curves that 

are four or three dimensions lower than the dimension of the ambient space, and since 

the viewer must gather information from several different views, it may be very hard 

to interpret such pictures. 

No11 introduced computer animation to visualize hyperobjects in his pioneering 

paper [No167]. With animation the viewer can connect mentally the consecutive 

pictures of slightly different views. At least it is easier than connecting several static 

pictures of quite different views as in the above method. Noll's movie also made use of 

stereoscope, trying to get the depth feeling of the image in 3-space. His hyperobjects 

were represented by discrete points connected by line segments (edges). It relied 

therefore on perspective projection to get the depth feeling in 4-space. 

Banchoff and his colleagues used computer graphics and animation to investigate 

geometric phenomena related to complex function and dynamics systems [Ban86, 

KBBL861. They displayed 2-surfaces in 4-space by two projections. 3D shading 

was added to the second projection. By using stereographic projection as the first 

projection, a hypersphere except for one point is mapped to the whole 3D space. The 

structure of the hypersphere is displayed via a set to flat tori which are the inverse 

images of circles on a sphere under the Hopf map [KL87]. 

The advantages of using two step projections was discussed by Rossignac [Ros89]. 

Several common CAD and solid modeling problems were reformulated in 4-space. He 

also proposed a method to display polytopes with light sources in 4-space. The visi- 

bility in 4-space was also mentioned in the context of projected polytopes. A different 

algorithm for visibility problem in general n-space was presented in [BS82]. It only 

considered the hidden lines of polytopes. As we discuss in this thesis, however, curved 



surfaces require a more elaborated notion of visibility, and the simple techniques that 

suffice for polytopes must be significantly changed. 

All the above methods are based on projection, and so preserve the properties 

studied in projective geometry. However, a picture so obtained by projection from 5 

or higher dimensional space seems hardly comprehensible [No167]. There are a few 

methods that have been tried for higher dimensions. They are based on nonprojective 

maps. Inselberg proposed a method called the plane with parallel coordinates [Ins85, 

InsSO]. In the (X, Y)-plane n lines parallel to the Y-axis are drawn representing the n 

Cartesian coordinates of Rn. The figure drawn is basically the image of objects under 

a nonprojective map from Rn to R2. Several nice dualities were found related to this 

map. Another method presented by Mihalisin is suitable for displaying multivariate 

functions [MGTS89, MTSSl]. It can be understood as though the sampled function 

values a.re stored in an n-dimensional array and then displayed as a univariate function 

after enumerating the array elements linearly. It treats the high dimensional space 

inhomogeneously. For example, exchanging the role of x and y will drastically change 

the 2D graph. 

In summary, projective methods are enhanced by animation, shading, and visibil- 

ity determination, and so reveal more information about the 4D geometry; nonpro- 

jective methods have been proposed in an effort to handle much higher dimensions. 

There seems to be no one method suitable for all the problems, and there are many 

aspects in which existing methods can be improved. To the author's knowledge, the 

correlation between silhouette and the visibility of curved hypersurfaces have not been 

thoroughly discussed in the context of 4D visualization. 

1.2 Proposed Method 

Our method is based on the two-step projection approach. The objects in 4- 

space, i.e. curves, 2-surfaces and hypersurfaces, are first projected into 3-space and 

then further projected into 2-space. Since the second projection is quitefamiliar to us, 

we put emphasis on understanding the first projection and the combination of the two 



projections. The central part of the work is dealing with 2-surfaces in 4-space. The 

projected 2-surface in 3-space is again a surface and can be shaded in a standard way. 

Curves in 4-space are displayed as curves on 2-surfaces, e.g. the silhouette curves of 

2-surfaces. Hypersurfaces in 4-space are displayed through their silhouette surfaces, 

boundary surfaces, intersection surfaces, and isosurfaces that are all 2-surfaces. Even 

though we do not display the whole hypersurface, some of its geometric properties 

can be so recovered. 

The method is basically an extension of certain 3D graphics techniques. The 

crucial difference is that when we look at the 2D images of 3D objects, we are outside 

the image space, but when we look at the 3D images of 4D objects, we are inside the 

image space. This fact causes difficulties in that we can look at all parts of the 2D 

image at the same time, but we cannot do this in a 3D image since, e.g. parts of it 

are occluded by other image objects. So we include the following functionalities: 

r The orientation of the first and second projections is controlled and coordinated 

in a systematic way so that the image is more predictable. 

r The silhouette points of 2- or 3-surfaces with respect to one or two projections, 

and their relationship to the envelopes, are discussed. Silhouette surfaces or 

curves turn out to be crucial in sketching the shape, determining visibility, and 

recognizing certain geometric properties of 2- or 3-surfaces in 4-space. 

r The visibility with respect to both projections are explored. Ambiguities could 

be caused by the first and/or the second projection. An algorithm is presented 

for the visibility determination associated with the first projection. 

These functionalities are further explained as follows. 

Orientation. It is well known that the orientation of a rigid body in 4-space can 

be specified by six independent parameters. But how these parameters affect the 

images in 3-space and 2-space, i.e. in the 3D image space and the 2D image space, 

respectively, have not been well studied. Suppose an object is rotating in 4-space and 



its 3D image is inspected. Since we are in the same space as the 3D image, in order to 

see it from all sides, the 3D image has to be further rotated. Do we need another set 

of three parameters to specify the orientation of the 3D image before it is projected 

into 2D image? The answer depends on how the image space is defined. To specify 

systematically the orientation of objects, of the image space, and of the projection, 

we use generalized Euler angles. The centers of the first and second projections are 

called eye, and eye,, respectively. The 3D image space is defined to be orthogonal to 

the direction of eye,, and the 2D image space is orthogonal to both the eyes' direction. 

They are arranged so that their orientation can be concisely expressed by a set of 

six Euler angles. Three of them are used for the control of eye,, and two are for the 

control of eye,. The last one would be used for control of eye,, the center of the third 

projection, but it is not necessary for us since we live in 3-space. Interpretation of 

some useful angle choices will be given with examples. The generalized Euler angles 

have other advantages such as keeping the vertical directions, and being compatible to 

existing 3D graphics user interfaces. However, the Euler angles have some drawbacks 

such as the singularities encounted in converting matrices to Euler angles, and the 

difficulties in animation by interpolation of Euler angles [SeiSOb]. 

Quaternions. To overcome the problems of Euler angles, many authors have advo- 

cated the use of quaternions for orientation specification, especially in 3D animations 

[Mar85, Sho85, SeiSOb]. Likewise, the quaternions can be used for orientation spec- 

ification in 4-space and 4D animations. The difference is that any 3D rotation is 

representable by one quaternion while any 4D rotation is representable by a pair of 

quaternions. To make use of quaternion for 4D visualization, we need to understand 

how a quaternion rotates in $-space, a task that is much more confusing than the 

case of 3-space. For example, it is well known that a 3D rotation always has an axis 

and any vector parallel to this axis is invariant under the rotation. We will show that 

the 4D rotation by a nonreal quaternion has no fixed-point at all. The best we can 

do is to decompose the the rotation into two orthogonal subrotations. Moreover, the 

quaternion pair to represent a 4D rotation is not unique. We will discuss the three 



most useful forms. The first is suitable for rotation combination and interpolation. 

The second is suitable for conversion between quaternions and matrices or between 

quaternions and Euler angles. The third one has a simpler interpretation, and so it 

is suitable for the user interface. 

Silhouettes. When a surface in 3-space is projected into a plane, those points on 

it where the surface normal is orthogonal to the ray from eye to the point are called 

the silhouette points. The concept is extended to surfaces of dimension m in Rn with 

respect to a projection from Rn to R' (1 5 m < 1 < n). Particularly, the silhouette 

points of a 3-surface (hypersurface) in R4 with respect to the first projection comprise 

a silhouette surface of the hypersurface. The silhouette points of a 2-surface in R4 

with respect to the combined first and second projections comprise a silhouette curve. 

In modern 3D graphics workstations, the silhouette curve of a surface need not be 

constructed explicitly. When the polygons representing the surface are small enough, 

the picture with hidden surfaces removed shows the approximate silhouette curve by 

the discontinuity of shading. This technique cannot be extended into 4-space. If all 

the points on the hypersurface are shaded and projected into 3D image space, we 

get a 3D volume. Each point in the volume has its own color of different intensity 

according to some kind of shading model in 4-space. Such an "emitting" volume 

cannot be seen clearly due to the fact that we are in the same space as the 3D image. 

For the same reason showing a hypersurface by dense isosurfaces is unsuitable. A 

good method for visualizing the hypersurface is to construct the silhouette surface 

explicitly, and to display it with boundary surfaces, self-intersection surface (if any) 

and a sparse set of isosurfaces. 

Envelopes. In 2-space, the envelope of a family of curves is another curve tan- 

gent to every curve in the family. The definition generalizes to arbitrary n-space 

straightforwardly. What is its use in visualization? We show that in some sense the 

envelope and silhouette are equivalent concepts. This link of silhouette and envelope 

provides several applications. First, in CAGD and solid modeling the dimensionality 

paradigm is suitable for representing exactly complex surfaces that satisfy prescribed 



constraints, such as offset surfaces, blending surfaces, and equal-distance or Voronoi 

surfaces [HofSO, HV911. The equations of constraint can be formulated by the enve- 

lope theorem. From another point of view, these surfaces are the sets of silhouette 

points of surfaces in higher dimension projected into lower dimension. Visualization 

helps explain some phenomena that may occur during the surface interrogation. Sec- 

ond, 4D visualization is subtle in that often the pictures look dazzling. Although the 

silhouette surface of a hypersurface can be generated by computer from its definition, 

it will be more comprehensible if the silhouette surface can also be constructed by 

the viewer in his/her mind. Envelopes offer a conceptual tool in such a construc- 

tion. In fact, most of the pictures of the hypersurfaces presented in this thesis had 

been qualitatively predicted by the author before there were generated by the system. 

Third, the correlation between envelope and silhouette reveals the singularities in the 

intersection of surfaces on a hypersurface, necessitating some precautions in designing 

the algorithms for visibility determination. 

Geometric Properties. Visualization has been frequently utilized for observing ge- 

ometric properties, such as coincidence, collinearity, tangency, continuity, convexity, 

and curvature. These properties can also be observed in 4-space through 4D visual- 

ization. Among them, observing the curvature seems hardest. We will discuss how 

to infer the curvature of a hypersurface qualitatively through its 3D image. Again, 

the silhouette surface of the hypersurface plays an important role in curvature obser- 

vation. 

Visibility. Projection is a many-to-one map and causes ambiguity when the image 

is interpreted. An effective technique to eliminate the ambiguity is called the hidden 

surface removal, or the visibility determination. Visibility is a concept associated with 

a projection down one dimension. In the case of a projection composed of several 

steps, visibility associated with each step has to be considered. Another problem is 

the dimension of the potentially visible objects and the dimension of the potentially 

hiding objects. Here object refers to a surface of any dimension and its image under 

any projection. For example, a solid in 3-space, i.e. an object of dimension 3, can be 



Figure 1.1 A torus projected into a plane and then projected into a line 

the image of 3-surface in 4-space, or the image of 3- or 4-surface in 5-space, and so on. 

If these surfaces can be potentially hiding objects in 3-space, most 2-surfaces could 

be hidden. Our solution is that for a projection from Rn to Rn-', the hypersurface 

in Rn is the potentially hiding object. Its image in Rn-' is neither the potentially 

visible object nor the potentially hiding object. Applying this rule to 4D visualization, 

although in 3D image space a hypersurface is invisible, the 2-surfaces on it can be 

partially or totally hidden by the hypersurface. 

1.3 Dimension Analogy 

When we try to visualize 4-space, the situation is similar to the inhabitants of 2- 

space, called the flatland in [Abb63], who try to visualize 3-space. It will be helpful if 

we first investigate an analogous situation with reduced dimension, called the dimen- 

sion analogy, and see what problems may happen. As an example let us investigate 

the silhouette with respect to the projections from 3-space to 1-space. 

Consider a torus projected into a 2-space that contains the page on which Fig- 

ure 1.1 is printed. The center of this projection, eye,, is somewhere in the first octant 



of the (x, y, 2)-coordinate system above the page. Imagine now that we live in that 

2-space and try to "see" the picture in a 1D projection. This is the second projection 

which produces a 1D image of the torus, on a line. The center of the second projec- 

tion, called eye,, is then confined to the plane orthogonal to the direction of eye,, i.e. 

orthogonal to the vector from the origin to eye, in 3-space. 

Figure 1.1 actually is not the projection of the whole torus but the projection of 

the silhouette curve of the torus with respect to the first projection. A point on a 

surface becomes a silhouette point if the tangent plane of the surface at that point is 

projected into a line. This happens when the ray from that point to eye, falls into the 

tangent plane. Clearly, when eye3 is moving, the silhouette curve changes its shape 

and so does its projection. Now let us fix the eye, position and concentrate on this 

silhouette curve as an ordinary space curve C. A point on a curve becomes a pinch 

point if the tangent line of the curve at that point is projected into a point.1 This 

happens when the ray from that point to eyes coincides with the tangent line. The 

four cusps in figure 1.1 are such points. They may cause trouble in determining the 

normal of the projected curve, which is necessary if shading is added to the second 

projection. The second projection may also introduce pinch points, for instance the 

point P on C in Figure 1.1. It appears as a discontinuity of shading in the 1D image. 

Note that the ray from P to eye, does not necessarily coincide with the tangent line 

of C at P in 3-space. Also note that the tangent plane of the torus at  P is mapped 

to a point under the two projections. So it could be called a doubly silhouette point 

of the torus with respect to the two projections. The concepts of silhouette, doubly 

silhouette and pinch point have the common feature that at  such points the tangent 

space of an object reduces in dimension under the projection. 

lFor the definition of pinch points on a Zsurface in 4-space see [Ban86]. 



1.4 Thesis Organization 

In this thesis the proposed method is elaborated in both theoretical and practical 

aspects. Chapter 2 defines the fundamental concepts for our method of 4D visu- 

alization: the specification of the orientations of objects and projections by Euler 

angles and quaternions, the silhouette point of an m-surface and its relationship with 

envelopes, and the visibility determination for elimination of ambiguities caused by 

projections. All these concepts, except for the quaternions, are given in general form 

valid for arbitrary dimensions, as well as in special form suitable for 4D visualization. 

In Chapter 3, Visual Phenomena and Their Meanings, several pictures generated 

by our interactive 4D visualization system are presented. We explain how to adjust 

Euler angles to achieve special visual effects, and how to construct the image of a 

hypersurface in one's mind so as to understand the computer generated pictures. The 

possible degeneracy of the silhouette surface is explained by the dimension analogy. 

Finally, a method for the curvature observation is derived and illustrated by examples. 

Chapter 4 is devoted to the architecture of the interactive 4D visualization system. 

The input to the system can be the functions defining implicit or parametric 2-surfaces 

in 4-space, or discrete function values representing a 3D scalar field. Algorithms are 

presented for polygonization and visibility determination. The various singularities 

caused by the projection, and the desingularization techniques based on geometric 

intuition are also discussed. The discussion would be extremely complicated, if not 

impossible, without the pictures which are the result of 4D visualization. The design 

of the system architecture has met its original goal: interactivity, flexibility, and 

compatibility to 3D graphics. 

The wide applicability of 4D visualization can only be sampled in Chapter 5. 

Examples include the offset curves displayed as the silhouette curve of a 2-surface with 

respect to the projection from 4-space to 2-space. Rotation in 4-space reveals that 

some apparent singularities do not really exist in 4-space. Collision of 3D objects can 

be detected and analyzed in (x, y ,  z ,  t)-space. The intersection of two moving surfaces 



is thus a 2-surface in 4-space. Some precautions are drawn for the initial colliding 

point problem from observing the pictures. The 3D scalar field display is common 

in 3D graphics. Here it is put in 4-space and seen from a different view. The final 

example, tool path generation for 5-axes milling machines, discusses a problem in 

5-space using some simplifications. Then the problem and its solution are visualized 

in 4-space. 

Chapter 6 summarizes our results and presents some considerations for future 

work: toward the fifth dimension. 



2. FUNDAMENTAL CONCEPTS 

In this chapter we discuss some fundamental concepts in visualization of high 

dimensional space via projection: orientation specification, silhouettes and envelopes, 

and visibility. In each of the following sections, after the general form applicable to 

arbitrary n-dimensional space, a specific form for 4D visualization is presented. 

2.1 Orientation Specification 

To visualize objects in n-space, it is necessary to specify and adjust interactively 

the orientation of objects, projection directions, and light source directions. They 

can be uniformly considered as the orientations of rigid bodies. The orientation of 

a body-fixed coordinate system with respect to the reference coordinate system can 

be expressed by an n x n orthonormal matrix A = (aij) called the direction cosine 

matrix: 

p = A q  

where p  = (pl , .  . . ,p,)T is a vector expressed in the reference coordinates, and q  = 

(ql, . . . , qn)T is the same vector in the body-fixed coordinates. Among the n x n 

elements in A only n(n - 1)/2 of them are independent. It will be convenient to 

specify the orientation by a set of n(n - 1)/2 + m parameters with m constraints, 

where m is a small number, say 0, 1 or 2. This problem is called the parameterization 

of the rotation group. In [Stu64] a number of methods for parameterizing the 3D 

rotations are reviewed. Not all of the methods can be generalized into arbitrary n 

dimensional spaces. In this section we discuss two methods: the generalized Euler 

angles for rotations in arbitrary n-space, and the quaternions for rotations in 3- and 

4-space. 



2.1.1 Euler Angles in n-space 

The matrix A can be written as the product of n(n - 1)/2 basic rotation matrices. 

The basic rotation is a one-parameter rotation within a plane spanned by two base 

vectors of the coordinate system. The basic rotations should be chosen systematically 

so that the geometric relationship is easy to explain and to remember. Some common 

choices in 3D are the Euler angles and Bryant angles lWit771.l 

In 3D kinematics, Euler angles specify the orientation of objects by three successive 

basic rotations: 

P = R:,(oI)R;,(o2)R:,(o3)q 

where Rig(.) is the basic rotation matrix in the (a, y)-plane. The number superscript 

indicates the rotation phases, explained as follows. 

We conceptualize 3D Euler angles as two separate rotation phases: In the first 

phase, specified by R:y(d1)R~z(62), the body-fixed z-axis is oriented into its final 

position in 3-space. In the second phase, a single rotation, RE,(&), brings the body- 

fixed a-  and y-axes into their final positions within the the 2D subspace orthogonal 

to the (oriented) body-fixed z-axis. 

It is clear that with this conceptualization Euler angles can be naturally extended 

into arbitrary n-space. The Euler angles in (n + 1)-space can be considered as n 

rotation phases: 

1. The first phase orients the body-fixed  axis by n basic rotations in the 

(a1, x2)-plane, ( 2 2 ,  as)-plane, . . ., (a,, xn+l )-plane. 

2. The remaining n - 1 phases orient the n-dimensional subspace orthogonal to 

the xn+l-axes by the Euler angles in n-space. 

In particular, the orientation of objects by Euler angles in 4-space is expressed as: 

'These angles are all referred to as the Euler angles. Here we use the name convention in [Wit771 



Figure 2.1 shows the three rotation phases. The body-fixed axes after the i-th rotation 

are denoted by xi, y;, z;, w;. 

To calculate Euler angles from the direction cosine matrix A we need the inverse 

Euler angle formula. Since the definition is recursive, it is not hard to derive the 

formula for arbitrary n-space as follows: 

1. Calculate the angles 01, . . . , from the last column of A via 

2. Calculate the remaining angles recursively from the n - 1 x n - 1 submatrix of 

Within each rotation phase only the angle of R:,,, has a full range of 27r. The 

others are restricted to a range of 7r so as to eliminate ambiguities. That is why there 

is no f before the square root in (2.2). 

The i-th column of the direction cosine matrix can be considered as the reference 

coordinates of the i-th base vector of the body-fixed coordinate system. From (2.1) 

and (2.2) we see that the angles in i-th rotation phase are the polar coordinates of 

the (n - i + 1)-th base vector of the body-fixed coordinate system. Figure 2.2 shows 

the case of 4-space, where 1 is the fourth base vector (in the direction of w-axis) of the 

body-fixed coordinate system. The orthographic projection from R4 to R' is denoted 

as 7r;. 

Note that numerical difficulties arise when both the numerator and the denomi- 

nator in the argument of arctan are close to zero. This is a well-known drawback of 

Euler angles [Wit77]. 

2.1.2 Directions of Projection by Euler Angles 

In 4-space, we assume a world coordinate system as the reference coordinate sys- 

tem. Each object is translated and rotated by specifying a transformation relating 



Figure 2.1 Euler Angles: (a) 81 ,  02, 63 in R4 ( b )  04, e5 in R3 (c) 66 in R2 



Figure 2.2 The body-fixed vector 1 and its projections in R3 and R2 

its body-fixed coordinate system to the world coordinate system. The 4-space is first 

projected into the 30  image space orthogonal to the first projection direction. Then, 

the 3D image space is projected into the 2D image space orthogonal to both the 

first and second projection directions. The first and second centers of projection are 

called eye, and eye,, respectively. They can be at finite or infinite distance from the 

origin. We require that the origins of the three coordinate systems of the 4D world, 

of the 3D image, and of the 2D image space coincide. Thus, the relationship between 

the coordinate systems can be expressed by pure rotations with only six independent 

parameters. 

We specify the projection directions in the same way as object orientation. A 

single set of Euler angles specifies the orientation of both eye, and eye, because we 

can think of the two lines from the origin to eye, and eye, as the w- and z-axes of a 

rigid object. Thus, the projection is determined by 0 = . . , 06) and by the pair 

r = (r4, 7'3) of the reciprocal distances of eye, and eye, from the origin. In figure 2.1, 

(x, y,  z, w) is the world coordinate system. (x3, y3, z3) is the 3D image coordinate 

system, and (x5, y5) is the 2D image coordinate system. 



The position of eye, in the world coordinate system is controlled by dl ,  d2, 6, and 

r4. The position of eye3 in the 3D image space is controlled by 64, d5 and r3. Strictly 

speaking, The last angle 66 is useless unless we want to project the 2D image down to 

ID image. It is included for compatibility with the existing 3D graphics, to specify 

the twist of the 2D image. 

There is a nice property of Euler angles to specify the directions of projection, 

keeping the vertical directions. Look at Figure 2.1. The three axes w, w3 and z3 are 

coplanar. That means no matter how we rotate eye,, the world w-axis is always kept 

vertical in the 3D image space. It is upward when -: 5 d3 5 and downward 

otherwise. Similarly, no matter how we rotate eye,, the world w-axis is again kept 

vertical in the 2D image space, as long as 66 = 0. 

A drawback of Euler angles is that at certain critical values the inverse Euler angle 

formula encounters numerical difficulties. Fortunately, in a visualization system we 

mostly calculate the direction cosine matrix from Euler angles. The inverse Euler 

angle formula is used only in a few cases which will be discussed in Section 3.1. 

Bryant angles can also be extended into n-space. For example, the orientation of 

objects by Bryant angles in 4-space is expressed as: 

They also have the critical values, though different from those of Euler angles. For 

example, since (0,. . . , 0 )  is not a critical value, Bryant angles are more suitable to 

represent small variations in orientation. But this is not important in visualization. 

Moreover, since Bryant angles do not keep the vertical direction, they are harder to 

be grasped, and so less suitable in the user interface. 

2.1.3 Quaternions 

The quaternions, an algebra invented by Sir William Rowan Hamilton in 1843, 

were originally defined as the angular relations (quotient) between pairs of vectors 

in 3-space [Ham69]. Algebraically the quaternions are an extension to the complex 



numbers [PS74]. Their geometric interpretation is equivalent to that of Euler pa- 

rameters or Cayley-Klein parameters in mechanics [Wit 77, Go1801. The quaternions 

have recently been advocated by a number of authors for 3D computer graphics 

[BM90, Mar85, Sho85, SeiSClb]. Mathematically, any rotation in 4-space can be rep- 

resented by a pair of quaternions [Por81]. However, their use in 4D computer graphics 

has not been exploited. 

A quaternion q E 7-t is defined as2 

where q,, q,, q,, q, are real numbers and i ,  j, k are symbols obeying the following 

product rules: 

For example, the quaternion product of p and q is 

Note that the quaternion product is associative but not commutative. We will discuss 

the quaternions from the viewpoint of geometry instead of algebra. It is convenient 

to identify the symbols i ,  j, k with the base vectors i ,  j, k, respectively, and the real 

number 1 with the fourth base vector 1 of R4. Then a quaternion q can be written in 

matrix form: 

2Note that our convention is nonstandard. We put the real part q, as the last component instead 
of the first in order to be consistent with the rest of the thesis. 



where V, = (q,, q,, qz)T denotes the vector part and S, = q, denotes the scalar part 

of q. A quaternion q is said to be real if V, = 0, and to be pure if S, = 0. Consider 

I/, and V, as vectors in R3. Their dot product I/,. V, is written in matrix form bTh. 
Their cross product V, x V, is written in matrix form X,V, where 

Note that X ,  is skew-symmetric and that 

Now Equation (2.3) can be written in matrix form as 

The quaternion product is thus interpreted as the linear transformation of a vec- 

tor in 4-space. The choice of (2.5) or (2.6) depends on whether p and.q are inter- 

preted as coordinates or as transformations, although as quaternions they are not 

distinguishable. Note that L, # Rp  because of pq # qp. Since (pq)r = p(qr) we 

have R,L,q = L,R,q. That means L, and R, commute. This can also be ver- 

ified from their definitions and (2.4). For example, the matrix form of p1p2qr2rl 

can be L,, L,,R,, R,,q or Lp,Rrl L,, R,,q, etc. Also note that L,,,, = L,, L,, and 

Rr2r1 = Rrl Rr2 

The conjugate of q = qxi + q,j + qzk + q, is -qxi - q,j - qzk+ q, denoted by q, or in 

matrix form, q = (-6, Sq)T. The norm of q is the real number qij = qZ+q:+q,2+qi = 

qTq. The set of all unit norm quaternions is a 3-sphere in R4 denoted by S3. Let 

V ,  = . The axis of q is defined as A, = 3 if JV,I # 0. Otherwise A, is IV,l 



undetermined. The angle of p is defined as a, = arctan u. The meanings of these s9 

quantities in 4D rotation will be explained shortly. Note that A,- = -Aq and a,- = a, 

according to the definitions. 

Lemma 2.1 Let p be a unit quaternion. 

(a) Both L, and R, are rotations in R4. 

(b) If p # 1, for all q E R4, Lpq # q and Rpq # q. 

Proof: (a) It is straightforward to calculate that LTL, = RTR, = I and det(L,) = 

det(R,) = 1. (b) The eigenvalues of L, and R, are S, & ,,/m and are not real if 

p is not real. When p = -1, all vectors in R4 are mapped to their opposites. 0 

The lemma above can also be proved with the quaternion algebra as shown in 

[Por8 I]. 

The property (b) in Lemma 2.1 cannot hold for 3D rotations because the 3 x 3 

rotation matrix always has a real eigenvalue 1. We discuss the 4D rotations defined 

by L, and R,. Let m and n be two nonzero orthogonal vectors in R4. We denote 

a rotation in the plane span(m,n) by an angle a as Rot (m,  n ,  a). The direction of 

the rotation is defined by requiring Rot(m, n ,  ;)m = n. For notational convenience, 

we may put a vector in R3, say A,, in place of m or n. In such cases, the vector is 

assumed to be embedded in R4 with its fourth component being zero. 

Theorem 2.1 Let p be a unit nonreal quaternion. The rotations L, and R, can each 

be decomposed into two rotations, one in the plane of span(1, A,) and one in the 

plane orthogonal to the former. More specifically, 

LP = Rot(1, A,, a,)Rot(m, n,  a,) 

RP = Rot (1, A,, a,)Rot(m, n ,  -a,) 

where m, n and A, in that order form a right-handed orthonormal frame in R3, a 

subspace orthogonal to 1 in R4. 



(a) 
Decomposition of p 

tb) 
Decomposition of q 

tc) 
Rotation of q' and q" 

Figure 2.3 Rotation of quaternions 



Proof: Since p is nonreal, V, is a nonzero vector. It can be normalized into A,; see 

Figure 2.3(a). Any q E 7-1 can be decomposed into two parts q = q' + q" such that 

The vector parts of q' and q" can be calculated from 411 = (A, . V,)A, and V,, = 

Vq - Vqll; see Figure 2.3(b). Rotating the two parts separately we get 

cos a,Vqt + sin a,A, x V,I 

0 

(COS Q, 1%" I + sin crpSqlt) A, 

= ( - sin ~ , ( V , I I  I + cos ~,S,II 
= Rot(l,A,,a,)q~' 

The rotations of q' and q" are shown in Figure 2.3(c). Combining them yields 



The case of R, can be proved similarly. 

This theorem described the rotation caused by one quaternion. That the two 

subrotations are orthogonal and have the same magnitude is not surprising because 

the quaternion contains no more information than a vector and a scalar. Since V,- = 

-Vp and a,- = a,, any combination of L,, L,-, R,, R,- are expected to be a simple 

rotation. They can be worked out using Theorem 2.1 with little effort. 

First, the rotations L, and L,- cancel each other. This is obvious because L,- = 

L: = L;'. It can also be verified by computing the quaternion product. When p is 

a unit quaternion, its conjugate equals to its inverse, i.e. pp = pp = 1. 

Second, L,L, = Rot(1, A,, 2ap)Rot(m, n ,  2ap). This is due to the fact that the 

two subrotations are in orthogonal planes and therefore commute. The result can be 

extended to arbitrary X E R: 

(L,)' = L,A = Rot(1, A,, Xa,)Rot(m, n,  Xa,) (2.7) 

This property is similar to that of complex numbers. 

Third, the famous representation of 3D rotations is 

This is because the rotation in span(1, V,) is canceled while the rotation in the or- 

thogonal plane is doubled. 

Finally, another rotation that is less known is given by 

Although this rotation is restricted to a plane, it is not in R3 and so has not been men- 

tioned in most papers dealing with quaternions. We will show in the next subsection 

that it is useful for a user friendly interface of a 4D visualization system. 

While a single quaternion can only represent certain simple 4D rotations and every 

3D rotation, a pair of unit quaternions (p, r )  is powerful enough to represent every 

rotation in R4. More specifically, we define the product of two pairs of quaternions 



as a map . : N2 x N2 t N2 defined by 

It is clear that the product so defined is associative. The identity in N2 is naturally 

(1,l). The inverse is defined as 

(p, 7.1-1 = (p-l, r-l) 

Since we concentrate on unit quaternions, we define 

Thus (N2, a )  is a group and ((S3)2, - )  is a subgroup of it. 

Theorem 2.2 The map pl : S3 x S3 --+ SO(4) defined by pl ( p ,  r) = Lp R,- is a group 

surjection with kernel (1, I) ,  (-1, -1). 

A proof can be found in [Por81]. Briefly, that it is a group homomorphism is shown 

by 

For any 4D rotation T, suppose T rotates the base vector 1 to s, i.e. T1 = s. Then 

L,T will fix 1 and so it is a 3D rotation, expressible as L,R,-. Therefore T = LsLTRr. 

Writing s r  = p, the rotation is then LpRF. 

We call the quaternion pair (p,r)  with the map pl(p, r) = LPRF the first form of 

4D rotation representation. In this form, two or more 4D rotations can be efficiently 

combined into one. Hence it is suitable for the internal representation in a system. 

The discussion above suggests that (s, r )  can be used also for representations of 

4D rotations. The map is defined as p2(s,r)  = L,LT&-. We called it the second 



form which will be shown handy in conversion between quaternions and matrices 

or between quaternions and Euler angles. However, to make p2 preserve the group 

structure, the product - : 3-1' x l-t2 7-12 has to be redefined as3 

It can be shown that the product so defined is also associative. Again (1 , l )  is the 

identity in 7-12. From it we define 

(s, r)-I = (r-Is-lr, r-l) 

(s, r )  = (Fsr, F) 

So, under the redefined product the (7d2, .) is also a group. The computation is more 

involved than for the first form. Therefore, it is better to convert to the first form 

before rotations are combined. 

Since L,R, has a clean interpretation, we want to define the third form (u, v) with 

the map p3(u, v) = L,&L,RB. This representation is equivalent to the first and 

second forms, shown from the relations 

The product should also be redefined to make p3 a homomorphism. This is omitted 

here. Like the second form, the third form is not well suited for rotation combination. 

But it is ideal for a user interface as will be discussed next. 

The three forms are summarized in the following table. 

3Strictly the different product definitions should be denoted by -1 and - 2 .  We distinguish them 
instead through context. 



2.1.4 Directions of Projection by Quaternions 

2 6 

Recall that the world coordinate system, the 3D image coordinate system and the 

2D image coordinate system are related by a 4D rotation. By means of quaternions, 

the user interface can be designed in a fashion different from that using Euler angles. 

Suppose the 4D rotation is expressed in the third form (u, v). Let q be a vector 

expressed in the world coordinate system, and q' be the same vector in the body-fixed 

coordinate system. They are related by 

The 2D image space is defined as span of the body-fixed x- and y-axes. eye, is on the 

body-fixed w-axis and eye, is on the body-fixed z-axis. Since LVRv is a 3D rotation, 

it represents the relation between the 3D image and 2D image coordinate system. In 

other words, let 

q = LuRuq 
It 

3rd. 

(u, 4 
uvqVu 

LuRuLvRg 

user interface 

Form 

quaternion pair 

quaternion expression 

matrix expression 

suitable for 

Then a map cp : R4 -+ R3 will project q" into the 3D image coordinate system as 

cp(qft). When eye, is at infinity, i.e. r4 = 0, the projection is simply the drop of the 

fourth coordinate, called the natural projection T, written as ~ ( q " )  = GI,. Now the 

image of q in the 3D image coordinate system is 

Defining t = ii to simply the notation it becomes Kqt. 

We investigate how the axes of the world coordinate system move in the 3D image 

space in response to the rotation LtRt. According to Theorem 2.1 the rotation matrix 

1st. 

(P, r )  

P ~ F  

LpR,- 

rotation combination 

2nd. 

(s, 7') 

srqF 

L,L,Ri: 

conversion 



Figure 2.4 The projections of the world base vectors i and 1 in the 3D image space 

is Lt Rt = Rot(1, &, 2at). When t = 1, Lt Rt = I, the world x-, y- and z-axes coincide 

with those of the 3D image axes. The world w-axis is invisible. When t # 1 and 6 

is nonzero, it determines a direction At in the 3D image space. The plane orthogonal 

to At is denoted by P; see Figure 2.4. The image of world w-axis can be calculated 

from the base vector 1 as 

n(LtRtl) = n(Rot(1, &, 2at)l) 

=  sin 2at)At + (cos 2at)l) 

= (sin2at)At 

It is in the direction of At. That offers a convenient way to put the world w-axis in 

any desired direction in the 3D image space. The image of the world x-axis needs a 

little more effort. First the base vector i is decomposed into i = if + i" with if in the 

plane P and i" parallel to At.. Then 

n(LtRti) = n(LtRt(if + i")) 

= n(Rot(1, Vt , 2at)(i1 + i")) 

= i f +  (cos2at)i11 



When at = 0, the image of the world x-axis coincides with the 3D image x-axis. 

As at increases, the image of the world x-axis moves toward the plane P and falls 

into P when at reaches :. Meanwhile, the length of the image of the world w-axis 

increases from zero to its maximum. The behavior of the world y- and z-axes under 

this rotation is similar to that of the x-axis. 

An interface based on this idea lets the user control two independent quaternions 

u and v. The positions of the axes of the world coordinate system in the 3D image 

space are controlled by u. The positions of the axes of the 3D image coordinate system 

in the 2D image space are controlled by v. Note that the rotations are explained in 

terms of the axes and angles of u and v. These concepts are comprehensible without 

the knowledge of quaternions. 

2.1.5 Relations between Euler Angles and Quaternions 

We have shown that 4D rotations can be represented by Euler angles, quaternions 

and matrices. User interfaces employing Euler angles and quaternions may coexist in 

a 4D visualization system. The internal representations are usually matrices, but they 

could be quaternions as advocated by some authors [Mar85, SeiSOb]. It is therefore 

necessary to find ways for converting among these representations. For 3D rotations 

the conversion problem has been discussed in [She78, Sho85, SeiSOb]. 

Given a pair of unit quaternions (p, r) ,  the corresponding matrix form is simply 

obtained from L,R,-. Conversely, suppose that A = (aij) = L,RF is given, to find the 

corresponding (p, r )  directly from A is possible but tedious. It is better found using 

the second form (s,r) .  Define M = (mij) = L,R,-. Since M is a 3D rotation matrix 

we have m;4 = m4; = 0 for i = 1,2,3 and m44 = 1. Now from A = L,L,R,- = L,M 

we immediately get s = ( ~ 4 1 ,  a42, a43, ~ ~ 4 ) ~ .  Then M can be obtained by L,A. From 

the upper left 3 x 3 submatrix of M, r can be calculated by the methods described 

in [She78, Sho85, SeiSOb]. Finally, (p, r )  = (sr, r). 

Given Euler angles 6 = (61,. . . , e6) a matrix can be calculated. Then the quater- 

nions can be obtained by the above method. But it is more convenient to find the 



quaternions directly from 0 .  Recall that the rotation by Euler angles is defined as 

According to Theorem 2.1, it can be written in quaternion form 

where 

01 01 )T 
rl = (0,0,sin -, cos - 

2 2 
0 2  0 2  T 

1-2 = (sin-,O,O,cos-) 
2 2 

r3 = 03 03 T (0,0, - sin -, cos -) 
2 2 

0 4  04  T 
rq = (O,O, sin -, cos -) 

2 2 
0 5  0 5  T rg = (sin -, O,0, cos -) 
2 2 

06 &), 
r6 = (0,0,sin-,cos- 

2 2 

Rewrite it into srqr of the second form. Then r and s can be calculated by r = 

2- - T ~ ~ ~ F ~ T ~ T ~ T ~  and s = r1r2r3r2rl. Note that r123 = T ~ T ~ F ~  and T456 = rqrgrg have the 

same pattern. 

( sin % cos \ 

\ COS % COS y ) 
( sin 4 cos I 

r123 = 
- sin 4 Sin * 

2 

cos $ sin 9 

r456 = 
- sin b sin -8'fss 

2 2 

cos 4 sin y 



( sin $ cos 9 cos -81+83+84+8a 2 + cos 9 sin + cos 81 +84 -ea 
2 

( cos $ cos + cos 81+"+84+86 2 - sin $ cos , COS +03+84 2 -8a I 

r = 

- sin B1 sin e2 sin B3 

cos B1 sin B2 sin B3 
S = 

- cos B2 sin B3 

Conversely, given a pair of quaternions (p, r) ,  to find the corresponding Euler 

angles we first get the second form (s, r). This step is useful because s is unrelated to 

Bq, B5, B6. Hence el, B2, 03 can be found from s by (2.17) and (2.2). Then r123 is formed 

by (2.14), from which r456 can be obtained by G r .  Finally, B4, B5, B6 are found from 

r456 by (2.15). 

- sin 9 cos % sin -81+h+84t86 + cos % sin $ sin 8 1 + 8 3 ~ 8 4 - 8 ~  2 

cos $ cos , sin bte3 ie4 +06 + sin $ sin $ sin +03+04 2 -4 

2.1.6 Animation by Quaternions 

(2.16) 

In computer animation the position and orientation of objects and eyes are spec- 

ified as functions of time t. They can be given explicitly in symbolic form, but more 

often are given as a set of function values at discrete time instances, and the inter- 

mediate values are obtained through interpolation. The interpolation of orientation 

can be done by the interpolation of matrices, of Euler angles, or of quaternions. It 

has been argued that quaternions are best for this purpose [Sho85, SeiSOb]. 

Given two unit quaternions ql,q2 E S3, the great arc is defined as the curve on 

the intersection of S3 and the plane passing through the two points and the origin. 

The spherical linear interpolation, abbreviated as slerp, from ql to q2 with parameter 

X E [0, 11 is defined as[Sho85]: 

or equivalently, 
sin(1 - X)B sin XB 

'1''~ (q1, q2 ; A) = sin q1 + - sin 0 42 



Figure 2.5 Ambiguities in conversion to quaternions 

where ql q2 = cos 8. Based on slerp, the spherical splines and Bkzier curves and be 

constructed. The higher order continuity makes the animation smoother. 

The method can be extended to the interpolation of 4D rotations. Given a pair 

of quaternions, no matter in which form, the two components are independent from 

each other. Therefore, they can be interpolated separately. However, there are several 

problems worth discussing. 

First, it is well known that the quaternion representation of 3D rotation is not 

unique. The same statement holds for 4D rotation. q at he ma tic ail^ speaking, the 

maps from (S3)2 to SO(4)  are not bijections. It can be proven that pl and p2 are 

2-to-1 maps while ps is a 4-to-1 map. To verify this, it is easy to check that 

The geometric interpretation is that, by Theorem 2.1, the double appearances of r, u 

and v or their conjugates cause the angles to be doubled. In practice, we need to find 



the sources of ambiguity in the conversion from the matrices to quaternions. When 

converting matrix A to the second form (s, r) the quaternion s is uniquely determined 

by the fourth column of A. In the calculation r from M = L,-A there is a square 

root of a real number. A suggestion by [She781 is to choose ST > 0. However, such a 

choice will cause a jump during animation when ST 0; see Figure 2.5(a). A practical 

solution by [Sho85] is to make sure that r at adjacent time instances are close to each 

other. Converting the second form to the first form encounters no trouble at all. 

A simple quaternion product p = sr completes the task. The conversion from the 

second form to the third form involves a square root of a quaternion. From u2 = s we 

get u = f sl/'. Theoretically we could choose the positive root, called the principal 

value in [Ham69], as we did in (2.13). But this also causes a jump during animation 

when s m -1 as shown in Figure 2.5(b). Worse than that, the quaternion square root 

near -1 is ill behaved because the axis is indeterminate. Consequently, in practice the 

conversion to the third form should be avoided. The animation by interpolating (u, v) 

can be done only if the third form is directly available from, say, the user interface 

based on it. 

Another question is whether the interpolations by the three forms are equiv- 

alent. More precisely, let pl(p;, r;) = p2(s;, r;) = p3(u;, v;) for i = 1,2, and 

let p12(A) = slerp(pl,p2; A), etc., we want to know whether pl(pI2(A), r12(A)) = 

p2(~12(A),r12(A)) = p3(u12(A),v12(A)) for all A E [O, 11. The answer is no because 

in general slerp(s1, SZ, A)slerp(rl, 7-2, A )  # slerp(slrl, ~ 2 ~ 2 ,  A), and so on. However, the 

difference is slight if the successive quaternion pairs in the sequence are reasonably 

close. 

2.2 Silhouettes and Envelopes 

The concept of silhouette is important in 4D visualization for the following reasons: 

First, from the silhouette surfaces or curves we can infer the shape and some geometric 

properties of the 3-surfaces or 2-surfaces in 4-space. Second, a 3-surface in 4-space 

is better displayed by the silhouette surfaces and other 2-surfaces on it than by a 



shaded volume. So, we wish to generate the silhouette explicitly. Third, the silhouette 

surfaces determine how the visibility of points on a hypersurface in 4-space changes. 

The concept of envelope is closely related to the silhouette, and turns out to be 

very useful in explaining the 3D image of the hypersurfaces in 4-space. 

2.2.1 Silhouette Points 

We use the term m-surface M as an m-dimensional manifold in n-dimensional 

Euclidean space Rn (n 2 m). Particularly, a 1-surface is also called a curve; an 

n-surface in Rn+l is also called a hypersurface; a 2-surface in R3 is also called a 

surface. 

We define silhouette points of an m-surface M C Rn with respect to a projection 

Rn + R' (m < l < n) as those regular points p on M such that the tangent 'Pn . 
space of M at p reduces its dimension under the projection 'P;. In the following we 

always assume that: 

1. ' ~ f ,  : Rn + R' is a projection with the centers on the xn-,. . ., xl+l-axes at 

finite or infinite distances from the origin, specified by their reciprocal distances 

rn, . . . , r1+1. Thus 

When all the centers of projection are at  infinity, ' ~ f ,  is an orthographic projec- 

tion and is denoted n;. 

2. p is a regular point on an m-surface M. The point p is not mapped to infinity 

under the projection. t . . . , t, are m linearly independent tangent vectors of 

M at p. nl ,  . . . , n,-, are n - m linearly independent normal vectors of M at 

P. 

3. rl+l,. . . , rn are vectors in the direction from p to the centers of projection on 

the x1+1-, ..., xn-axis, respectively. If the center of projection on the xk-axis 

( 1  + 1 5 k < - n)  is at infinity, then r k  is the k-th base vector ek. Otherwise, 



1 
r k  = -ek - p. Let m l ,  . . . , ml be 1 linearly independent vectors in the subspace 

f k  

orthogonal to span(rl+1, . . . , r,). 

A differentiable mapping cp: Rn -, R1 will induce two linear transformations (see 

e.g. [AM63]): 

cp,(tangent vector to y) = tangent vector to poy  

cp* (normal vector to f )  = normal vector to f o cp 

where y : R -, Rn is a curve in the domain of cp, and f : 72' -, R is a function on 

the range of cp. The matrix forms of the two linear transformations cp, and cp* are the 

Jacobian matrix J(cp) and its transpose J(cp)T, respectively. 

Lemma 2.2 The null space of cp,, viz. cp;l(O), is ~ p a n ( r l + ~ ,  . . . , r,). 

Proof: Let p = 1 - C:=[+, rix;. The Jacobian matrix J(cp) is 

It is easy to verify that J(cp)rk = 0 for k = 1 + 1,. . . , n. The null space of J(cp) must 

be ~ p a n ( r l + ~ ,  . . . , r,) if we can prove that its dimension is at most n - 1. 

Let (el , .  . . , en )  be a vector base of Rn. We know that any nonzero vector in 

span(el, . . . , el) will not be projected into a zero vector. If the null space has dimen- 

sion greater than n - 1, its intersection with span(el, . . . , el) must have dimension 

greater than 1. Then any nonzero vector in the intersection contradicts the definition 

of the two sets. u 

Theorem 2.3 p is a silhouette point with respect to cp: if and only if 

t &, . . . , tm, r~+l ,  . . . , rn are linearly dependent. 



Proof: First we assume that tl, . . . , t,, rl+l,. . . , r, are linearly dependent, and so 

altl + . . -  + a,t, + ,Bl+lrl+l + + Pnrn = 0 where at least one of all . . . , a ,  

is not zero. Applying the linear transformation cp, and using lemma 2.2, we get 

alcp,(tl) + - - - + amcp,(tm) = 0. That means the tangent space of M reduces its 

dimension under the projection, and so p is a silhouette point. Conversely, assume 

that p is a silhouette point. Then the vectors cp,(tl), . . . , cp, (t,) are in the tangent 

space of dimension less than m. So we have alcp,(tl) + - - + a,cp,(t,) = 0 with 

al . a, # 0. Again by Lemma 2.2 we get altl + . . + a,t, + r = 0 where r is any 

vector in ~ p a n ( r ~ + ~ ,  . . . , r,), i.e. t l ,  . . . , t,, r ~ + ~ , .  . . , r, are linearly dependent. 

Corollary 2.1 When 1 = m, the condition in Theorem 2.3 is equivalent to that 

m l ,  . . . , ml, nl  , . . . , n,-, are linearly dependent. 

Proof: It is sufficient to prove that t l ,  . . . , t,, rl+l,. . . , r, are linearly independent 

if and only if m l ,  . . . , ml, nl ,  . . . , n,-, are linearly independent. Assuming that 

t l ,  . . . , t,, rl+l,. . . , rn are linearly independent, they form a base of Rn. Then 

nl ,  . . . , n,-, are linear combinations of rl+l,. . . , r,, and ml ,  . . . , ml are linear com- 

binations of tl, . . . , t,. Therefore, m l ,  . . . , ml, nl ,  . . . , n,-, must be linearly inde- 

pendent. The converse direction is symmetric. 

For example, a regular point p on a 2-surface is a silhouette point with respect to 

cp: if t l ,  t2, r4 are linearly dependent, which is equivalent to n l  . r4 = 0 and n2  .r4 = 0. 

Adjoined to  the two equations defining the 2-surface, the solution is usually a 0- 

dimensional set. At such a silhouette point, the normal of the projected 2-surface 

cannot be determined, and this has to  be taken into account if shading is to be added 

to the projection cpi. A regular point p on a 2-surface is a silhouette point with 

respect to cpi if det(t l ,  t2, 1-3, r4) = 0, or equivalently, det(n1, n2, m1, 1112) = 0. The 

solution is usually a 1-dimensional set called the silhouette curve of the 2-surface. 

A regular point p on a hypersurface in R4 is a silhouette point with respect to 

cp: if det(tl ,  t2, t3, r4) = 0, or equivalently, det(nl, m l ,  m2, m3) = 0. Adjoined to 

the equation defining the hypersurface, the solution is usually a 2-surface called the 

silhouette surface of the hypersurface. 



2.2.2 Envelopes 

Given a family of hypersurfaces in Rn7 then a hypersurface M is called the en- 

velope of the family of hypersurfaces if: (a) At every point M is tangent to some 

hypersurfaces of the family; and (b) M touches all the hypersurfaces of the family. 

A family of hypersurfaces in Rn can be expressed in implicit form as 

or in parametric form as 

where u l , .  . . , u rn  and v are the parameters of the family, and t17 . .  . ,tn-1 are the 

parameters of the llypersurfaces. The envelope of a family of hypersurfaces can be 

computed by the envelope theorem [Spi79] : 

Theorem 2.4 

(a) Suppose that a family of hypersurfaces is defined by (2.18). Then every point 

of the envelope satisfies (2.18) adjoined by: 

where 
a f ouf = (%,..., af -IT durn 

(b) Suppose that a family of hypersurfaces is defined by (2.19). Then every point 

of the envelope satisfies (2.19) adjoined by: 



Notice that the hypersurface obtained by eliminating the parameters 111,. . . , urn 

from the (2.18) and (2.20) is called the discriminant hypersurface that consists of 

the envelope and the locus of all singular points on the hypersurfaces of the family. 

Because singular points cannot be silhouette points by definition, from Corollary 2.1 

and Theorem 2.4(a) we have: 

Corollary 2.2 The envelope of a family of hypersurfaces in .R1 is the image of the 

silhouette of a I-surface in R1+" with respect to the orthographic projection T:+,. 

The offset curves or offset surfaces can be formulated by the envelope theorem. 

The envelope can be traced numerically in R1 or in R1+". The former corresponds 

to tracing the silhouette in image space and the latter to  tracing the silhouette in 

object space. The latter is more stable since the projection will cause apparent cusps, 

self-intersections of the silhouette. This issue will be discussed in Clnpter 5. 

2.2.3 The Silhouette Surface of a Hypersurface in 4-space 

Let M be a hypersurface in R4 in parametric form given by 

and cp : R4 -+ R3 be a projection. Assuming that p = s ( t l ,  t2 ,  t3) is a regular 

point, the Jacobian matrix J(s) has rank 3, representing three linearly independent 

tangent vectors. By definition p is a silhouette point with respect to cp if and only if 

det(J(cp)J(s)) = 0. On the other hand, the hypersurface can also be considered as a 

family of 2-surfaces by setting one of the parameters, say t3, as the parameter u of 

the family, written as s ( t l ,  t2 ,  u). After projection, it becomes a family of 2-surfaces 

in R3, cpos(tl, t2, u). By Theorem 2.4(b), the envelope of the family of the projected 

2-surfaces satisfies det(J(cpos)) = det(J(cp) J(s)) = 0. Thus we get the following 

corollary: 

Corollary 2.3 The silhouette surface (in image space) of a hypersurface with respect 

to a projection from R4 to R3 can be obtained from the envelope of the family of the 

projected isoparametric 2-surfaces on the hypersurface. 



The corollary above is useful in understanding the 3D image of hypersurfaces. 

Using it we can draw qualitatively the silhouette surface of a hypersurface in image 

space without calculation, even without knowing the position of the projection center. 

Examples will be given in Chapter 3. 

2.2.4 The Normal of a Projected 2-Surface 

In 3D graphics, illumination and shading of surfaces is computed from the surface 

normal and the light directions. Since a 2-surface in 4-space has two independent 

normal directions, the generalization of 3D illumination models to $-space is more 

complicated than merely illuminating the 3D image of the 2-surface after the first 

projection step by standard methods. Furthermore, the critical problem in 4D vi- 

sualization is to gain insight into the properties of the first projection step, f ~ o m  

4-space to  3-space. Therefore, we obtain maximum information about the shape of 

the 3D image when shading in 3-space, and can concentrate on understanding the 

first projection step. 

One way to find the normal of the projected 2-surface is to  calculate it from 

the equation representing the projected 2-surface. Another way is to calculate tlie 

normal directly from the tangent or normal plane of the 2-surface before projection. 

The latter is usually more efficient because the construction of the equation of the 

projected 2-surface could be expensive [Hof9O]. 

If the 2-surface is in parametric form and so the tangent vectors are directly 

available, it is easy to calculate the normal vector n of the projected 2-surface by first 

transforming the tangent vectors and then a.pplying the cross product: 

If the 2-surface is in implicit form and so tlie normal vectors are directly available, 

we can first use the cross product in R4 to  find the tangent vectors and then follow 

the same procedure as that for parametric 2-surfaces. 



Let i, j, k , l  be the base vectors of R4, and a, b ,  c be three vectors where a = 

(a,, a,, a,, and so on. The cross product @ is defined as: 

From linear algebra we know that @(a, b ,  c )  is orthogonal to the subspace span(a, b ,  c )  

if a, b ,  c are linearly independent. From two normal vectors n l  and n2 we can find 

two tangent vectors tl and t2, and vice versa, as follows. Given n l  and n2, choose 

any two vectors a and b such that 111, n2, a, b are linearly independent. A base of 

the tangent space is then 

A more efficient way is to find the normal of the project 2-surface directly from 

the two normal vectors without calculating the tangent vectors first. 

Theorem 2.5 Suppose that p is a regular point on a 2-surface, and is a nonsilhouette 

point with respect to y i .  Let n = a n 1  + ,ha satisfy n . rl = 0. Then r i ( n )  is the 

normal vector of the projected 2-surface at  the point y i (p ) .  

Proof: Assume that ii is the normal vector of the projected 2-surface at the point 

cp;(p). From the Jacobian matrix J ( y i )  we know that ~,3(yZ*(ii)) is parallel to ii. It 

suffices to show that n as defined above is parallel to yi*(ii) in R 4 .  The vector ii 

satisfies 

The last equation is actually satisfied when fi is any vector in R3. These three 

equations are equivalent to 



Since p is a nonsilhouette point, t l ,  t2,r l  are linearly independent by Theorem 2.3. 

Hence n is parallel to cp;*(n). 

Theorem 2.5 can also be applied to calculate the normal vector of a projected 

silhouette surface of a hypersurface. The silhouette surface S of a hypersurface f 

with respect to vi is a 2-surface in 4-space: 

As a 2-surface, S has its own silhouette points with respect to vi. According to 

Corollary 2.1, they should satisfy: 

Note that (2.23) is redundant. Therefore, (2.24) determines on S a curve C where the 

projected S is singular. Except for the points on C, by Theorem 2.5, the normal to 

the projected silhouette surface is n;(anl + /3n2) = n,3(anl) because p is obviously 

zero. We state this result as the following corollary: 

Corollary 2.4 Let S be the silhouette surface of a hypersurface f = 0 with respect to 

vi. Suppose that p is a regular point on S, but not a point satisfying (2.24). Then 

n: (v  f )  is the normal vector of cp;(S) at the point cp;(p). 

2.3 Visibility 

Theoretically we can project objects in arbitrary n-space into 2-space and produce 

their 2D images. But the mapping is not one-to-one. A point in the image space can 

have infinitely many poii~ts as its preimage. To resolve this ambiguity, the concept of 

visibility has to be introduced. 

The visibility associated with the projection from 3-space to 2-space is directly 

taken from our experience of seeing the real world. For the higher dimensional space, 



however, visibility is only a mathematical definition. There are many ways to extend 

the visibility into high dimensional space. To choose a suitable one, several factors 

have to be considered: 

1. The definition of visibility can be extended from vz to arbitrary ~ 2 - ' .  Taking 

a point in the image space, its preimage points lie in a line in the object space. 

The visibility information is obtained from the order of those points in the line. 

For the projection however, the preimage points lie in a plane, with no 

natural total order. The visibility has to be considered step by step, first with 

respect to yi- l ,  then to cp:~?, and so on. 

2. The dimension of the potentially visible objects with respect to v ~ - l  could be 

restricted to n - 1 and n as advocated by [BS82]. But in some applications, 

lower dimensional objects such as curves and 2-surfaces need to be displayed 

as well. On the other hand, an object of dimension n will definitely reduce 

dimension during projection. Its image is indistinguishable from the image of 

its bounding (n - 1)-surface. Therefore, the dimensions of potentially visible 

objects range from 0 up to n - 1. 

3. The dimension of the potentially hiding objects with respect to  P:-' could be 

n - 1 and n. Again, a point hidden by an object of dimension n must also be 

hidden by its boundary (n - 1)-surfaces. Therefore, the dimension of potentially 

hiding objects is limited to n - 1. 

4. It will be helpful if we can display transparent objects, which a,re actually im- 

ages produced by previous projections. Therefore, we choose the definition of 

quantitative visibility [SSS74, EC90, WalSO]. The visibility of a point is quan- 

tified as the number of hiding objects intersecting the line segment from this 

point to the center of projection. 

In the following the term object can also refer to the image of an object produced 

by the previous projections. Consider the projection cpE-' with the center c. A point 



The 

Figure 2.6 Visibility 

p on an object of any dimension less than n has a sight number which is the number 

of intersections of the ray from p to c (excluding p) with objects of dimension n - 1. 

The total visibility information of the point is expressed as a list of sight numbers. 

Visualization of 4-space involves only two projections, For the first projection we 

remove those points with nonzero sight numbers. For the second projection we use 

the sight numbers to show transparency. If all the objects in R4 are 2-surfaces or 

curves, then every object is visible with respect to the first projection. Hypersurfaces 

in R4 will make points on other objects invisible, but after the first projection, their 

images are totally transparent. The shapes of the hypersurfaces are shown mainly by 

their silhouette surfaces, boundary surfaces, intersection surfaces, and isoparametric 

surfaces, that are all considered as objects of dimension 2. 

Suppose that all objects in R4 are contained in a hypercube that contains neither 

eye, nor eye,. A point in the 2D image space, together with eye, and eye,, determines 

a plane. The plane will intersect in general with a 2-surface in a point and with a 

hypersurface in a curve. All of the intersection points and curves will be projected 

to the same point in the 2D image space. Fig. 2.6 shows an example. Each point 



is associated with a pair (a,  b), where a is the sight number with respect to the first 

projection, b is the sight number with respect to the second projection if a = 0. When 

a > 0, the point will be removed after the first projection, and so b is undefined as 

denoted by an asterisk. 

The explanation above suggests a ray tracing method for 4D visualization. Instead 

of tracing a line segment, we can construct a plane and calculate its intersection with 

objects. Instead of finding the roots of a single equation, we need to solve a system 

of equations, which could be overdetermined in the case of curve-plane intersection 

in R'. Presently, this method is not suitable for interactive display. 

Other methods are based on the following theorem that is an extension to those 

presented in [EC90, IYa1901. 

Theorem 2.6 In the 3D image space, the silhouette, self-intersection, and boundary 

surfaces of a hypersurface partition the hypersurface into regions such that all points 

in the same region have the same sight number. 

The silhouette, self-intersection, and boundary surfaces are called the active su r -  

faces. Consider a point moving on a hypersurface. Its sight number changes when 

its image, in 3D image space, passes through an active surface. The change of sight 

number can be calculated by several methods, such as the differential method de- 

scribed in [Iia190], or the propagation rules described in [EC90]. Once we find the 

sight number of a point, it is propagated into the whole region without any further 

calculation. The implementation will be discussed in Chapter 4. 



3. VISUAL PHENOMENA AND THEIR MEANING 

One of the major tasks of 4D visualization is to interpret the 3D images of objects 

in 4-space. Through the visual phenomena explained in this chapter, we want to show 

that the 3D images of the objects in 4-space can expose some geometric properties 

in 4-space. We will explain how to choose viewing positions, how to interpret the 

3D images of hypersurfaces, and how to observe the curvature of a hypersurface in 

4-space. 

3.1 Interpretation of Some Viewing Positions 

3.1.1 Viewing Positions That Keep 2D Image Invariant 

Let L be the line in R4 passing through the two centers of projection eye, and 

eye,. If we fix the 2D image space and let eye, and eye3 move on the line L, the 

hasic 2D image, i.e. the image without considering visibility, will not change. This 

phenomenon can be observed by setting O,! = O5 = o6 = 0 and rotating in (2, z ~ ) - ~ l a n e ,  

i.e. changing 0,. Meanwhile, the distances of eye, and eye, have to  be modified to 

keep them on the fixed line L, according to: 

r3 = a cos 0, + b sin & 

r, = -asin03 + bcos03 

Particularly, if O3 changes from 0 to f ;, correspondingly (r4,r3) changes from 

(b, a)  to ( ~ a ,  f b),  so that the positions of eye, and eye, are exchanged. 

For nonzero 04, d5, 06, the positions of eye, and eye, can be exchanged as follows. 

Suppose the first picture is obtained by 0 = (al, C Y ~ ,  a 3 , a 4 ,  as ,  a g )  and r = (b, a ) .  To 



B D images 

:A - - 
1D images 

(b) (c) 

Figure 3.1 A square plate projected into a line. (a)viewing positions. (b)eye3 at B, 
eye, a t  A. (c)eye, at A, eye, a t  B. (d)eye3 at A, eye, at C. (e)eye, a t  D, eye, at E 

obtain the second picture we can set the rotation matrix as: 

and set r = ( ~ a ,  f b). We can use the inverse Euler angle formula (2.1) and (2.2) to 

find the Euler angles corresponding to the above rotation matrix. 

3.12 Viewing Positions with Special Effects 

Consider a bracket of nonuniform material density that is divided into cubic ele- 

ments by a grid of planes x = constant, y = constant, z = constant; where the w-value 

represents the density. The "planes" in the grid are actually 2-surfaces in 4-space. In 

order to facilitate understanding the different situations, Figure 3.1 shows a compan- 

ion example of a surface in 3-space that is projected into a line. In this companion 

example, a square plate of nonuniform material density is shown, where the z-value 

represents density. 



Figure 3.2 Bracket viewed from 6 = (070707457607 0) degrees 

Figure 3.3 Bracket viewed from 0 = (070707457607 0) but shaded by color scale 
representing w-values 



Figure 3.4 Bracket viewed from 8 = (45,60,90,0,0,0); Positions of eye, and eye, are 
exchanged 

Figure 3.5 Bracket cut by z-clipping plane to display isosurface w = constant 



Figure 3.6 The  3D image viewed from a different eye, direction: 
0 = (45,60,90, -75,45,0) 

Figure 3.7 The  3D image viewed from a different eye, direction: 
8 = (45,60,90, -75,90,0) 



1. By ignoring the w-values, a normal 3D image is obtained: Set r = (0, a)  and 

6 = (O,O, 0, a l ,  a2,O). By varying a l ,  a 2  and a we obtain the usual 2D pic- 

tures of the 3D object (Figure 3.2). Note that it is still possible to see the 

w-value on the boundary of the 3D object using a color scale (Figure 3.3).' 

Compare Figure 3.l(b). -Moreover, the same effect can be achieved by setting 

0 = ( a l ,  an, O,O, 0,O) and r = (0, a).  This is possible because Rj,(O) is the 

identity matrix and R:,(al) Rlz(a2) = Rz,(al) Riz(a2). 

2. Assume that 0 = ( a l ,  a2, &$, 0,0,0) and r = ( ~ a ,  0). Then we obtain the 

same basic 2D image as before because of the exchanged eye, and eye, posi- 

tions. However, the w-value displayed through color is the maximum, or the 

m i n i m ~ r n , ~  of all w-values on a line tlirough the bracket from eye,. The situ- 

ation is analogous to  looking at a mountain from atop (Figure 3.4). The base 

of the mountain is the projected bracket shape, and the height is the w-value. 

Compare Figure 3.1 (c). 

3. Once we have generated the picture of (2), an isosurface (w=constant) can be 

obtained by z-clipping (Figure 3.5). The isosurface is not displayed explicitly 

but implied by the curves that are the intersection of the isosurface with the 

grid surfaces. These intersection curves would have the same shape if they were 

displayed in Figure 3.3. 

4. The 3D image implied by the picture of (2) can also be seen from other direc- 

tions, with 0 = (a l ,a2 ,  &;,P1,P2,O) and r = ( ~ a ,  b). Using the analogy of the 

mountain, we fix the base and height of the mountain (corresponding to the 

first projection) but view it from a different direction. Figures 3.6 and 3.7 show 

the cases p2 = % and p2 = :. Compare Figure 3.1 (d). 

'Here the pictures are shown in monochrome to comply with the university thesis format. For 
color pictures see [HZ91]. 

=The maximum and minimum are approximate if a # 0. 



5 .  Because Os only rotates the 2D image on the screen, we have the most general 

case with 8 = ( a l ,  a 2 ,  a g ,  Dl, P2, 0) and r = (a, b). When a s  is varied from 0 

to f ;, intermediate w-values are seen. The situation is analogous to viewing 

the mountain from different perspectives, except that now the shape of the 

mountain changes as well, because of the 4D motion. In Figure 3.8 only three 

surfaces in the grid, namely x = constantl, y = constant2, and z = constant3 

are displyed. Compare Figure 3.l(e). 

3.2 Interpretation of the 3D Images of Hypersurfaces 

3.2.1 Procedural Construction of the 3D Image of a Hypersurface 

To understand the computer-generated pictures of hypersurfaces, we describe how 

to construct in one's mind the 3D image of a hypersurface. The procedure is explained 

with an example: the hypersurface in R4 defined by x2 + y2  + z - w2 = 0. One of its 

parametric forms is 

x = r sin s 

y = r cos s 

2 2 z = t - r  

w = t  

1. Select a point as the origin of the 3D image space. From the origin draw 

four incoplanar vectors as the 3D images of the four base vectors of the world 

coordinate system. As explained in Section 2.1, the upward direction is the 

projected world w-axis. 

2. Fix one of the parameters of the hypersurface and draw a set of isosurfaces. 

This is essentially the same way as we draw a 2-surface in 3-space except that 

there are four base vectors and they no longer form an orthogonal system. In 

Figure 3.9 three isosurfaces, w = -0.5, w = 0, and w = 0.5 are drawn. 



Figure 3.8 Bracket viewed from 0 = (45,45,45,105,90, 0). Only three surfaces in the 
grid with constant x, y and z values are displayed 

Figure 3.9 Three isosurfaces on the hypersurface x2 + y2 + z - w2 = 0 



Figure 3.10 The silhouette surface of the hypersurface 

Figure 3.11 The boundary surface z + 0.5 = 0 of the hypersurface 



Figure 3.12 The hypersurface viewed from 0 = (45,105,78,90,81,0) with visibility 
determination 

Figure 3.13 The hypersurface viewed from 0 = (45,75,102,90,81,0) with visibility 
determination 



3. According to Corollary 2.3, the silhouette surface in the image space is the 

envelope of the family of the isosurfaces. So, we can construct the the silhouette 

surface, as shown in Figure 3.10, following the shape of the isosurfaces. 

4. Add boundary surfaces, if necessary. In Figure 3.11 a boundary surface z = -0.5 

is shown. The isosurfaces w = -0.5 and w = 0.5 also serve as boundary 

surfaces. The boundary surfaces and silhouette surface enclose a volume in 3D 

image space. This volume is the 3D image of the portion of the hypersurface 

we are displaying. 

5. Trim the 2-surfaces to show the visibility. In Figure 3.9, as the w value changes 

from -0.5 to 0.5, the isosurface sweeps a volume. Within the volume some 

points are swept twice by the isosurface at different w values. The ambiguity 

can be resolved by making a choice a t  those points, either the first sweep hides 

the second sweep, or vice versa. The result of the two choices are shown in 

Figures 3.12 and 3.13. They correspond to two different viewing directions. 

3.2.2 Understanding by analogy 

Another way to understand the 3D image is to create an analogous example in 3- 

space and project it into 2-space. Figure 3.14(a) and (b) show a surface x2 + y - z2 = 

0 from two different views. The silhouette curve, isocurves, and boundary curves 

are the counterparts to the silhouette surface, isosurfaces, and boundary surfaces in 

Figure 3.12 and 3.13. 

Let us examine another hypersurface x2 + y2 + z2 - w2 - 1 = 0. Figure 3.15 shows 

its silhouette surface, five isosurfaces with constant w values of -1, -0.5,0,0.5,1. 

Two of them also serve as the boundary surfaces. A curve on the hypersurface is also 

shown, with the parametric form 

x = d-'cos2t 

y = d W c o s t s i n t  

z = d-sint 



(a) (b) 

Figure 3.14 Surface x 2  + y - z2 = 0 with two different views 

Figure 3.15 Hypersurface x 2  + y2 + s2 - w 2  - 1 = 0 viewed from 
8 = (-165,45,75, -165,84,0) 



Figure 3.16 The dimension reduction of the silhouette surface in 3D ima.ge space 

Figure 3.17 The same silhouette surface viewed from another direction 



Figure 3.18 The  hypersurface viewed from 0 = (-165,45,15, -165,84,0) 

Figure 3.19 Surface x2 + y2 - z2 - 1 = 0 with three different views 



The analogous example is x2 + y2 - z2 - 1 = 0 as shown in Figure 3.19(a). From the 

comparison it is easy to understand why in the 3D image space part of the isosurface 

w = 0.5 appears to be inside the boundary surface w = 1. 

The interpretation by analogy has some limitations: The curve in Figure 3.15 has 

no counterpart in the 3D example. This is because the curve is only partly visible. 

According to  its dimension, its counterpart should be a point, but a point cannot be 

only partly visible. The limitation illustrates the fact that 4D visualization really has 

some phenomena that have no analogy in 3D visualization. 

Another phenomenon we observe is the dimension reduction of the silhouette sur- 

faces in image space. In Figure 3.15, the hypersurface is viewed from O3 = &a. As 

eye, rotates in the (z,w)-plane towards O3 = :, the silhouette surface shrinks. It is 

reduced to a circle at O3 = 2. In the 3D image space it is still the envelope of the 

isosurfaces as shown in Figure 3.16. But in 4-space it is a cylinder swept by the circle 

in the direction towards eye,. This can be seen by fixing the silhouette surface while 

rotating eye,; see Figure 3.17. To understand this phenomenon, a similar situation 

is shown in Figure 3.19(b). When ey% is at an angle of with the (x, y)-plane, the 

silhouette curves of the surface x2 + y2 - z2 - 1 = 0 are reduced to  two points. In 

3-space they are actually two lines on the surface. 

As eye, rotates from O3 > : to O3 < :, the 3D image of the silhouette surface 

changes from hyperboloid to ellipsoid. In addition, the volume that is the image of the 

hypersurface changes from "inside" the silhouette surface to "outside" the silhouette 

surface. See Figure 3.18 where eye, is at O3 = 5.  The analogous case is shown in 

Figure 3.19(c). 

These observations indicate that except for a few critical directions, the shape 

of silhouette surface is insensitive to  small variations of the eyed's orientation. This 

property might be useful for matching hypersurfaces in 4-space. Suppose one hyper- 

surface is constructed from experimental data, and another hypersurface is accurately 

predicted by theory. Then their silhouette surfaces and the volume of the projected 



hypersurfaces are expected to  be similar even if their orientations do not perfectly 

coincide. 

3.3 Observing the Curvature of a IIypersurface 

Graphical methods have been used successfully in analyzing the intrinsic shape 

and curvature properties of surfaces in 3-space [Far87]. We discuss how to  infer the 

curvature properties of a hypersurface in $-space from the image of its silhouette 

surface. Notice that given a regular point on a hypersurface, it is always possible to 

make i t  a silhouette point by adjusting the projection direction. 

Let M be a hypersurface in R", and N be a unit normal vector field on M .  For 

each point p of M, the shape operator of M at p is a linear operator Sp: Tp(M) + 

Tp(M) given by 

Sp(v) = - v u  N 

It is a symmetric operator because it can be shown that Sp(v). w = Sp(w). v for any 

pair of tangent vectors v and w at  p [O'N66]. 

Let a be a curve on M with a(0)  = p and a'(0) = v. By Meusnier's theorem 

[dC761, 

Sp(v) v = a" (0) . N(p) 

The normal curvature of M in the direction of a unit vector u is defined as 

The extreme values of the normal curvature k(u) of M at  p are the principal curvn- 

tures of M at p, and are denoted by kl ,  kp, k3. The directions in which these extreme 

values occur are called principal directions of M at p. Unit vectors in these directions 

are called the principal vectors of M at p [O'N66, Tho791. 

Lemma 3.1 The principal curvatures of M at p are the eigenvalues of the shape 

operator Sp and the principal vectors of M at  p are the eigenvectors of S,. 



S, is positive definite if k l ,  k2, k3 > 0, negative definite if kl, k2, k3 < 0, and indef- 

inite otherwise. If the principal curvatures are distinct, then the principal directions 

are orthogonal. If they are not distinct, say k l  = k2 # kg, then the principal direc- 

tions corresponding to kl, k2 can be chosen arbitrarily in a plane orthogonal to the 

third principal direction. 

Theorem 3.1 Let p be a silhouette point of a hypersurface M in R\vith respect to 

the projection y :  R4 -+ R3. Consider the image of M in the neighborhood V of p. 

The images of the silhouette surface and the tangent hyperplane are denoted by y ( S )  

and y ( T ) ,  respectively. 

(a) If p(S) is a plane and p (V)  is contained in p (S) ,  then kl = k2 = k3 = 0. 

( I > )  If v(S) is a plane and y (V)  is on one side of cp(S), then k1 = k2 = 0 and 

k3 # 0. 

(c) If y ( S )  is a cylindrical surface, cp(S) and cp(D) are on the same side of cp(T), 

then kl = 0 and k2k3 > 0. 

(d)  If y ( S )  is a cylindrical surface and is on one side of y ( T ) ,  (p('i3) is on both 

sides of y (T) ,  then k1 = 0 and k2k3 < 0. 

(e) If cp(S) is an elliptic surface with positive Gaussian curvature, y ( S )  and p (V)  

are on the same side of Y(T), then b1b2k3 # 0 and all have the same sign. 

(f )  If p(S) is an elliptic surface with positive Gaussian curvature, cp(D) is on both 

sides of p(T), then b,;, < 0 < k,,,. 

(g) If p(S) is a surface similar to a hyperbolic paraboloid with negative Gaussian 

curvature, then k,;, < 0 < k,,,. 

The cases (a) to (g) are shown in Figure 3.20. In the pictures (a) and (b) a planar 

y(S)  is drawn. An isosurface is drawn in picture (b) to show that p(D) is on one 

side of y (S) .  The isosurface is trimmed due to  the visibility change at the silhouette 

surface S. In pictures (c) and (d) a cylindrical p(S) is drawn. An isosurface shows 

on which side is y(V).  Although cp(T) is not drawn in the pictures, it can be inferred 

from the shape of p(S) and the position of p. In pictures (e) and (I) an elliptic p(S) 



Figure 3.20 Curvature of a Ilypersurface 



and an isosurface are drawn. Picture (g) is the only case when q ( S )  is similar to 

a hyperbolic paraboloid. If in picture (g) q(V) is on the other side of cp(S), it still 

represents the same case. 

To prove Theorem 3.1, we use two lemmas. Recall that an active surface is a 

silhouette surface, a boundary surface, or a self intersection surface of a hypersurface. 

Lemma 3.2 Suppose that a curve 6 in the volume of q ( M )  does not cross any pro- 

jected active surfaces. Then there is a curve a on M such that 6 = q(a) .  

Proof: Assume that the hypersurface M is expressed in implicit form 

f ( x l ,  x2 ,  2 3 ,  x4)  = 0 and the curve ti is expressed in parametric form 

( l i l ( t ) ,  e 2 ( t ) ,  63 ( t ) ) .  Then we can consider t  as known and solve the system 

of four equations in four variables: f ( x l ,  x2 ,  x3, x q )  = 0 and q ( x l ,  x2 ,x3 ,  x 4 )  = 

(el ( t ) ,  c 2 ( t ) ,  e 3 ( t ) ) .  There must be at least one solution ( x l ,  x2 ,  23 ,  x 4 )  = 

(al  ( t ) ,  a2(t) ,  a3(t), a4( t ) )  that is continuous in t because ii does not cross any pro- 

jected active surfaces. 

Lemma 3.3 Suppose that the curve a on a hypersurface M passes through a sil- 

houette point p with respect to a projection cp.  Let a ( 0 )  = p. Then a"(0) - n is 

proportional to ( p o a ) " ( 0 )  - n, where n is the normal vector of M at p and n is the 

normal vector of q ( S )  at q ( p ) .  

Proof: The curve a = (al, . . . , 0 4 )  is projected into R3 as 

Its first and second derivatives are: 

( a ,  a ,  a )  27-4 (a; , a;, a;) ( q ~ a ) ~ I  = 
1 - ra4 

+ 
( 1  - ra4)2 

+ 



By Corollary 2.4 the normal vector ii of y (S)  at  y ( p )  is parallel to n (n )  = (nl ,  n2, n3). 

We can choose it as ii and get 

The ray from p = (al(0) ,  . . . , crq(0)) to eye4 is r = (-cul(0), -a2(0), -a3(0), - 

a4(0)) .  By Theorem 2.3 we have r . n = 0, i.e. 

Also we know that cul(0) . n = 0, i.e. 

Substituting (3.2) and (3.3) into (3.1) yields 

Now we prove Theorem 3.1. From Lemma 3.2 we can choose an arbitrary curve 

in cp(M) as y ( a ) .  Let p ( a )  pass through the point y ( p )  and assume that cu passes 

through p .  By lemma 3.3 we know that al1(O) . n is proportional to (y~cu)~~(O)  n. We 

cannot estimate quantitatively the normal curvature of M in the direction of cul(0) 

from (yocu)I1(O) . n because we do not know if cu is a unit speed curve. Nevertheless, 

we can obtain information about the sign of the normal curvature of M at  p.  

(i)  If (yocu)'I(O) . n # 0, then at  least one of the principal curvatures of M is 

nonzero. If ( cpoc~~)~~(O)  - ii and ( y ~ a ~ ) ~ ~ ( O )  . n are nonzero and have the opposite sign, 

then M has two principal curvatures of opposite sign. 

(ii) In the neighborhood of y ( p )  if y ( a )  is contained in cp(T) n y ( S )  where cp(T) 

and y ( S )  coincide or tangent to  each other, then one of the principal curvature of M is 

zero. To see this, notice that all the points in Sncu share the same tangent hyperplane 



T. Now a is contained in T and hence  IN = 0,  or equivalently, Sp(al) = 0. That 

means one of the eigenvalue of the shape operator Sp is zero. 

Now we analyze the cases (a) to  (g): 

(a) Since ~ ( 2 7 )  c v(S) = v(T), we know that 27 is part of a hyperplane, and so 

kl = k2 = kg = 0. 

(b) We choose two curves, cp(al) and cp(a2) in cp(S), intersecting transversely at 

the point ~ ( p ) .  From (ii) above, and that span(ai ,  a',) has dimension two, we obtain 

that S, has two zero eigenvalues. We choose one more curve v(a3) with nonzero 

curvature at ~ ( p ) .  From (i) above, the third eigenvalue is nonzero. 

(c) The fact that p(S) n cp(T) is of dimension one implies that there is only one 

zero eigenvalue. Any other curve cp(a) in v(V) ,  intersecting cp(T) only at cp(p) will 

have the same sign of (cpocr)I1(O) . n. From Lemma 3.3 we obtain that k2 k3 > 0. 

(d) Like (c) we have bl = 0. But now we can find two curves cp(a) in p(M) with 

opposite signs of (cpoa)I1(O) . n. From (i) above we obtain that k2k3 < 0. 

(e) Any curve p(a) in 27 must bend in the same way at cp(p), which implies 

kl , k2, b3 have the same sign. 

( f )  We can choose two curves cp(a) in ~ ( 2 7 )  with opposite signs of (cpoa)I1(O) . n. 

Since we have no information about the third eigenvalue, we conclude kmin < 0 < 

kmaz- 

(g) NO matter on which side of p(S) is cp(M), we can always choose two curves 

y ( a )  in ~ ( 2 7 )  with opposite signs of (cpoa)I1(O) n. Hence k,;, < 0 < k,,,. • 

Take the hypersurface x2 + y2 + z2 - w2 - 1 = 0 as an example. No matter how we 

rotate eye,, except for 03 = f :, the 3D image of the hypersurface is similar to either 

Figures 3.15 or Figure 3.18. The images fall into the cases (g) and ( f ) ,  respectively. We 

conclude that every point on the hypersurface has both positive and negative principa.1 

curvatures. This can be verified by calculation from the hypersurface definition. 

Figures 3.21 and 3.22 show another example, the Gauss normal distribution in 

R3. The hypersurface is defined as 



Figurc 3.31 Hypersurface o l  Gauss Distribution 

Figurc 13.22 IIypcrsurface of Gauss Distribution Clipped 11)- a Planc 



where a is a constant. The volume displayed is -2 5 x, y, z, <_ 2. Five isosurfaces 

with z = constants of -2, -1,0,1,2 and the boundary surfaces with x, y = constants 

of -2 ,2  are shown. Notice that if eye, is a t  infinity on the world w-axis, the picture 

is simply a box with several planes inside it. Even the isosurfaces w = constant are 

trivial concentric spheres. In Figures 3.21 and 3.22 the viewing direction in Euler 

a x *  angles is 8 = (O ,$ ,  ;i, , , ,,, 0). The silhouette surface appears due to the inclination 

of eye,. The top of the bell-shaped silhouette surface is the part of the hypersurface 

near p = ( O , O ,  0, a) .  It is the case (e) of Theorem 3.1. The principal curvatures 

satisfy kl, k2, it3 > 0 or k l ,  k2, kg < 0 depending on the choice of the normal vector 

of the hypersurface. The case (g) of Theorem 3.1 can be observed near the rim of 

the bell-shaped silhouette surface. The principal curvatures at those points satisfy 

k1 < 0 < k3. Notice that the hypersurface is mapped to both sides of the silhouette 

surface, but in R4 only those points whose images are inside the bell can be in the 

neigliborhood of a silhouette point. This can be seen from the trim of the isosurface 

z = 2 a t  the top of the cube. The isosurface is occluded by the points on and inside 

the bell, but they are distant in R4 .  Theorem 3.1 only observes the neighborhood of 

a silhouette point in R 4 .  

In [NFI-ILSl] the curvature of a trivariate function was calculated from the defini- 

tion and then displayed using a color scale. The curvature was defined as I< = bl k2k3, 

an extension to the Gaussian curvature. It seems hard to use a scalar quantity to rep- 

resent the curvature of a 3-dimensional hypersurface. For example, when klk2k3 < 0 

it could be the case kl < 0, k2 < 0, k3 < 0 as shown in Figure 3.20(e), or the case 

kl < 0, k2 > 0, b3 > 0 as shown in Figure 3.20(f) and (g). Our method of displaying 

curvature is more intuitive in that the curvature is inferred from the hypersurface's 

image rather than by a calculation of a scalar value from its equation. 

The idea of our method is adjusting the viewing direction so that at the point 

the normal of the hypersurface is orthogonal to the viewing direction. An alternate 

nlethod would be adjusting the viewing direction so that at the point the normal 

of the hypersurface is parallel to the viewing direction. Then the curvature can be 



observed from the 2-surface that is the intersection of the hypersurface and its tangent 

hyperplane. This method is an extension to the Dupin curve or Dupin indicatrix of 

a surface in R3 [dC76, O'N661. We think that further investigation of this method 

will produce useful and interesting results. 



4. SYSTEM ARCHITECTURE 

\Ve have implemented an Interactive 4D Visualization System, named IView, on 

a conventional z-buffer based 3D graphics workstation. In this chapter some related 

algorithms, data structures, and efficiency considerations are discussed. After an 

overview of the system in the first section, two major issues, namely polygonalization 

and visibility determination, are presented in successive sections. 

4.1 System Overview 

There are several goals determining the design of the system: 

1. Interactive response. If the frame modification does not involve a 4D opera- 

tion, the response should be as fast as in ordinary 3D graphics. For example, 

when eye3 rotates or the z-clipping plane moves, a scene of about five thousand 

polygons takes a few tenths of second to update.' The response time to an 

eye, motion is about two or three times that of an eye, motion. According to 

our experience, to examine a 4-D object, after one motion of eye,, many motion 

steps of eye, are necessary to understand fully the shape of the 3D images. 

For complicated 4D operations like silhouette surface generation plus 4D visi- 

bility determination, as shown by the hypersurface examples in Chapter 3, the 

response time is still within a tolerable range up to fifteen seconds. 

2. Flexibility. All 2-surfaces and curves are considered independent objects, and so 

can be translated and rotated. They can be grouped into arbitrary levels. They 

can also be shaded by different methods, e.g. wire mesh, opaque or transparent 

surface, depth-cueing, or shaded by 4D lighting. The visibility mode can be 

lExperiments were conducted on a Silicon Graphics Inc. Personal Iris 4D/35 



controlled independently of the shading method. Currently the system supports 

three visibility modes: eye,-visible, eyej-visible, and invisible modes. The ey%- 

visible mode shows the conventional hidden surface removal in 3D image space. 

The eye,-visible mode shows the visibility associated with both the first and the 

second projections. This mode is useful to display a hypersurface in 4-space. 

A hypersurface is considered a special group consisting of silhouette surface, 

boundary surfaces, self-intersection surfaces, and isosurfaces. When shown in 

eye,-visible mode, all the 2-surfaces on the hypersurface are trimmed according 

to the visibility associated with the first projection. The generation of the 2- 

surfaces on a liypersurface can be controlled independently. For example, it is 

possible to fix a silhouette surface while rotate eye, to show the phenomenon in 

Figure 3.17. A similar example, fixing the silhouette curve of a 2-surface with 

respect to the projection from 4-space to 2-space while rotate both eye, and 

eye,, will be given in Chapter 5 .  It is also very useful to turn off some of the 

objects by making them invisible. Note that objects behind eye, are typically 

culled by the projection algorithm. 

3. Compatibility with 3D Graphics. As mentioned in Chapter 2, the three Euler 

angles controlling eye, are just the ordinary azimuthal, incidence and twist 

angles in 3D graphics, and the three Euler angles controlling eye, are their 

natural extension. The 3D image of 4D objects can be shaded according to a 

3D lighting model. In our system, objects in 3-space can be displayed in two 

ways. By setting w = 0 the objects exist in the subspace spanned by the world 

x-, y-, and z-axes. When eye, rotates, the shapes of these objects could be 

changed. Another way is to put those objects into 3D image space. Then eye, 

motion has no effect on them at all. This is not only compatible with existing 

3D graphics, but also useful for understanding 4D objects. For example, we can 

display several 4D objects together with a 3D cube. While eye4 is moving, the 

3D images of 4D objects change, but the 3D cube remains unchanged, giving 

clues how the 3D images are changed in response to  the eye4 motion. 



The system architecture is shown in Figure 4.1. 

The objects in this system are classified into the following types: 

1. CURVE3 and CURVE4. These are parametric curves in 3D ima.ge space and 

4D world space, respectively. They are transformed into types P T 3  a.nd PT4, 

a list of points in 3-space and 4-space, respectively. 

2. SURF4P and SURF4I. These are parametric and implicit 2-surfaces defined in 

4-space. The functions defining the surfaces may be arbitrary C1 continuous 

functions. After polygonization, they become types POLY4T and POLY4N7 a 

list of polygons, each vertex attached with two tangent vectors or two normal 

vectors, respectively. If the 2-surface is defined by a complicated procedure, 

it can be polygonalized by a separated program and sent to the system as 

type POLY4T or POLY4N. Another type, POLY4, without tangent or normal 

vectors, can be used to define polytops in 4-space. 

3. SURF3P and SURF3I. These are parametric and implicit 2-surfaces defined in 

3D image space. They are polygonized into type POLY3N, i.e., 3D polygons 

with a normal vector at  each vertex. The type of 3D polygons without normal 

vector is POLY3. 

4. GROUP. Objects of all types can be grouped together. For example, a set of 

isosurfaces, or a 2-surface with silhouette curves. All objects in the system are 

thus organized into a tree structure. The effect of moving the aim point could 

be achieved by translating the root object. 

5. HYPER. This is the type to represent a hypersurface in 4-space. Similar to the 

type GROUP, it contains as members the silhouette surface, self-intersection 

surfaces, boundary surfaces, isosurfaces and curves on a hypersurface. When 

displayed in eye,-visible mode, it is used for trimming the 2-surfaces and curves 

on the hypersurface according to the definition of 4D visibility. Ilow the member 
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surfaces and curves are to be generated is not automatic in order to increase 

flexibility. 

The top level algorithms are the following: 

1. Polygonalization. Polygonalizing parametric surfaces and 3D implicit surfaces 

has been discussed extensively in the literature, e.g. [BloSS, IIWSO, LC87, 

RFID89, VlaSCI]. So, we will concentrate on the polygonalization of 2-surfaces 

in 4-space. We adapt the algorithm presented by Allgower [AGS7] with some 

special considerations for 4D visualization. After the polygons are generated, 

Newton iteration is applied to  bring the points onto the '-surface. Finally, tiny 

polygons or those of poor aspect ratios are merged with adjacent polygons to 

reduce the total number of polygons. 

2. Visibility determination. First, generate all the intersection curves between 

those pairs of 2-surfaces, in which at least one of them is an active surface, 

in 3D ima.ge space. The intersections tend to  be singular, e.g. intersecting 

tangentially, or several intersection curves meeting at a common point. This 

was predicted by the discussion in Chapter 2 and was illustrated by the pictures 

in Chapter 3. The intersection curves divide the 2-surfaces into regions. Then, 

for each region choose one point to calculate the sight number and propagate 

it across the whole region. Invisible parts of polygons are trimmed away. 

3. Projection and Shading. To make full use of the 3D graphics capacity, the 

coordinates and normals of polygon vertices in 3D image space are calculated 

and stored in memory. They are updated only when the objects are translated 

or rotated in 4-space, or when the position of eye, is modified. The wire mesh, 

flat, and Gouraud shading can be performed by the 3D gra.phics library. But 

other shading methods have to be implemented by the system. For examples, 

When using the depth cueing in 4-space, the color and intensity a t  a point is 

determined by the distance from that point to eye,. When shaded by 4D lights, 



the intensity at  a point is determined by the dot product of the hypersurface 

normal and the vector from that point to  eye,. 

4.2 Polygonalization of Implicit 2-Surfaces in 4-Space 

An implicit 2-surfaces in 4-space is defined by two equations in four variables: 

f (x, y, z ,  w) = 0, g(x, y, z ,  w) = 0. Although all 2-surfaces have to be projected into 

3D image space before they can be displayed, we prefer polygonalization in 4-space for 

the following reasons. First, polygonalization usually requires more computation than 

projection. Therefore, polygonalizing the 2-surface as a preprocessing step means 

that a better response can be obtained when changing the projection parameters 

repeatedly. Most of the 2-surfaces need only to be polygonalized once. Second, the 

silhouette surface is determined by the eye, position. It has to be repolygonalized 

whenever eye, moves. However, we may wish to keep its polygonalized form in 4- 

space in order to show a "fixed" silhouette surface during eye, rotation. Third, the 

visibility calculation must be based on the positions of polygons in 4-space, similar to 

the situation in 3D graphics. Finally, polygonalization in 4-space can better account 

for the intrinsic geometric properties of the 2-surface. Some of these properties are 

distorted by the projection to 3-space. 

If f and g are restricted to polynomials, algebraic methods such as resultants could 

be used to eliminate one variable, followed by a parameterization in 3-space. It is also 

possible to parameterize certain algebraic hypersurfaces in 4-space and then display 

a set of isosurfaces [BajSO], but it seems hard to directly parameterize a 2-surface in 

4-space. 

If f and g are general functions, or even defined by discrete function values on 

grid points, direct polygonalization in 4-space is more appropriate. A few methods 

have been proposed to  polygonalize implicit 2-surface in high dimensional space. 

Categorized by the space the algorithm subdivides, they are: Allgower's simplicia] 

continuation method [AS85, AGS7] which subdivides the object space, Rheinboldt's 

moving-frame method [Rhe87] which subdivides the tangent space of the object, and 



Chuang's method based on the local degree 2 approximation [Chu9O] which subdi- 

vides the image space. Rheinboldt and Chuang's methods require tangent or normal 

vectors while in Allgower's algorithm the first order partial derivatives are used only 

for an optional point refinement step. It is possible to  apply Allgower's algorithm 

without the point refinement step, and this is useful for visualizing functions defined 

by the values on grid points. Another advantage of Allgower's algorithm is that by 

triangulating the object space it can handle the case where the projection introduces 

apparent singularities (see the discussion in Chapter 2), and the case where the 2- 

surface is closed in the object space. The disadvantage of the algorithm is that its 

complexity is exponential in the dimension of the space, but this is not an issue here 

since the dimension is fixed at 4. 

The  simplicia1 continuation method described in [AGS7] has been tailored to a 

version dealing with 2-surfaces in 3-space [AG90]. In the following three subsections 

we will discuss some considerations for applying the algorithm to 2-surfaces in 4-space: 

the basic algorithm and data structure, the Newton iteration for point refinement, 

and the merging of polygons to reduce the total number of polygons. 

4.2.1 The Basic Algorithm and Data Structure 

The following definitions are briefly cited from [AGS7] with a restriction in 4-space. 

The Freudenthal Triangulation of R4 is a set of 4-simplices a = [vo, . . . , v4] where 

[.I denotes the convex-hull, and the vertices vi satisfying 

In the definition above z is an integer vector in R", T is a permutation of (1,. . . ,4),  

(e l , .  . . , e4) is the base of R4, and S is the uniform mesh size. The triangulation is a 

subdivision of the grid in R4 with size 6. Each hypercube in the grid contains 4! = 24 

simplices. Each 4-simplex contains c:+' i-faces, also called vertices, edges, faces, and 



facets, respectively. Two adjacent simplices share 4 vertices, 6 edges, 4 faces and 1 

facet. The number of simplices containing a common face is either 4 or 6. 

The pivoting of a vertex v; across the facet i is given by 6 = vi- - v; + v;+ 

where i+ = (i + 1)mod 5 and i- = ( i  + 4)mod 5 .  Ry this operation a simplex 

a = [vO,. . . , vi, . . . , v4] js pivoted to 8 = [vo, . . . ,c,. . . , v4]. 

Let T = [v0, v1,v2] be a face, and let H : R4 + R2 define the 2-surface I-l(x) = 

( f  (x) ,  s(x))T = 0. Then T is completely labeled if the labeling matrix 

has a lexicographically positive inverse, which means that in each row of A-I the 

leading nonzero element is positive. When T is completely labeled, the first column 

of A-', written as (Ao,  X I ,  X2)T, gives an approximate intersection point x = Xovo + 
Xlvl + X2v2 of the 2-surface with the face. A simplex, a facet, or a fa,ce is called 

transverse if it is or contains a completely labeled face. 

Algorithm 4.1 Simplicia1 Continuation Method 

itzput: A 2-surface defined by N : R4 + R 2 ,  and a regular point x on the 2-surfa.ce. 

Also a domain D c R4 and a mesh size 6. 

output: A list of polygons that is the piecewise linear approximatjon of 11. 

a 0  = The first transverse simplex containing the seed x; 

L = list(ao); 

LC = L; / * LC is a pointer */ 
while LC # nil do 

a = head of LC; 

LC = rest of LC; 

Step in a along the chain of trailsverse faces; 

Construct the polygon, i.e. the linear approximation of II in a ;  

for each transverse facet T of u do 



(10) ~r = pivot a across T; 

(11) if Zr c D and Zr @ L then 

(12) append 8 to the end of L; 

(13) endfor 

(14) endwhile 

The data structures involved in the algorithm are simplex, face, and vertex. A 

facet is represented equivalently by the missing vertex. Moreover, we need to repre- 

sent polygons and their vertices also. To avoid confusion, a polygon vertex is called 

a point since initially it is a point on a face of a simplex. There is a one-to-one cor- 

respondence between a simplex and a polygon, and between a transverse face and a 

point. The adjacency information between simplices and transverse faces also repre- 

sent the adjacency information between polygons and points. Therefore we have three 

types of data structures: VERTEX, FACEIPOINT, and SIMPLEX/POLYGON. In 

a VERTEX the function values of f and g at the vertex are stored to  avoid repeated 

evaluations. A FACE/POINT contains the 3D and 4D coordinates and normals, and 

a set of pointers to all the adjacent simplices/polygons. In SIMPLEX/POLYGON 

there is a set of pointers to all the adjacent faces/points. 

The information about faces and vertices could be stored locally in the simplex, 

or globally in a table, say a hash table, to make sure there is only one copy in the 

memory. The latter is preferable for efficiency, robustness, and convenience when 

constructing connected polygons. 

Given an n-simplex in Rn, a = [vO,. . . ,vn], its i-face (i = 0, .  . . , n )  is T = 

[tiO,. . . , ZL;] where { Z L ~ , .  . . , u;} c {vO,. . . , v,}. TO address the face T without referring 

to the simplex a, its code is defined as 

where zj is the integer vector such that u j  = 6zj. To recover the vertices of an i-face 

from its code, the following equations could be used. 



C zj = +I+ ek J' = 1, . . . ,  z 
C,[k]rnod(i+l)=i-j+l 

A special case is when i = n, and recovers the simplex a, as discussed in [AGS7]. 

Given a lower dimensional face T in a simplex a, it is impossible to identify the 

original simplex a from the code C, of T .  This represents the global nature of C,. 

The face T is no longer associated with a particular simplex. 

We use as example the silhouette surface shown in Figure 3.15, and compare the 

global versus the local storage strategies. 

global 

Total number of vertices evaluated 

Singular A matrices encountered 

Time in seconds 

local 

Total number of simplices constructed 

Total number of transverse faces evaluated 

4.2.2 Newton Iteration for Point Refinement 

After a transverse face is found, an initial estimate of the intersection point of 

the 2-surface and the face can be obtained via xO = Xovo + X l v l  + X2v2. Then 

Newton iteration could be used to refine the point onto the 2-surface if the first order 

partial derivatives are available. In polygonalization of a %surface in 3-space, such 

refinement is usually restricted to the transverse edge because the 2-surface intersects 

all the transversal edges by the mean value theorem; see Figure 4.2. Such a restricted 

refinement method has the advantage that each refined polygon is still within the 

simplex originally containing it. But this is no longer the case for polygonalizing 

2-surface in 4-space. Now a transverse face need not have intersection point with the 

%surface, as illustrated by the following example. 

3834 

2918 

Example 4.1 A silhouette surface is defined by 

3834 

5590 
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Figure 4.2 Point Refinement in 3-Space 

where f is a hypersurface and g is a condition for the silhouette surface when 

eye, is at 8 = ( n / 4 , n / 4 , 7 ~ / 1 2 )  and r4 = 0 .  The faces we are going to examine 

is T = [vO, v l ,  v 2 ] ,  where vo = (0.75,0.75,0, - 0 . 2 5 ) ~ ,  vl = (0.75,1,0.25, - 0 . 2 5 ) ~ ,  

v2 = (0.5,0.75,0, - 0 . 2 5 ) ~ .  A point p on the face in barycentric coordinates is 

p = ~ ; = ~ a ; v ;  with c,?,~Q; = 1. The functions f and g substituted by (ao, a l )  

yields 

The two solutions are (ao = -0.10091, a1 = 0.39952) and (ao = 3.60716, a1 = 

-2.22249). Both are outside the face T .  But the face is transverse since the matrix 

A-I has a positive first column (0.063497,0.283271,0.653232)~. 

Three point refinement methods based on Newton iteration are considered. We 

call them iteration i n  the support plane, iteration within the face, and iteration in  the 

normal plane, as shown in Figure 4.3 
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Figure 4.3 Point Refinement in 4-Space 

Let T be a face and P be its support plane, viz. T c P. The method of iteration 

in the support plane is just the Newton iteration of the point in P without checking 

the boundary of T: 

a k + l  = ak - ( ~ ( ~ ) ( a ~ ) ) - l R ( a ~ )  

where a = (00, H(a) = ( f  (a), ~ ( a ) ) ~ ,  and 

f a o  f a ,  

J(j-Q(a) = ( G f f o  ) 

Applying this method to an initial estimated point inside the face T, the iteration 

could converge to a point outside T as in Example 4.1. Experiments with this method 

showed that about one percent of the refinement converged to points outside the 

face. Moreover, a few points were far away from the face. In that case, the 2- 

surface looks smooth except for a few bumps. Worse, if the 3D graphics engine 

cannot handle nonconvex polygons, cracks may appear in the projected 2-surface. 



Another drawback is that the refined polygons can cross the boundaries of simplices. 

In visibility determination or rendering by ray tracing, the algorithms may use the 

structure of the space division. The existence of crossing polygons will make those 

algorithms much more complicated. 

To confine the final polygons within the originally enclosing simplex, the method 

of iteration within the face could be applied. The process does not find an actual 

zero of H but finds an optimal approximation defined by2 

min & ( a )  

s.t. a  E R 

This is a constrained nonlinear programming problem and many methods are avail- 

able. For example, the steepest descent method can be used when only the first order 

partial derivatives are available. At each iteration step, a linear search is conducted 

in the direction of the negative gradient of h: 

IYhen ak is at  the boundary edge of R and the dk calculated by Equation 4.2 is toward 

the outside, the d%hould be replaced by its projection on the edge. If the the length 

of the projection is zero, a local optimal point is found. 

2The abbreviation s. t .  s tands for "subject to" 



The steepest descent method converges only linearly. Since ninety-nine percent of 

the points are really on the face, the method wastes time. Therefore, we consicler a 

modification of the iteration in the support plane. 

14'11en a q s  at  80 and dk is toward outside, the iteration stops since there is no 

criterion of optimization. For those points that are really on the faces and the initial 

points are sufficiently close to them, this method converges a t  the same rate as the 

method of iteration in the support plane. For those points outside the face, however, 

the iteration is stopped and the points stay at  the edges of the faces and do not cross 

the enclosing simplices. The overall speed is found to be almost the same as that 

of iteration in the support plane. However, this method has the following problem. 

The points in the iteration aO, a', . . . may go in and go out of the face several times. 

When simply terminating the iteration the convergent point may be lost. Therefore, 

the visual effect of this method may be better or worse than that of iteration in the 

support plane depending on the surface geometry. 

If crossing polygon is allowed, a better method is the iteration in the normal plane 

of the 2-surface. Let p = (x,  y ,  z,  w ) ~  and pk be a point close to the 2-surface H(p) = 

(f(P),g(p))T = 0. Then v f(p" and vg(pk)  are two approximate normal vectors 

of H(p) = 0 passing through pk. Let a = ( a o , ~ l ) ~ .  A point in this approximate 

T k normal plane is pk + a 0  v f($) + a1 v g(pk) = pk + J(II) (p )a. Define k(a) = 

H(p" a. v f (pk) + a1 v g(pk)). Expanding near a = 0 yields 

H ( a )  = ~ ( 0 )  + J ( ~ I )  (0)a + o(a )  

By setting ~ ( a )  = 0 and rewriting J(H)(o) in terms of J(H) the follo\ving iteration 

is obtained: 

pwl = pk - J(H)[J(H)~J(~I)]-~(~~)H(~~) 



The same result can also be derived by the least-squares method. Based on this 

geometric explanation we make two observations. First, since in each step of the 

iteration the refinement of the point is in the direction within the normal plane, 

faster convergence is expected than in case of iteration in the support plane. Second, 

in most situations the normal plane is different from the face support plane, so this 

method generates much more crossing polygons than iteration in the support plane. 

Visually this method delivers the best pictures among the three methods. The system 

lets the user choose one of these iteration methods. Note that in consequence the 

structure of the space subdivision cannot be assumed by any algorithm applied after 

the refinement stage. 

4.2.3 Merging Polygons 

The polygons generated by the simplex method contain some tiny and skinny 

polygons. Merging them with adjacent polygons could be done before or after the 

point refinement stage. The former could make use of the underlying space subdivision 

structure, but the curvature information is not available since the points are not yet 

on the 2-surface. The latter is independent of how the polygons are generated, and 

so it can also be applied to polygons of parametric 2-surfaces. RiIoreover, from the 

normals a t  the refined points, the flatness of the 2-surface can be estimated, a more 

important criterion than the size of polygons. The system offers an optional operation 

to merge polygons after the point refinement stage. 

The operation to merge polygons can be done in 4-space or in the 3D image space. 

Since only the 3D images are seen, We thought it is better to merge polygons accord- 

ing to the normals of the projected 2-surface. However, the operation performed 

in $-space has its advantages. All the 2-surfaces except the silhouette surface are 

independent of eye, position. Therefore, the merging of 4D polygons needs to be 

done only once. The saved final version of 4D polygons could be projected into 3D 

image space repeatedly. Our experiments comparing the operations done in 4-space 



versus 3D image space showed little difference in the visual effect and the number of 

polygons merged. 

Tiny or skinny polygons have at least one short edge, so the basic operation is 

to merge two vertices of a short edge. The two vertices 211 and v;! of an edge can be 

merged into one if the following condition is satisfied. 

where E and 17 a.re user defined tolerances, and Nl and N2 a.re two unit normal vector 

fields of the 2-surface. This condition is conservative in that the coincidence of two 

normal planes does not require the coincidence of the normal vectors. The meaning of 

(4.3) is that each hypersurface in the definition of the %surface has almost coincident 

normal vectors at vl and v2. For parametric 2-surfaces, the Nl and N2 in (4.3) are 

substituted by TI and T2. That is, we base merging on the tangent plane instead of 

the normal plane. We do not calculate the normal vectors of a parametric 2-surface 

from the tangent vectors since the the calculated normal vectors do not bear their 

own meaning. 

It has been proved that each polygon generated by the simplex method has at most 

5 vertices, and that each vertex is shared by at most 6 polygons [AS85, AG871. It is 

useful for data structure and algorithm design if these limits are kept when vertices 

are merged. Suppose v1 and v2 are merged into v. All the polygons adjacent to vl 

or vz will not increase their number of sides. But deg(v), i.e., the number of edges 

incident to the new vertex v, could be larger than deg(vl) or deg(v2). So, another 

condition for merging two vertices is 

where tri(v1,v2) is the number of triangles (polygons with 4 or more sides are ex- 

cluded) adjacent to the edge (vl,v2). The new v could be one of vl or v2 provided 

that a boundary vertes is never removed. 



Algorithm 4.2 Merging Polygons 

input: A list of polygons in 4-space, each vertex is attached with two normal vectors 

or two tangent vectors. 

output: A list of polygons with the total number possibly reduced. 

(1) for each edge (vl, v2) in the polygon list do 

(2) if Conditions (-1.3) and (4.4) are t.rue and 

(3) vl or v2 is not a boundary vert,ex then 

(4 merge(v1, v2); 

( 5 )  remove triangles containing edge (vl , v2) 

(6) endif 

(7) endfor 

Tlle algorithm can be applied repeatedly until the number of polygons cannot be 

further reduced. The system lets the user apply t.his operation and inspect the results 

interactively. Usually one application is enough. For example, applying Algorithm 4.2 

once with E = 0.01 and 77 = 0.0001 to the 2-surface defined in Example 4.1 reduces 

the number of polygons from 3534 to 31 10 without any noticeable change in the 3D 

image. With the same E and 77 t,he minimum number of polygons, 3046, is reached 

by repeating the algorithm four times. 

4.3 Visibility Determination 

As discussed in Chapter 2, the visibility to eye, needs to be done only if there 

are hypersurfaces. In our system a hypersurface is represented by a,n object of type 

IlYPER that is a group of 2-surfaces and curves on that hypersurface. The group con- 

tains active surfaces including silhouette surfaces, boundary surfaces, self-intersection 

surfaces, and inactive surfaces and curves, including isosurfaces. An algorithm based 

on Theorem 2.6 is as follows: 



Algorithm 4.3 Visibility Determination of a I-Iypersurface to eye4 

input: The equations defining implicitly the hypersurface and its silhouet ter surface, 

boundary surfaces, and self-intersections (if they exist). The piecewise linear 

approximations of all the 2-surfaces and curves on the hypersurface, in the form 

of a list of connected polygons, or a list of conn'ected line segments. Besides, 

the projection cp from 4-space to the 3D image space, and the position of eye, 

in the local coordinate system. 

output: The polygons or line segments in the piecewise linear approximation of the 

',-surfaces and curves having been trimmed according to the visibility to  eye,. 

for each active surface S do 

for each 2-surface or curve R do 

construct the intersection of cp(S) and v (R) ,  put on R 

end for 

end for 

for each 2-surface or curve R do 

for each region of R divided by the intersection constructed in (3) do 

choose a point in the region and calculate sight number 

propagate the sight number to the whole region 

endfor 

endfor 

In the following two subsections step (3) of Algorithm 4.3 is elaborated for the 

general case, the special case when S is a silhouette surface, and the special case 

when S is a boundary surface. The last subsection deals with steps (8) and (9) of the 

algorithm. 

4.3.1 Intersection of 2-surfaces in the Image Space 

Given two 2-surfaces R and S in R4, after projection their images cp(R) and cp(S) 

are surfaces in R3. The intersection of two surface in R3 has been studied for a 



long time. The problem can be solved by algebraic, analytic, and numerical methods 

[PGS6, CK87, OR87, BHHL8S1. Here it is discussed in the context of 4D visualization. 

\Ve distinguish three basic methods: ( I )  Both 2-surfaces are in symbolic form. (2) 

Both are piecewise linear. (3) One is in symbolic form and one is piecewise linear. 

We outline the first two methods and concentrate on the third method in greater 

detail because in our experiments we have found that the third method is usually 

superior. 

The first method uses the symbolic definition of the 2-surfaces. For a pair of 

parametric 2-surfaces sl, s 2  : R2 -+ R4, the intersection of them in the ima.ge space 

is expressed as three equations in four variables: 

To represent self-intersections, the above equations should be adjoined by (ul - u ~ ) ~  + 
(vl - v2)2 # 0, which is equivalent to an additional equation with an additional 

variable: 

2 X[(ul - ~ 2 ) ~  + (vl - v2) ] - 1 = 0 

For a pair of implicit %surfaces fl = Ongl = 0 and f2  = Ong2 = 0 where f l ,  f2, gl ,  g2 : 

R4 -+ R ,  the intersection in the image space is expressed as seven equations in eight 

variables: 

The self-intersection problem can be tackled similarly. In contrast to the 3D case, 

one parametric 2-surface and one implicit 2-surface do not yield the simplest case. It 

still needs five equations in six variables: 



Any variable elimination methods could be used to solve the system of equations and 

obtain an intersection curve. But usually it is nontrivial to solve, especially when 

they are not restricted to polynomials. The curve can also be traced numerically in 

high dimensional space [BHHL88]. After the intersection curve is generated it should 

be mapped onto the piecewise linear approximation of the 2-surfaces. That is, the 

curve should have points exactly on the the edges of those polygons which are divided 

by the curve. This step can be done by slightly moving the points on the curve. 

Since the 2-surfaces have already been polygonalized, an alternate method is to  

project the polygons into 3D image space and then find the piecewise linear intersec- 

tion curve from the two sets of polygons. Starting at  two intersecting polygons, one 

from each 2-surface, the adjacent polygons are searched and a new pair of intersect- 

ing polygons are formed. In this fashion the pair of polygons marches until a loop is 

detected or the boundary is reached, generating a piecewise linear curve exactly on 

the two sets of polygons. 

This method works well only if the two ')-surfaces intersect transversally in the 

3D image space. However, Corollary 2.3 tells that in the image space the isosurfaces 

intersect the silhouette surface tangentially. In such a case intersecting the piecewise 

linear approximation of the 2-surfaces is difficult. Instead of a smooth intersection 

curve, the method generates a lot of small loops scattered near the true intersection 

curve. Visibility displayed by trimming the polygons based on these small loops will 

be incorrect. Therefore, a third method that operates in $-space is considered. 

In the third method the active 2-surface S is given in the form of two equations 

f = 0 n g = 0 where f is the definition of the hypersurface. Another 2-surface R is 

given the piecewise linear approximation, which is readily available. We distinguish 

the intersection of cp(S) and cp(R) into true and apparent intersections. The true 

intersection is the projection of the intersection of S and R in 4-space. The apparent 

intersection is an intersection of cp(S) and v (R)  in the 3D image space to which there 

is no corresponding intersection in 4-space. Apparent intersection is an artifice of the 

projection. 



In order to determine apparent intersections, we introduce partition functions h  

that map points of R to real numbers as follows. Let p be a point on R and q be the 

position of eye,. Recall that S  is defined by f = 0 n g = 0. Then a partition function 

is the function 

1 4 ~ )  = f ( ( 1  - Xo)P + Xoq)  

where X o  is the solution of g ( ( 1  - X)p + Xq))  = 0. Note that the solutions X o  corre- 

spond to the points in which the line pel intersects the hypersurface g. Clearly if h  

changes sign as p ranges over a curve on R,  then this curve passes a true or apparent 

intersection. We will discuss how to represent h after describing the algorithm for 

generating the intersection of y ( S )  and y ( R )  as follows: 

-4lgorithm 4.4 Generating Intersection Curve on a 2-surface 

input: A list of connected polygons which are the piecewise linear approximation of 

a 2-surface R in R4. A partition function h  : R -+ R. 

output: A list of connected points which is the piecewise linear approximation of the 

curve on R defined by h  = 0. 

a0 = the first polygon with a transverse edge TO = (vo, v l ) ,  i.e. I L ( V ~ ) ~ ( V ~ )  < 0 

find the second transverse edge r1 of a0 

find zeros of h on 70 and T I  and construct a line segment connecting them 

a  = (70, T = To 

while r is not a boundary edge of R and 

( a  = pivoting a across T )  has not been visited do 

find the second transverse edge of a  and construct a line segment 

7 = 7 1  

end while 

(7 = 0 0 ,  T = 7 1  

redo steps ( 5 )  to (9) 

When the intersection curve has more than one branch, the algorithm has to be 

applied to each of the branches. 



4.3.2 Determining the Partition Function on a 2-Surface 

When S is a silhouette surface and R is an isosurface, their images in 3D image 

space intersect tangentially. Their intersection constructed in 3D image space will 

often be incorrect due to roundoff errors. Working in $-space using Algorithm 4.4, 

the partition function h can be chosen as the second equation for S, i.e. 12 = v f . r4. 

In R q h e  hypersurface h = 0 intersects with R transversally, and so no numerical 

problems occur. The resulting trimming curve is smooth as shown in Figure 3.12 and 

3.13. 

For the silhouette surface there is another special problem that needs to be con- 

sidered. Recall the discussion following Corollary 2.1 in Chapter 2. A 2-surface 

f = 0 n g  = 0 usually has a 0-dimensional silhouette point set with respect to the first 

projection cp, determined by the equations v f .r4 = 0 and g g . r 4  = 0. If the 2-surface 

is a silhouette surface, however, one of the equations is redundant and the zero set is 

a 1-dimensional curve. This curve signals visibility changes on the silhouette surface, 

just like a self-intersection curve would. To find the curve, Algorithm 4.4 can be 

applied. The 2-surface R being trimmed is the silhouetter surface and the partition 

function is h = v g  . r4 = ~ ( v  f . r4) . r4. As example consider the Gauss distribution 

hypersurface shown in Figure 3.21 and 3.22. The silhouette surface is redrawn in 

Figure 4.4. 

In the case that cp(S) and cp(R) have an apparent intersection curve, the definition 

of the partition function h is more complicated. The method is better understood by 

a 3D analogy. Figure 4.5 shows a surface S : f (x ,  y, z) = x2 + y - z2 = 0 with its 

boundary curves C1 and C2. Curve C1 is in the plane B1 : gl(x, y ,  z )  = y + 0.5 = 0, 

and Cz is in the plane B2 : g2(x, y,  z) = z - 0.5 = 0. Points a and b denote the true 

iiltersection of C1 and C2 in R3. Point c denotes their apparent intersection, in the 

2D image space. In R3 the point c is actually on Cz, and another point c', exactly 

behind c in Figure 4.5(a), is on C1 as can be seen in a different direction (b). As the 

point p moves on C2, it occlude a corresponding point p' on the plane B1, so forming a 

curve Ci in B1. When p passes through c, the function value f (p') will pass through 
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Figure 4.4 Silhouette Surface Before and After Visibility Determination 
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Figure 4.6 Intersection of Two Boundary Surfaces in Image Space 

zero. Therefore the partition function on C2 can be defined as h(p) = f(p') such 

that g(pf) = 0 and that p,p' and eye, are collinear. When g is linear, this constraint 

is easily solved and expressed as a linear function p' = l(p). Hence h(p) = f (l(p)). 

The zero point of h can be the true intersection such as a and b, or the apparent 

intersection such as c. These 0-dimensional zero points are separated on C2. 

The method can be extended into R4. Again we use the hypersurface in Fig- 

ure 3.12 and 3.13 as example. The hypersurface is f (x, y, z ,  w) = x2 + y2 + z - w2 = 0. 

The active 2-surface S is defined as f = 0 and gl(x, y, z, w) = z+0.5 and the 2-surface 

R being trimmed is defined as f = 0 and g2(z, y, z ,  w) = w - 0.5. The 2-surfaces S 

and R are redrawn in Figure 4.6. A linear function 1 maps a point p on R to a point 

p' on the hyperplane gl = 0. The partition function is then h(p) = f(l(p)). The zero 

points of h are 1-dimensional curves that could be true intersections of S and R in R4 

shown as C1 in Figure 4.6(a), or apparent intersections shown as C2. The two curves 

Cl and C2 intersects a t  points a and b. They are the singular points of h and will 

cause numerical difficulties in Algorithm 4.4. Figure 4.6(b) shows some polygons near 

the intersection point b. The signs of h at each vertex of the polygons are marked. 



.Point b is on an edge where h is constant and equals to zero. Point c is on a,n edge 

with one zero and one nonzero h value at the two vertices, but the vertex with zero 

h value is not the desired point.  heref fore, desingularization has to be considered 

when an edge has at  least one vertex with zero h value. 

There are several algebraic or analytic desingularization techniques [BHHL88, 

Hof89, 0R871. We use a technique based on geometric intuition. Tlie basic idea is 

to divide h by a function h1 which has zero value at  the true intersection points of S 

and R, but has nonzero value at  their apparent intersection points. The construction 

of h' is explained by the 3D analogy in Figure 4.5. The point p on curve C2 is 

orthographically projected to plane B1. Its image p" on B1 is called the foot point 

of p. Clearly there is another linear map 1' such that p" = l1(p). We claim that the 

two linear maps 1 and 1' cannot be the same. Suppose l(p) r ll(p), the projection by 

eye, must also be orthogonal to B1. In such a case, the two curves C1 and C2 cannot 

have apparent intersection, and so Algorithm 4.4 need not be applied. Using the two 

maps 1 and l', the partition function on C2 can be defined as j ( , , ( p ) ) ,  although it is 

not necessary because the true and apparent intersection points are separated. 

The technique above extended into R4 works as follows. The partition function in 

Algorithm 4.4 is still f (l(p)). But steps (3), (4), (7) and (8) are modified. Whenever 

there is an edge with at  least one zero function value, the desingularization procedure 

is called. At each vertex v of the edge, the partition function value is calculated via 

At a singular point it is an indeterminate form and l'H6pital's Rule can be applied. 

The modified algorithm works well as shown in Figure 3.12. The visual effect is better 

than that produced by intersecting polygons in 3D image space. 

When S has a nonlinear g, the map from R to hypersurface g = 0 cannot always 

be expressed explicitly. Nevertheless, the point p' can still be calculated numerically. 

Let p be the point on R and q be the position of eye,. Then p' can be found by an 

iterative search for g(pl) = 0 on the line L : p' = Xp + (1 - X)q, say, using the secant 



Cross Section 

Figure 4.7 An Isosurface trimmed by the Silhouette Surface in Image Space 

method. The partition function is defined as h(p) = f (p'). There are two problems 

to be addressed. 

First, the line L may have no intersection with the hypersurface g = 0. In this 

case p' is undefined, and so is h(p). In Algorithm 4.4 an edge is then considered as 

not transverse when at  least one of its vertex has an undefined value of 12.  TO make 

the algorithm work correctly the polygonalization of R should be fine enough so that 

the actual transversal edges do not fall into the region where h is undefined. 

Second, the line L may have more than one intersection point with the hypersur- 

face g = 0. To make h a continuous function over R, the parameter X found by the 

iterative search should also be continuous over R. This can achieved by the homotopy 

continuation method [A1190]. Suppose point pl has a known X I ,  to find the unknown 

X2 of point p2 a curve smoothly connecting pl and p2 is formed conceptually. By 

moving along the curve from pl to pg, the result X is smoothly changed from X1 a t  

pl to X 2  a t  pg. In our algorithm X is found by iteration. If the polygonization is fine 

enough, the initial value of X can be taken from an a.djacent vertex with known X 

value. In this way the calculation of X is propagated from a point to the whole R. 



As an example see the hypersurface of Gauss distribution in Figure 3.21. The 

isosurface R with constant z value z = 2 is trimmed by the silhouette surface S : f = 

0 n g = 0 where both f and g are nonlinear. The isosurface is redrawn in Figure 4.7. 

In the 3D image space R intersects with S on two circular curves Cl and C2. Curve 

Cl is the true intersection of R and S while C2 is their apparent intersection. The ray 

from a point p on R to  eye, can intersect with g = 0 in 0, 1 or 2 points. Figure 4.7(a) 

and (b) show the sign of the f (p') when p' is chosen on the front and back portions of 

g = 0, respectively. In the 3D image space the hypersurface g = 0 is a solid cylinder 

with its axis parallel to the projected world 211-axis. Its intersection with v(R) is the 

region with defined partition function values. 

4.3.3 Sight Number Calculation and Propagation 

The trimming curves divide a 2-surface into several regions. For each region a 

point p is selected. To calculate the sight number at p, a ray from p to  eye, is formed. 

It is then clipped by the domain of hypersurface being displayed. The domain is 

usually a hyperparallelogram. The number of intersection points of this clipped ray 

with the hypersurface is the desired sight number at p. In our display scheme, only 

those points with zero sight number are visible. That means there is no transparent 

hypersurface in R4. SO the task is to  find if there is any intersection, instead of 

how many intersections. Note that the second sight number must be calculated 

quantitatively since we need to display transparent surfaces in the 3D image space. 

This is a typical 3D graphics problem that we will not discuss. 

Let p and q be the two end points of the line segment and f = 0 be the hypersur- 

face. We want to find if the function f ( X )  = f (p+ X(q - p)) has zero points X E (0 , l ) .  

The behavior of the function f at  X = 0 is summarized in the following lemma. 

Lenlina 4.1 Suppose that p is a point on the hypersurface M : f (x,  y, z,  w) = 0, 

and that the line segment p + - p) is in the direction from p to the center of the 

projection cp : R4 4 R3. Then the function f ( X )  = f ( p  + X(q - p)) has 0 as its 

(a) zero point for all p E M; 



(b) at least double zero point for all p E S ,  the silhouette surface of M with 

respect to 9; 

(c) at least triple zero point for all p E C ,  the silhouette curve of S with respect 

to $9. 

Proof: 

(a) trivial. 

(b) f'(0) = v f (p) . (q - p). It is zero if p is a silhouette point of M with respect 

to $9 according to  Theorem 2.3. Therefore 0 is at least a double zero point of f .  

(c) Let g ( p )  = v f ( p )  (q - p ) .  The silhouette surface S can be defined as f = 

o n g = o .  

By Theorem 2.3 f"(0) = 0 if p is a silhouette point of S with respect to cp. 

Using this lemma we can analyze how the local behavior of f affects the siglit 

number. Assume that p is on a 2-surface other than the silhouette surface. If p is in 

the vicinity of the true intersection curve with the silhouette surface, then Jf'(0:11 is 

almost 0, and the sign of its numerical value cannot be trusted. Figure 4.8(a) and 

(b) show two possible situations with Jf'(0)I FZ 0 and f"(0) >> 0. The sight number 

for (a) is greater than that for (b) by 1. But from the numerical values at point p 

the two situations cannot be distinguished. Therefore, the sight number should be 

calculated a t  a point away from the intersection with the silhouette surface, and then 

propagated to the entire region including those points close to the intersection curve. 

A criterion for selecting the point is thus Jf'(0)) > €1.  Once we have eliminated the 

possibility that a zero point is very close to but not exactly at X = 0, the sight number 

can be found by numerical methods such as linear search or interval subdivision. 



Figure 4.8 Function f ( A )  near X = 0 

Assume that p is on a silhouette surface. By Lemma 4.1, f'(0) is always zero. 

Although the numerical value of f'(0) can be of small magnitude, the ambiguity 

shown in Figure 4.8(a) and (b) cannot happen for silhouette surface. This is because 

by the definition of silhouette surface the situation (a) can be eliminaked. If p is close 

to the silhouette curve, however, ambiguities may occur as shown in Figure 4.S(c) and 

(d), where f'(0) z 0, f"(0) z 0 and f"'(0) >> 0. A Similarly, a criterion for selecting 

the point is that I ~ ( O ) (  > E Z .  No extra calculation of the second order derivatives is 

needed, because f"(0) = v g ( p )  . ( q  - p). That is the partition function values used 

to construction the silhouette curve. 



5. APPLICATIONS 

Visualization of high dimensional space has found wide spread applications in 

science and engineering, as listed in Chapter 1. The visualization of four dimensional 

space is more suitable for the problems naturally defined in 4-space, such as 3D objects 

in motion, and 3D scalar fields. For a problem defined in arbitrary n-dimensional 

space, to get intuition by visualization, the usual way is to examine the problem of 

reduced dimension in 3-space or 2-space. But sometimes when the problem is reduced 

to 3-space or 2-space it becomes a trivial one. Then the visualization of 4-space can 

serves as a bridge from the "trivial cases" to the "nontrivial case". Such an example 

already appeared in Chapter 4, where we discussed and displayed the singularity 

on the intersection curve in image space of two adjacent boundary surfaces of a 

hypersurface in 4-space. This kind of singularity clisappears when the dimension is 

reduced. 

Several examples will be presented in the following sections that illustrate the 

applications of our 4D visualization system. The first section is about understanding 

differential geometry by two examples of planar offset curves. Although offset curve is 

a problem in %space, by the envelope theorem it can be defined in higher dimensional 

space. Some comparisons will be drawn between 2-, 3- and 4-spaces. The second 

section shows the intersection 2-surface of two moving objects in 3-space. Although 

the moving objects are simple, their intersection surface in 4-space is surprisingly 

complicated. A 3D scalar field, the electron density field of a virus, is shown in 

the third section. By putting it in 4-space, the concepts of contouring and slicing are 

unifornlized. The 3D scalar field can be manipulated in several ways by simply moving 

eye,. The final example is the tool path generation for 5-axes milling machines. The 

original problem is defined in 5-space, and can be treated by algorithms working in 



.5-space. We put emphasis on intuitions by visualization. The problem is simplified 

and illustrated in 4-space. 

.5.1 Understanding Differential Geometry 

In Chapter 2 the relationship between silhouette and envelope was discussed. In 

this section it is explained and illustrated by the example of offset curves. 

Given a curve f (x ,  y )  = 0 in R2, its offset curve by distance r > 0 can be formu- 

lated by the envelope method [FN90, HofsS] as a set oi equations: 

where 

If the parametric form of the curve f is available, the set of equations can be simplified 

Note that the condition C' is equivalent to  = 0. If the greatest common divisor 

$( t )  = GCD(ul(t),v'(t)) is not a constant, the condition C' can be further simplified 

as [FN90]: 

cl1 : (x - u(t))p(t) + (y  - o(t))q(t) = 0 

where 

An implicit equation for the offset curve can be determined by the resultant method 

[FN90], or using Grobner bases [HofSg]. The offset curve can also be traced numeri- 

cally in R4 or R3 by the method described in [BHHLsS]. 



Figure 5.1 Curves (a) y - x2 = 0 and (b) y2 - x3 = 0 and their offset curves by 1 

It is important to note the following points about the envelope method for formu- 

lating offsets: 

1. The offset curve may have cusps and/or self-intersections in (x, y)-plane (see 

Figure 5.l(a)).  But the singularities often disappear when the curve is traced 

in higher dimensional space. 

2. The equations may describe additional points which have a distance r from the 

singular points on the curve f (see Figure 5.l(b)).  

We now explain these phenomena by means of 2-surface visualization. The equa- 

tions g = 0 and f = 0 are two 3-surfaces in (z, y ,  u, v)-space and their intersection S 

is a 2-surface. Moreover, at the point p = (x, y, u, v) on S, the two normals are: 

n l  = v g ( p )  = (2(x - u), 2(y - v), -2(x - u), -2(?J - v ) ) ~  

They are linearly independent as long as nz is a nonzero vector since (x - ti) and 

(y - v) cannot be both zero. The condition C can be rewritten as d e t ( i , j , n l , n a )  



= 0. If p is a nonsingular point on S, by' Corollary 2.1 it is a silhouette point with 

respect to an orthographic projection with two centers along the u- and v-axes. The 

silhouette points form a curve on the tubular surface S in R4. In Figure 5.2 and 5.3 

we show the 2-surface S and the silhouette curve corresponding to  the offset curve 

in Figure 5.l(a).  In R4 the curve is smooth without cusps or self-intersections as we 

can see in Figure 5.3 from a different viewing direction. 

On the other hand, if p is a singular point, then nl and n2 are linearly dependent, 

and so n2 must be a zero vector. Surely condition C is satisfied, but according to 

our definition p cannot be a silhouette point. These singular points are exactly the 

additional points described above as the second phenomenon. In Figure 5.4 and 5.5 

the 2-surface S and the silhouette curve corresponding to the offset curve in Fig- 

ure 5.l(b) are shown from different viewing directions. The silhouette curves are still 

smooth ~vithout cusps or self-intersections. But the 2-surface is not a smooth tube. 

The singular points form a circle corresponding to the dashed circle in Figure 5.l(b). 

If the curve f has a parametric form, the offset curve can be traced in (x, y ,  t)- 

space. The two equations h = 0 and 2 = 0 are two surfaces and their intersection is 

a curve. Note that in this case 2 = 0 is equivalent to v h - k  = 0. This means that the 

intersection curve is the silhouette on the surface h  with respect to an orthographic 

projection along the t-axis. But the surface h  = 0 is smooth without any singular 

points because 2 and cannot be zero simultaneously and so v h is always a nonzero 

vector. The dashed circle in Figure 5.l(b) is actually another branch of the silhouette 

curve as shown in Figure 5.6 and 5.7. 

If the greatest common divisor d( t )  is not a constant, the condition v h  k = 0 is 

equivalent to: 

d(t>[(x - u(t))p(t) + (Y - v(t))q(t)l = 0 

The factor d(t)  = 0 represents those silhouette curve branches that are circles result- 

ing from intersecting the tubular surface h = 0 with the planes t = ti perpendicular 

to  the t-axis, where ti's are the zeros of $(t). The other factor is the same as condition 

C", and represents the silhouette curve branches corresponding to  the offset curve. 



Figure 5.2 The Offset Curve (a) traced in R4 viewd from O = (0,0,0,0,0,0) 

Figure 5.3 The Offset Curve (a) traced in R4 viewd from 0 = (45,105,45,75,165,0) 



Figure 5.4 The  Offset Curve (b) traced in R4 viewd from 8 = (0,0,0,0,0,0) 

Figure 5.5 The Offset Curve (b) traced in R4 viewd from 0 = (45,40,60,105,75,0) 



Figure 5.6 Thc Offset Curve (b) traced in R3 viewd from 0 = (0 .0 ,0 ,0 ,0 ,0 )  

Figure 9.7 The Offset Curve (11) traced i n  R3 viewd from 0 = (0.0.0: -40. G O .  0 )  



5.2 Collision Detection and Analysis 

The advantage of using 4D geometry to deal with the collision detection problem 

has been explained in [Cam84, Ros891. The basic idea expressed by Cameron is that 

"if an object can be represented by a set-combination in a CSG scheme, and the 

primitive objects can be extruded (into 4-space) in this scheme, then the extrusion 

of the object is the set-combination of the extrusions of the primitives" [CamS4]. 

The extruded object means the object in motion considered in (x, y, z ,  t)-space. Two 

moving objects collide if and only if the intersection of their extrusions is nonempty. 

The problem is then reduced to testing the intersection of each pair of primitive 

extrusions. 

3D objects are bounded by surfaces in 3-space. The extrusion of such a surface 

is a hypersurface in 4-space. The intersection of two hypersurfaces is a %surface 

S : f (x, y, z, t) = 0 n g (z ,  y, z, t) = 0, and can be examined by our system. When the 

2-surface is nonempty, in applications such as physical objects simulation or robotics 

motion planning it is necessary to find the initial colliding point, i.e. the point p on 

the 2-surface with the smallest value of t. Assuming p is a nonsingular point of the 

2-surface S, the natural projections of the two normals at p into (x,y,  2)-subspace 

are parallel. 

Together with f = 0 and g = 0 this condition determines a zero-dimensional solution 

set on S. To solve the nonlinear equations describing these points, one may relax 

the condition and use numerical methods such as curve tracing. Condition C can be 

rewritten as: 

C' : (Vn = (n,, n,, n,, nt)') 

0 0 0 1 

n x 72, n z nt 

a f j a x  af/ay af/az a f p t  
= 0 



Figure 5.S A cylinder and a sphere in motion 

By Corollary 2.1, p must be on the silhouette curve of the 2-surface with respect 

to any orthographic projection with two centers both inside (x, y, 2)-subspace. The 

point on the silhouette curve with the smallest t is the initial colliding point. 

Consider a cylinder of radius r, about the x-axis moving in the positive y-direction 

at a constant speed v,, and a sphere of radius r, moving in the negative z-direction 

at a constant speed v,. At the time t = 0 both are at  the origin as shown by the 

dashed cylinder a,nd sphere in Figure 5.8. Their extrusions into 4-space are the two 

hypersurfaces defined as: 

The intersection 2-surfaces in different cases are displayed in Figure 5.9 through 5.11. 

The curves on the 2-surface are the silhouette curve branches with respect to the 

orthographic projection with two centers along the x-, y- or z-axes but now seen from 

different viewpoints. 

Figure 5.9 shows the case where the cylinder and the sphere have the same radius, 

r, = r, = 1, vc = 0, v, = 1. Since eye,'s position is just a little off the the t-axis, 



Figure 5.9 Intersection of a cylinder and a moving sphere with the same radius, 
viewed from 0 = (0,18,9,120,75,0) 

Figure 5.10 The cylinder has a larger radius, viewed from 0 = (0,30,105, -105,30,0) 



the 2-surface resembles the sweep of the intersecting curve in (x, y ,  2)-subspace. The 

two singular points are due to the fact r, = r,, and will be present no matter how 

eye, rotates in 4-space. Figure 5.10 shows the case where the cylinder has larger 

radius, r, = 1, r, = 0.7, v, = 0.2, v, = 1. Note that the 2-surface has two separate 

components. This is because at t = 0 the sphere is totally inside the cylinder. If tlie 

curve tracing algorithm starts at a point on the component with larger t values, it 

will end up with an incorrect answer. Figure 5.11 shows the case where the sphere 

lias larger radius, r, = 1, r, = 1.2, v, = 0, v, = 1. Note that although the 2-surface 

is connected, the silhouette curve branches can be separated. It has a "hole" due to 

the fact that at a certain time period the sphere and the cylinder intersect in a curve 

wit11 more than one branch. 

Even for such simple objects as cylinder and sphere, the intersection 2-surface in 

4-space could be fairly complicated. When numerical method is used to search for 

the initial colliding point, the phenomena mentioned above have to be considered. 

5.3 Scalar Fields in 3-Space 

A 3D scalar field is a lunction defined on a subset of R3: w = f (x, y, 2). Displaying 

3D sca1a.r field is very common in science and engineering, such as the material density 

of a nonuniform solid, the temperature or pressure distribution in the atmosphere, 

and the electron density data of virus. The basic techniques used for displaying 3D 

scalar fields are volume rendering [Sab88, ST90, UI<88], contouring [GN89, LC871, 

and slicing [SK90]. 

Put into 4-space, the 3D scalar field is a hypersurface defined by w - f (x, y, z) = 

0. Conceptually there is no difference between contouring and slicing.' Both of 

them are considered as a 2-surface obtained by intersecting the hypersurface with a 

hyperplane. If the concept is extended further, the hyperplane can be replaced by 

curved hypersurfaces. Moreover, by rotation in 4-space, the extreme value of f and 

'Note that tlie implementation could be different so that the most efficient algorithm can be used 
for each special case. 



their distributions can be displayed by their relative spatial positions, in addition to 

the conventional color scales. When eye,'s direction is not orthogonal to the (x, y, 2)- 

subspace, or its distance to the origin is finite, the shape of the 3D image is different 

from what we are used to see. Since this is an interactive system, we usually start 

at a normal view of the 3D scalar field, i.e., with eye, at infinity along the direction 

of w-axis. Then eye, moves in a series steps of small rotation and/or zooming. The 

animation helps keeping track of how the 3D image changes its shape in response to 

the eye, motion. The ideas are explained by an example of the electron density data 

of virus. 

Some research in microbiology processes electron density field in complex 

inolecules such as virus. The virus is first crystallized, then measurements are taken, 

for example, at CIIESS (Cornell Iligh-Energy Synchroton Source), followed by a 

Fourier analysis that quantifies the densities. The resulting data are essentially a 

scalar field in 3-space. In this example the graphics data is obtained by interpolat- 

ing the electron density values that have been measured at the 8 million nodes of 

a 200 x 200 x 200 grid and ranging from -14161 to 17880. Figure 5.13 shows the 

contour surfaces w = 12000 and w = -12000, and the slicing surface x2 + y2 + z2 = 1. 

The actual radius of the sphere is 120A. The contour surfaces look like dust particles 

floating around the sphere. On a computer screen the contour surfaces of level 12000 

are painted in orange and those of level -12000 are painted in blue. In monochrome 

pictures they can be distinguished by the size. Those of level 12000 are larger than 

those of level -12000. This is because of the density distribution of this virus, which 

will be discussed shortly. Another way to distinguish contour surfaces of different 

levels is to  move eye, from infinity toward the origin. As the reciprocal distance of 

eye, to the origin is changing from 0 to positive, the contour surfaces of positive level 

will move away from the origin while those of negative level will move towards the 

origin. The picture also shows a symmetric structure of the virus. The contour sur- 

faces are clustered around the 60 vertices of a snub dodecahedron (see Figure 5.12). 

The snub dodecahedron is an Archimedean polyhedron, which means that every face 



is a regular polygon, though the faces are not all of the same kind [CRGI]. In the 

case of the snub dodecahedron, there are 12 pentagonal faces and 80 triangular faces. 

Figure 5.14 shows the contour surfaces of level 12000 a.nd the same spherical slicing 

surface within a subcube, covering four triangular faces of the snub dodecahedron. 

By rotating eye, it can be seen that the slicing surface passes through all of the six 

contour surfaces. The density value on the slicing surface can be shown in color scale, 

and the locations of the contour surfaces match the areas where the density values 

are high. Here we use the 4D rotation to show their relationship. When eye, rotates 

in the (z, w)-plane the vertical direction becomes the extra density axis, a.nd so the 

density values are seen from the height of points lifted from the original slicing surface. 

See Figure 5.15. Notice that the contour surfaces stick to the slicing surface at  their 

original locations. If eye,, rotates by so that it is inside the (x, y, z)-subspace, a side 

view is obtained. See Figure 5.16. Now we can see the distribution of the 3D sca1a.r 

field on the slicing surface. It is clearly observed that most density values are in the 

range of -6000 to 6000. There are six positive peak values (two of them are close 

to each other) and twelve negative peak values. The positive peaks are higher in the 

density direction and larger in the (x, y, z)-subspace than the negative peaks. This 

explains why there are more but smaller contour surfaces of level -12000 than those 

of level 12000 in Figure 5.13. It is also clear that we cannot find a negative value 

generating contour surfaces that match in number and size the level 12000 contour 

surfaces. 

5.4 Generalized Offset Curves 

5.4.1 Motivation 

When machining curved surface by CAR4 system, ball-mills and end-mills can be 

used.' A comparison can be found in [VQ89]. Using an end-mill has the advantage 

"They are also called ball-ended mills and flat-ended mills, respectively. Besides, there are toroidal 
cutters, also known as filleted mills and corner-radius mill. 



Figure 5.11 The  cylinder has a smaller radius, viewed from O = (0, - 15,123,120,90,0) 

Figure 5.12 A snub dodecahedron 



Figure 5.13 Contour and  slicing surfaces show t h c  s t ructure  of a 

Figure 5.1'1 C:ontour ant1 slicing surfaces witliin a subcubc 



Figure 5.15 The contour and slicing surfaccs viewed from 0 = (0,O. 15,315, GO: 0 )  

Figure 5.16 T h e  contour and slicing surfaces vieiveil horn 0 = (0,0.90,315,90.0) 



Ball Mill End Mill 

Figure 5.17 A comparison between two cutters 

of smaller surface roughness and faster cutting speed. See Figure 5.17. The ball- 

mill has a low speed cutting region at its bottom, and the processed surface has a 

greater cusp height h. However, the control of end-mill is much more complicated 

than that of ball-mill. The tool path of a ball-mill is on the offset surface, and so it is 

controlled by three coordinates (x, y ,  z )  on a 3-axis machine. To control an end-mill, 

in addition to the position coordinates, two angles are necessary for the orientation of 

the tool. So the end-mill is usually controlled by a 5-axis machine. Theoretically the 

five independent parameters form a 5-space and the possible motion of an end-mill 

is on a manifold in 5-space, called the generalized oflset sur j~ce .  But so far it has 

not been discussed in the literature in depth. A typical way to investigate a problem 

in high dimensional space is to study its dimension-reduced version first. Farouki 

[Far861 gave an example in 3-space with the restriction that the orientation of the 

tool is fixed. With some different restl.ictions, we reduce the problem into a generalized 

offset curve in 4-space, and visualize it by our system. The definitions and properties 

of the generalized offset curve will be discussed in the following subsections. Here we 

first explain and justify the restrictions. 



Figure 5.18 Cutter moving direction 

I11 [Mar871 it was shown that to  obtain the widest machining strips, the contact 

point of the cutter on the surface should move along a curvature line with minimum 

normal curvature. See Figure 5.18. Here the outward normal of the surface is used. So 

a negative curvature means convexity with respect to the cutter. When the minimum 

normal curvature of the surface is always nonpositive, or the radius of the end-mill 

is small enough, it is possible for the end-mill to follow the surface exactly along its 

moving direction. In such cases, more attention is paid on the plane orthogonal to 

the moving direction. 

The projection of the cutting edge of an end-mill in the plane orthogonal to the 

moving direction is an ellipse with major radius a ,  minor radius b and rotated by an 

angle 8. The relationship between (a, b, 8) and the orientation of the end-mill depends 

on how the coordinate systems are specified and rotated. In any case, a is always 

equal to the radius R of the end-mill. Sasaki [SasSO] proposed an algorithm to  fit the 

ellipse according to the curvature or the rate of change of the curvature. However, 

the interference problem needs to be solved. 



The term interference refers to the phenomenon when the surface is overcut by 

the tool. In the case of the ball-mill, the interference can be detected from the self- 

iiltersection of the offset surface by analytical or algebraic methods [AUSO, FN901. 

Then the offset surface must be trimmed. However, the resulting tool path will cause 

an undercut. If the undercut is not tolerable, a subsequent process by a smaller radius 

ball-mill is necessary [CJSS]. On the other hand, the effective curvature of an end- 

mill can be adjusted during the process to  match the curvature of the surface. With 

two more degrees of freedom, the interference is very hard to calculate. It is often 

detected by simulation [SasSO, MYGPSO]. In this research the generalized offset curve 

is used for matching, in the plane orthogonal to the moving direction, the effective 

curvature of the projected cutting edge with lhe curvature of the intersection curve 

of the surface and the plane while avoiding interference. 

5.4.2 Definitions 

An ellipse in R2 is expressed as xTQx  = 1 where Q is a symmetric positive definite 

matrix. The two eigenvalues of Q are denoted by 5 and $ satisfying 0 < 5 _< $. 
The rotation operator by 90 degree with respect to Q is a matrix J defined by 

tillere R(.)  is a matrix representing rotation in R2. 

It is easy to verify that x T Q J x  = 0, J T Q J  = Q ,  and J J x  = -x .  

Let a ( t )  = ( a l ( t ) ,  ~ ~ ( t ) ) ~  be a regular curve I -t R2, called the generator curve. 

The Q-o$set curve of cr is a curve ,B defined by 

where 

Each generator curve has two Q-offset curves. Together they satisfy the envelope 

equations: 

( P  - c . ( t ) ) T ~ ( P  - 4)) = 1 



The Q-curvature of curve cr is defined as 

The  superscript CY will be dropped if it is clear from the context. 

An interference point is defined as 7 E I such that 

An interference segment is defined as the open interval ( r l ,  7 2 )  of interference points, 

where r1 and TZ are not interference points. They are called the endpoints of the 

interference segment. 

When the generator curve a ( t )  at r satisfies K Q ( T )  = 1 and K ~ ( T )  # 0, the point 

on the Q-offset curve, P ( T ) ,  is a cusp. When K Q ( T )  = 1, K ~ ( T )  = 0 and K $ ( T )  # 0, 

P ( r )  is an extraordinary point. When ~ b ( r )  = K ; ( T )  = 0, These definitions can be 

extended using higher order derivatives. T h e  situations are essentially the same, but 

they will not be  further addressed to  simplify discussion. When the Q-offset curve 

satisfies P ( T ~ )  = P ( T z )  and TI  # 7 2 ,  P ( T ~ )  = P ( T ~ )  is a self-intersection point. 

In Figures 5.19 through 5.21, three Q-offset curves of ( t ,  t 2 )  with different b values 

are shown together with their Q-curvatures. An extraordinary point occurs when 

b = 0.086 as shown in Figure 5.20. When b < 0.086 there is a self-intersection point 

as shown in Figure 5.21. 

5.4.3 Properties 

In the following discussion of some properties of Q-offset curves, a few conditions 

are always assumed. The regular generator curve a has no self-intersection points. 

T h e  Q-offset curve to be considered is totally on one side of a. There is no global 

interference such as that caused by the narrow neck of a bottle-shaped surface. For 

NC tool path generation, these conditions are usually satisfied. 



Figure 5.19 Q-offset curve of ( t ,  t 2 ) ,  a = 0.25, b = 0.125,O = 30 



Figure 5.20 Q-offset curve of ( t ,  t 2 ) ,  a = 0.25, b = 0.086, O = 30 



Figure 5.21 Q-offset curve of ( t ,  t 2 ) ,  a = 0.25, b = 0.04,O = 30 



We first discuss the Q-offset curve with a fixed Q. When Q is the identity matrix, 

the results are the same as those of ordinary offset curve. We prove them for an 

arbitrary Q in order to  discuss the family of Q-o$set curves with b and 6 as the 

parameters of the family. 

Lemma 5.1 The tangent vectors and the Q-curvatures of the generator a ( t )  and Q- 

offset P(t)  are related as: 

P.roof: Recall the definition of P(t):  

Differentiating P(t)  yields: 

Pt( t )  is parallel to  a f ( t )  because: 

Therefore, the  tangent vector of ,B is: 

Differentiating again we get: 



Therefore, the Q-curvature of P( t )  is: 

Lemma 5.2 Let KQ(T) be the Q-curvature of a ( t )  a t  point T. 

(a) if KQ(T) > 1, or tiQ (7) = 1 and K ~ ( T )  # 0, then for any E > 0 

(b)  i f  ~ ~ ( 7 )  < 1, or tiQ(7) = 1 and K ~ ( T )  = 0 and K ~ ( T )  < 0, then there exists 

E > 0 such that 

Vt E (7 - C , T  + E ) ,  ( ( a ( t )  - P(T)\(Q 2 1 

Proof: The derivatives of KQ can be expressed as: 

Define function d(t)  and calculate its derivatives: 



Evaluation at t = T yields 

When ~ ~ ( 7 )  < 1, d ( t )  reaches a local minimum at t = T .  When r ;Q( r )  > 1, d ( t )  

reaches a local maximum at t = T .  When ~ ~ ( 7 )  = 1 we get d1'(7) = 0 and 

Then K I Q ( T )  # 0 implies d"'(7) # 0, which means that there exists a t close to T 

such that JJa(t)  - P ( T ) J J Q  < 1. Finally, when K Q ( T )  = 1 and K ~ ( T )  = 0, we have 

d ' ' ( ~ )  = d1"(7) = 0 and 

d ( 4 ) ( ~ )  = - I ~ C Y ' ( T ) I ~ & K S ( T )  
Then K ; ~ ( T )  < 0 implies d ( 4 ) ( ~ )  > 0, which means that d ( t )  reaches a local minimum 

at t = T .  

Lemma 5.3 If ,f3(rl) = P( 72) is a self-intersection point of the Q-offset curve P ( t )  such 

that ,B1(71) and P1(72) are not parallel, then for any E > 0 there is an interference 

point in (71 - E ,  71 + E )  and in (72 - E ,  72 + 6 ) .  

Proof: We calculate the first order approximation of P ( t )  in the neighborhood of TI: 

Now the distance from P ( t )  to 4 7 2 )  can be expressed as: 

Clearly d ( ~ ~ )  = 1 and, by Lemma 5.1, # 0. Hence it is always possible to find 

a t close to  such that t is an interference point. The analysis for 72 is similar. 



Lemma 5.4 Suppose that the endpoints of I are not interference points. If T is an 

endpoint of an interference segment, then ,B(T) is a self-intersection point, and K Q ( T )  < 

1. 

Proof: First, we eliminate several possibilities. 

An extraordinary point cannot be an endpoint of an interference segment. By 

Lemma 5.2, 'dt E ( T  - E ,  T + E )  I ~ ,B (T )  - c r ( t ) l lQ  2 1. If 3t  E I ll,B(r) - c r ( t ) ) IQ  < 1 then 

r is an interference point but not the endpoint of an interference segment. 

A cusp point is itself an interference point by Lemma 5.2, and so cannot be the 

endpoint of an interference segment. The situation is subtle and deserves detailed 

analysis. See Figure 5.22. Suppose K Q ( T )  = 1 and K ~ ( T )  > 0. We can fi~lcl > r 

such that ( ( ,B(T)  - C Y ( T ~ ) ~ ~  < 1. Let E be an ellipse defined by llx - c r ( ~ ~ ) l l  = 1. There 

must be an intersection of ,B and I3 at ,B(r2) where < r .  If TI is an endpoint 

of I, then is an endpoint of the interference segment. This case is eliminated 

by the assumption of the lemma. If t goes furthcr beyond T I ,  the endpoint 73 of the 

interference segment must satisfy 73 < 7 2 .  Similar analysis can be done for K ~ ( T )  < 0. 

Consequently, a t  the endpoint T of an interference segment S ( T )  < 1. 

Now assume T is an endpoint of an interference segment. From the discussion 

above and Lemma 5.1 there exists an interval (T  - c, T + E) on which ,B is regular. 

Let 71 be an interference point in (T  - E ,  T + E ) .  There must be a T: 4 (T - E, T + E )  

such that ll,B(rl) - CY(T;)  /IQ < 1. Since ca.n be arbitrarily close to T ,  there must 

Ile a T' @ (T  - E, T + E )  at which IJ,B(T) - c r ( ~ ' ) ( I ~  = 1. The point P ( T )  is on the 

curve segment ,B(t) t E (7' - E', T' + E')  if we can prove that ( ( ,B(T)  - c r ( t ) ( IQ  achieves a 

local minimum at  t = 7 ' .  This is obvious because otherwise r is an interference point 

which is a contradiction. 

The lemmas above all deal with the Q-offset curve with a fixed Q. The matrix Q 

depends on parameters a ,  b and 19. Since a is fixed because of the fixed radius of the 

tool, we consider a familiar of Q-offset curves ,f3 with parameters b and 0 ,  written as 

( ~ 1 ,  x2) = P ( t ,  b, 0) .  



Figure 5.22 Interference near a cusp 

Lemma 5.5 The family of Q-offset curves forms a hypersurface in ( x l ,  3 2 ,  b, 0)-space. 

The self-intersection points compose a 2-surface on the hypersurface. 

Proof: The family of Q-offset curves can be written as ( x l ,  x 2 )  = P(t ,  b, 4). The map 

x : ( t ,  b, 0) H ( P ( t ,  b, 0 ) ,  b, 0 )  defines a (parametric) 3-surface if it is differentiable 

[clC76]. It suffices to  calculate the partial derivatives of P .  

Note that the denominator will never vanish and so x is differentiable everywhere 

in its domain. But the Jacobian matrix of x reduces its rank at the point ( t ,  b, 0) 

satisfying ~ ~ ( t )  = 1. These are the singular points of the 3-surface. 

The self-intersection points satisfy the following equations: 

f ( t l ,  t2, b, 0) = P(t1, b, 4) - P(t2, b, 0) = 0 



Suppose that po = (r1, r2, bo, 60) is a self-intersection point, and that s ( r l ,  $, 4) and 

z ( 7 2 ,  b0,60) are not parallel, then 

By the implicit function theorem of advanced calculus, in the neighborhood of po 

there is a differentiable function 77 such that ( t l ,  t2) = ~ ( b ,  0) and f ( ~ ( b ,  0), b, 6) = 0. 

Now the set of self-intersection points in the neighborhood of po can be expressed as 

/3(q1(b, 0), b, 0) that is a 2-dimensional patch on the 3-surface. Other patches can be 

constructed similarly. Together they compose a 2-surface. 

Lemma 5.6 The family of Q-curvatures, written as ~ . ( t ,  b, O), is differentiable to order 

m i f  cr is differentiable to order m + 2. 

Proof: This can be easily verified by the partial derivatives. 

O I I ( ~ ) ~ Q  ~ d ( t )  c ~ l / ( t ) ~ ~ ( ; ) a l ( t )  
&(t,b,O) = - - 

llal(t)ll; abll~'(t)ll; 
d~ - - - 

~!" ' ( t )~R(; ) (~l ( t )  - 3 ~ l ~ ( t ) ~ Q c r l ( t )  

d t  ablbl(t)ll$ Ibl(t) 11; .(t, b, 6) 

d~ Ta& I 1 3cr1(t) xcr (t)  
- ( - - -  - - 

db b 21b1(t) 11; >.(t, b, 0) 

d~ - - - - 3 ~ ' ( t ) ~ %  

88  
as ( t )  ~ ( t ,  b, 0) 

211a1(t) 11; 
Continuing the differentiation shows that the denominators are in the form 

ui&llal(t)lJk, and so they will never be zero. The matrix Q is also differentiable 

to any order. 

As a simple example, let a ( t )  = (t ,  t2). Tlle hypersurface P(t , b, 0 )  in (xl ,  2 2 ,  b, 8)- 

space is shown in Figure 5.23. The hypersurface ~ ( t ,  b, 6) in ( t ,  b, 0, &)-space is shown 

in Figure 5.24. The parameter a is fixed at 0.25. The domain shown is -1 5 t 5 1, 

0.025 5 b 5 0.25, -2 5 6 5 $. The isosurfaces on these hypersurfaces have the 

constant values 0 = -$, -:, 0, :, %. The curves on the hypersurfaces will be explained 

later. 



Figure 5.23 T h e  l ~ ~ ~ e r s u r f a c e  13(1,6, 0 )  

Figure 5.24 T h e  curvature ~ ( t ,  6 .0 )  



Now we discuss the interference related to the hypersurface P(t ,  b, 8). A point 

(t, b, 8) is said to be an interference point if and only if t is an interference point of 

the Q-offset P(t)  where Q is determined by b and 0. 

Theorem 5.1 Suppose that the hypersurface P(t,  b, 8) is defined on a convex domain 

D c R3, and that for any pair of (b,  8) the two endpoints of the domain, tmi,(b, 0) 

and t,,,(b, O),  are not interference points. If P( t l ,  bl , e l )  is an interference point 

while P(t2, b2, 02) is not, then any curve segment on the hypersurface P(t,  b, 0) and 

connecting them will pass through a self-intersection point or an extraordinary point. 

Proof: Assume that the curve segment connecting the two points is 

P(t,  6(l), 8(t)) t 1  5 t 5 t 2  with b(tl) = bl ,  6(t2) = t2 and 8(tl) = 01, 0(t2) = 02. From 

the continuity of the hypersurface and the curve, it is possible to find a T such that 

Vt < T ( t ,  b(t), O(t)) is an interference point while (T, b ( ~ ) ,  O ( T ) )  is not. Consider the 

Q-offset curve in the neighborhood of T where Q is fixed by b ( ~ )  and O(T), namely, the 

curve p ( t ,  b ( ~ ) ,  O(T)) .  There are two cases. In the first case, those points with t < T are 

interference point while those points with t > T are not. By Lemma 5.4 P(T, b ( ~ ) ,  O(T) 

is a self-intersection point. In the second case, both sides of T are not interference 

point, we claim that P(T, b ( r ) ,  8 ( ~ ) )  is an extraordinary point. If K(T,  b ( ~ ) ,  O(T)  < 1, 

by Lemma 5.2 and 5.6 there is a neighborhood of (T,  b ( ~ ) ,  8(7)) containing no inter- 

ference point. This contradicts the definition of T. Hence K(T,  b ( ~ ) ,  8(7)) = 1. The 

cusp can be ruled out because it is an interference point. The remaining case is 

an extraordinary point. It is possible because slightly perturbing b and 0 will cause 

interference. 

When b and 8 can vary, the situation is more complicated than the Q-offset curve 

of a fised Q. This theorem states that if a curve on the hypersurface P(t ,  b, 0) never 

touclles a self-intersection point or an extraordinary point, interference can be avoided. 



5.4.4 Finding Optimal Q-offset Curves 

There are infinitely many interference free curves on the hypersurface if its domain 

is suitably large. We establish a criterion for choosing one curve among them. The 

optimal Q-o$set curve is defined as a curve on the hypersurface P(t,  b, Q) ,  denoted by 

P( t ,  b(t), 0(t)) such that t is never an interference point, and that 

reaches its minimum, where w(t) is a positive weight function. 

The optimal Q-offset curve represents the most efficient and interference free tool 

pa,th. We need to find b and 0 of the ellipse as functions of t such that interference 

never happens. Besides, the curvature of the ellipse and the curvature of the generator 

curve match as close as possible at the contact point. This is equivalent to that the 

Q-curvature of the generator is close to 1. 

It  is not practicable, and perhaps impossible, to find the explicit form of b(t) and 

O ( t )  for an optimal Q-offset curve. Therefore, a numerical method will be applied. 

Consequently we may find a solution which is only locally optimal. 

When the curve a ( t )  has only one peak value of tiQ(t) for any Q in the domain, 

or the peaks of ~ ~ ( t )  are separated enough so that their interactions can be ignored, 

a method to find a locally optimal curve works as follows. 

For each high Q-curvature region, the curve follows the extraordinary points de- 

fined by 

Since the only peak value of ~ ( t ,  b ,Q)  is kept as 1, it is interference free and its 

contribution to the integration of (5.1) is 0. 

Figure 5.23 shows such a curve segment. It consists of the extraordinary points 

of P(t , b, 0). The curvature ~ ( t ,  b, 0) is shown in Figure 5.24. The fact that 

$(t, b(t), B(t)) = 0 can be observed at the intersection of the curve and the 2-surfaces 

in the hypersurface ~ ( t  , b, 8). The projection of the optimal curve segment in R2 is 



Figure 5.25 Optimal Q-offset curve of ( t ,  t 2 ) ,  a = 0.25 



shown in Figure 5.25, together with the corresponding ellipses. The orientation and 

minor radius of the ellipse change according to the shape of the generator curve. 

Figure 5.23 also shows that the curve segment ends at the boundary of the domain. 

This can happen when the orientation of the ellipse 0 fails to match the slope of the 

generator curve, or the minor radius b causes the ellipse not to match the curvature 

of the generator curve. In such cases the pa.rameter b and 0 could be fixed to their 

values at the intersection of the curve with the domain boundary. 



6. CONCLUSION AND FUTURE WORK 

In this thesis a method has been proposed for visualizing I-,  2-, and 3-surfaces 

in 4-space. The research has been done on a conceptual level as well as validated 

experimentally. The work is summarized in the following two sections. The last 

section discusses some considerations on visualization of 5-space. 

6.1 Concepts and Intuitions 

Orientation. The generalized Euler angles have been shown to  be suitable for spec- 

ifying the orientation of objects and the projections. The two centers of projections, 

eye, and eye,, are controlled by one set of Euler angles. The arrangement guarantees 

that (a) eye, is inside the subspace, called the 3D image space, orthogonal to eye,'s 

direction; (b) the projected world w-axis can be simply kept vertical in the 2D im- 

age space which is always orthogonal to both the eyes' directions; (c) the control of 

eye3 is consistent with 3D computer graphics. The use of quaternions can overcome 

the difficulties with Euler angles. Although the theory of 4D rotation can be built 

by quaternion algebra, we prefer a geometric interpretation for the application pur- 

pose. We have shown that the 4D rotation can be decomposed into two orthogonal 

subrotations. Since the quaternion pairs representing 4D rotations are not unique, 

some useful forms have been discussed: (a) the first form pl(p, r)  = L,R,- is suitable 

for rotation combination and interpolation; (b) the second form p2(s, r )  = LsL,RF 

is suitable for conversion between quaternions and matrices or Euler angles; (c) the 

third form p3(u, v) = L,  R ,  L, R6 is suitable for user interface. 

Silhouette and Envelopes. The silhouette point of an m-surface with respect to  

a projection v k  from Rn to R' has been defined. Some special forms, such as the 



silhouette surface of a hypersurface with respect to 92 and the silhouette curve of a 2- 

surface with respect to cp: are discussed in detail. The relationship between silhouette 

and envelope finds its applications in (a) the explanation of some phenomena in 

the interrogation of a constraint surface defined by the envelope theorem; (b) the 

construction of an image of hypersurface in mind; (c) the design of algorithms for 

visibility determination. In the definition of envelope, the locus of singular points 

is excluded. Correspondingly, the singular points on an m-surface are excluded as 

proper silhouette points. The set of singular points on a hypersurface can be called 

the singular surface or the discontinuity surface. They might be visualized by shading 

in 4-space or could be explicitly constructed and then shaded in 3D image space. The 

l~ehavior of the discontiiluity surface under projection and the relationship with the 

discriminant hypersurface needs to be investigated. 

Visibility. It has been shown that visibility determination is necessary to eliminate 

the ambiguities caused by projection. Figure 3.12 and 3.13 are a pair of pictures of 

the same hypersurface from different viewing directions. They will be identical if 

the visibility in 4-space is ignored. The definition of visibility has been carefully 

considered so that (a) curves, 2- and 3-surfaces can be displayed altogether; (b) a 

3-surface can hide other surfaces in 4-space but not in 3-space; (c) the visibility is 

quantified for displaying transparency. Although the definition of visibility is valid 

for spaces of any dimensions, the practical limit seems to be 5 or 6. 

Geometric Properties and Phenomena. Several geometric properties and phenom- 

ena in 4-space have been demonstrated by computer generated pictures and anima- 

tion. They include the ambiguity caused by projection, the dimension reduction 

(degeneracy) of the silhouette surface, and the principal curvatures of hypersurfaces. 

The emphasis is put on observation instead of calculation. Currently the curvature 

observation depends on silhouette surfaces. For those points not on a silhouette sur- 

face, one way is to adjust the viewing direction to  make them silhouette points. Other 



ways might be using a generalization of Dupin's indicatrix, or a generalization of light- 

ing models in high dimensional space. Another challenging problem is to visualize 

the CO,  C', C2 continuities of patches or hyperpatches in 4 or higher space. 

6.2 System and Applications 

Polygonaliration. Fire have ada.pted Allgower's algorithm [AG87] for polygonaliz- 

ing implicit 2-surface in 4-space. Three types of Newton iteration for point refinement 

have been considered. An algorithm for merging polygons has been presented. The 

methods chosen for point refinement and polygon merging affect the available meth- 

ods for the following stages of visibility determination and rendering. Currently the 

speed of polygonalization are sufficient for interactive display. Since the number of 

simplices grows exponentially with the dimension, it might be very slow if extended 

into 5 or higher dimensions. Polygonalization for visualization is different than for 

other purposes. For example, the polygons generated need not be connected if the 

visibility determination algorithm does not depend on it. Special efficient algorithms 

can be expected. 

Visibility Determination.  An algorithm for visibility determination in 4-space has 

been presented. The basic operation is to find the intersection curves of pairs of 

2-surfaces in 3D image space. But the nature of projection caused several kinds of 

singularities. So the intersection is actually done in 4-space. \Ve discussed the special 

cases when one of the intersecting 2-surface is a silhouette surface or a boundary 

surface. Several desingularization techniques are found based on geometric intuitions. 

The special cases when one of the intersecting 2-surfaces is a self-intersection surface 

of the hypersurface, or an intersection surface of two hypersurfaces have not been 

studied in detail. Also, there is room left for the improvement of the efficiency and 

robustness of the algorithms. 

Applications. Four examples have been presented to  illustrate the use of 4D vi- 

sualization: understanding differential geometry, collision detection and analysis, 3D 

scalar field display, and tool path generation for 5-axes milling machines. It should 



be pointed out that the emphasis is put on explaining the problems and techniques 

through 4D visualization tools rather than on a complete analysis of each problem. 

The solution to each of the problems deserves a separate thesis. There are other 

research topics of CAGD and solid modeling where 4D visualization might be useful. 

An example is the skeleton in 3-space. As defined in [HV91], the i n t e r i o r  skele ton 

of a 3D solid is the locus of the centers of all inscribed maximal spheres. To make 

it an informationally-complete representation, each point on the skeleton should be 

associated with its distance from the boundary of the 3D object. So the skeleton is 

composed of 2-surfaces in 4-space. Moreover, it is the singular surface of a hypersur- 

face that is the t r i m m e d  cyclographic m a p  of the boundary surfaces of the 3D solid. 

When eye, is off the w-axis (the distance axis) by more than $, part of the skeleton 

will be occluded by the hypersurface as can be inferred from the pictures in [HV91] 

by the dimension analogy. Visibility in 4-space is therefore necessary. 

6.3 Toward the Fifth Dimension 

The definitions defined in Chapter 2 all have a general form that is valid for 

spaces of any dimensions. Theoretically, it is possible to project objects in any high 

dimensional space down to the final 2D image space. But it is extremely hard to 

interpret the pictures so generated. Let us explain how we can interpret the pictures 

from 5D visualization. 

It is helpful to think of the 5D world space, and the 4D, 3D and 2D image spaces, 

as related by a 5D rotation. The rotation can be specified by ten parameters such 

as the Euler angles. The recursive definition of Euler angles also suggests how these 

image spaces are related. The generalization of quaternion seems much harder.' The 

group of 2 x 2 quaternion matrices is a double cover of the rotation group in R5. 

The ten independent real parameters of the 5D rotation can be arranged in this way: 

four parameters form a unit vector in 5-space called the axis of the rotation, and t,he 

'Next to the quaternions is the algebra of octonions, called the Cayley algebra, which is nonas- 
sociative [Por81]. 



remaining six parameters, a pair of unit quaternions, form the 4D rotation orthogonal 

to the axis. 

Displaying I-, 2-, 3-surfaces in 5-space will not be too much different from dis- 

playing them in 4-space. iVe only need to consider the distortion introduced by the 

additional projection from 5-space to 4-space. The most difficult task will be dis- 

playing the 4-surface, i.e. the hypersurface in 5-space. Tlle 4-surface is displayed in 

4D image space via its silhouette 3-surfaces, boundary 3-surfaces, and so on. The 

visibility determined by eye, will cause these 3-surfaces trimmed. Therefore, in the 

4D image space there sl~ould be several trimmed 3-surfaces. The techniques pre- 

sented in this thesis can be estended to the simultaneous display of several trimmed 

3-surfaces. After further research and training, we might be able to recognize these 

trimmed 3-surfaces from their 3D and 2D images. Finally, putting together the in- 

formation revealed by these trimmed 3-surfaces, the hypersurface in 5-space could be 

visualized. 
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