CHAPTER 3
MACH EFFECTS
CHAPTER SUMMARY:

The nature of fields and their sources, and how they are treated formally is considered.  The relativistic generalization of Newtonian gravity is presented and it is noted that the source/field status of a term in one of the field equations is ambiguous.  To resolve the issue, the field equation in question is rederived by going back to first principles: the definition of the field strength: the four-force (per unit mass) and taking the four-divergence thereof to get the local source charge density.  It is important in this calculation to note that in general restmass is not a constant.  Mach’s laws of inertia can be used in this derivation to separate variables and recover a classical wave equation for the potential of the field.  Transient source terms appear in this equation.  One of them, though normally very small, is always negative, and so holds out hope for making exotic matter.  The explicit acceleration dependence of Mach effects is discussed.  Whether the always negative effect can be detected in laboratory circumstances is addressed.  Predictions for a simple system where Mach effects should be present are derived.  Newton’s second law and the conservation of momentum are considered.
SOURCES AND FIELDS:

Gravitation, including Mach’s laws of inertia, and by extension Mach effects, involve the interrelationship between a field and its sources – notwithstanding that the field in the case of gravitation, at least in General Relativity Theory (GRT), is spacetime itself.  So, what we want to look at is the “field equations” for gravity.  We’ll find that we do not need to examine the full tensor field equations of Einstein, for we are looking for hopefully fairly large effects – and they, if present, may be expected to occur “at Newtonian order”.  That is, anything big enough to be of any use in revolutionary propulsion is likely to be something present at the scale of Newtonian effects that has been missed in earlier work.


The customary way to write a field equation is to collect all of the terms involving the field(s) of interest on the left hand side of the equation(s), and arrange things so that the terms involving the sources of the field appear on the right hand side.  Usually, this is a pretty much straight-forward matter.  Armed with one’s field equations, one usually stipulates a particular arrangement of the sources and then solves for the corresponding field quantities.  The field(s) are then allowed to act on the sources where the fields are calculated, and so on.  Standard techniques have been worked out since the time of Newton for doing these computational procedures.  We will be using standard procedures, but instead of asking the question: what are the fields for a given arrangement of sources? we will be asking a somewhat different question: when a source of the gravitational field is acted upon by an external force – we know that the action of the gravitational field is to produce the inertial reaction force experienced by the agent applying the external force – and we ask: what effect does the action of the gravitational force on the object being accelerated have on the source?  This may seem a silly question.  How could a field acting on a source in any circumstances change the source?  But if we hope to manipulate inertia, this question is one worth asking.  For, in the last analysis, all we can ever do is apply forces to things and hope to be able to produce effects that enable us to do what we want to do.

Since the advent of GRT, those scientists interested in gravity have pretty much ignored Newtonian gravity.  After all, it is, at best, just an approximation to Einstein’s correct theory of gravity.  Engineers, however, have worked with Newtonian gravity all along.  If you are doing orbit calculations for, say, a spacecraft on an interplanetary mission, the corrections to Newtonian mechanics from GRT are so utterly minuscule as to be irrelevant for practical purposes.  Why engage in lengthy, tedious, and complicated calculations using GRT and increase the risk of miscalculation when the Newtonian gravity approximation is more than sufficient?  True, the same cannot be said in the case of GPS calculations because the timing involved is more than precise enough to make GRT corrections essential.  For your vacation trip, or shopping downtown, being off by as much as a hundred meters or more is likely inconsequential.  But if you are trying to blast the bunker of some tin-horned dictator, getting the position right to less than a few meters does make a difference (unless you are using a tactical nuke, in which case being off by up to half a kilometer probably won’t matter). 
RELATIVISTIC NEWTONIAN GRAVITY:
The relativistic version of Newtonian gravity gets mentioned in texts, but the field equations for relativistic Newtonian gravity do not get written out in standard vector notation as a general rule.  Why bother writing down something that’s a crude approximation?  Nonetheless, George Luchak did so in the early 1950s, when constructing a formalism for the Schuster-Blackett conjecture.  The Schuster-Blackett conjecture asserts that rotating, electrically neutral, massive objects generate magnetic fields.  Were this true, it would couple gravity and electromagnetism in a novel way.   Luchak was chiefly interested in the anomalous coupling terms that get added to Maxwell’s equations if the conjecture is true, so relativistic Newtonian gravity was a good enough approximation for him.  Accordingly, contrary to established custom, instead of using the four dimensions of spacetime for tensor gravity and adding a fifth dimension to accommodate electromagnetism, he wrote down the equations of electromagnetism in the four dimensions of spacetime, and in the fifth dimension he wrote out a vector formalism for the scalar Newtonian approximation of relativistic gravity.  Along with the curl of the gravity field F being zero, he got two other equations, one of which being of sufficient interest to be worth writing out explicitly:
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 is the matter density source of the field F, and q is the rate at which gravitational forces do work on a unit volume.  (The other equation relates the gradient of q to the time rate of change of F.)
  The term in q in this equation appears because changes in gravity now propagate at the speed of light.  It comes from the relativistic generalization of force, namely, that force is the rate of change in proper time of the four-momentum, as discussed in chapter 1.  The timelike part of the four-force is the rate of change of mc, and since c is a constant in SRT (and strictly speaking, a locally measured invariant), that is just the rate of change of m, which is the rate of change of E/c2.  If m were a constant too, this term would be zero.  But in general m is not a constant.

A serious mistake is possible at this point.  It is often assumed that the restmasses of objects are constants.  So, the relativistic mass m can be taken as the restmass, usually written as mo, multiplied by the appropriate “Lorentz factor”, an expression that appears ubiquitously in Special Relativity Theory (SRT) equal to one divided by the square root of one minus the square of the velocity divided by the square of c.
  The symbol capital Greek gamma is commonly used to designate the Lorentz factor.  (Sometimes the small Greek gamma is used too.)  When v approaches c, the Lorentz factor, and concomitantly the relativistic mass, approaches infinity.  But the proper mass is unaffected.  If the proper mass mo really is a constant, then the rate of change of mc is just the rate of change of the Lorentz factor.  As Wolfgang Rindler points out in section 35 of his outstanding book on SRT, Introduction to Special Relativity, this is a mistake.  It may be that in a particular situation restmass can be taken constant.  In general, however, this is simply not true.  In a situation as simple as the elastic collision of two objects, during the impact as energy is stored in elastic stresses, the restmasses of the colliding objects change.  (The germane part of Rindler’s treatement is reproduced in Appendix A.)  This turns out to be crucial to the prediction of Mach effects.
Now, Luchak’s relativisitic Newtonian gravity equation looks very much like a standard classical field equation where the d’Alembertian operator [which involves taking spatial and temporal rates of change of a field quantity] acting on a field is equal to its sources.  That is, it looks like a classical wave equation for the field with sources.  It’s the time dependent term in q that messes this up because q is not F.  q, however, by definition is the rate at which the field does work on sources, that is, the rate at which the energy of the sources changes due to the action of the field.  So the term in q turns out to be the rate of change of the rate of change of the energy in a volume due to the action of the field on its sources.  That is, it is the second time-derivative of the energy density.  This, the second time-derivative (of the field), is the correct form for the time-dependent term in the d’Alembertian of a field.  The problem here is that the energy density isn’t the right thing to be acted upon by the second time-derivative if the equation is to be a classical wave equation.  It should be the field itself, or a potential of the field that is acted on by the second time-derivative.  The interesting aspect of this equation is the ambiguity of whether the time-dependent term should be treated as a field quantity, and left on the left hand side of the equation, or if it can be transferred to the right hand side and treated as a source of the field.  Mathematically, where the time-dependent term appears is a matter of choice, for subtracting a term from both sides of an equation leaves the equation as valid as the pre-subtraction equation.

Physically speaking, whether something gets treated as a field, or a source of the field, is not a simple matter of formal convenience.  q is not F, so transferring the term in q to the source side wouldn’t obviously involve treating a field as a source.  But q may contain a quantity that should be treated as a field, not a source.  In the matter of rapid spacetime transport, this question has some significance because if the time-dependent term can be treated as a source of the gravitational field, then there is a real prospect of being able to manipulate inertia, if only transiently.  So it is worth exploring to find out if Luchak’s equation for relativistic Newtonian gravity can be transformed into one with transient source terms.
FIRST PRINCIPLES:
The way to resolve the issues involved here is to go back to first principles and see how the field equation is evolved from the definition of relativistic momentum and force.  When this is done taking cognizance of Mach’s principle, it turns out that it is possible to recover not only Luchak’s field equation, it is possible to recover a classical wave equation for the gravitational potential – an equation that, in addition to the relativistically invariant d’Alembertian of the potential on the (left) field side, has transient source terms of the sort that Luchak’s equation suggests might be possible.  But without Mach’s principle in the form of the formal statement of his laws of inertia, this is impossible.  The procedure is straight-forward.  You assume that inertial reaction forces are produced by the gravitational action of the matter in the universe that acts through a field.  The field strength that acts on an accelerating body – written as a four-vector – is just the inertial reaction four-force divided by the mass of the body.  That is the derivative with respect to proper time of the four-momentum divided by the mass of the body.  To put this into densities, the numerator and denominator of the “source” terms get divided by the volume of the object.  In order to get a field equation of standard form from the four-force per unit mass density, you apply Gauss’ “divergence theorem”.
  You take the four-divergence of the field strength.  Invoking Mach’s principle judiciously, the field and source “variables” can be separated, and a standard field equation is obtained.
All of the foregoing is presented here with the aid of 20-20 hindsight.  With that hindsight, it all looks pretty straight-forward and simple.  Actually wading through all of the considerations for the first time, though, was a good deal more tortuous.  Only by going back to the basics, the relativistic definition of momentum and force, and constructing the argument from first principles made it possible to have any confidence in the results.  To be sure that nothing had been screwed up, I took the calculation to a couple of general relativist friends: Ron Crowley and Stephen Goode, both colleagues at California State University Fullerton.  If you are doing “speculative” work like this, you are a fool should you pass up the chance to get the opinion of first-class, brutally honest professionals.  In this case, seeking critical professional evaluation had an unintended consequence of real significance.  When Luchak did his calculation, since he wasn’t looking for small relativistic effects, he made an approximation: he suppressed all terms of “higher order” in the quantity v/c.  This, by the way, in these sorts of circumstances is a customary practice.  When I did the first principles reconstruction of the Newtonian order field equation taking account of Mach’s principle, since I was only interested in getting a transient source term that might get us some purchase on inertia, I made the same approximation.
When I took the derivation to Ron for criticism, almost immediately he came across the assumed approximation.  Ron had spent some time in earlier years doing experimental work,
 but he was really a theorist at heart.  Theoreticians, in my experience anyway, hate to see calculations done with approximations if, in their judgment, the approximations employed are not needed to get to a result.  When he came upon the approximation, Ron asked, “Why did you do that?”  I explained that I didn’t need the higher order terms to get the result I was interested in.  He was contemptuous.  He thought my approach either lazy or foolish, or both, and told me that he wouldn’t go through the rest of the calculation until I had either done the calculation without the approximation, or could show that the approximation was essential to get any result at all.  It turns out that the calculation can be done without the approximation in about three pages of algebra, even if your handwriting isn’t small.
  The exact calculation produces additional terms, normally very small, that do not appear in the Luchak level approximation.  In particular, it yields a transient term that is always negative.  This is the term that holds out the promise of being able to make starships and stargates (that is, absurdly benign wormholes).
  

The field equation for the gravitational field acting on an accelerating body to produce the inertial reaction force the body communicates to the accelerating agent looks like:
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or, equivalently (since 
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according to Einstein’s second law, expressed in densities),
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 is the proper matter density (where “matter” is understood as everything that gravitates) and E0 is the proper energy density.   The left hand sides of these equations are just the d’Alembertian “operator” acting on the scalar gravitational potential
[image: image7.wmf]f

.  “Mach effects” are the transient source terms involving the proper matter or energy density on the right hand sides.  The equations are classical wave equations for the scalar gravitational potential (, and notwithstanding the special circumstances invoked in their creation (the action of the gravity field on an accelerating object), they are general and correct, for when all the time derivatives are set equal to zero, Poisson’s equation for the potential results.  That is, we get back Newton’s law of gravity in differential form with sources.  When are the transient source terms zero?  When the accelerating object considered in the derivation does not absorb “internal” energy during the acceleration.  That is, if our accelerating body is not deformed by the acceleration, these terms are zero.  This means that in situations like elementary particle interactions, you shouldn’t see any Mach effects, for elementary particles per se are not deformed in their interactions, though they may be created or destroyed.  The derivation of these effects was first published in 1995 in: “Making the Universe Safe for Historians: Time Travel and the Laws of Physics”.  The title is a take-off on a joke made by Stephen Hawking in a paper on his “chronology protection conjecture” that he had published a few years earlier.  According to Hawking, the prohibition of wormhole time machines makes it impossible to travel to the past to check up on reconstructions of the past by historians.  One of the unintended consequences of this choice of title is that it has the acronym: MUSH.


A small digression at this point is warranted to head off possible confusion.  You may be wondering, especially after all of the fuss about 
[image: image8.wmf]f

and c being “locally measured invariants” in the previous chapter, how the derivatives of 
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 in these wave equations can have any meaning.  After all, if 
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has the same value everywhere, how can it be changing in either space or time?  The thing to keep in mind is “locally measured”.  As measured by a particular observer, c and 
[image: image11.wmf]f

have their invariant values wherever s/he is located.  But everywhere else, the values s/he measures may be quite different from the local invariant values.  And if there is any variation, the derivatives do not vanish.  Let me give you a concrete example.  Back around 1960, a few years after the discovery of the Mössbauer effect (recoilless emission and absorption of gamma rays by radioactive iron and cobalt), Pound and Rebka used the effect – which permits timing to an accuracy of a part in 1017 seconds – to measure the gravitational redshift in a “tower” about 22.5 meters high on Harvard’s campus.  The gravitational redshift results because time runs slower in a stronger gravitational field, so an emitter at the bottom of the tower produces gamma rays that have a different frequency from those emitted and absorbed at the top of the tower.  Pound and Rebka measured this shift for a source at the top of the tower by using a moving iron absorber at the bottom of the tower.  The motion of the absorber produces a Doppler frequency shift that compensates for the higher frequency of the source at the top of the tower.  From the speed of the absorber, the value of the frequency shift can be calculated.  Since time runs slower at the bottom of the tower, the speed of light there, measured by someone at the top of the tower, is also smaller.  And since 
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 = c2, the value of 
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at the bottom of the tower measured by the person at the top is also different from the local invariant value.  Obviously, the derivative of 
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in the direction of the vertical in the tower does not vanish.  But if you measure the value of c, a proxy for 
[image: image15.wmf]f

, with, for example, a cavity resonator, you will get exactly the local invariant value everywhere in the tower.  From all this you may infer that the locally measured value of 
[image: image16.wmf]f

is the same everywhere in the tower, notwithstanding that it has a non-vanishing derivative everywhere in the tower.
For those of you who want to see the details, a version of the derivation of Mach effects, with all of the algebra spelled out, is excerpted in Appendix B.  It was published in 2004 as part of: “Flux Capacitors and the Origin of Inertia”.  All of the line-by-line algebra was included because I had found that a number of mathematically capable people had been unable to reconstruct the derivation published in MUSH years earlier.  You don’t need to know how to derive these equations, however, to see some of their implications.  The terms that are of interest to us are the transient source terms on the right hand sides.  We can separate them out from the other terms in the field equation, getting for the time-dependent proper source density:
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where the last term on the right hand side in the field equation has been dropped as it is always minuscule.
  The factor of 
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appears here because the parenthetical terms started out on the field (left hand) side of the derived field equation.

If we integrate the contributions of this transient proper matter density over, say, a capacitor being charged or discharged as it is being accelerated, we will get for the transient total proper mass fluctuation, written 
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where P is the instantaneous power delivered to the capacitor and V the volume of the dielectric.
  If the applied power is sinusoidal at some frequency, then (P/(t scales linearly with the frequency.  So operating at elevated frequency is desirable.  Keep in mind here that the capacitor must be accelerating for these terms to be non-vanishing.  You can’t just charge and discharge capacitors and have these transient effects be produced in them.  None of the equations that we have written down for Mach effects, however, show the needed acceleration explicitly.  And it is possible to forget that the effects only occur in accelerating objects.  If you forget, you can waste a lot of time and effort on experiments doomed to ambiguity and failure.  

Writing out the explicit acceleration dependence of the Mach effects is not difficult.  We need to write the first and second time-derivatives of the proper energy in terms of the acceleration of the object.  All we need note is that the work done by the accelerating force acting on the object is the scalar product
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, and the rate of change of work is the rate of change of energy, so:
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It is important to note here that v is not the velocity normally encountered in elementary calculations of work and energy because we are talking about proper, that is, internal energy changes, rather than the kinetic energy acquired as the result of the acceleration of a rigid object by an external force.  For the same reason, the derivatives should be taken in the instantaneous rest frame of the object.  v here is the typical velocity of the parts of the object as it is compressed by the external force (while the object in bulk in the instantaneous rest frame has zero velocity).  If the object is incompressible then v is zero and there are no internal energy changes.  Concomitantly, there are no Mach effects.  If v is not zero, it will likely be smaller than the bulk velocity acquired by the object due to the action of the force over time (unless the object is externally constrained as it is compressed).  The second time-derivative of Eo now is:
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Equations (6) and (7) can be used to explicitly display acceleration dependence of the effects via substitution in equation (4), but only when two considerations are taken account of.  First, Eo in Equation (4) is the proper energy density because it follows from a field equation expressed in terms of densities, whereas Eo in Equations (6) and (7) is the proper energy of the entire object being accelerated, so Equation (4) must effectively be integrated over the whole accelerated object, making Eo the total proper energy, before the substitutions can be carried out.  The second consideration that must be kept in mind is that the accelerating force can produce both changes in internal energy of the object accelerated and changes in its bulk velocity which do not contribute to internal energy changes.  Only the part of the accelerating force that produces internal energy changes contributes to Mach effects.  That is why 
[image: image24.wmf]t

¶

¶

/

v

is written explicitly in equation (7) as it is only part of the total acceleration of the object.  We can take account of the fact that v in equations (6) and (7) is only the part of the total v for the extended macroscopic object being accelerated by writing 
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 and replacing v with vint in the above equations.  This leads to:
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with 
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.  As long as 
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 can be taken to be a constant, the RHS of Equation (8) obtains and things are fairly simple.  But in general, 
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 will be a function of time, making matters more complicated and solutions more complex.


The first thing we note about the equation for 
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is that the second term on the right hand side is always negative since the volume V of the dielectric cannot be negative and all other factors are squared.  But we then notice that the coefficient of 
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 is normally very small since there is a factor of c2 in the denominator, and the coefficient is squared making the factor 1/c4 – an exceedingly small number.  Indeed, since this coefficient is the square of the coefficient of the first term involving the power, it will normally be many orders of magnitude smaller than the first term.  However, the coefficients also contain a factor of the proper matter density in their denominators.  While c2 may always be very large, 
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 is a variable that, at least in principle, can become zero and negative.  When 
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 approaches zero, the coefficients become very large, and because the coefficient of the second term is the square of that for the first term, it blows up much more quickly than that for the first term.  And the second term dominates the sources of the field.  At least transiently, in principle, we should be able to induce significant amounts of “exotic” matter.  This is the first necessary step toward building starships and stargates.

You might think that any prediction of an effect that might make the construction of wormholes and warp drives possible would have been actively sought.  But in fact, as noted above, it was an unanticipated accident, though its significance was understood when it was found.  Because the second effect is normally so small, it was ignored for years.  The possibility that it might be produced in small-scale laboratory circumstances wasn’t appreciated until Ron Crowley, Stephen Goode, and I, the faculty members on Thomas Mahood’s masters degree committee at CSUF in 1999, got into an argument about it during the Tom’s thesis defense.  Ron and Stephen were convinced that seeing the effects of the second transient term should be possible in laboratory circumstances.  I wasn’t.  But they were right.  Even then, it was a year until evidence for this effect was sought – after John Cramer, a prominent physicist from the University of Washington, suggested in a meeting at Lockheed’s Lightspeed facility in Fort Worth, Texas that it should be done.
  When evidence for the effect was found (see: “The Technical End of Mach’s Principle” in: Mach’s Principle and the Origin of Inertia, eds. M. Sachs and A.R. Roy, Apeiron, Montreal, 2003, pp. 19 – 36) a decade ago, the evidence was not followed up on because production of the effect depends on “just so” conditions that are very difficult to reliably produce.  The lure of simple systems involving only the first term Mach effect was too great.  Producing the first term Mach effect, however, turns out to be much more challenging than was appreciated at that time.  If present at all, the first term Mach effect also depends on “just so” conditions that are difficult to control.
LABORATORY SCALE PREDICTIONS:

  The predicted effects in simple electronic systems employing capacitors and inductors, for the leading term in Equation (5) at any rate, are surprisingly large.  Even at fairly low frequencies, it is reasonable to expect to see manifestations of the leading effect.  Larger mass fluctuations are expected at higher frequencies, at least for the first term of Equation (5), for if P is sinusoidal, then (P/(t scales linearly with the frequency.  But to be detected with a relatively “slow” weigh system, a way to “rectify” the 
mass fluctuation must be found so that a time-averaged, stationary force in one direction can be produced and measured.  The mass fluctuation itself, of course, cannot be “rectified”; but its physical effect can be rectified by adding two components to the capacitor in which a mass fluctuation is driven.  This element is identified as FM (fluctuating mass) in Figure 1.  The two additional components are an electromechanical actuator (customarily made of lead-zirconium-titanate, so-called PZT), designated A (actuator) in Figure 1, and a “reaction mass” (RM) located at the end of the actuator opposite the fluctuating mass (FM) element, as shown in Figure 1. 
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Figure 1: A schematic diagram of a Mach effect “impulse engine” comprised of a reaction mass (RM), piezoelectric actuator (A), and a fluctuating mass (FM) element in which the Mach effect is driven.

The principle of operation is simple.  A voltage signal is applied to the FM element and PZT actuator so that the FM element periodically gains and looses mass.  A second voltage signal is applied to the PZT actuator.  The actuator voltage signal must have a component at the power frequency of the FM voltage signal, that is, twice the frequency of the signal applied to the FM.  And it must also have a component at the FM signal frequency to produce the acceleration of the FM required for a Mach effect to be produced.  The relative phase of the two signals is then adjusted so that, say, the PZT actuator is expanding (at the power frequency) when the FM element is more massive, and contracting when it is less massive.  The inertial reaction force that the FM element exerts on the PZT actuator is communicated through the actuator to the RM.  Evidently, the reaction force on the RM during the expansion part of the PZT actuator cycle will be greater than the reaction force during the contraction part of the cycle.  So, the time-averaged force on the RM will not be zero.  Viewed from the “field” perspective, the device has set up a momentum flux in the “gravinertial” field – that is, the gravitational field understood as the cause of inertial reaction forces – coupling the FM to the chiefly distant matter in the universe that causes the acceleration of the mechanical system of Figure 1.

Formal analysis of this system is especially simple in the approximation where the mass of the RM is taken as effectively infinite, and the capacitor undergoes an excursion ( l = ( l0 cos (2( t) due to the action of the PZT with respect to the RM.  We obtain for the time-averaged reaction force on the RM:
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where ( is the phase angle between the PZT excursion and the mass fluctuation.  Further algebra yields:
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as the only term that survives the time-averaging process.  Evidently, stationary forces can be obtained from mass fluctuations in this way.


Much of the past decade was devoted to testing schemes that held out promise of being able to avoid the subtleties and complexities that seem to attend even the simplest systems where one might look for Mach effects.  While much has been learned, and many improvements to the experimental apparatus in use have been made, progress has been slow.  Early in the decade, some time was devoted to discussion of the application of Newton’s second law in devices of the type in Figure 1.  Even seasoned professionals occasionally make foolish mistakes when applying the second law, even in simple circumstances.
  The problem is the interpretation of the time rate of change of momentum definition of force.  The issue is not one involving SRT, though it does involve relative motion.  Newton’s second law written out formally is:
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.
The problem is the vdm/dt term.  Unless you are careful, it is easy to make foolish mistakes, treating this term as a force, in assessing the forces acting in a system.  The only physically meaningful contributions that can be attributed to this term are ones for which v has an invariant meaning – for example, the velocity of the just ejected exhaust plume of a rocket with respect to the rocket.  That all observers can agree on.  In rocket type situations, this is the only velocity with invariant meaning.  In general, in the case of Mach effect devices like that in Figure 1, this term does not contribute to the inertial reaction force on the RM because it does not represent a force on the FM that is communicated through the PZT to the RM.  This is easily shown by noting that in the instantaneous frame of rest of the capacitor (FM) vdm/dt vanishes as v in that frame is zero.  Since the vdm/dt “force” that purportedly acts on the FM is zero in this inertial frame of reference must also be zero in all other frames of reference, it follows that a vdm/dt “force” does not act on the FM, and thence through the PZT on the RM.  The confusion over momentum conservation became so troublesome a decade ago that I included a short appendix to “Flux Capacitors” to deal with it.  That appendix is included here as Appendix C so that you will not be distracted by this red herring.  
What is important is that there is no “new” physics in any of the above considerations.  You don’t have to believe anything hopelessly weird to discover Mach effects.  All you have to do is ask a simple set of questions in the right order and apply standard techniques in the answers to those questions.  Actually, asking the right questions in the right order is almost always the hardest part of any investigation.  In this case, the answers to those questions are amenable to experimental test, so you can find out if the predicted effects really exist.  If you want to make stargates, you do have to believe some weird stuff about the nature of elementary particles.  That, however, is another story, told in the last section of this book.
APPENDIX A
From Wolfgang Rindler’s Introduction to Special Relativity (Oxford University Press, 2nd ed.)
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p,m are. of course, the relativistic momentum and mass of the particle





APPENDIX B
(First published in Foundations of Physics,       2004)
FLUX CAPACITORS AND THE ORIGIN OF INERTIA
1.  INTRODUCTION:

Over a century has passed since Ernst Mach conjectured that the cause of inertia should somehow be causally related to the presence of the vast bulk of the matter (his “fixed stars”) in the universe.  Einstein translated this conjecture into “Mach’s principle” (his words) and attempted to incorporate a version of it into general relativity theory (GRT) by introducing the “cosmological constant” term into his field equations for gravity.1  Einstein ultimately abandoned his attempts to incorporate Mach’s principle into GRT.  But in the early 1950s Dennis Sciama revived interest in the “origin of inertia”.2  Mach’s principle can be stated in very many ways.  (Bondi and Samuel in a recent article list twelve versions, and their list is not exhaustive.3)  Rather than try to express Mach’s principle with great subtlety, Sciama, in 1964, adopted a simple (and elegant) statement:4
Inertial forces are exerted by matter, not by absolute space.  In this form the principle contains two ideas:

(1) Inertial forces have a dynamical rather than a kinematical origin, and so must be derived from a field theory [or possibly an action-at-a-distance theory in the sense of J.A. Wheeler and R.P. Feynman. . . .]

(2) The whole of the inertial field must be due to sources, so that in solving the inertial field equations the boundary conditions must be chosen appropriately.

Taking into account the fact that the field produced by the chiefly distant matter in the universe must display the same universal coupling to matter as gravity to properly account for inertial reaction forces, the essence of Mach’s principle can be put into yet more succinct form: Inertial reaction forces are the consequence of the gravitational action of the matter located in the causally connected part of the universe on objects therein accelerated by “external” forces.
. . . . 

2.  TRANSIENT MACH EFFECTS:
. . . The predicted phenomena in question arise from considering the effect of an “external” accelerating force on a massive test particle.  Instead of assuming that such an acceleration will lead to the launching of a (ridiculously minuscule) gravitational wave and asking about the propagation of that wave, one assumes that the inertial reaction force the accelerating agent experiences is caused by the action of, in Sciama’s words, “the radiation field of the universe” and then asks, given the field strength as the inertial reaction force per unit mass, what is the local source charge density at the test particle?  The answer is obtained by taking the four-divergence of the field strength at the test particle.  The field equation that results from these operations is:
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In this equation ( is the scalar potential of the gravitational field, (0 the local proper matter density, E0 the local proper energy density, c the vacuum speed of light, and G Newton’s constant of gravitation. This equation looks very much like a wave equation.  However, the space-like part (the Laplacian) involves a scalar potential, whereas the time-like part (the time-derivatives) involves the proper rest energy density.  (A full derivation of the Mach effects discussed here is given in Appendix A.)


Equation (3) can be put into the form of a standard classical wave equation by using Mach’s principle to “separate variables”, for Mach’s principle implies more than the statement above involving the origin of inertial reaction forces.  Indeed, Mach’s principle actually implies that the origin of mass is the gravitational interaction.  In particular, the inertial masses of material objects are a consequence of their potential energy that arises from their gravitational interaction with the rest of the matter in the causally connected part of the universe.  That is, in terms of densities,




[image: image39.wmf]f

r

=

g

E

,                                                                                                                        (4)

where Eg is the local gravitational potential energy density, ( the local “quantity of matter” density, and ( the total gravitational potential at that point.  (Note that it follows from Sciama’s analysis that ( ( c2, so Equation (4) is nothing more than the well-known relationship between mass and energy that follows from special relativity theory if Eg is taken to be the total local energy density.)  Using this form of Mach’s principle, we can write:
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and this expression can be used in Equation (3) to affect the separation of variables.  After some straight-forward algebra (recounted in Appendix A) we find that:
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or, equivalently,
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This is a classical wave equation for the gravitational potential (, and notwithstanding the special circumstances invoked in its creation, it is general and correct, for when all the time derivatives are set equal to zero, Poisson’s equation for the potential results.  That is, we get back Newton’s law of gravity in differential form.


Some of the implications of this equation [either (6) or (7)] have been addressed elsewhere.7,8  Here we note that the transient source terms on the RHS can be written:
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or, taking account of the fact that (/c2 = 1,
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where the last term in Equations (6) and (7) has been dropped as it is always minuscule.  It is in the transient proper matter density effects – the RHSs of Equations (8) and (9) – that we seek evidence to demonstrate that the origin of inertia, as conjectured by Mach, Einstein, Sciama, and others, is in fact the gravitational interaction between all of the causally connected parts of the universe.

APPENDIX A [OF FLUX CAPACITORS. . . ]

Armed with the definition of Mach’s principle presented in the body of this paper, we tackle the detailed derivation of Equation (6) above (which was first obtained in complete form in ref. 7).  The correct gravitational field equation, of course, is Einstein’s field equation of GRT, and the vector approximation to that equation is a set of Maxwell-like field equations.  But for our purposes we are less interested in the field per se than we are in the sources of the field, for it is they that carry mass, and thus inertia.  In GRT, and in its vector approximation, the sources of the field are stipulated.  What we want to know, however, is: Does Mach’s principle tell us anything interesting about the nature of the sources of the field?  To answer this question, it turns out, we do not need either the machinery of GRT or its vector approximation with their stipulated sources.  We only need the relativistically invariant (i.e., Lorentz invariant) generalization of Newtonian gravity, for that is all that is necessary to recover the transient matter terms found in Equation (6).


Why does this work?  Because inertia is already implicitly built into Newtonian mechanics.  The reason why it is possible to ignore the explicit contribution of the distant matter in the universe to local gravity is because of the universality of the gravitational interaction (crudely, it affects everything the same way, in proportion to its mass), as pointed out by Sciama and noted here, and so that contribution can always be eliminated by a coordinate (i.e., gauge) transformation, as noted by Brans.15  [As an aside, this is the reason why gravitational energy is “non-localizable” in GRT, a well-known consequence of the Equivalence Principle in that theory.]  Moreover, by demanding Lorentz invariance we insure that correct time-dependence is built into our simplest possible approximation to the field equation(s) of GRT.


To derive Equation (6) one considers a “test particle” (one with sufficiently small mass that it does not itself contribute directly to the field being investigated) in a universe of uniform matter density.  We act on the test particle by, say, attaching an electric charge to it and placing it between the plates of a capacitor that can be charged with suitable external apparatus.  That is, we accelerate the test particle by applying an external force.  The acceleration, via Newton’s third law, produces an inertial reaction force in the test particle that acts on the accelerating agent.  In view of the Machian nature of GRT and Sciama’s analysis of the origin of inertia, we see that the inertial reaction force produced in these circumstances is just the action of the gravitational field of the chiefly distant matter in the universe on the test particle as it is accelerated.  So we can write the field strength of the gravitational action on the test particle as the inertial reaction force it experiences divided by the mass of the test particle (since a field strength is a force per unit charge, the “charge” in this case being mass).  Actually, the standard form of field equations are expressed in terms of charge densities, so one has to do a volumetric division to get the force per unit mass expression into standard form.  

There are two critically important points to take into account here.  The first is that the mass density that enters the field euqation so constructed is the matter density of the test particle, not the matter density of the uniformly distributed cosmic matter that causes the inertial reaction force.  The second point is that in order to satisfy Lorentz invariance, this calculation is done using the four-vectors of relativistic spacetime, not the three-vectors of classical space and time.  Formally, we make two assumptions:

1. Inertial reaction forces in objects subjected to accelerations are produced by the interaction of the accelerated objects with a field – they are not the immediate consequence only of some inherent property of the object.  And from GRT and Sciama’s vector approximation argument, we know that the field in question is the gravitational field generated by the rest of the matter in the universe.
2. Any acceptable physical theory must be locally Lorentz invariant; that is, in sufficiently small regions of spacetime special relativity theory (SRT) must obtain.
We then ask: In the simplest of all possible circumstances – the acceleration of a test particle in a universe of otherwise constant matter density – what, in the simplest possible approximation, is the field equation for inertial forces implied by these propositions?  SRT allows us to stipulate the inertial reaction force F on our test particle stimulated by the external accelerating force Fext as:
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with,
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where bold capital letters denote four-vectors and bold lower case letters denote three-vectors, P and p are the four- and three-momenta of the test particle respectively, ( is the proper time of the test particle, v the instantaneous velocity of the test particle with respect to us, and c the vacuum speed of light.  Note that the minus sign has been introduced in Equation (A1) because it is the inertial reaction force, which acts in the direction opposite to the acceleration produced by the external force, that is being expressed.  One could adopt another sign convention here; but to do so would mean that other sign conventions introduced below would have to be altered to maintain consistency.

We specialize to the instantaneous frame of rest of the test particle.  In this frame we can ignore the difference between coordinate and proper time, and (s (since they are all equal to one).  We will not recover a generally valid field equation is this way, but that is not our objective.  In the frame of instantaneous rest of the test particle Equation (A1) becomes:
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with,
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Since we seek the equation for the field (i.e., force per unit mass) that produces F, we normalize F by dividing by m0.  Defining f = f/m0, we get,
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To recover a field equation of standard form we let the test particle have some small extension and a proper matter density (0.  (That is, operationally, we divide the numerator and the denominator of the time-like factor of F by a unit volume.)  Equation (A6) then is:
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From SRT we know that (0 = E0/c2, E0 being the proper energy density, so we may write:
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With an equation that gives the gravitational field strength that causes the inertial reaction force experienced by the test particle in hand, we next calculate the field equation by the standard technique of taking the divergence of the field strength and setting it equal to the local source density.  Note, however, that it is the four-divergence of the four-field strength that is calculated.  To keep the calculation simple, this computation is done in the instantaneous rest frame of the test particle so that Lorentz factors can be suppressed (as mentioned above).  Since we will not be interested in situations where relativistic velocities are encountered, this simplification has no physical significance.  The relativistic nature of this calculation turns out to be crucial, however, for all of the interesting behavior arises from the time-like part of the four-forces (and their corresponding field strengths).  The four-divergence of Equation (A8) is:
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Carrying out the differentiation with respect to time of the quotient in the brackets on the LHS of this equation yields:
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Using (0 = E0/c2 again:
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We have written the source density as G(0, the proper active gravitational matter density.  F is irrotational in the case of our translationally accelerated test particle, so we may write f = ( ((  in these particular circumstances, ( being the scalar potential of the gravitation field.  Note that writing f = ( (( employs the usual sign convention for the gravitational field where the direction of the force (being attractive) is in the opposite sense to the direction of the gradient of the scalar potential.  With this substitution for f Equation (A11) is:
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This equation looks very much like a wave equation, save for the fact that the space-like part (the Laplacian) involves a scalar potential, whereas the time-like part (the time-devatives) involve the proper rest energy density.  To get a wave equation that is consistent with local Lorentz invariance we must write E0 in terms of (0 and (  so as to recover the d’Alembertian of (.  Given the coefficient of (2E0/(t2, only one choice for E0 is possible:
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Other choices do not affect the separation of variables needed to recover a relativistically invariant wave equation.  But this is just the condition that follows from Mach’s principle (and SRT).  [Note that another sign convention has been introduced here; namely that the gravitational potential energy of local objects due to their interaction with cosmic matter is positive.  This differs from the usual convention for the potentials produced by local objects, which are negative.  Unless the cosmic matter is dominated by substance with negative mass, this convention must be simply imposed to replicate the fact that by normal conventions the rest energies of local objects are positive.  Note farther that “dark energy”, with its “exoticity”, fills this requirement very neatly, making the imposition of a special sign convention here unnecessary.]


Substituting (0( for E0 in Equation (A12) makes it possible to, in effect, separate the variables (0 and (  to the extent at least that the d”Alembertian of (  can be isolated.  Consider the first term on the LHS of Equation (A12) involving time-derivatives.  Substituting from Equation (A13) into (A12) gives:
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Making the same substitution into the second time-derivative term on the LHS of Equation (A12) and carrying through the derivatives produces:



[image: image68.wmf]2

0

0

2

2

0

2

0

2

2

0

ρ

ρ

ρ

1

ρ

1

÷

÷

ø

ö

ç

ç

è

æ

¶

¶

+

¶

¶

÷

÷

ø

ö

ç

ç

è

æ

=

÷

÷

ø

ö

ç

ç

è

æ

¶

¶

÷

÷

ø

ö

ç

ç

è

æ

t

t

c

t

E

c

f

f

                                   



[image: image69.wmf]2

0

2

2

0

0

4

0

2

0

4

ρ

ρ

ρ

ρ

2

1

÷

÷

ø

ö

ç

ç

è

æ

¶

¶

÷

÷

ø

ö

ç

ç

è

æ

+

¶

¶

¶

¶

+

÷

÷

ø

ö

ç

ç

è

æ

¶

¶

=

t

c

t

t

c

t

c

f

f

f

f

.          (A15)

Now, taking account of the fact that (/c2 = 1, we see that the coefficient of the second term on the RHS of this equation is 2/(0c2, so when the two time-derivatives terms in Equation (A12) are added, the cross-product terms in Equations (A14) and (A15) will cancel.  So the sum of these terms will be:
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When the first term on the RHS of this equation is combined with the Laplacian of ( in Equation (A12) one gets the d’Alembertian of ( and the classical wave equations (A17) below is recovered.
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The remaining terms that follow from the time-derivatives of E0 in Equation (A16), when transferred to the RHS, then become transient sources of ( when its d’Alembertian is made the LHS of a standard classical wave equation.  That is, we have recovered Equation (6) above.

APPENDIX C
APPENDIX B FROM Flux Capacitors and the Origin of Inertia
There may be those unconvinced by this argument, for in the case of the “rocket equation” vdm/dt seems to be treated as a real force.  But brief reflection on the “rocket” case reveals that this is not strictly speaking correct and, moreover, there is an important difference between the “rocket” case and the situation involving “impulse engines” discussed here.  Recall the circumstances of the elementary “rocket equation”.  A rocket of mass M experiences an acceleration a as a result of the expulsion of propellant at a rate dm/dt with an invariant velocity v with respect to the rocket.  (We work in the Newtonian limit here where Galilean invariance is all that is required.)  Since the total “force” on the system is zero, we have:
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from which it immediately follows that,
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and the acceleration of the rocket due to the “thrust” of the propellant is:
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It is easy to believe, since a is proportional to dm/dt, that a is caused by dm/dt.  But this is not correct.  a is actually caused by the momentum reflection of half of the combustion products of the propellant by the forward wall of the combustion chamber.  It is the direct contact action of the momentum reversal of the propellant – the Ma term that is – that causes the rocket to accelerate.  The vdm/dt term does not describe this force; it merely records the rate at which momentum is added to that already present in the exhaust plume of the rocket – something that must be done to properly account for momentum conservation in any event.


In addition to the vdm/dt term in the “rocket equation” not describing the actual acceleration of the rocket caused by the force created by momentum reversal of the propellant in the combustion chamber, another important point should be noted.  Equations (B1) through (B3) are instantaneously applicable.  That is, if combustion of fuel is stopped and Ma immediately goes to zero, so too does vdm/dt.  One cannot have these two terms be different at the same time, but “average out” over some extended time (which might be one cycle of a cyclic process).  In quantum systems one might get away with this; but not in a strictly considered classical system.  (This, after all, is the reason why momentum is associated with, for example, the electromagnetic field.)

To make plain the difference between rockets and “impulse engines”, consider the device in Figure 1 operated in the following way.  Each cycle of operation is broken up into four parts.  During the first part of the cycle, a voltage signal is applied to the device so as to produce a stationary mass increase in the FM (by arranging dP/dt to be constant).  While this takes place, the actuator expands so that the FM suffers acceleration a.  During this part of the cycle the RM, owing to the inertial reaction force F communicated through A to it, experiences an impulse (p:
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where a of the FM is taken positive when A expands.  In the second part of the cycle A is manipulated so as to keep the velocity of the FM constant while its mass is changed from m + (m to m ( (m.  In the third part of the cycle A accelerates the FM in this mass-reduced state so as to reverse the velocity of the FM relative to the RM, imparting an impulse, via the inertial reaction force on the RM,
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to the RM.  The sum of these impulses generated while the mass of the FM is held constant (at different values) is:
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The RM, accordingly, experiences this impulse from the parts of each cycle where A produces a force between it and the FM.

In the fourth part of the cycle the mass is changed from m ( (m to m + (m while the FM moves at constant velocity.  This is just the reverse of the circumstances in the second part of the cycle.  Now we must deal with the vdm/dt “force”.  This only acts during two parts of the cycle when the FM is moving, by design, with constant velocity (v.  That velocity will be equal to ( a(t/2 after continuous cyclic behavior is established.  This force presumably acts on the FM, so as A is expanding:
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When the part of the cycle where A is contracting occurs, the signs of v and dm/dt both reverse, so the contribution of that part of the cycle is the same as the expansion part.  The sum of these two parts is:
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If the “force” producing this impulse generated an equal and opposite impulse on the reaction mass, then the ma and vdm/dt impulses would cancel each other out, and no net momentum would occur in the RM over a complete cycle.  But this cannot be the case, for if a mass fluctuation is produced in capacitors in an inertial frame where they are at rest, they do not spontaneously accelerate as the mass fluctuation takes place.

Only if the mass fluctuation is engineered to produce a directed momentum flux, in this case, in the gravinertial field, will there be a force on the FM that is communicated through A to the RM.  Absent such engineering, the RM acquires a ( 2(ma(t momentum impulse in each cycle.  This may seem a violation of local momentum conservation, but we have not allowed for the momentum carried by the gravinertial field to/from the FM during the parts of the cycle when dm/dt ( 0 and v = a constant, which must supply the difference.  In other words, just as the vdm/dt term in the “rocket equation” takes account of the rate of change of momentum in the exhaust plume – which itself does not exert any force on anything – in this case the vdm/dt term takes account of the rate of momentum transfer to/from the FM as the mass changes due to the Mach effect mass fluctuation – which likewise does not exert any force directly on any part of the system.  Should any doubt about this remain, the experiment described in this paper tests both for the presence of Mach effect mass fluctuations and the correctness of this analysis of momentum transfer in flux capacitor systems.  Should either part of this analysis turn out to be wrong, no thrust should be detected with the device used in the experiment described herein.

� For formalphiles, the equations are: � EMBED Equation.3  ���and � EMBED Equation.3  ���.


� More formalism: � EMBED Equation.3  ���


� The “divergence” operation computes the rate at which a vector field is changing at some location by taking the “scalar product” of the gradient operator with the vector field.  Gauss showed that if you sum this operation over a volume, you get the total of the sources of the field in the volume as the sum is equal to the total net flux of the field through the enclosing surface.  As an aside, when the “curl” of the field vanishes, as it does for Newtonian gravity, the field can be written as the gradient of a scalar potential, and the divergence of the gradient of the potential is written as the square of the gradient operator, as below.


� I first met Ron on my first formal day on campus at CSUF in the fall of 1972.  Our mutual interest in gravity was discovered almost immediately.  But Ron had taken up work on experiments related to “critical” phenomena.  This involved trying to get moderately complicated thermal systems involving vacua working.  He was trying to use different melting point solders for different joints in the apparatus, hoping to be able to selectively melt particular joints by getting the right temperature for the particular joint he wanted to melt.  The melting points he had chosen were about 50 degrees apart – in a system made mostly of brass.  Even an inexperienced experimentalist could see that this wouldn’t work.  Not long after, Ron returned to theory, especially after a sabbatical working with Kip Thorne’s group at Cal Tech.


� Ron didn’t object to my specializing to the instantaneous frame of rest of the accelerating object so as to suppress a bunch of relativistic terms of no particular physical significance for, while large accelerations might be present, relativistic velocities are not expected.


� Until this term turned up in the early ‘90s, as an experimentalist interested in making things go fast, I had little interest in wormholes and all that.  Indeed, Ron and I had been at the Pacific Coast Gravity meeting in the spring of ’89 at Cal Tech and watched Kip Thorne be told by several speakers that traversable wormholes were physically impossible for one reason or another.  Had I been asked to choose sides, I probably would have sided with Thorne’s critics.  Wormholes enabled time travel, and as far as I was concerned at the time, time travel was just silly.  That attitude changed when the Mach effect calculation was done exactly.





� The term in question,� EMBED Equation.3  ���, contains only the scalar potential, treated as a source however so that the d’Alembertian alone appears on the left hand side of the equation.  While the potential is enormous, being equal to c2, the time-derivative of the potential is always quite small because things out there in the distant universe, as viewed here on Earth, don’t happen very quickly.  So we have a small quantity multiplied by c-4.  The product is an utterly minuscule quantity.  No propulsive advantage is to be found in this term.


� Since G, a small number, appears in the denominator, this factor dramatically increases the magnitude of the parenthetical terms.  Note that the same thing happens when the cosmological term in Einstein’s equations is treated as a source, rather than field quantity.


� The instantaneous power in a charging/discharging capacitor is just the product of the voltage across the capacitor and the current flowing to/from the capacitor.  That is, � EMBED Equation.3  ���.  Since V is also used to designate volume, care must be taken to correctly identify which V is involved in the situation you are considering.


� The Lockheed-Martin Lightspeed connection proved helpful in another regard.  When questions arose about heating in some devices being tested between 1999 and 2002, Jim Peoples, Manager of Millennium Projects, had a nice far infrared camera (with an expensive flourite lens) shipped out for our use for several months.


� As friend and colleague Keith Wanser has pointed out to me, physics pedagogy journals periodically print articles on the subtleties involved in the interpretation of Newton’s second law of mechanics.  The irony is that sometimes the authors of these articles, already sensitized to the issues involved, themselves get things wrong (and the mistakes pass the reviewers’ notice too).  It’s very depressing.
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