
Particle and Texture Based Spatiotemporal Visualization of

Time-Dependent Vector Fields

Daniel Weiskopf∗1,2 Frederik Schramm2 Gordon Erlebacher3 Thomas Ertl2

1Graphics, Usability, and Visualization
(GrUVi) Lab, Simon Fraser University

2Institute of Visualization and Interactive
Systems, University of Stuttgart

3School of Computational Science and
Information Technology, Florida State University

ABSTRACT

We propose a hybrid particle and texture based approach for the vi-
sualization of time-dependent vector fields. The underlying space-
time framework builds a dense vector field representation in a two-
step process: 1) particle-based forward integration of trajectories
in spacetime for temporal coherence, and 2) texture-based convolu-
tion along another set of paths through the spacetime for spatially
correlated patterns. Particle density is controlled by stochastically
injecting and removing particles, taking into account the divergence
of the vector field. Alternatively, a uniform density can be main-
tained by placing exactly one particle in each cell of a uniform grid,
which leads to particle-in-cell forward advection. Moreover, we
discuss strategies of previous visualization methods for unsteady
flow and show how they address issues of spatiotemporal coher-
ence and dense visual representations. We demonstrate how our
framework is capable of realizing several of these strategies. Fi-
nally, we present an efficient GPU implementation that facilitates
an interactive visualization of unsteady 2D flow on Shader Model 3
compliant graphics hardware.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration; I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism—Color, shading, shadowing, and texture

Keywords: Unsteady flow visualization, visualization framework,
LIC, texture advection, particle systems, GPU methods

1 INTRODUCTION

Many vector field visualization techniques compute the motion of
massless particles along the vector field to obtain characteristic
structures like streamlines. With a dense representation like Line
Integral Convolution (LIC) [1], the domain is densely covered with
particle lines to overcome the issue of appropriately choosing seed
points for particle tracing.

In this paper, we focus on the dense visualization of time-
dependent vector fields. Any dense representation has to address
the challenging goal of achieving spatiotemporal coherence. In
Section 4, we analyze the strategies followed by previous methods
to construct a spatiotemporally coherent evolution of dense line-like
visual patterns, such as streamlines, pathlines, or streaklines.

A generic spacetime framework, as developed in our previous
work [3, 27], is one possible approach for the visualization of time-
dependent vector fields. This framework builds upon the fact that
two types of coherence are important in animated visualizations:
spatial coherence, which conveys the structure of a vector field
within a single picture by visual patterns, and frame-to-frame co-
herence, which allows the user to identify the motion of these pat-

∗weiskopf@vis.uni-stuttgart.de

terns. The spacetime framework provides explicit control over both
types of coherence by means of a two-step process. The first step
generates continuous trajectories in spacetime to achieve temporal
coherence. The second step generates spatial patterns by convolu-
tion along another set of paths through the spacetime volume.

In this paper, we adopt our previous texture-based implementa-
tion of the framework [27] and improve the construction of space-
time trajectories by replacing texture-based backward gathering
with particle-based forward integration. The main advantage of
forward integration is a significant reduction of computations and
memory footprint. A typical speedup is in the range of 10–100 for
a comparable visualization quality. In particular, the particle ap-
proach is extremely efficient when the density of the representation
is low. Another advantage is that constant spatial frequencies can be
maintained. We describe two alternative methods to achieve a uni-
form density of particles over time: The first approach controls par-
ticle density by stochastic injection and removal of particles. The
second approach checks and adjusts the particle density that is ex-
plicitly measured on cells of a uniform grid. In a special case, ex-
actly one particle is kept per cell, leading to the new particle-in-cell
advection method.

The combined particle/texture-based framework retains all im-
portant advantages of the previous, purely texture-based imple-
mentation [27]. First, its high degree of flexibility allows us to
implement or mimic previous flow visualization methods. Sec-
ond, high visualization quality is achieved by Lagrangian integra-
tion, which avoids artificial blurring inherent to Eulerian or semi-
Eulerian methods. Third, a direct mapping to graphics processing
units (GPUs) leads to an efficient implementation. The GPU im-
plementation of the particle-based method makes use of a coupling
between texture information and vertex processing, which is facili-
tated by GPUs with Shader Model 3 support.

2 PREVIOUS WORK

The discussion of previous work focuses on noise-based and dense
representations [10]. Early texture-synthesis techniques for vector
field visualization are spot noise [22] and LIC [1]. Although LIC
has been extended in various respects, specific methods for time-
dependent vector fields and animation are particularly interesting in
the context of this paper, such as Unsteady Flow LIC (UFLIC) [19],
Accelerated UFLIC (AUFLIC) [14], Dynamic LIC (DLIC) [20],
and Unsteady Flow Advection–Convolution (UFAC) [27].

A related class of dense representations makes use of texture ad-
vection, which represents a dense collection of particles in a tex-
ture and transports this texture along the vector field [15]. Both
Lagrangian-Eulerian Advection (LEA) [5] and Image-Based Flow
Visualization (IBFV) [23] adopt the idea of texture advection to
achieve an interactive visualization of 2D unsteady flow. Recent
progress in interactive flow visualization has been driven by the de-
velopment of fast and flexible GPUs [4, 23, 29]. GPU-based in-
teractive visualization can be extended to vector fields on curved
surfaces [11, 24, 28] and in 3D [21, 29, 30]. The Chameleon sys-
tem [13] allows the user to interactively modify the rendering style

639

IEEE Visualization 2005
October 23-28, Minneapolis, MN, USA
0-7803-9462-3/05/$20.00 ©2005 IEEE.

of pre-computed particle paths. Efficient particle tracing can be ac-
complished when a vector field is used to drive the evolution of a
GPU-based particle system [7, 8, 9]. Finally, frame-to-frame coher-
ence can be achieved for the animation of geometrically constructed
streamlines [6, 12].

3 NOMENCLATURE

This section describes the nomenclature used for vector fields and
different types of particle traces throughout this paper. The termi-
nology is adopted from our previous discussion [27] and allows us
to explicitly distinguish between spatial and temporal properties.

In Euclidean n-dimensional space, a time-dependent vector field
is a map u(x, t) that assigns a vector to each point x in space at
time t. In what follows, lower-case boldface letters denote vectors
or points in nD space R

n. Pathlines xpath of the vector field are
governed by the ordinary differential equation

dxpath(t;x0, t0)
dt

= u(xpath(t;x0, t0), t) , (1)

with the initial condition xpath(t0;x0, t0) = x0. In general, we adopt
a notation in which x(t;x0, t0) describes a curve parameterized by t
that yields the point x0 for t = t0.

Particle motion can be investigated in spacetime, i.e., in a mani-
fold with one temporal and n spatial dimensions. The world line—
the spacetime curve—traced out by a particle can be written as
Y (t;x0, t0) = (xpath(t;x0, t0), t). In general, curves in spacetime
are denoted by scripted variables and have n + 1 components: n
spatial and one temporal. Y (t;x0, t0) is parameterized by its first
argument and passes through the point (x0, t0) when t = t0. We use
the term trajectory for the spacetime description of a pathline, i.e.,
a trajectory can be considered as a pathline that is lifted from nD
space to (n+1)D spacetime.

Besides pathlines, there exist two important additional types of
characteristic curves for a time-dependent vector field: streamlines
and streaklines. A streamline is defined as the particle path associ-
ated with an artificially steady, instantaneous vector field at a fixed
physical time τ , which is governed by

dxstream(t;x0, t0)
dt

= u(xstream(t;x0, t0),τ) .

Here, t and t0 are just parameters along the curve and do not have
the meaning of physical time.

A streakline is produced by dye that is continuously released into
a vector field. To obtain the snapshot of a streakline at time t, par-
ticles are released from x0 at times s ∈ [tmin, t] and their positions
are evaluated at time t: xstreak(s;x0, t) = xpath(t;x0,s). The streak-
line is parameterized by s, and tmin is the first time that particles are
released.

4 STRATEGIES FOR UNSTEADY FLOW VISUALIZATION

Characteristic curves of a flow are good candidates to build dense
line-like vector field representations. In fact, pathlines, streamlines,
and streaklines are employed in various visualization methods for
time-dependent data sets. A fundamental goal of any visualization
method is to construct a spatiotemporally coherent visualization.
This goal is not trivially achieved; for example, as discussed by
Shen and Kao [19], a straightforward application of pathlines and
streamlines leads to problems with spatial and temporal correla-
tions in a dense representation. A related issue is that pathlines (or
streaklines) may intersect each other, which makes them a problem-
atic choice for a consistent representation.

We discuss several different strategies used in previous work to
achieve a useful visualization of unsteady flow. The first strategy

lifts the visualization from nD space to (n + 1)D spacetime. This
higher-dimensional description avoids the problem of intersecting
lines because spacetime trajectories are unique and cannot intersect.
The disadvantage of this approach is that the problems are essen-
tially postponed to a later stage of visualization when a final image
has to be rendered on a 2D display [31].

The second strategy is to replace characteristic curves by arbi-
trary curves. A generic curve transported along a vector field is
called a timeline. Timelines have the advantage of being tempo-
rally coherent, and they do not intersect each other at any time if
they do not intersect each other at seed time. However, timelines
usually become convoluted after a short advection period. Another
problem is that timelines have no direct relationship to the vector
field; they do not show direction or magnitude of the flow. There-
fore, dense timelines are rarely used.

A third strategy is to relax the goal of constructing dense line-
like structures. LEA [5] and IBFV [23], for example, are based on
line integral convolution along (time-reversed) streaklines. Since
streaklines may intersect, this strategy leads to visual patterns that
are smeared out in more than just a single direction. Similarly,
UFLIC [19] and AUFLIC [14] generate widened “lines” for un-
steady vector fields. Therefore, LEA, IBFV, UFLIC, and AUFLIC
achieve a temporally coherent visualization at the cost of a non-
constant resolution of spatial structures. The extent of line widening
can be decreased by using short curves, e.g., streaklets or pathlets,
which reduce the chance of overlapping and intersecting lines. A
sparse representation, e.g., based on Oriented LIC (OLIC) [25] or
dye injection at a few isolated locations, can also be used to reduce
the problem of overlapping curves because a few isolated lines can
be distinguished even when they intersect.

The fourth strategy is to relax temporal coherence. A straight-
forward approach builds an animation from a collection of LIC
computations for different time steps. A naive implementation of
this method leads to significant flickering. UFAC [27], however,
reduces or even removes flickering by controlling the length of
streamlines as a function of unsteadiness.

The fifth strategy is to transport line-like visual patterns not along
the original vector field, but to choose an evolution along a different
vector field. As demonstrated by DLIC [20], this approach is useful
for vector fields that do not represent a physical motion of material,
e.g., for time-dependent electric fields.

The third strategy is most popular for the visualization of un-
steady flow when the range of research and applications is con-
sidered. Although previous research addresses issues of temporal
and spatial coherence, none of the papers on LEA, IBFV, UFLIC,
or AUFLIC describes explicitly what kind of line-like patterns are
shown in a single snapshot of an animation. In our previous work
[3], we have attempted to identify the types of lines generated by
these visualization methods because we believe that the characteris-
tics of different methods can be best assessed with an explicit spec-
ification of both the temporal and spatial properties.

The following section describes a visualization framework suit-
able for the third, fourth, and fifth of the aforementioned strategies.

5 CONTINUOUS FRAMEWORK

We briefly discuss a generic continuous framework that targets an
explicit model of a spatiotemporal visualization. The framework is
detailed in our previous work [3, 27].

The basic idea of the framework is to adopt a spacetime view
on particle tracing. In general, a dense representation of a vector
field employs a large number of particles so that the intersection
between each spatial slice and the trajectories yields a dense cov-
erage by points. Accordingly, spacetime itself is densely filled by
these trajectories Y (s;x, t), associated with the vector field u(x, t).
Properties that typically comprise just a gray-scale value from the

640

range [0,1] can be attached to particles to distinguish them from
one another. Properties are allowed to change continuously along
the trajectory; very often, however, they remain constant. From a
collection of trajectories, a property function I(x, t) can be defined
by identifying its value with the property of the particle that crosses
through the spacetime location (x, t). The function value is set to
zero if the location is not covered by a trajectory. By this construc-
tion, I(x, t) fills the complete spacetime domain. The continuous
behavior of trajectories and their attached properties guarantees that
spatial slices through the property field I(x, t) at nearby times are
strongly related, i.e., these slices are temporally coherent. An ani-
mated sequence built from spatial slices with increasing time results
in the motion of particles governed by the vector field.

Since, in general, different particles are not correlated, spatial
slices of the property field do not exhibit any coherent spatial struc-
tures. To achieve spatial correlation, a filtered spatial slice Dt(x) is
defined through the convolution

Dt(x) =

∞∫

−∞

k(s)I(Z (t − s;x, t))ds (2)

along Z (s;x, t). The subscript on Dt is a reminder that the filtered
image depends on time. The kernel k(s) need not be the same for
all points on the filtered slice and may depend on additional pa-
rameters, such as derived vector field data. Z (s;x, t) can be any
path through spacetime and need not be the trajectory of a particle.
However, the spatial components of the path are given by the path-
lines of some other vector field w(x, t). The temporal component
of Z (s;x, t) may depend on s and t.

An animated visualization is composed of images Dt for uni-
formly increasing time t. The structure of Dt is defined by the triplet
[I,Z ,k], where I is built from trajectories Y . The main advantage
of this generic framework is its separate control over the temporal
evolution along pathlines of u(x, t) and over the spatial structures
that result from convolution along paths based on w(x, t).

Several parameter choices for this triplet lead to useful visualiza-
tions [27]. For example, the framework-based version of LEA [5] is
realized by setting u(x, t) to the given input vector field v(x, t), and
w(x, t) = 0. LEA constructs a dense collection of time-reversed
streaklets, adopting the third strategy from Section 4. Similarly,
IBFV [23] is based on a dense collection of streaklets, obtained by
using u(x, t) = 0 and w(x, t) = v(x, t). In contrast, UFAC [27] sets
u(x, t) to the input vector field v(x, t) and performs the convolution
along instantaneous streamlines at time t ′ of the same field, i.e.,
w(x, t) = v(x, t ′) and Z (s;x, t ′) = (· , t ′). The length of stream-
lines is controlled by the unsteadiness of the vector field, follow-
ing the fourth strategy from Section 4. Finally, DLIC [20] targets
the animation of instantaneous streamlines (or fieldlines) of a time-
dependent vector field. Two different vector fields are used for a
framework-based version of DLIC: w(x, t) governs the streamline
generation at each time step, while u(x, t) describes the evolution
of streamlines. DLIC can be considered as an example of the fifth
strategy from Section 4, which transports line-like visual patterns
along a separate vector field. Therefore, the framework is capa-
ble of implementing three important strategies for time-dependent
vector fields, through an appropriate choice of parameters.

6 PARTICLE-BASED DISCRETIZATION

A discretization of the continuous framework allows us to compute
visualization images. The property field I, the visualization images
Dt , and the vector fields are represented by discrete uniform grids—
or textures. The implementation can be separated into two major
parts: First, spatial slices of the property field I are constructed
from trajectories of one vector field; the complete property field

is generated on the spacetime domain by combining spatial slices.
Second, convolution is performed along Z within the spacetime
property field.

The previous discretization [27] implements both parts by a
purely texture-based gathering of property contributions: Starting
from a texel, trajectories are traced and potential contributions are
gathered and accumulated from locations along these trajectories.
Benefits of this implementation are a high-quality visualization due
to Lagrangian integration (as opposed to artificial blurring in Eule-
rian and semi-Lagrangian approaches) and a highly flexible frame-
work that facilitates various visualization methods. Unfortunately,
the gathering approach requires a recurring and time-consuming in-
tegration of particle traces to construct the spacetime property field
I. Each spatial slice through I triggers a complete integration of
long trajectories backward in time. The computational costs are de-
termined by the maximum particle lifetime, on the order of 20–200
time steps. A related problem is that a significant temporal portion
of the data set needs to be kept in memory because backward par-
ticle tracing must access the corresponding time steps of the vector
field. A third issue is a non-constant spatial frequency in slices
through I, introduced by the divergence of the vector field.

The goal of our new discretization scheme is to overcome these
problems and, at the same time, retain the aforementioned benefits.
The basic idea is to replace gathering based on backward integra-
tion by an approach that propagates particles forward in time. The
changes mainly concern the first stage of the framework, i.e., the
construction of the spacetime volume.

To achieve a high flexibility in designing the injection of new
particles, we support a continuous description of injected “parti-
cles” on a spatial slice of constant time t. We use radial basis func-
tions (RBFs) [17, 18], which are spherically symmetric functions
around associated center points, to represent the injection of “parti-
cles”:

Iinject(x) = ∑
i

λiφi(||x−xi||) ,

with an index i that labels a particle, the corresponding weight
λi, the center xi, and the radial basis function φi(r). Common
types of basis functions for numerical approximations are thin-plate
splines, multiquadrics, inverse multiquadrics, or Gaussians. The
goal of this paper is to model particle traces, not to approximate
a generic function. Therefore, basis functions with compact or
quasi-compact support are adequate because they represent local-
ized particles of finite size. We typically use Gaussian functions,
φ(r) = exp(−r2/(2σ2)), with width σ .

For the temporal evolution of injected particles, we assume that
the center points xi travel along pathlines and the basis functions
φi remain constant. However, weights λi may change over time to
model a phase-in and phase-out of particles. Additional external pa-
rameters, such as additional attributes of a flow, may also influence
λi. For simplicity of notation, these parameters are not explicitly
included in the mathematical expressions. The scenario is extended
to a repeated injection that occurs at several discrete time levels τ .
Then, the spacetime property field is

I(x, t) = ∑
τ≤t

∑
i

λτ,i(t − τ)φτ,i(||x−xpath(t;xτ,i,τ)||) . (3)

The additional subscript τ labels the time of particle injection.
Moreover, the weight λτ,i depends on the age of a particle, t − τ .

This formulation allows us to compute spatial slices of I incre-
mentally: If pathlines have been determined for time t, particle po-
sitions at the following time step t + ∆t can be calculated by inte-
grating the particle tracing Equation (1) only for a small time inter-
val ∆t, i.e., a re-computation of complete pathlines is avoided. In
this state-preserving approach, current particle positions are stored
for later reuse. Particle states are held in an array that represents all
active particles. The particle state comprises position x, age t − τ ,

641

Boolean state for activity, and possible additional attributes. The
activity state allows us to remove a particle from the system by
setting its activity state to false. Particle removal is useful to free
computational and memory resources for particles that have died,
i.e., whose weight is zero for all future times. Therefore, the size
of the particle array can be restricted to the maximum number of
simultaneously active particles. A new particle is injected by filling
a previously inactive array element with the initial particle position,
and by setting the age to zero and the activation state to true. The
particle system is propagated from time t to t +∆t by updating posi-
tions according to a Lagrangian integration of Eq. (1) and by adding
∆t to the age of a particle.

The construction of the property field in Eq. (3) requires the eval-
uation of RBFs in a finite region around particle positions, defined
by the size of the support of the RBFs. This process is identical
to a scan conversion of RBFs on an nD spatial domain if the prop-
erty field is discretized on a uniform grid. Then, the summation in
Eq. (3) can be computed by additively blending several particles.

The second major part of the discretization implements the con-
volution along trajectories Z through the spacetime property field.
The basic idea is to discretize the convolution integral (2) by a
Riemann sum. Since the convolution is performed for each time
step separately, this part of the framework generally cannot bene-
fit from incremental computations. Therefore, the calculations are
performed for each time step and each texel independently.

The incremental construction of the spacetime property field has
several advantages. First, pathlines are computed incrementally
and, thus, unnecessary re-computations of complete trajectories are
avoided. Second, the computation time is linear in the number of
particles, i.e., the particle-based method is very efficient for mod-
erately sparse representations like OLIC [25]. Third, the memory
footprint for the time-dependent vector field u(x, t) is significantly
cut down to just a single time step. Fourth, for the case of LEA-type
visualization within the framework, the convolution stage can be ef-
ficiently realized by a repeated alpha blending of subsequent slices
through the spacetime volume [27], i.e., the convolution compu-
tation can also be performed incrementally. Therefore, LEA-style
visualization nicely fits in with the incremental construction of the
property field.

7 PROBABILISTIC DENSITY CONTROL

A problem of any particle-oriented visualization method is an ef-
fective control of particle density. For example, a divergent flow
makes particles drift away from each other and, thus, reduces parti-
cle density. Our goal is to control particle density while avoiding its
explicit evaluation. To this end, a probabilistic approach is applied:
We assume that a large number of particles covers the domain so
that the law of large numbers, as formalized by Chebyshev’s in-
equality, can be used to identify the density of discrete particles
with a continuous material density. The idea is to specify prob-
abilities for the injection of new particles and the removal of old
particles in a way which ensures that an imposed particle density is
maintained.

We begin the discussion with a continuous description in 3D and
later apply it to a discretized particle formulation and to the 2D
case. A continuous stream of material is characterized by its ve-
locity u and mass density ρ , which can be combined to form the
density of mass flow, j = ρu. The total mass in a volume V is
M =

∫
V ρ(x, t) d3x. Mass can be changed by inflow and outflow

of material according to dM/dt = −
∮

∂V j(x, t) ·dA, where ∂V and
dA describe the boundary of the volume and an oriented surface
element of the boundary, respectively. Assuming conservation of
mass, a change of mass density is exclusively caused by inflow and

outflow:

dM
dt

=
∫

V

∂ρ(x, t)
∂ t

d3x = −
∮

∂V
j(x, t) ·dA = −

∫
V

∇ · j(x, t) d3x .

(4)
The last equality is due to the general Stokes’ theorem, valid in
nD space. The differential form of Eq. (4) yields the continuity
equation

∇ · j(x, t)+
∂ρ(x, t)

∂ t
= 0 .

Density can be controlled by introducing new material or removing
existing material, i.e., the continuity equation needs to be extended
to

σinj(x, t)−ρ(x, t)σdel(x, t) = ∇ · (ρ(x, t)u(x, t))+
∂ρ(x, t)

∂ t
, (5)

where σinj describes the rate of injection of mass density per time
interval and σdel the relative rate of mass removal. Equation (5)
can be simplified by taking into account two useful approximations.
First, ∇ · (ρu) ≈ ρ∇ ·u if a slow spatial change of the density ρ is
assumed. Second, if the time scales for changes of ρ are larger
than the time scales for injection and removal of particles, the term
∂ρ/∂ t can be neglected because the particle system is in a dynamic
equilibrium. Similarly to the treatment in equilibrium thermody-
namics, we still can change ρ over time, with a brief delay caused
by tuning-in. However, in most cases, we would like to maintain a
temporally and spatially constant density anyway. The two approx-
imations lead to

σinj(x, t) = ρ(x, t)(σdel(x, t)+∇ ·u(x, t)) . (6)

The choices for σinj and σdel are not independent. In addition, σinj
and σdel are constrained to non-negative values because an “in-
verse” injection or removal of particles is impossible. One pos-
sibility is to set σinj to a globally fixed, user-defined value. Then,
σdel is used to locally control material density. The removal rate is
proportional to the amount of existing material ρ . From a proba-
bilistic point of view, (σdel∆t) is a measure for the probability that
a particle is removed during time step ∆t, i.e., particle removal can
be implemented by Russian roulette. If a vector field u, an arbi-
trary but fixed value σinj, and a density distribution ρ are given, the
corresponding σdel can be computed.

An alternative approach sets σdel to a globally fixed value and de-
termines an associated space-dependent σinj. The injection density
σinj can be related to a corresponding probability density by nor-
malization: σ∗

inj(x, t) = σinj(x, t)/
∫
V σinj(x, t) d3x. Therefore, in-

jection can be modeled by probabilistically generating new parti-
cles according to this probability density. A third approach uses a
space-dependent injection and removal of particles, combining the
other two methods. In all three approaches, density can be globally
scaled with a constant factor ξ by uniformly scaling σinj with the
same factor ξ . Therefore, the density or sparseness of the represen-
tation can be easily adjusted by modifying the injection rate, i.e.,
the number of new particles per unit time.

Even when the expectation value for particle density is kept con-
stant, a modification of injection and removal rates may affect tem-
poral coherence. For example, low injection and removal rates lead
to high temporal coherence. Conversely, high injection and removal
rates reduce the time and length scales over which the equilibrium
state is achieved: They are better for quickly adapting density—at
the cost of decreased temporal coherence.

A probabilistic injection of particles requires the construction of
associated probability density functions. We assume that a (pseudo)
random number generator provides a uniform random variable.
From a 1D uniform distribution, a non-uniform nD probability den-
sity function can be constructed in various ways [2]. We use re-
jection sampling to construct the probability density σ ∗

inj. Russian

642

(a) (b) (c) (d)

Figure 1: Probabilistic density control for a flow with a sink in the center. Image (a) shows the particle distribution without density control,
(b) with density control, (c) a sparse representation with density control, and (d) the particle system from (b) with LEA-type alpha blending.

roulette for particle removal can be achieved with the inversion
method: A single, uniformly distributed random number is drawn;
if the number is less than the probability for particle deletion, the
particle is removed. The discussion of this section can be immedi-
ately transferred from 3D domains to 2D domains because Stokes’
theorem also applies in 2D. The only difference is that boldface
variables represent 2D vectors instead of 3D vectors and that vol-
ume V is replaced by area A.

Figure 1 illustrates the probabilistic density control for a 2D vec-
tor field with radial inflow and a sink at the center. The flow can
be best recognized in the LEA-type visualization displayed in Fig-
ure 1d. Figures 1a–c show snapshots of the particle system, without
the second convolution stage of the framework. Figure 1a illus-
trates a spatially uniform injection and removal of particles. Due
to convergence of the flow, particles clump together in the center
of the image. Figure 1b demonstrates probabilistic density control
by adapting both injection and removal properties to the divergence
of the flow, which achieves a uniform density. Figure 1c shows an-
other example of density control, with a much smaller density and
larger RBFs than in Figure 1b. Animations corresponding to the
four images can be found on our project web page [26].

8 EXPLICIT DENSITY CONTROL

An alternative approach for density control explicitly checks the
density of particles. We compute the density by counting particles
in cells of a uniform grid covering the domain. After each particle
integration step, the cell-based density is computed and compared
with the given density. If both differ by more than a user-defined
tolerance threshold, surplus particles have to be removed or, alter-
natively, missing particles have to be injected.

We propose an efficient algorithm for a special case of deter-
ministic density control—for a uniform density with exactly one
particle per cell. Due to this particle-per-cell property we name
this method particle-in-cell advection. The approach is also based
on the particle framework from Section 6; it just uses a different
method for density control than Section 7.

The particle-in-cell technique consists of the following stages.
First, a valid particle configuration is initialized: One particle is
chosen per cell, with randomized fractional coordinates. The cell
contents is identified with the particle property. Initial properties
are modeled as white noise. Second, particles are transported ac-
cording to forward Lagrangian integration. Third, a re-initialization
is performed after each integration step to re-establish a valid con-
figuration. This means that maximally one particle is stored per
cell. If several particles are transported to the same cell, only one
of them is kept, which can be realized by overwriting existing parti-
cles by new ones. A valid configuration also means that minimally
one particle has to be located in each cell. Since forward transport

may leave destination cells untouched, all cells have to be checked
if they are empty, and empty cells have to be filled with a new par-
ticle. The property of a new particle is set to a random value.

Figure 2 illustrates particle-in-cell advection based on a circular
vector field. Figure 2a (left part) shows a snapshot of the parti-
cle distribution from an animation. This image demonstrates that
a random and uniform collection of particles is maintained. The
right part of Figure 2a uses yellow color to visualize the empty cells
that occur after one particle integration step. This picture indicates
that a significant portion of the cells may receive new particles,
which reduces temporal coherence. Figure 2b shows a LEA-type
visualization—with a continuous alpha blending between subse-
quent particle distributions—leading to streaklets. Here, LIC post-
filtering [5] with a short filter kernel is additionally applied to in-
crease the visualization quality. In general, particle-in-cell advec-
tion provides a rather low temporal and spatial coherence due to
a high rate of particle creation and deletion. Therefore, the prob-
abilistic approach from Section 7 is more appropriate when high
quality is required.

Particle-in-cell advection is related to the original implementa-
tion of Lagrangian Eulerian Advection (LEA) [5]. LEA also main-
tains a single particle per cell, it uses Lagrangian integration, and
a re-initialization step. However, there are some differences: First,
LEA applies backward integration and backward texture mapping.
Second, LEA suffers from “noise duplication” [5], which reduces
the spatial frequency of the noise. Therefore, LEA needs a continu-
ous ad-hoc injection of noise, which is not required for particle-in-
cell advection.

(a) (b)

Figure 2: Particle-in-cell advection for a circular flow. Image (a)
shows a snapshot of the particle distribution (left part), indicating
empty cells by yellow color (right part). Image (b) displays the result
of temporal blending in combination with LIC post-filtering.

643

9 IMPLEMENTATION

We have implemented the framework from Section 6, including
probabilistic and particle-in-cell density control for time-dependent
2D vector fields. The implementation is based on C++ and Di-
rectX 9.0. GPU states, vertex programs, and fragment programs
are configured within effect files, using HLSL (high-level shad-
ing language) for the shader programs. The implementation re-
quires Shader Model 3 functionality and was developed on NVIDIA
GeForce 6 GPUs. The implementation with probabilistic density
control can be separated in four major parts: (1) Lagrangian parti-
cle representation and integration, (2) probabilistic density control,
(3) construction of spacetime property fields, and (4) convolution.
Particle-in-cell advection adopts this pipeline and modifies it by an
alternative control of particle density.

The first part of the probability-based pipeline is implemented
similarly to previous GPU particle systems [7, 8, 9]. We use a state-
preserving particle system that holds the current position (its x and y
components), age, and activity state for each particle. Particle states
are stored in 32-bit floating-point 2D textures, labeled by particle
IDs. Particle positions for a subsequent time step are determined
by explicit Euler integration of the particle tracing Equation (1),
based on a vector field stored in a 16-bit floating-point 2D texture.
The integration step is implemented by updating the state texture in
a texel-by-texel fashion within a fragment program. Here, render-
to-texture functionality is employed in combination with ping-pong
rendering, i.e., two versions of a texture are held on the GPU, one
serving as render target, the other one serving as lookup texture.
Both textures are exchanged after each rendering pass. The inte-
gration step also updates the particle’s age and checks whether the
particle has left the computational domain. In the latter case, the
particle is deactivated.

The second part implements particle removal and injection in
order to control density. Random numbers are pre-computed by
the CPU and transferred to a texture on the GPU. Particle removal
needs just a single uniformly distributed random number per parti-
cle. Russian roulette is implemented by comparing the entry from
the random number texture with a probability value accessed from
a separate 2D texture that holds the divergence of the vector field,
pre-computed on the CPU. Particle injection is realized by another
random number texture, constructed from an injection probability
density by rejection sampling on the CPU. This texture yields the
random 2D position of a new particle. Particle injection can be per-
formed for previously inactive state-texture elements. Particle re-
moval and injection is implemented within a fragment program that
processes all particles in a texel-by-texel fashion via ping-pong ren-
dering. Both random textures can be reused for several time steps
by applying a randomized overall rotation of texture coordinates.

In the third part, a spacetime property field is constructed from
particle trajectories according to Eq. (3). RBFs are evaluated by
rasterizing point sprites defined by a center point (i.e., the parti-
cle position) and a 2D texture (i.e., a 2D discretized version of the
RBF). A phase-in and phase-out of particles is employed to avoid
flickering; the particle’s age is used to modulate the brightness of
the sprite. With Shader Model 3 compliant GPUs, a vertex program
can access texture data and, therefore, the geometry pipeline can
read the particle-state texture to position the center of a point sprite.
The vertex texture is addressed by texture coordinates correspond-
ing to the particle ID. The summation of several RBFs according to
Eq. (3) is implemented by an additive blending of the point sprites
corresponding to active particles into a common render-target tex-
ture. We use a 16-bit floating-point target, which supports alpha
blending and leads to higher accuracy than 8-bit fixed-point tex-
tures.

The fourth part implements the convolution according to Eq. (2).
Similarly to our previous implementation [27], Lagrangian par-

(a) (b)

Figure 3: Framework-based LEA-type visualization of a vortical flow.
Image (a) shows spatial structures from alpha blending, image (b)
adds post-filtering to improve the visualization quality.

ticle integration is applied to perform line integral convolution.
The main difference is that the integral (2) is evaluated in a sin-
gle rendering pass through a GPU fragment program that executes
a loop over all sampling positions in the Riemann sum. Shader
Model 3 facilitates loops and long fragment programs (in contrast
to Pixel Shader 2) and, therefore, multiple rendering passes can be
avoided. An alternative convolution model is used for framework-
based LEA: Successive alpha blending is applied between the prop-
erty field for the current time step and the previously filtered prop-
erty field, realizing a discretized version of an exponential filter ker-
nel [3].

Particle-in-cell advection uses a slightly modified pipeline to im-
plement an explicit control of particle density. A valid particle con-
figuration is constructed by the CPU, and particle transport is identi-
cal to that of the original pipeline. During re-initialization, a vertex
program accesses the particle-state texture to fill a single texel at
the new particle position. If several particles are transported to the
same texel, they are automatically overwritten by the latest drawn
particle, leading to a random selection of surviving particles. A sep-
arate rendering pass visits all texels of the particle-state texture and
fills empty texels by a random property value and random fractional
coordinates. Finally, subsequent time steps of the property field are
combined by successive alpha blending.

Several postprocessing stages have been implemented to im-
prove visualization quality. First, histogram equalization [16]
reestablishes good contrast. Second, LIC post-filtering [5] can be
applied to improve filtering quality. The implementation of the con-
volution stage is reused here, just with a very short filter kernel (typ-
ically some five integration steps). Figure 3 illustrates post-filtering
with a Gaussian filter kernel, applied to a framework-based LEA-
type visualization of a vortical flow. Third, color mapping is used to
visualize additional attributes or to enhance flow features by mask-
ing, e.g., by velocity masking [5].

10 RESULTS

Figure 4 shows snapshots taken from animated visualizations of
three different unsteady vector fields. In Figure 4a, a LEA-style
framework-based visualization with velocity masking is used to dis-
play time-dependent water flow in the Gulf of Mexico. The com-
plete data set contains 183 time steps with a spatial resolution of
352×320. Figure 4b is generated by framework-based UFAC and
shows the velocity field produced by the interaction of a planar
shock with a longitudinal vortex (200 time steps with a resolution
of 256× 151). In regions of large unsteadiness, such as the shock
regions at center and bottom of the image, the correlation length
along streamlines is reduced by UFAC. In addition, velocity mask-
ing is applied to emphasize high velocity magnitude. In Figure 4c, a

644

(a) (b) (c)

Figure 4: Examples for unsteady flow visualization: (a) LEA-style framework-based visualization of water flow in the Gulf of Mexico. (b) UFAC
visualization of the interaction of a planar shock with a longitudinal vortex. (c) LEA-style visualization of a hurricane Dennis prediction.

LEA-style framework-based visualization with velocity masking is
applied to represent the wind velocity in a hurricane Dennis predic-
tion for a 96-hour forecast (17 time steps with a spatial resolution of
151× 181). Corresponding animations and additional images can
be found on our project web page [26].

Other types of results concern the performance of our implemen-
tation. All measurements were conducted on a PC with NVIDIA
GeForce 6800 Ultra GPU (256 MB) and Intel Pentium IV (3.2 GHz)
CPU, running under Windows XP and DirectX 9.0. Viewport size is
640×480 unless otherwise noted. Performance numbers are always
given in frames per second (fps). Table 1 shows the performance
of the particle system, including point sprite rendering and blend-
ing, for a varying number of particles, different sizes of point sprites
(sizes on the image plane), and a steady flow. The column “w/o VP”
shows performance numbers for particle tracing only, i.e., no point
sprites are drawn and there is no texture access from the vertex pro-
gram to the particle state texture. When point sprites are rendered,
the overall performance drops significantly with increasing size of
point sprites, which shows that an overdraw from rasterization is
the bottleneck of the typical particle system, not particle integra-
tion. The column with point sprite size “02” documents the cost
for a texture lookup in the vertex program without any rasteriza-
tion of point sprites. For comparison, the gathering implementation
for particle transport [27] achieves 11.4 fps for a maximum parti-
cle lifetime of 200 on the same GPU, i.e., our new discretization
achieves a speedup by a factor of 40 for a reasonably comparable
visualization (1282 particles, 102 point sprite size). In general, for-
ward particle-based integration is extremely advantageous for long
particle lifetimes, while it loses some of its efficiency for a very
dense set of particles with significant overdraw.

A time-dependent visualization needs an additional transfer of
flow data from main memory to the GPU for each time step. The
performance overhead only depends on data size. For example,
for 1282 particles with 102 point sprite size, 16-bit floating-point

Table 4: Performance for convolution (in fps).

Filter Length
Viewport

20 40 80

640×480 61.1 33.2 17.2
1600×1200 10.8 5.7 2.8

flow data sets, and a fixed viewport size of 640× 480, the overall
performance decreases from 444.1 fps for steady flow to 44.5 fps
or 161.4 fps for unsteady flow with a flow resolution of 640× 480
or 320×240, respectively.

Table 2 documents the performance for varying size of the sprite
texture, when the size of the point sprite is fixed in image space.
The numbers indicate that textures of size 322 or less fit into tex-
ture cache because no performance increase is achieved by reducing
the texture size below 322. Therefore, we use point sprite textures
of size 322 for all applications as an optimal compromise between
texture resolution and speed.

Table 3 shows performance measurements for particle-in-cell ad-
vection. The size of the property texture is identical to the number
of particles. The numbers demonstrate that the computation time
is approximately linear with the number of particles and that alpha
blending between successive time steps has a small effect when a
reasonably large number of particles is employed.

Table 4 documents the performance of the convolution stage of
the framework. Different filter lengths and viewport sizes are com-
pared, showing an approximately linear behavior with respect to the
number of texels and the number of integration steps. For example,
this convolution has to be explicitly performed for the DLIC and
UFAC realizations within the framework. Here, the overall com-
putation time is determined by adding the computational costs for
convolution and particle advection (see Table 1).

Table 1: Performance of the particle system for integration, ren-
dering, and blending (in fps).

Point Sprite Size
Particles w/o VP

02 52 102 202

642 1968.3 1380.4 1285.9 1012.8 565.1
1282 1450.3 831.0 712.9 444.1 186.1
2562 681.4 323.0 253.1 137.9 51.2
5122 191.1 84.7 68.0 35.5 12.8
10242 47.3 22.3 16.7 8.9 3.2

Table 2: Performance for a point
sprite size of 102 pixels (in fps).

Particles
Texture Size

642 2562

82 1015.1 137.9
162 1014.2 137.9
322 1012.8 137.9
642 663.6 66.0
1282 424.4 34.5

Table 3: Performance for particle-in-
cell advection (in fps).

Alpha Blending
Particles

Disabled Enabled

642 1095.9 796.6
1282 753.2 600.0
2562 323.0 291.5
5122 90.6 87.6
10242 22.9 22.7

645

11 CONCLUSION AND FUTURE WORK

We have presented a new hybrid particle and texture based approach
for the visualization of time-dependent vector fields. A particle-
based representation overcomes efficiency and memory problems
of our previous implementation of a spacetime framework for time-
dependent vector field visualization because trajectories can now
be constructed incrementally and a simultaneous access to many
different time steps is avoided. We have described a probabilistic
particle injection and removal mechanism to maintain a given par-
ticle density. As an alternative, particle-in-cell advection provides a
deterministic density control, with exactly one particle per cell. We
have presented an efficient GPU implementation of our approach
that facilitates the interactive visualization of unsteady 2D flow on
Shader Model 3 compliant graphics hardware. Another advantage
of the hybrid particle/texture framework is high visualization qual-
ity, achieved by accurate Lagrangian integration.

Our framework achieves spacetime-coherent dense representa-
tions by a two-step process: construction of continuous trajectories
in spacetime for temporal coherence, and convolution along another
set of paths through the above spacetime volume for spatially cor-
related patterns. We have demonstrated the flexibility of the frame-
work by mimicking LEA, DLIC, and UFAC and we have explicitly
stated what visual structures are constructed by these different ap-
proaches. In this context, generic strategies for dense unsteady flow
visualization have been analyzed.

For future work, an extension to 3D vector fields will be most
challenging. Particle representation, Lagrangian integration, and
density control are already formulated in a dimension-independent
manner and could be easily used for 3D flow. More difficult, how-
ever, will be the development of methods for fast 3D convolution
and for an efficient scan conversion of RBFs on a 3D uniform grid.
In addition, perceptual issues (occlusion, clutter, spatial percep-
tion) have to be addressed for dense 3D representations. Neverthe-
less, we are convinced that our approach is immediately interesting
for 3D flow visualization on curved surfaces: Recent methods for
curved manifolds [11, 24, 28] are based on 2D image space, where
our 2D framework implementation could be adopted.

ACKNOWLEDGMENTS

The data of the Gulf of Mexico was made available courtesy of
Dr. O’Brien (COAPS/FSU), and the hurricane Dennis data was
kindly provided by Dr. X. Zou (Meteorology/FSU). G. Erlebacher
acknowledges support from the Program Enhancement Grant pro-
gram at FSU. Thanks to Simon Stegmaier for fruitful discussions
on texture advection.

REFERENCES

[1] B. Cabral and L. C. Leedom. Imaging vector fields using line integral
convolution. In Proc. ACM SIGGRAPH 93, pages 263–270, 1993.

[2] L. Devroye. Non-Uniform Random Variate Generation. Springer,
Berlin, 1986.

[3] G. Erlebacher, B. Jobard, and D. Weiskopf. Flow textures: High-
resolution flow visualization. In C. D. Hansen and C. R. Johnson,
editors, The Visualization Handbook, pages 279–293. Elsevier, Ams-
terdam, 2005.

[4] B. Jobard, G. Erlebacher, and M. Y. Hussaini. Hardware-accelerated
texture advection for unsteady flow visualization. In Proc. IEEE Vis.,
pages 155–162, 2000.

[5] B. Jobard, G. Erlebacher, and M. Y. Hussaini. Lagrangian-Eulerian
advection of noise and dye textures for unsteady flow visualization.
IEEE Trans. Vis. Comput. Gr., 8(3):211–222, 2002.

[6] B. Jobard and W. Lefer. Unsteady flow visualization by animating
evenly-spaced streamlines. Comput. Gr. Forum (Eurographics 2000),
19(3):31–40, 2000.

[7] P. Kipfer, M. Segal, and R. Westermann. Uberflow: A GPU-based
particle engine. In Proc. Gr. Hardw., pages 115–122, 2004.

[8] A. Kolb, L. Latta, and C. Rezk-Salama. Hardware-based simulation
and collision detection for large particle systems. In Proc. Gr. Hardw.,
pages 123–132, 2004.

[9] J. Krüger, P. Kipfer, P. Kondratieva, and R. Westermann. A particle
system for interactive visualization of 3D flows. IEEE Trans. Vis.
Comput. Gr. Accepted for publication.

[10] R. S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. H. Post, and
D. Weiskopf. The state of the art in flow visualization: Dense and
texture-based techniques. Comput. Gr. Forum, 23(2):143–161, 2004.

[11] R. S. Laramee, B. Jobard, and H. Hauser. Image space based visualiza-
tion of unsteady flow on surfaces. In Proc. IEEE Vis., pages 131–138,
2003.

[12] W. Lefer, B. Jobard, and C. Leduc. High-quality animation of 2D
steady vector fields. IEEE Trans. Vis. Comput. Gr., 10(1):2–14, 2004.

[13] G.-S. Li, U. Bordoloi, and H. W. Shen. Chameleon: An interac-
tive texture-based framework for visualizing three-dimensional vector
fields. In Proc. IEEE Vis., pages 241–248, 2003.

[14] Z. Liu and R. J. Moorhead II. Accelerated unstead flow line integral
convolution. IEEE Trans. Vis. Comput. Gr., 11(2):113–125, 2005.

[15] N. Max and B. Becker. Flow visualization using moving textures.
In Proc. ICASW/LaRC Symp. Vis. Time-Varying Data, pages 77–87,
1995.

[16] A. Okada and D. Lane. Enhanced line integral convolution with flow
feature detection. In Proc. SPIE Vol. 3017 Visual Data Exploration
and Analysis IV, pages 206–217, 1997.

[17] F. P. Pighin, J. M. Cohen, and M. Shah. Modeling and editing flows
using advected radial basis functions. In EG/SIGGRAPH Symp. Com-
put. Anim., pages 223–232, 2004.

[18] V. V. Savchenko, A. A. Pasko, O. G. Okunev, and T. L. Kunii.
Function representation of solids reconstructed from scattered surface
points and contours. Comput. Gr. Forum, 14(4):181–188, 1995.

[19] H.-W. Shen and D. L. Kao. A new line integral convolution algorithm
for visualizing time-varying flow fields. IEEE Trans. Vis. Comput. Gr.,
4(2):98–108, 1998.

[20] A. Sundquist. Dynamic line integral convolution for visualizing
streamline evolution. IEEE Trans. Vis. Comput. Gr., 9(3):273–283,
2003.

[21] A. Telea and J. J. van Wijk. 3D IBFV: Hardware-accelerated 3D flow
visualization. In Proc. IEEE Vis., pages 233–240, 2003.

[22] J. J. van Wijk. Spot noise – texture synthesis for data visualization.
Comput. Gr. (Proc. ACM SIGGRAPH 91), 25:309–318, 1991.

[23] J. J. van Wijk. Image based flow visualization. ACM Trans. Gr.,
21(3):745–754, 2002.

[24] J. J. van Wijk. Image based flow visualization for curved surfaces. In
Proc. IEEE Vis., pages 123–130, 2003.

[25] R. Wegenkittl, E. Gröller, and W. Purgathofer. Animating flow fields:
Rendering of oriented line integral convolution. In Comput. Anim. ’97,
pages 15–21, 1997.

[26] D. Weiskopf. Texture-based flow visualization. http://www.vis.

uni-stuttgart.de/texflowvis, 2005.
[27] D. Weiskopf, G. Erlebacher, and T. Ertl. A texture-based framework

for spacetime-coherent visualization of time-dependent vector fields.
In Proc. IEEE Vis., pages 107–114, 2003.

[28] D. Weiskopf and T. Ertl. A hybrid physical/device-space approach
for spatio-temporally coherent interactive texture advection on curved
surfaces. In Proc. Gr. Interface, pages 263–270, 2004.

[29] D. Weiskopf, M. Hopf, and T. Ertl. Hardware-accelerated visualiza-
tion of time-varying 2D and 3D vector fields by texture advection via
programmable per-pixel operations. In Proc. VMV ’01, pages 439–
446, 2001.

[30] D. Weiskopf, T. Schafhitzel, and T. Ertl. Real-time advection and
volumetric illumination for the visualization of 3D unsteady flow. In
Proc. Eurovis (EG/IEEE TCVG Symp. Vis.), pages 13–20, 2005.

[31] J. Woodring, C. Wang, and H.-W. Shen. High dimensional direct ren-
dering of time-varying volumes. In Proc. IEEE Vis., pages 417–424,
2003.

646

