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Figure 1: Three different advection schemes applied to a PIV measurement of a fluid flow data set. Left image: Gaussian error diffusion
approach. Center image: Cross advection method. Right image: Semi-Lagrangian advection using multi-frequency noise.

ABSTRACT

In this paper, we present two novel texture-based techniques to vi-
sualize uncertainty in time-dependent 2D flow fields. Both meth-
ods use semi-Lagrangian texture advection to show flow direction
by streaklines and convey uncertainty by blurring these streaklines.
The first approach applies a cross advection perpendicular to the
flow direction. The second method employs isotropic diffusion that
can be implemented by Gaussian filtering. Both methods are de-
rived from a generic filtering process that is incorporated into the
traditional texture advection pipeline. Our visualization methods
allow for a continuous change of the density of flow representa-
tion by adapting the density of particle injection. All methods can
be mapped to efficient GPU implementations. Therefore, the user
can interactively control all important characteristics of the sys-
tem like particle density, error influence, or dye injection to cre-
ate meaningful illustrations of the underlying uncertainty. Even
though there are many sources of uncertainties, we focus on un-
certainty that occurs during data acquisition. We demonstrate the
usefulness of our methods for the example of real-world fluid flow
data measured with the particle image velocimetry (PIV) technique.
Furthermore, we compare these techniques with an adapted multi-
frequency noise approach.

CR Categories: I.3.3 [Computer Graphics]: Picture / Image Gen-
eration I.3.6 [Computer Graphics]: Methodology and Techniques
I.3.8 [Computer Graphics]: Applications

Keywords: Uncertainty visualization, unsteady flow visualization,
texture advection, GPU programming.

1 INTRODUCTION

Exposing uncertainties of real-world flow data becomes a more and
more important topic in the field of vector field visualization. Engi-
neers and scientists are increasingly interested in which region and
extent uncertainties occur in measured data. The absence of this
information can lead to wrong conclusions and therefore affect the
analysis process in a negative way. Several types of uncertainties or
errors can appear on the way from data acquisition to the final step
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of visualization [11, 14, 24]. In this work, we focus on errors that
arise during the measurement step by inaccuracies of the measuring
device or technique. Although scientists and engineers are aware of
the fact that almost every data set has intrinsic uncertainties, most
visualization techniques neglect or completely ignore them. One
reason for this is the difficulty to find a good uncertainty represen-
tation that can be combined with the visualization of the original
data. By including the error measure into the process of visualiza-
tion we need to add one more variate. For one-dimensional data,
uncertainty can be displayed by a traditional plot that shows the av-
erage, minimum, and maximum value of a data point mapped to the
second dimension. For multivariate data, this mapping becomes a
challenging problem, since several dimensions have to be mapped
to 2D screen space.

The goal of this paper is to provide new texture-based visual-
ization schemes that do not only represent particle positions along
streaklines but also bring out measuring errors and their influence
on particles in the form of smeared-out visual structures perpendic-
ular to the flow direction. We adopt traditional semi-Lagrangian
texture advection [8, 19, 22], as briefly described in Section 4, and
extend it by an error-dependent additional filter process that reveals
uncertainty by essentially changing the spatial distribution of visual
patterns perpendicular to the flow. This generic error visualization
strategy is introduced in Section 5. We have developed two spe-
cific visualization methods that are derived from this generic strat-
egy: First, the cross advection method, which uses a line-oriented
filter perpendicular to the flow direction (Section 6); second, an
artificial error-guided diffusion filter (Section 7). Our visualiza-
tion methods lend themselves to efficient GPU (graphics process-
ing units) implementations, which is demonstrated by providing de-
tails of the implementation along with performance measurements.
Moreover, we compare our new methods with an adaptation of the
multi-frequency noise method [9] and show results of uncertainty
visualization applied to real-world fluid flow data from PIV mea-
surements (see Section 9).

2 PREVIOUS WORK

Previous work on uncertainty visualization has focused on repre-
senting uncertainty in simulation or analytical data. For example,
Lodha et al. [12] evaluate and compare the quality of surface inter-
polants and introduced geometric uncertainty as a measure of inter-
polation error. Furthermore, they propose UFLOW [11], a system
to visualize uncertainties in streamlines of fluid flow with glyphs,
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envelopes, or animation. Wittenbrink et al. [24] present several dif-
ferent glyphs like uncertainty glyphs and arrow glyphs to visual-
ize wind and ocean currents. They map uncertainty direction and
magnitude to various types of glyphs and glyph attributes. Pang et
al. [14] give a classification of possibilities for visualizing uncer-
tainties for a wide field of applications. Two techniques for uncer-
tainty visualization in isosurface rendering are proposed by Rhodes
et al. [16]. The first one changes one of the vertex color parameters
hue, saturation, or brightness. The second technique maps an ad-
ditional texture on top of the surface and varies the opacity of the
texture according to the error measure. Finally, Brown [1] intro-
duces a method of visual vibrations to indicate the amount of error.

Measurement of real-world data is a typical source of error or
uncertainty. A widely used technique to acquire the velocity field
of a fluid flow is based on particle image velocimetry (PIV) [6, 15].
Since the quality and field of application of PIV measurements has
improved in recent years, the analysis of PIV data is becoming in-
creasingly interesting. For example, the recent work by Ebling et
al. [3] applies image-processing methods to analyze PIV measure-
ments.

Research in the field of texture-based flow visualization has been
strongly advanced lately, not only because of the rapidly increas-
ing performance and functionality of GPUs. The availability of
dense noise-based and sparse dye-based representations, as well as
the possibility for the user to interact and manipulate all impor-
tant parameters on-the-fly also play an important role. The state-of-
the-art in texture-based flow visualization is surveyed by Laramee
et al. [10]. Early work on texture-based methods comprises spot
noise [18], line integral convolution (LIC) [2], and texture advec-
tion [13]. More recent 2D techniques rely on semi-Lagrangian tex-
ture advection: Image Based Flow Visualization (IBFV) by Van
Wijk [19] and Lagrangian-Eulerian Advection (LEA) by Jobard et
al. [8]. Since dense texture representations need a large number of
computations, graphics hardware can improve the performance of
2D texture-based flow visualization [5, 7, 23]. An example for a
sparse representation is the metaphor of dye advection [21, 22].

3 PARTICLE IMAGE VELOCIMETRY

Real-world fluid flow can be measured by particle image velocime-
try (PIV) [6, 15]. The basic principle of PIV is to inject particles
into the flow and to measure the movement of these particles be-
tween two light pulses. Usually, a planar laser light sheet technique
is used. In very short intervals the target area is illuminated twice
by a double-pulsed laser and recorded onto the CCD array of a dig-
ital camera (see Figure 2). Since the CCD chip must be able to
capture each light pulse in separate image frames, the resolution in
time is bound to the image frequency of the camera. Afterwards,
appropriate algorithms evaluate consecutive images and determine
the displacement of particles in the flow. The most common way
of measuring displacement is to divide the image plane into small
interrogation areas (IA) and cross correlate the images from the two
time exposures. With this method, even unsteady or non-periodic
flow fields can be measured.

One possible cross correlation algorithm works as follows: Each
image is divided into l small IAs with edge length K (in pixels);
the IAs are then shifted and compared with other parts of the im-
age. For each translation ∆x of one IA A with K2 pixels to another
domain B of the same size, the cross correlation

C(∆x) =
K

∑
i=1

K

∑
j=1

Bi j ·Ai j(∆x) (1)

can be computed. If the coefficient C is a maximum and/or mini-
mum for a translation ∆x (depending on the matrix function), then
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Figure 2: Configuration of a particle image velocimetry system.

the largest match between A and B and thus the shift of the parti-
cles has been found for IA A. Solving Eq. (1) for all IAs ∆xl of
the image results in a collection of displacement vectors that can be
converted to velocity vectors by using the time difference between
both evaluated images:

vl(xl) =
dxl

dt
≈

∆xl

t2 − t1
.

On the way from data acquisition to the stage of visualization, sev-
eral different uncertainties or errors can be introduced to the data
[11, 14]. Figure 3 shows the three stage pipeline that data has to
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Figure 3: Possible sources for uncertainties (adopted from [14]).

go through until it can be analyzed. In the visualization step, al-
gorithmic uncertainties can occur, e.g., by approximating factors
for global illumination or by interpolating data values on slices in
volume rendering. Transformation uncertainties are introduced by
converting from one unit to another or by scaling, resampling, or
quantization. In our work, we focus on uncertainties that appear
in the first stage—during data acquisition. We think that this stage
is most interesting for uncertainty visualization because the errors
from data acquisition typically cannot be influenced or reduced by
subsequent processes. In contrast, algorithmic or numerical errors
from the other two stages of the pipeline can be neglected if algo-
rithms of appropriate quality are applied. Nevertheless, error from
any source could be used as input to, and thus shown by, our uncer-
tainty visualization methods.

During data acquisition, errors can be introduced into PIV data
sets from several sources [15]:

• Random error due to noise in the recorded images.
• Bias error arising from the process of computing the signal

peak location to sub-pixel accuracy.
• Calibration inaccuracy of the CCD camera.
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• Acceleration error caused by approximating the local Eulerian
velocity from the Lagrangian motion of tracer particles.

• Gradient error resulting from rotation and deformation of the
flow within an interrogation area leading to a loss of correla-
tion.

• Dimension of the cross-correlated interrogation areas.
• Tracking error resulting from the inability of a particle to fol-

low the flow without slip.

Some of these errors can be minimized by carefully choosing the
experimental conditions, but others cannot be eliminated and thus
the final data inherits uncertainties by the nature of the measuring
system. Since engineers are fully aware of the existence of those
uncertainties it can be of great advantage to have an interactive vi-
sual feedback during analysis.

In our system, the PIV method yields N measurements for the
vector field at each spatial location and time step. The raw data
measurements are denoted vi with i = 1 . . .N. The average vector
v serves as basis for traditional vector field visualization. Then, the
root mean square

rrms =

√

√

√

√

1
N

N

∑
i=1

||vi −v||2 ,

can be used as the measure of uncertainty.
Our test data set was acquired in a laminar water channel with

a 3D S-PIV method and a resolution of 81 × 45 in each of nine
separated layers. Each layer was measured N = 25 times. Since our
computation takes place in the 2D domain, we slice the 3D vector
field into nine separated 2D layers.

4 SEMI-LAGRANGIAN TEXTURE ADVECTION

Texture advection is a well-established and versatile method for
visualizing unsteady flow [8, 13, 19]. Semi-Lagrangian transport
[8, 17], which is the basis for our implementation of texture advec-
tion, is briefly described in this section.

Particles or injected dye are represented on a regularly sampled
grid or texture. This property field is denoted by ρ(x). The points
x are from the domain of the nD vector field, R

n. For the Eulerian
approach, particles lose their individuality and their position is im-
plicitly given by the location of the corresponding texel in the prop-
erty field. Particles are transported along streamlines for steady, or
along pathlines for unsteady vector fields v(x, t), where t denotes
time. The Lagrangian formulation of the underlying equation of
motion,

dx(t)
dt

= v(x(t), t) ,

can be integrated to compute the pathline of an advected massless
particle,

x(t1) = x(t0)+
∫ t1

t0
v(x(t), t)dt . (2)

The evolution of the property field ρ(x, t) is governed by

∂ρ(x, t)
∂ t

+v(x, t) ·∇ρ(x, t) = 0 .

This partial differential equation can be solved by semi-Lagrangian
transport [8, 17], which leads to a stable evolution even for large
step sizes. A backward texture lookup is often employed:

ρ(x(t0), t0) = ρ(x(t0 −∆t), t0 −∆t) . (3)

Starting from the current time step t0, an integration backwards in
time according to Eq. (2) provides the position at the previous time

step, x(t0 −∆t). Texture-based methods often produce only short
streamlines or streaklines and, therefore, first-order Euler integra-
tion typically provides sufficient accuracy:

x(t0 −∆t) = x(t0)−∆tv(x(t0), t0) .

The property field is evaluated at this previous position to access the
particle that is transported to the current position. Tensor-product
linear interpolation (bilinear in 2D or trilinear in 3D) is applied to
reconstruct the property field at locations different from grid points.

Texture advection can be used to visualize larger structures in the
flow, like streamlines in steady flow or streaklines in time-varying
flow. These structures can be generated by injecting smooth dye
patterns or noise-based particles into the property field ρ after each
advection step, following the IBFV approach [19]. Newly injected
material is combined with the advected property field by means of
alpha blending, which represents the discretized version of an ex-
ponential filter kernel [4] in the context of LIC [2]. We use texture
advection as basis for uncertainty visualization because it offers im-
portant benefits. First, the injection scheme is flexible in allowing
the user to gradually change the density of new particles from a few
randomly injected particles up to a densely filled property field rep-
resented by white noise. Second, texture advection lends itself to a
direct and efficient mapping to GPUs, which leads to an interactive
visualization of large data sets.

5 STRATEGY FOR UNCERTAINTY VISUALIZATION

The goal of this paper is to enrich texture advection by a visual-
ization of flow uncertainty, without losing the benefits of texture
advection, i.e., its flexibility and efficiency. Uncertainty visualiza-
tion essentially requires to represent one additional single-valued
attribute: a measure for uncertainty or error.

From an abstract point of view, uncertainty visualization can be
structured into a three-stage process (see Figure 4). Raw data is
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derived error 

measure
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representation
raw data

combination

e.g. rms

functional

mapping

visual 

mapping

Figure 4: Uncertainty pipeline.

the basis to compute an error value. As detailed in Section 3, the
error value for PIV data is typically based on the root mean square.
However, any other error computation could be used for this part
of the visualization process. In the second stage, this original error
value is mapped to a derived error measure, e.g., by a linear or a
non-linear function, in order to obtain values in a useful range. We
denote this, possibly space-variant and time-dependent, uncertainty
measure by u(x, t). The third step comprises the actual mapping
to visual primitives. This step is the main objective of uncertainty
visualization.

Various means of a visual mapping of multi-variate data could be
employed to represent the error attribute. A simple and well-known
method is to map the derived error value to color and to overlay this
color on top of the underlying flow visualization. However, this
kind of visualization method only shows uncertainty at a respective
point, i.e., it results in a localized representation. In contrast, uncer-
tainty in a flow leads to an uncertainty of particle transport, which
should also be represented by means of “uncertain” particle traces.
It is reasonable to mark a particle that has been advected throughout
an error-affected area and to emphasize this in the further process of
the flow. Furthermore, an uncertainty-affected region can influence
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its neighborhood and this should be taken into account in the visu-
alization step. Therefore, our goal is to incorporate the uncertainty
representation within the concept of texture-based particle trans-
port. Another advantage of this approach is that the error attribute
is encoded in the same perceptual channel as the original flow—in
the form of a texture—and, thus, other perceptual channels (e.g.,
color) could be used to encode additional attributes.

We propose the following basic visualization process that com-
bines uncertainty visualization with traditional texture advection.
As laid out in Figure 5, the first steps of the visualization cycle
(”load flow data”, ”texture advection”, and ”particle and dye in-
jection”) are identical to traditional texture advection. Uncertainty
visualization is exclusively based on an additional error filtering
stage, that is completely decoupled from the texture advection com-
putation. Error filtering aims at manipulating the spatial frequency
perpendicular to particle traces to show uncertainty u(x, t), i.e., we
do not only change the spatial frequency along the flow as in LIC [2]
or basic texture advection [10].

Error filtering modifies the property field and, in its generic form,
can be formulated as

ρfiltered(x) =
∫

V (x,v)

f (u, x̃,v)ρ(x+ x̃)dnx̃ . (4)

The compact nD filter domain V (x,v) may be space-variant and
flow-dependent, and so is the filter f . The integral is evaluated at
a fixed time t. In this paper, we restrict ourselves to 2D visualiza-
tion with n = 2 and we use two special cases for Eq. (4), which
are detailed in Sections 6 and 7. Different “flavors” of uncertainty
visualization are achieved by choosing specific parameters for the
filter kernel and integration domain.

6 CROSS ADVECTION

Cross advection is the first specific example for error filtering. Here,
the filter domain is reduced to a line perpendicular to the current
flow direction. The fundamental idea is to transport a particle lat-
erally to the flow direction and thus smear out the streakline of the
particle. This essentially leads to a 1D convolution similar to that
of traditional texture advection. The only difference is that a sym-
metric filter (in both directions) is applied.

Discretization of the filter leads to

ρfiltered = ∑
i∈{−1,0,1}

fiρi , (5)

where fi is the discrete filter kernel and ρi are samples of the prop-
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Figure 6: Semi-Lagrangian transport of a particle along flow direction
into an error region from time step t−∆t to time step t. The cross
advection is applied in time step t.

erty field along the perpendicular line,

ρi = ρ(x+ iµ∆tMrotv(x, t)) . (6)

Here, µ denotes the error-depending relative step size, ∆t is the step
size of traditional texture advection, and Mrot is a 2D matrix for a
rotation by 90 degrees. The integration width and, thus, the length
scale for smearing is controlled by the error value via µ . Equa-
tion (5) implements the analog of line integral convolution based
on texture advection, with the following differences: First, a con-
volution perpendicular to the flow direction is performed; second, a
symmetric convolution filter in both directions is applied. This fil-
tering maintains a constant overall brightness if a normalized kernel
is used (i.e., ∑ fi = 1). A typical choice is fi = 0.25,0.5,0.25.

Figure 6 illustrates the two steps performed for the complete
cross advection approach. In the first step, a particle (grey dot)
is transported by traditional semi-Lagrangian advection along the
flow direction into an uncertainty region. Black grid points lie in-
side the error region, white grid points outside. In the next step
shown on the right side of Figure 6, we compute the intensity val-
ues of the current point (grey dot) and the two cross directional
points (white and black dots) by combining the values according to
Eq. (5).

The filtering process can be slightly modified by replacing the
weighted sum in Eq. (5) by a maximum function according to

ρfiltered = max{ρi|i = 1,2,3} . (7)

The max() function guarantees that (sparsely seeded) streaklines
are not reduced to very small intensities in regions of large error,
and therefore smeared-out streaklines are maintained. In general,
the max() function does not provide a constant overall brightness
but tends to increase the image brightness. Therefore, this variant
is primarily designed for sparse representations with a few, clearly
separated streaklines.

Cross advection can be considered an image-processing opera-
tion that can be directly mapped to GPU fragment operations. The
update equations (5) or (7) work independently on 2D grid cells of
the property field. By identifying this 2D grid with a texture, the
update of cells (i.e., texels) is reduced to updating the underlying
texture through a fragment program. In fact, ping-pong rendering
is employed to update textures: Two copies of the property field
are held in texture memory; one serves as render target, the other
one serves as input texture. After each update, the role of the two
textures is exchanged. This cross advection process is one example
for an ”error advection module” in Figure 5.
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Figure 7: Left image: Cross advection with a single dye pattern in
a laminar flow field and with piecewise constant uncertainty. Right
image: Sparsely injected particles into the same flow with increasing
uncertainty from top to bottom.

A HLSL fragment program of the basic transport mechanism for
Eq. (7) is given in Figure 8. The mapping from the input uncertainty
measure to the relative step size µ is implemented by a dependent-
texture lookup. The space-variant input uncertainty is held in a 2D
domain-filling texture. We need to perform three texture lookups in
the property texture to evaluate Eq. (6). In the 2D case, the rotation
matrix Mrot can be realized by a component swizzle followed by
a simple multiplication. Finally, the texel with maximum intensity
is written to the output. In a variant of this fragment program, the
max() function is replaced by a weighted sum to implement Eq. (5).

The left image of Figure 7 shows an example of a single dye
pattern injected into a uniform flow field. The underlying uncer-
tainty begins a few steps away from the injection point and then
stays constant. The exact shape of the streakline is visible in the
error-free part of the flow that changes to a symmetric expansion
of both sides. The right image illustrates a sparse injection of ran-
dom particles, while the uncertainty increases from top to bottom.
Since uncertainty magnitude effects the step size of cross transport,
streaklines in regions with large errors (bottom) spread more than
those in unaffected regions (top).

// lookup in all textures at current TexCoord position

float4 direction = tex2D( VectorField, TexCoord );

// result from previous traditional texture advection

float4 thistxl = tex2D( AdvectedTex, TexCoord );

// uncertainty measure u(x,t)

float error = tex2D( ErrorField, TexCoord );

// cross advection step size: mu * Delta t

float stepSize = tex2D( ErrorStepSize, error );

float4 maxintens;

// perform cross advection in both directions

direction.yx = direction.xy * stepSize.xx;

direction.x *= -1.0f; // rotate -90

newpos.xy = TexCoords - direction.xy;

float4 lefttxl = tex2D( AdvectedTex, newpos.xy );

newpos.xy = TexCoord + direction.xy; // rotate 180

float4 righttxl = tex2D( AdvectedTex, newpos.xy );

// find texel with maximum intensity

maxintens.x = max( lefttxl.x, righttxl.x );

maxintens.x = max( thistxl.x, maxintens.x );

// final output

Output.RGBA = maxintens.xxxx;

return Output;

Figure 8: Main part of the HLSL fragment program for the cross
advection approach.

Figure 9: Left image: Gaussian error diffusion with a single dye pat-
tern in a laminar flow with piecewise constant uncertainty. Right
image: Sparsely injected particles into the same flow, with uncer-
tainty magnitude increasing from top to bottom.

7 ERROR DIFFUSION

Error diffusion is our second technique based on the generic fil-
tering process from Eq. (4). In contrast to cross advection, error
diffusion applies an isotropic 2D filter kernel, independent of the
direction of the flow. Filtering is space-variant: The uncertainty
value determines the strength of smearing out. While cross advec-
tion blurs the streakline sideways to the flow direction, the diffusion
filter affects texels not only in direction of the flow but in all direc-
tions. Since an error-affected data point exerts influence to all its
adjacent points in real data measurements, this filtering process im-
itates natural diffusion. A typical filter kernel is a 2D Gaussian
function, normalized in order to maintain a constant brightness.
We do not recommend to employ a max() function here because
this would lead to an overly fast increase in brightness—due to the
larger support of the filter, there is a higher probability of collecting
bright contributions than in the cross advection approach.

The diffusion computation is completely detached from the ad-
vection step and can be computed separately as shown in Figure 5.
In this second step, we apply a discretized 2D filter kernel to the
previously advected particles. For a GPU implementation, it is
inefficient to use a large filter kernel because this would increase
the computation costs dramatically. Therefore, we implemented
only a discrete, separated 3× 3 Gaussian filter. A larger filter ker-
nel is achieved by successive application of this 3× 3 filter, where
the number of filtering steps is determined by the extent of uncer-
tainty. A fine-grained control of filter strength through the uncer-
tainty value is achieved by modifying the entries in the filter mask.
The actual filter is constructed from a linear interpolation between
an identity mapping and a full Gaussian kernel, where the inter-
polation weight is determined by the uncertainty value. Linear in-
terpolation guarantees that the integral over the interpolated filter
remains constant and normalized. In this way, we are able to obtain
are range of filtering results, all the way from an identity mapping
in regions with no uncertainty (which results in exact streaklines)
up to a standard Gauss filter in regions with maximum uncertainty
(which strongly blurs the streakline in all directions). For the GPU
implementation, both the identity mapping and the Gaussian func-
tion are held in a floating-point texture. During runtime we perform
a bilinear lookup in this texture and compute the linear interpolation
to obtain a modified filter kernel.

The left image of Figure 9 illustrates dye injected into a lam-
inar flow field with constant uncertainty, beginning a few steps
away from the injection point. Well recognizable is the one-to-one
mapping of the streakline in areas without error influence, which
changes to a constant blurring in all directions in the error-affected
region. The right image shows the Gaussian error diffusion ap-
proach applied to sparsely injected particles into the same flow with
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Figure 10: Comparison of cross advection and Gaussian error dif-
fusion with two dye patterns injected into a flow with increasing
uncertainty from left to right.

increasing uncertainty from top to bottom. This picture illustrates
that the size and weight of the filter kernel depend on the uncer-
tainty magnitude; hence streaklines in the lower part of the flow are
heavily blurred while streaklines in the upper part are mapped to
identity. Figure 10 shows both approaches with two injected dye
patterns into a laminar flow field with increasing uncertainty from
left to right. Considering the lower dye in the left image, one can
see how uncertainty magnitude affects the step size of the cross
advection and how the streakline widens due to an increasing step
size. Depending on the 2D convolution kernel, the wavefront of a
streakline computed with the error diffusion approach, runs faster
than traditional texture advection or the cross advection approach.

8 MULTI-FREQUENCY NOISE

We adopt the generic multi-frequency noise approach [9] as third
technique for a dense vector field representation. Here, uncertainty
is used to control the spatial frequency of noise injection. This
technique can be directly incorporated into semi-Lagrangian ad-
vection by slightly modifying the injected noise. The original 2D
noise is replaced by a 3D noise texture whose layers are filled with
noise patterns of varying maximum spatial frequency. The first slice
contains original white noise; all successive slices contain filtered
versions of this white noise with decreasing maximum frequency.
Filtering is based on the fast Fourier transform: First, the original
white noise is transformed to frequency space, then a low pass fil-
ter is applied in frequency space and finally we perform the inverse
Fourier transformation back to image space. Since low-pass filtered
images lose contrast, we apply histogram equalization to match the
contrast of the original image and sharpen the low-frequency struc-
tures. To access the different layers, the noise lookup is extended
by a third dimension that is controlled by the error value. Figure 11
gives an example of four different noise patterns and their applica-
tion to the visualization of a uniform flow field.

9 DISCUSSION AND RESULTS

In Sections 6–8, we have discussed three different techniques to
visualize uncertainties in vector fields. All methods are suitable
for a dense representation and manipulate the spatial frequency ac-
cording to the uncertainty value. Multi-frequency noise is a pre-
filtering method—all necessary spatial frequencies have to be pre-
computed and stored in a 3D texture. Our novel approaches apply
post-processed filtering to the streaklines, and therefore, compared
to the multi-frequency approach, the results are similar for dense
noise injection but differ drastically for a sparse injection. An im-
portant advantage of both new methods is that they permit a contin-
uous transition from a dense to a sparse representation, whereas the

Figure 11: Left image: Four layers of multi-frequency noise. The
frequency depends on the uncertainty value. Right image: Advection
of multi-frequency noise in a laminar flow.

multi-frequency approach only works for a dense representation. A
sparse noise injection or the injection of a smooth dye pattern al-
lows the analyst to focus on single streaklines and their behavior
according to the underlying flow field.

We illustrate all techniques on our test data set, which was mea-
sured in a laminar water channel with the PIV method. This data set
contains one time step of water streaming through the test channel,
producing vortices in the flow. The upper image of Figure 12 shows
the fifth layer of the data set. Clear streaklines are generated with
traditional semi-Lagrangian texture advection using alpha blending
as exponential filter along flow direction. Streaklines only widen
in divergent parts of the vector field and due to numerical diffu-
sion. The second image shows the same flow visualized with the
cross advection approach. In regions with marginal uncertainty, the
streaklines remain clear but in uncertainty-affected regions they be-
come blurred perpendicular to the flow by an extent that depends
on the uncertainty value. The same applies to the third image, gen-
erated by Gaussian error diffusion. With both techniques, the user
can still see structures of the flow in error regions, though the spa-
tial frequency has been reduced. Furthermore, even the orientation
of the flow is distinguishable due to the OLIC-like [20] structure of
the streaklines.

For a sparse particle injection, the multi-frequency approach is
not suitable. We have not included a picture in Figure 12 for com-
parison because low-pass filtering of sparse injected particles would
lead to artifacts as known from heavy JPEG compressed images.
Further, one would recognize single, isolated and large streaks, but
their width would not change depending on uncertainty. Therefore,
this approach is not intuitive enough for uncertainty visualization.
Figure 13 directly compares our three uncertainty approaches by us-
ing dense particle injection represented by a white noise pattern. As
anticipated, the spatial frequencies strongly decrease in regions of
large error, irrespectively of the method being pre-filtered or post-
filtered. All techniques produce similar results and eliminate struc-
tures of the streaklines in error regions. Our new approaches can
be applied for dye patterns in the same way as for dense particle
textures, which enables the engineer to interactively release dye in
interesting regions to explore features of the flow. Accompanying
video material can be found on the project web page1.

In Figures 14 and 15, we use two synthetically generated data
sets to demonstrate the behavior of the uncertainty advection ap-
proaches in regions of typical vector field features. Figure 14 shows
three different topological structures such as source, sink, and two
vortices, visualized with the cross advection method. Each feature
point has an artificial error applied. The value of the error region is
independent of the radius, but depends on the rotation angle. The

1 http://www.vis.uni-stuttgart.de/texflowvis/
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Figure 12: Visualizing the 5th layer of the PIV data set. The upper
three images show semi-Lagrangian texture advection, cross advec-
tion, and Gaussian error diffusion with sparsely injected particles.

error decreases from 0 to 180 degrees and increases again up to 360
degrees. Even a source or a sink, where the structure of streaklines
is manipulated due to divergence or convergence of the underly-
ing vector field, the error-dependent widening of the streaklines is
clearly visible. Figure 15 combines an elliptical flow with a sink.
The radial error region is centered at the middle of the feature point.
Visible is the increasing error on the right side of the flow. Though
all streaklines meet in one point, there are no recognizable artifacts.

Our implementation of texture-based uncertainty visualization is
based on C++, Direct3D 9.0, HLSL, and FX files. Respective per-
formance numbers are documented in Table 1. Rendering speed
depends linearly on the number of texels, as shown in the compari-
son of different viewport sizes. Cross advection and error diffusion
have similar performance since both techniques need an additional
render pass and more texture lookups. Due to single pass rendering
and half as much lookups, the multi-frequency approach is twice as
fast.

Table 1: Performance of all three GPU-based 2D advection tech-
niques in frames per second measured on an NVIDIA GeForce 6800
GT graphics board.

Viewport size 2562 5122 10242

Multi-frequency noise 2073.0 558.0 125.0
Cross advection 1238.0 312.0 66.0
Gaussian error diffusion 1164.0 307.0 61.0

Figure 13: Illustration of all three approaches using a dense represen-
tation. Upper image: Multi-frequency noise. Middle image: Cross
advection. Lower image: Gaussian error diffusion.

10 CONCLUSION AND FUTURE WORK

We have presented a generic texture-based strategy to visualize un-
certainty in time-dependent flow. As two specific examples for
this strategy, we have proposed cross advection and error diffusion.
According to underlying uncertainty of the data, both techniques
change spatial frequency perpendicular to the flow direction. The
main advantages of our techniques are their flexibility and general-
ity. They can be directly combined with semi-Lagrangian advection
by including one additional filtering step. Therefore, they can be
applied to any density of texture representation ranging from dense
noise-based up to sparse dye-based methods. Moreover, our ap-
proaches can be directly mapped to GPUs in order to achieve real-
time visualization. In this way, the user can interactively explore
the flow field.

For future work, an extension of uncertainty visualization to 3D
flow will be a hallenging task. Moreover, the relationship between
texture-based uncertainty visualization of flow and the visualiza-
tion of symmetric second-order tensor fields could be investigated
because the two eigenvector fields of a tensor data set could be re-
lated to the flow and uncertainty directions.
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Figure 14: This synthetic data set combines different flow features
like source, sink, and vortices to clarify the behavior of the cross
advection approach in critical regions.
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