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Abstract

I begin by reviewing some recent work on the status of the geodesic principle in general
relativity and the geometrized formulation of Newtonian gravitation. I then turn to the
question of whether either of these theories might be said to “explain” inertial motion. I
argue that there is a sense in which both theories may be understood to explain inertial mo-
tion, but that the sense of “explain” is rather different from what one might have expected.
This sense of explanation is connected with a view of theories—I call it the “puzzleball
view”—on which the foundations of a physical theory are best understood as a network of
mutually interdependent principles and assumptions.
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1. Introduction

There is a very old question in the philosophy of space and time, concerning how and why

bodies move in the particular way that they do in the absence of any external forces. The

question originates with Aristotle, and indeed, the puzzle is particularly acute when one

thinks of it as the ancients might have. Given some external influence on a body, it might

seem clear why that body moves in one fashion rather than another: the external influence

forces it to do so. But when there are no forces present, what does the work of picking one

possible state of motion over any other? Consider planetary motion: there are no apparent

forces acting on planets, and yet they proceed along fixed trajectories. Why these orbits

rather than others? In Aristotelian terms, what determines the “natural motions” of a body?
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The modern answer to the question originates with Galileo and Descartes, but finds its

canonical form in Newton’s first law of motion, which states that in the absence of external

forces, a body will move in a straight line at constant velocity. This “law of inertia,” as

Newton called it, is preserved, mutatis mutandis, in general relativity, where inertial motion

is governed by the geodesic principle. The geodesic principle states that in the absence of

external forces, the possible trajectories through four dimensional spacetime of a massive test

point particle will be timelike geodesics—i.e., bodies will move along “locally straightest”

lines, without acceleration. In standard presentations of general relativity, the geodesic

principle is stated as a postulate (cf. Hawking and Ellis, 1973; Wald, 1984; Misner et al.,

1973; Malament, 2012b), much like Newton’s first law.1 However, shortly after Einstein

presented the theory, he and others began to suspect that one could equally well conceive of

the geodesic principle as a theorem, at least in the presence of other standard assumptions

of relativity theory (Eddington, 1924; Einstein and Grommer, 1927; Einstein et al., 1938).

This shift from geodesic-principle-as-postulate to geodesic-principle-as-theorem has led to

a widespread and deeply influential view that general relativity has a special explanatory

virtue that distinguishes it from other theories of space and time: in the words of Harvey

Brown, general relativity “...is the first in the long line of dynamical theories... that explains

inertial motion” (Brown, 2005, pg. 163). The view holds that Newtonian physics may

answer the “how” part of Aristotle’s question, but there is a sense in which only general

relativity answers the “why” part.

Although Einstein’s early attempts to prove the geodesic principle were not unambigu-

ously successful, more recent efforts have shown that there is a precise sense in which the

geodesic principle may be understood as a theorem of general relativity (Geroch and Jang,

1975).2 However, it turns out that relativity is not unique in this regard. Geometrized

1For a detailed and enlightening discussion of the status of the first law of motion in standard Newtonian
gravitation, see Earman and Friedman (1973).

2There have been several steps along the way to proving the geodesic principle as a rigorous theorem of
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Newtonian gravitation (sometimes, Newton-Cartan theory) is a reformulation of Newtonian

gravitation due to Élie Cartan (1923, 1924) and Kurt Friedrichs (1927) that shares many

of the qualitative features of general relativity. In geometrized Newtonian gravitation one

represents space and time as a four dimensional spacetime manifold, the curvature of which

depends dynamically on the distribution of matter on the manifold. Gravitational influ-

ences, meanwhile, are not understood as forces, as in traditional formulations of Newtonian

gravitation; rather, they are a manifestation of the curvature of spacetime. And in par-

ticular, inertial motion is governed by the geodesic principle: in the absence of external

(non-gravitational) forces, bodies move along the geodesics of (curved) spacetime. Recently,

I have shown that the geodesic principle can be understood as a theorem of geometrized

Newtonian gravitation (Weatherall, 2011a). Mathematically, the Newtonian theorem is

nearly identical to the Geroch-Jang theorem. Moreover, as I have argued elsewhere, when

the background assumptions needed to prove these theorems are examined in the contexts

of each theory, one can reasonably conclude that the geodesic principle has essentially the

same status in both cases, though in neither theory is the situation as simple as one might

have hoped (Weatherall, 2011b).

One consequence of this recent work is that Einstein and others’ idea that the status

of the geodesic principle in general relativity distinguishes the theory from other theories

of space and time seems more difficult to hold on to. But it also raises a related issue.

When one attends carefully to the details of these theorems, several complications arise

general relativity. The most significant early attempt was the work of Einstein and Grommer (1927) and
Einstein et al. (1938), with subsequent work due to Taub (1962), Thomas (1962), Newman and Posadas
(1969, 1971), and Dixon (1964). These are described and criticized briefly in Geroch and Jang (1975) (see
also Blanchet (2000) and Damour (1989) for reviews of approaches to the “problem of motion” in general
relativity). There are currently two approaches to the problem that are widely recognized as successful:
the one developed by Geroch and Jang (see also Ehlers and Geroch, 2004), which will be my focus in the
present paper, and one developed by Sternberg (2003) and Souriau (1974), among others, which models a
massive test point particle as an order-zero distribution with support along a curve. One can then show that
if the distribution is (weakly) conserved, the curve must be a geodesic. Although the Geroch-Jang approach
and the Sternberg-Souriau approach are prima facie different, there is a sense in which they turn out to be
equivalent (Geroch and Weatherall, 2011).
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concerning the strength and status of the assumptions necessary for proving them. Given

these complications, one might reasonably ask, do either of these theories explain inertial

motion? It is this second question that I will take up in the present paper.3

I will begin with a brief overview of geometrized Newtonian gravitation, after which

I will review the relevant theorems concerning the geodesic principle in that theory and

general relativity. I will focus on the subtle ways in which the theorems differ, and on the

complications that arise when one tries to interpret them. Once this background material

has been laid out, I will turn to the question at hand. The starting point for this discussion

will be to observe that on one way of thinking about explanation in scientific theories,

the answer to the question is “no”: neither of these theories explains inertial motion, at

least if the assumptions going into the theorems have the character I describe. I want

to resist this view, however, because I think it takes for granted that one can make clear

distinctions between “levels” or “tiers” of fundamentality of the central principles of a theory.

Careful analysis of the geodesic principle theorems, meanwhile, suggests that there is another

way of thinking about how the principles of a theory fit together. The alternative view I

will develop—I will call it the “puzzle ball view” or, perhaps more precisely, the “puzzle

3The recent literature on whether and in what sense general relativity and Newtonian gravitation explain
inertial motion originates with Harvey Brown (2005). Brown is not especially concerned to give an “account”
of the sense of explanation he has in mind, in the sense of providing necessary or sufficient conditions for
when some argument, theorem, etc. is an explanation (nor, I should say, am I!), though the idea is that the
geodesic principle is explained in general relativity because there is a sense in which it is a consequence of the
central dynamical principle of the theory, Einstein’s equation. Adán Sus (2011) has expanded on this view,
calling the form of explanation at issue “dynamical explanation”, and further defending Brown’s claim that
general relativity is distinguished from other spacetime theories with regard to the explanation it provides
of inertial motion. David Malament (2012a) and I (Weatherall, 2012, 2011b), meanwhile, have pointed
out that the geodesic principle does not follow merely from Einstein’s equation, and that a strong energy
condition is also required; moreover, as I note above, a theorem remarkably similar to the one that holds
in the relativistic case also holds in geometrized Newtonian gravitation. But these latter discussions largely
set aside the question of what sense of explanation is at issue, if any. More recently, Mike Tamir (2011) has
pointed out that in general relativity, at least, the geodesic principle is false for realistic matter. He then
considers almost-geodesic motion as a kind of universal phenomenon in the sense of Batterman (2002). From
this latter perspective, these theorems provide explanations in the sense of showing how certain behavior
can be expected to arise approximately for a wide variety of substances. The remarks in the present paper
are of a rather different character than (most of) this earlier work, and so I will not engage with it closely
in the text.
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ball conjecture”—holds that the foundations of physical theories, or at least these physical

theories, are best conceived as a network of mutually interdependent principles, rather than

as a collection of independent and explanatorily fundamental “axioms” or “postulates”. On

this view, one way to provide a satisfactory explanation of a central principle of a theory,

such as the geodesic principle in general relativity or geometrized Newtonian gravitation,

would be to exhibit its dependence on the other central principles of the theory, i.e., to show

how the principle-to-be-explained is a consequence of the other central principles and basic

assumptions of the theory. And this is precisely what the theorems I will describe do. And

so, I will argue that there is a sense in which both theories explain inertial motion, though

some care is required to say what is meant by “explain” in this context.

I should be clear from the start: the language of explanation is a convenient one, but

I am not ultimately interested in the semantics of the word “explain”. The goal is not to

argue whether one thing or another is really an explanation. The dialectic, rather, is as

follows. Many people have suggested that general relativity provides an important kind

of insight with regard to inertial motion, something to be valued and sought after in our

physical theories. One might call this thing an “explanation”, or not. The point, though, is

that when one looks in detail at just what one gets in relativity theory (and in geometrized

Newtonian gravitation), it seems to work in a different way than one might have initially

guessed it would. One response to this observation would be to say that we have not actually

gotten what we were promised—or, in the language above, that general relativity does not

explain inertial motion. But another response is to try to better understand what we do get.

My principal thesis is that if one takes this second path, an alternative picture emerges of

how the foundations of theories work. And on this alternative picture, general relativity and

geometrized Newtonian gravitation both do provide an important and very useful kind of

insight into inertial motion, and more, there are clear reasons why one should value and seek

out this sort of insight. Indeed, one might even think that what we ultimately get is what
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we should have wanted in the first place. I am inclined to use the word “explanation” for

this sort of insight, but fully recognize that this usage may seem non-standard or incorrect

to some readers.

2. Overview of geometrized Newtonian gravitation

Geometrized Newtonian gravitation is best understood as a translation of Newtonian grav-

itation into the language of general relativity, a way of making Newtonian physics look as

much like general relativity as possible, for the purposes of addressing comparative ques-

tions about the two theories.4 The result is a theory that is strikingly similar in many

qualitative respects to general relativity, but which differs in certain crucial details. Recall

that in general relativity, a relativistic spacetime is an ordered pair (M, gab), where M is a

smooth four dimensional manifold and gab is a smooth Lorentzian metric on the manifold.

In geometrized Newtonian gravitation, meanwhile, one similarly starts with a smooth four

dimensional manifold M , but one endows this manifold with a different metric structure.

Specifically, one defines two (degenerate) metrics. One, a temporal metric tab, has signature

(1, 0, 0, 0). It is used to assign temporal lengths to vectors on M : the temporal length of

a vector ξa at a point p is (tabξ
aξb)1/2. Vectors with non-zero temporal length are called

timelike; otherwise, they are called spacelike. The second metric is a spatial metric hab, with

signature (0, 1, 1, 1). In general one requires that these two metrics satisfy an orthogonality

condition, habtab = 0. It is important that the temporal metric is written with covariant

indices and the spatial metric with contravariant indices: since both metrics have degener-

ate signatures, they are not invertible, and so in general one cannot use either to raise or

lower indices. In particular, this means that the spatial metric cannot be used to assign

spatial lengths to vectors directly. Instead, one uses the following indirect method. Given a

4This brief overview of geometrized Newtonian gravitation is neither systematic or complete. The best
available treatment of the subject is given in Malament (2012b); see also Trautman (1965). My notation
and conventions here follow Malament’s.
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spacelike vector ξa, one can show that there always exists a (non-unique) covector ua such

that ξa = habub. One then defines the spatial length of ξa to be (habuaub)
1/2, which can be

shown to be independent of the choice of ua.

Given a Lorentzian metric gab on a manifold M , there always exists a unique covariant

derivative operator ∇ that is compatible with gab in the sense that ∇agbc = 0. This does

not hold for the degenerate Newtonian metrics. Instead, there are an uncountably infinite

collection of derivative operators that satisfy the compatibility conditions ∇atbc = 0 and

∇ah
bc = 0. This means that to identify a model of geometrized Newtonian gravitation, one

needs to specify a derivative operator in addition to the metric fields. Thus, we define a

classical spacetime as an ordered quadruple (M, tab, h
ab,∇), where M , tab, h

ab, and ∇ are

as described, the metrics satisfy the orthogonality condition, and the metrics and derivative

operator satisfy the compatibility conditions. A classical spacetime is the analog of a rel-

ativistic spacetime. Note that the signature of tab guarantees that at any point p, one can

find a covector ta such that tab = tatb; in cases where such a field can be defined globally,

we call the associated spacetime temporally orientable. In what follows, we will always re-

strict attention to temporally orientable spacetimes, and will replace tab with ta whenever

we specify a classical spacetime.

In both theories, timelike curves—curves whose tangent vector field is always timelike—

represent the possible trajectories of point particles (and idealized observers). And as in

general relativity, matter fields in geometrized Newtonian gravitation are represented by

a smooth symmetric rank-2 field T ab (with contravariant indices). In general relativity,

this field is called the energy-momentum tensor ; in geometrized Newtonian gravitation, it is

called themass-momentum tensor. The reason for the difference concerns the interpretations

of the fields. In relativity theory, the four-momentum density of a matter field with energy-

momentum tensor T ab is only defined relative to some observer’s state of motion: given an

observer whose worldline has (timelike) tangent field ξa, the four-momentum density P a
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as determined by the observer is given by P a = T abξb. When P a is timelike or null, one

can define the mass density ρ of the field at a point, relative to the observer, as the length

of P a. Moreover, the four-momentum field can be further decomposed (relative to ξa) as

P a = Eξa+pa, where E = P nξn is the relative energy density as determined by the observer,

and pa = P n(δan− ξaξn) is the relative three-momentum density. Thus, the field T ab encodes

the relative mass, relative energy, and relative momentum densities as determined by any

observer. In geometrized Newtonian gravitation, meanwhile, all observers make the same

determination of the four-momentum density of a matter field at a point: for any observer,

P a is given by P a = T abtb. Given a particular observer whose worldline has tangent field ξa,

though, one can decompose P a as P a = ρξa+pa, where ρ = P ata(= T abtatb) is the (observer-

independent) mass density associated with the matter field, and where pa = P n(δan − ξatn)

is the relative three-momentum density of the matter field as determined by the observer.

Thus in geometrized Newtonian gravitation, T ab encodes the (absolute) mass density of a

matter field, as well as its momentum relative to any observer.5

It is standard in both theories to limit attention to matter fields that satisfy several

additional constraints. In particular, in both cases one assumes that matter fields satisfy the

conservation condition, which states that their energy/mass-momentum fields are divergence

free (i.e., ∇aT
ab = 0). One also usually requires that such fields satisfy various energy

conditions. In geometrized Newtonian gravitation, only one such condition is standard: it

is the so-called mass condition.

Mass condition: A mass-momentum field satisfies the mass condition if, at any
point, either T ab = 0 or T abtatb > 0.

Since T abtatb = ρ is the mass density, this assumption states that whenever the mass-

5Note that is general relativity, one makes a distinction between the mass and energy densities relative
to a given observer, where relative mass density is the length of the four-momentum density determined by
an observer at a point (ρ = (P aPa)

1/2) and relative energy density is E = T abξaξb = P aξa, where ξa is the
tangent field to the observer’s worldline. In geometrized Newtonian gravitation, this distinction collapses:
both (absolute) mass density and (absolute) energy density are given by ρ = T abtatb = P atb.
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momentum tensor is non-vanishing, the associated matter field has positive mass. The

situation is more complicated in general relativity, where there are several energy conditions

that one may consider. I will mention a few because they are of particular interest for present

purposes. One, called the weak energy condition, is (at least prima facie) quite similar to

the mass condition it states that the energy density of a matter field as determined by any

observer is always non-negative.

Weak energy condition: An energy-momentum field satisfies the weak energy
condition if, give any timelike vector ξa at a point, T abξaξb ≥ 0.

It is also common to consider stronger conditions. For instance, there are the dominant

energy condition and the strengthened dominant energy condition:

Dominant Energy Condition: An energy-momentum field satisfies the dom-
inant energy condition if, given any timelike vector ξa at a point, T abξaξb ≥ 0
and T abξa is timelike or null.

Strengthened Dominant Energy Condition: An energy-momentum field
satisfies the strengthened dominant energy condition if, give any timelike covector
ξa at any point in M , T abξaξb ≥ 0 and either T ab = 0 or T abξa is timelike.

If these two conditions obtain for some matter field, then not only do all observers take the

field to have non-negative energy density, they also take its four-momentum to be causal or

timelike (respectively). In other words, these latter conditions capture the requirement that

matter must propagate at or below the speed of light.

The curvature of a classical spacetime is defined in the standard way: given a derivative

operator ∇, the Riemann curvature tensor Ra
bcd is the unique tensor field such that for any

vector field ξa, Ra
bcdξ

b = −2∇[c∇d]ξ
a. The Ricci curvature tensor, meanwhile, is given by

Rab = Rn
abn. In both contexts, one says that a spacetime is flat if Ra

bcd = 0; in geometrized

Newtonian gravitation, one also says that a (possibly curved) spacetime is spatially flat if
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Rabcd = Ra
mnoh

bmhcnhdo = 0 or, equivalently, Rmnh
mahnb = 0. Given these ingredients,

one can state the sense in which in geometrized Newtonian gravitation, the curvature of

spacetime depends on the distribution of matter: namely, the central dynamical principle

of the theory, the geometrized Poisson equation, states that Rab = 4πρtatb, where ρ is

the mass-density defined above. This expression explicitly relates the Ricci curvature of

spacetime to the distribution of matter. It is the Newtonian analogue of Einstein’s equation,

Rab = 8π(Tab −
1
2
Tgab), where T = T abgab, or equivalently 8πTab = Rab −

1
2
Rgab, where

R = Rabg
ab.

There are a few points to emphasize here concerning the geometrized Poisson equation.

For one, if the geometrized Poisson equation holds of a classical spacetime for some mass-

momentum tensor T ab, then the classical spacetime is spatially flat, since Rnmh
nahmb =

4πρtntmh
mahnb = 0. This fact is a way of recovering a familiar feature of Newtonian grav-

itation, namely that space is always flat, even though in the geometrized theory spacetime

may be curved. Second, in general relativity one can freely think of both the metric and

the derivative operator as (systemically related) dynamical variables in the theory. In ge-

ometrized Newtonian gravitation, this is not the case: instead, the metrical structure of a

classical spacetime is fixed, and only the derivative operator (or more specifically, the Ricci

curvature, which is defined in terms of the derivative operator) is a dynamic variable. Fi-

nally, there is a sense in which, given some matter distribution, the geometrized Poisson

equation “fixes” a derivative operator on a classical spacetime, but one has to be careful,

as one can typically only recover a unique derivative operator satisfying the geometrized

Possion equation for a given matter distribution in the presence of additional boundary

conditions or other assumptions.

The geometrized Poisson equation provides the sense in which in geometrized Newtonian

gravitation, spacetime is curved in the presence of matter; the sense in which gravitational

effects may be understood as a manifestation of this curvature is just the same as in general
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relativity. That is, a derivative operator allows one to define a class of geometrically privi-

leged curves, the geodesics of the spacetime, which consist of all curves whose tangent fields

ξa satisfy ξn∇nξ
a = 0 everywhere. I have already said that the timelike curves of a spacetime

represent the possible trajectories for massive particles; the timelike geodesics, meanwhile,

represent the possible unaccelerated trajectories of particles in both theories. The geodesic

principle then connects these geometrically privileged curves with force-free motion. Thus,

in geometrized Newtonian gravitation, as in general relativity, the distribution of matter

throughout space and time affects the possible trajectories of massive point particles not by

causing such particles to accelerate, but rather by dynamically determining a collection of

unaccelerated curves.

These features of geometrized Newtonian gravitation provide the sense in which the the-

ory is qualitatively similar to general relativity. But one might wonder what undergirds the

implicit claim that geometrized Newtonian gravitation is in some sense Newtonian. One

sense in which the theory is Newtonian is immediate: the degenerate metric structure of

a classical spacetime captures the implicit geometry of space and time in ordinary Newto-

nian gravitation, where one has a temporally ordered succession of flat three dimensional

manifolds representing space at various times (cf. Stein, 1967). But there is more to say.

In standard formulations of Newtonian gravitation, spacetime is flat. Gravitation is a force

mediated by a gravitational potential, which in turn is related to the distribution of matter

by Poisson’s equation. In the present four dimensional geometrical language, this can be

expressed as follows. We begin with a classical spacetime (M, ta, h
ab,∇) as before, but now

we require that ∇ is flat, i.e., Ra
bcd = 0. We again represent matter by its mass-momentum

field T ab, defined just as above, but we also define a scalar field ϕ, which is the gravitational

potential. Poisson’s equation is written as ∇a∇aϕ = 4πρ where the index on ∇a is raised

using hab, and where ρ = T abtatb. And now the acceleration of a massive test point particle

in the presence of a gravitational potential ϕ is given by ξn∇nξ
a = −∇aϕ, where ξa is
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the tangent to the particle’s trajectory. In other words, in standard Newtonian gravitation

matter accelerates in the presence of mass.

It turns out that standard Newtonian gravitation (thus understood) and geometrized

Newtonian gravitation are systematically related (Malament, 2012b, ch. 4.2). Specifically,

given a classical spacetime (M, ta, h
ab,∇) with∇ flat, a smooth mass density ρ, and a smooth

gravitational potential ϕ satisfying ∇a∇aϕ = 4πρ, there always exists a unique derivative

operator ∇̃ such that (M, ta, h
ab, ∇̃) is a classical spacetime, R̃ab = 4πρtatb, and such that

for any timelike vector field ξa, ξn∇nξ
a = −∇aϕ if and only if ξn∇̃nξ

a = 0. In other words,

given a model of standard Newtonian gravitation, there is always a model of geometrized

Newtonian gravitation with precisely the same mass density and allowed trajectories. Ad-

ditionally, the derivative operator ∇̃ will always satisfy two curvature conditions: R̃ab
cd = 0

and R̃a
b
c
d = R̃c

d
a
b. This result is known as the Trautman geometrization lemma; it pro-

vides the sense in which one can always translate from standard Newtonian gravitation into

the geometrized theory. One can also prove a corresponding recovery lemma (also due to

Trautman), allowing for translations back: namely, given a classical spacetime (M, ta, h
ab, ∇̃)

and smooth mass density ρ satisfying R̃ab = 4πρtatb, if R̃
ab

cd = 0 and R̃a
b
c
d = R̃c

d
a
b then

there always exists a flat derivative operator ∇ and a gravitational potential ϕ such that

(M, ta, h
ab,∇) is a classical spacetime, ∇a∇aϕ = 4πρ, and again for any timelike vector field

ξa, ξn∇nξ
a = −∇aϕ if and only if ξn∇̃nξ

a = 0. Note that this recovery result only holds in

the presence of the two additional curvature conditions stated above; moreover, in general

the translation from geometrized Newtonian gravitation to standard Newtonian gravitation

will not be unique. (See figure 1.)

3. The geodesic principle as a theorem

With the background of the previous section in place, I can now state the precise sense

in which the geodesic principle may be understood as a theorem in general relativity and

12



Non-accelerating 
(geodesic) curve

Accelerating curve
MatterNon-accelerating 

(geodesic) curve

Accelerating curve
Matter

Unique

Non-unique

Figure 1: In general it is possible to translate between geometrized Newtonian gravitation and standard
Newtonian gravitation, as depicted in this figure. On the left is a model of standard Newtonian gravitation:
one has a matter field represented by the world-tube of some body, such as the sun, and a curve orbiting
this body, representing, say, a small planet. This curve corresponds to an allowed trajectory insofar as it is
accelerating by the appropriate amount. On the right is the corresponding model of geometrized Newtonian
gravitation. One has precisely the same matter distribution, and the same allowed trajectory (i.e., the same
orbit), but now we understand this trajectory to be allowed by the theory because it is a geodesic of a curved
derivative operator, with curvature determined by the matter distribution. Note that both theories have the
same metrical structure, represented here by a succession of flat slices representing space at various times.

geometrized Newtonian gravitation. I will begin by stating both theorems, and then double

back to the question of how one should interpret them.

Theorem 3.1. (Geroch and Jang, 1975)6Let (M, gab) be a relativistic spacetime, and

suppose M is oriented. Let γ : I → M be a smooth imbedded curve. Suppose that given

any open subset O of M containing γ[I], there exists a smooth symmetric field T ab with the

following properties.

1. T ab satisfies the strengthened dominant energy condition, i.e., given any timelike cov-

ector ξa at any point in M , T abξaξb ≥ 0 and either T ab = 0 or T abξa is timelike;

2. T ab satisfies the conservation condition, i.e., ∇aT
ab = 0;

3. supp(T ab) ⊂ O; and

4. there is at least one point in O at which T ab 6= 0.

Then γ is a timelike curve that can be reparametrized as a geodesic.

One can prove an almost identical theorem in geometrized Newtonian gravitation.

6This particular statement of the theorem is heavily indebted to Malament (2012b, Prop. 2.5.2).
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Theorem 3.2. (Weatherall, 2011a) Let (M, tab, h
ab,∇) be a classical spacetime, and

suppose that M is oriented. Suppose also that Rab
cd = 0. Let γ : I → M be a smooth

imbedded curve. Suppose that given any open subset O of M containing γ[I], there exists a

smooth symmetric field T ab with the following properties.

1. T ab satisfies the mass condition, i.e., whenever T ab 6= 0, T abtatb > 0;

2. T ab satisfies the conservation condition, i.e., ∇aT
ab = 0;

3. supp(T ab) ⊂ O; and

4. there is at least one point in O at which T ab 6= 0.

Then γ is a timelike curve that can be reparametrized as a geodesic.

As a first remark, it may not be obvious that either of these theorems should be under-

stood to capture the geodesic principle at all, at least in a natural way. A principal difficulty

in trying to derive the geodesic principle as a theorem concerns a kind of ontological mis-

match between the geodesic principle and the rest of general relativity: namely, general

relativity is a field theory, whereas the geodesic principle is a statement concerning point

particles. One strategy for dealing with this problem is to try to model massive point parti-

cles as “small” bits of extended matter, and then try to show that under sufficiently general

assumptions, the world tubes of such small bits of matter will contain timelike geodesics.

But this turns out to be false in general—geodesic motion only obtains in the idealized

limit where the worldtube of a body collapses to a curve, in which case one can no longer

represent matter as a smooth field on spacetime.7 The Geroch-Jang strategy, meanwhile, is

different. Instead of starting with some matter and asking what kind of trajectory it follows,

one starts with a curve and asks under what circumstances that curve can be understood

as a trajectory for arbitrarily small bits of extended matter. Both theorems then state that

the only curves along which arbitrarily small bits of matter can be constructed are timelike

geodesics.

Importantly, one represents a “small bit of matter” by a smooth symmetric rank 2 tensor

fields with support in some neighborhood of the curve. But a curve is not understood as

7This point is emphasized by Tamir (2011).
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a possible trajectory for a free massive test point particle if one can construct any smooth

symmetric rank 2 tensor field in arbitrarily small neighborhoods of the curve—rather, one

limits attention to fields that satisfy additional constraints. The claim, then, is that these

theorems capture the geodesic principle in both theories insofar as the additional constraints

on the matter fields adequately capture what we intend by “free massive test matter”. This

means that the interpretation of the theorems turns on the status of these conditions. And

so, for a comparative study of the status of the geodesic principle in each theory, one wants

to compare the status of each of these assumptions relative to their respective theories.

Two of the assumptions can be set aside immediately: in both theorems, assumptions (3)

and (4) play the role of setting up the limiting process implicit in the theorems. Assumption

(3) limits attention to matter fields that vanish outside one’s chosen neighborhood of the

curve (which captures the sense in which one is considering arbitrarily small bits of matter

propagating along the curve), and assumption (4) indicates that the matter field must be

non-vanishing somewhere along curve, ruling out the trivial case. These assumptions are

identical in both cases, and neither is troublingly strong. There is also an obvious difference

that can be safely ignored. In the Newtonian theorem, we place an additional constraint on

the curvature, namely Rab
cd = 0. This is precisely the curvature condition needed to prove

the Trautman recovery theorem, allowing one to translate from a model of geometrized

Newtonian gravitation to a model of standard Newtonian gravitation. For this reason,

the curvature condition is naturally interpreted as a restriction to models of geometrized

Newtonian gravitation that are Newtonian, in the sense that they admit translations back to

models of standard Newtonian gravitation. This presumably is the case of greatest interest,

and so I am inclined to think of the assumption as benign.8 Moreover, there is good reason

to think that this assumption can be dropped, though to my knowledge, proving as much is

still an open (and perhaps interesting) problem.

8For another view on this matter, see Sus (2011).
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The most striking difference between the two theorems concerns the respective assump-

tions (1). In the Newtonian theorem, this is the mass condition, i.e., that whenever the

mass-momentum field is non-vanishing, the mass density determined by any observer must

be positive. This is the standard energy condition in geometrized Newtonian gravitation,

and more, it is natural in this context, as it captures the sense in which the bits of matter

being represented are massive. In the Geroch-Jang theorem, meanwhile, one requires the

strengthened dominant energy condition, which states that (a) all observers must assign

non-negative (mass-)energy density to the matter field (the weak energy condition) and (b)

that if T ab 6= 0, then the four-momentum assigned to the matter field by any observer must

by timelike. It seems natural to think that the weak energy condition, (a), is playing the

role played by the mass condition in the Newtonian case: namely, it captures the sense in

which the small bits of matter are massive, by requiring that they always have non-negative

mass. But from this perspective, the second part of the condition, (b), is a strong additional

requirement. In Newtonian gravitation, it would seem, one needs only to assume that mass

is always positive to get timelike geodesic propagation, whereas in general relativity, one

also needs to make an assumption about the timelike propagation of matter.9

However, the situation is not quite so simple as this. Although the mass condition appears

to be nothing more than an assumption about positive mass, it, too, contains an implicit

assumption about timelike propagation. To see this, consider a different (non-standard)

Newtonian energy condition, which I will call the weakened mass condition.

Weakened Mass Condition: A mass-momentum field T ab satisfies the weak-
ened mass condition if at any point, T abtatb ≥ 0.

The weakened mass condition has a good claim on being the Newtonian analogue of the

weak energy condition and might similarly be understood as the claim that mass/energy

9This is precisely how I present the situation in Weatherall (2011b) and Weatherall (2012). However,
I now think matters are still more complicated than I indicate there, as I explain in the text. Still, the
principal morals of those previous discussions are unchanged by these additional considerations.

16



density is always non-negative. But it is strictly weaker than the mass condition, since the

weakened mass condition may be satisfied by mass-momentum fields that are spacelike, in

the sense that T ab 6= 0 but T abtatb = 0 (for example, consider T ab = uaub, with ua a spacelike

vector field). In other words, the mass condition amounts to the weakened mass condition

plus the additional assumption that T ab is timelike. We can make this explicit by defining

an equivalent condition, the modified mass condition.

Modified Mass Condition: A mass-momentum field T ab satisfies the modified
mass condition if at any point, T abtatb ≥ 0 and either T ab = 0 or T abta is timelike.

The modified mass condition is equivalent to the mass condition, but would appear to be

the natural translation of the strengthened dominant energy condition. On the other hand,

one can also rewrite the weak energy condition as the strengthened weak energy condition.

Strengthened Weak Energy Condition: An energy-momentum field satisfies
the strengthened weak energy condition if, give any timelike vector ξa at a point,
either T ab = 0 or T abξaξb > 0.

stating that for all timelike ξa, if T ab 6= 0, then T abξaξb > 0. And this condition seems like

the natural translation of the (standard) mass condition, but it is strictly weaker than the

strengthened dominant energy condition!10

This situation is summarized in table 1.

There are thus two ways of thinking about the relationship between the energy conditions

used in these theorems, depending on which “natural translations” one emphasizes. On one

way of thinking, the mass condition is essentially the same as the strengthened weak energy

10The strengthened weak energy condition is also strictly weaker than the (strict) dominant energy con-
dition, and so Prop. 4 of Weatherall (2012) implies that the strengthened dominant energy condition is not
strong enough to prove the Geroch-Jang theorem.
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Geometrized Newtonian gravitation General relativity
Modified mass condition ←→ Strengthened dom. energy condition

m ⇓
Mass condition ←→ Strengthened weak energy condition

⇓ ⇓
Weakened mass condition ←→ Weak energy condition

Table 1: This table summarizes the relationship between the various energy condition discussed in the text.
Single arrows represent “apparently natural translations”; double arrows represent logical implications.

condition. From this point of view, then, the strengthened dominant energy condition in the

Geroch-Jang theorem is a strictly stronger assumption than the corresponding assumption

in Theorem 3.2. More, one might be inclined to think that one gets something additional

for free in the Newtonian case, since the mass condition turns out to imply the (apparently)

stronger modified mass condition, whereas the strengthened weak energy condition does not

imply the strengthened dominant energy condition. Meanwhile, on the other way of thinking

about things, one argues that the strengthened dominant energy condition is essentially the

same as the modified mass condition, which is fully equivalent to the mass condition. And

so one concludes that the energy conditions required by the two theorems are essentially the

same.

There is also another possibility, which is to say that one cannot perform simple transla-

tions between the energy conditions in these two theories at all. I am inclined to endorse this

last option, though this raises new questions about how one should compare the theorems.

There are a few things to say. First, irrespective of how one tries (or does not try) to trans-

late these conditions, there are still two senses in which the strengthened dominant energy

condition is stronger than the mass condition. One is that the timelike propagation clause of

the strengthened dominant energy condition can be understood as the assumption that the

instantaneous speed of matter, relative to any observer, must be strictly less than the speed

of light. The corresponding clause of the (modified) mass condition, meanwhile, amounts

to the assumption that matter cannot propagate at infinite speed relative to any observer.
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And the assumption that a number must be less than a fixed finite value is stronger than

the assumption that it must be finite, but not bounded.

The second, more significant sense in which the strengthened dominant energy condition

is stronger is that the only way in which matter in Newtonian gravitation can be “massive”

(i.e., have positive mass as determined by some observer) is if it satisfies the mass condition.

Matter that satisfies the weakened mass condition but not the mass condition will necessar-

ily have zero mass. And so one might argue that the mass condition is necessary to capture

what is meant by “massive” in the context of Newtonian gravitation. In general relatively,

meanwhile, matter can be “massive” in two senses, without satisfying the strengthened dom-

inant energy condition: it can be massive in the sense that it has positive (mass-)energy

density (i.e., it satisfies the weak energy condition), and it can be massive in the sense that

some observers will assign it positive mass density (i.e., the relative four-momentum density

as determined by some observers is timelike). This second sense trades on an important dis-

tinction between some observers assigning positive mass density and all observers assigning

positive mass density. One might have thought that in order for a matter field to be massive,

it would be sufficient if some observers, perhaps privileged—say co-moving observers making

determinations of “rest mass density”, when that makes sense—and perhaps not, determine

that the field has positive mass density. But the strengthened dominant energy condition

requires considerably more than this. In geometrized Newtonian gravitation, meanwhile, all

of these distinction collapse. If anyone determines a matter field has positive mass, then

everyone does.

A final remark is that, understood within the context of the respective theories, the

strengthened dominant energy condition is a more surprising assumption to have to make

than the mass condition. One often thinks of relativity theory as forbidding superluminal

propagation of matter, in the sense that somehow the geometric structure of the theory

renders superluminal matter incoherent. But here, at least, it seems that we need to rule
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out superluminal propagation of matter as an additional assumption in order to derive

the geodesic principle. This point can be made precise by asking whether one can drop

or weaken the energy condition in the Geroch-Jang theorem and still derive the geodesic

principle. And the answer is “no”. If one drops the energy condition altogether, it is possible

to construct bits of matter that propagate along any timelike curve (Malament, 2012a). And

if one weakens the energy condition to the weak energy condition or the dominant energy

condition, one can construct bits of matter that propagate along spacelike or null curves,

respectively (Weatherall, 2012). To be sure, in the Newtonian case the mass condition

is similarly necessary (the considerations offered in Weatherall (2012) can be adapted to

show that the weakened mass condition is not enough to get timelike geodesic motion in

geometrized Newtonian gravitation), but this does not seem as striking, since one does not

expect Newtonian gravitation to imply restrictions on the propagation of matter, even if it

is standard to assume that matter cannot propagate instantaneously in the theory.

This leaves the conservation condition, assumption (2) in both theorems. The statement

of the assumption is identical in both cases, namely that the tensor fields representing

matter must divergence free. And in both theories, this assumption is a way of capturing

that the bits of matter must be free in the sense of non-interacting. This interpretation is

justified because in both theories there is a standard background assumption that at every

point of spacetime, total energy/mass-momentum must be divergence free, and more, that a

particular energy/mass-momentum field fails to be divergence free at a point just in case it

is interacting with some other such field at that point. And so, to say that a particular field

satisfies the conservation condition everywhere is to say that that field cannot be exchanging

energy/mass-momentum with any other fields.

So far, it would seem that these assumptions have precisely the same status in both theo-

rems. But this is too quick. Although the assumptions are equally natural ways of capturing

the desired sense of “free” in both theorems, they only have that interpretation in the pres-
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ence of the background assumption regarding the local conservation of total energy/mass-

momentum. And there is an argument to be made that this background assumption has a

different status in general relativity than in geometrized Newtonian gravitation. In general

relativity, Einstein’s equation implies the conservation condition, at least for total source

matter. This is because the equation can be written as 8πT ab = Rab − 1
2
gabR, and it is a

brute geometrical fact (known as Bianchi’s identity) that the right-hand side of this equa-

tion is always divergence free. Thus, the left-hand side must also be divergence free. The

geometrized Poisson equation, however, does not imply the conservation condition. And so,

if one has Einstein’s equation lurking in the background, one might be inclined to say that

the background assumption that matter is conserved comes for free in general relativity,

whereas it is an additional brute assumption in geometrized Newtonian gravitation. There

is an important caveat here—the argument that Einstein’s equation implies the conserva-

tion condition only applies for source matter, whereas the geodesic principle is supposed to

govern test matter, i.e., matter that is not treated as a source in Einstein’s equation—but

nonetheless, one might think that the conservation condition has a special status—even,

to anticipate the discussion in the next section, a privileged explanatory status—in general

relativity because of its relation to Einstein’s equation.11

In the next section, I will turn to the question of whether either of these theorems should

count as explanations of inertial motion. But before I do so, it will be helpful to sum

up the discussion in the present section. I have now made precise the sense in which one

can prove the geodesic principle as a theorem of both general relativity and geometrized

11I should emphasize: one does not need to think of the conservation condition as having a different status
in general relativity than in geometrized Newtonian gravitation. For instance, I have elsewhere argued that
one can think of the conservation condition as a meta-principle, in the sense that the assumption that
matter is conserved is expected to hold true in a wide variety of theories, and that from this perspective the
status of the assumption is much the same in both general relativity and geometrized Newtonian gravitation
(Weatherall, 2011b). (Of course, the assumption that a matter field is divergence free is not exactly the
same as the assumption that total mass or energy is constant over time, but it does deserve to be called the
relativistic version of traditional conservation principles.)
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Newtonian gravitation. But, as I hope has become clear, interpreting and comparing these

theorems is quite subtle. It is not quite right to say that the theorems have the same

interpretation or significance: on the one hand, there is arguably a sense in which the

conservation condition, necessary for both theorems, has a different and perhaps privileged

status in general relativity; and on the other hand, there are several senses in which the

energy condition required for Geroch-Jang theorem is stronger than the condition required

for the Newtonian theorem, both in absolute terms and relative to the respective theories.

Despite these differences, however, there is at least one important sense in which the status

of the geodesic principle is strikingly similar in both theories. In both cases, one can prove

the geodesic principle as a theorem. But to do so, one needs to make strong assumptions

about the nature of matter. The status of these assumption will play a central role in what

follows.

4. Explaining inertial motion?

General relativity and geometrized Newtonian gravitation, like any physical theory, involve

a number of basic assumptions and central principles. For instance, general relativity begins

with some background assumptions about matter and geometry: space and time are repre-

sented by a four dimensional, possibly curved Lorentzian manifold; matter is represented by

its energy-momentum tensor, a smooth symmetric rank two field on spacetime. One then

adds some additional assumptions, as principles indicating how to interpret and use the

theory. One may stipulate that total energy-momentum at a point must satisfy the conser-

vation condition. One assumes that matter fields satisfy various possible energy conditions,

that idealized clocks measure proper time along their trajectories, and that free massive test

point particles traverse timelike geodesics. We postulate a dynamical relationship between

the geometrical structure of spacetime and the energy-momentum field. And so on. Some of

these assumptions involve stipulating kinematical structure; others involve basic constraints
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and dynamical relationships; others still tell us how to extract empirical content from the

theory. All of them have some claim to centrality or fundamentality in the theory.

But they are not necessarily independent. For instance, as I mention above, the con-

servation condition may be understood as a consequence of Einstein’s equation, at least for

source matter. And so, at least in some contexts, one might want to think of the conserva-

tion condition as somehow subordinate to Einstein’s equation. One might even be inclined

to say that it is Einstein’s equation that really deserves to be called the “fundamental prin-

ciple,” while the conservation condition has some other, less fundamental status—or, in

other words, that Einstein’s equation explains why matter is locally conserved. We might

even say that this is what it means to say that something like the conservations condition

is explained by a theory: it can be derived from more fundamental principles in the theory.

From this point of view, one might have thought that when Einstein, Eddington, and

others have claimed that general relativity explains inertial motion, in the sense that one

can prove the geodesic principle as a theorem, the claim would have been analogous to what

I have just said about the conservation condition: namely, one can take some collection of

other principles of the theory and use them to derive the geodesic principle. One might

then think that the geodesic principle has the same subordinate status as the conservation

condition. It may be central to the theory, but not truly fundamental. The fundamental

principles are the ones that go into proving the geodesic principle. On this view, one thinks

of the foundations of general relativity as a two-tiered system. On the top tier are the truly

fundamental principles; on the lower tier are the other central principles that can be derived

from the top-tier principles. Initially, perhaps, one thought that the geodesic principle and

conservation condition were top-tier principles; but the Geroch-Jang theorem and Bianchi’s

identity show that they are really second-tier principles.12

12Indeed, it seems Einstein originally did think of the conservation condition as a top-tier principle, in
the sense that he thought it was an independent assumption that any realistic field equation would need to
be compatible with. See Earman and Glymour (1978a,b).
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Thinking this way can lead to problems, however. The main moral of the last section was

that although one can prove the geodesic principle as a theorem in both general relativity

and geometrized Newtonian gravitation, to do so one requires strong assumptions about the

nature of matter. And so, if we want to move the geodesic principle to the lower tier, it

would seem that we need to understand these assumptions as as top-tier principles. But this

raises a question: why should we think of these principles as the truly fundamental ones?

Or more specifically, why should we think of the conservation condition and the respective

energy conditions as more fundamental than the geodesic principle itself?

If one were committed to the idea that the geodesic principle is a second-tier principle

in one or both of these theories, perhaps one would be willing to include the assumptions

needed to prove the geodesic principle among the truly fundamental principles of that theory.

But it is hard to see how this is an appealing move on independent grounds. Even if one

were to argue that dynamical principles such as Einstein’s equation and the geometrized

Poisson equation are clearly more fundamental than the geodesic principle, it remains the

case that the strong energy condition needed to prove the Geroch-Jang theorem is entirely

independent of Einstein’s equation. (And neither assumption follows from the geometrized

Poisson equation.) More, there is a sense in which one can draw all of the inferential

arrows in the opposite direction, at least in one important case. Consider an energy/mass-

momentum field of the form T ab = ρξaξb, for some smooth scalar field ρ and smooth vector

field ξa. An energy/mass-momentum field of this form is the natural way of representing a

matter field composed of mutually non-interacting massive point particles (at least when ρ

is non-negative). And so, since the geodesic principle governs the behavior of free massive

test point particles, we can use it to derive features of this matter field: specifically, the

geodesic principle implies that the flow-lines of the field, which represent the trajectories of

each speck of dust, must be timelike geodesics. These flow lines are just the integral curves

of ξa, and so it follows that ξa must be timelike and geodesic (i.e., ξn∇nξ
a = 0). But if ξa
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is timelike, then T ab satisfies the strengthened dominant energy condition (or respectively,

the mass condition in geometrized Newtonian gravitation). And if it is geodesic, then T ab is

divergence free. Thus the geodesic principle allows us to derive that matter fields consisting

of non-interacting massive test point particles satisfy precisely the two conditions we need

to assume in order to prove the geodesic principle.13

So perhaps we should not be so quick to declare the conservation condition and energy

conditions top-tier in either theory. At very least, it is not perfectly clear that these assump-

tions are more fundamental than the geodesic principle. But thinking in this way might lead

one to conclude that neither of the geodesic principle theorems has much explanatory signif-

icance, since (the intuition might go) explanations always proceed from more fundamental

or basic facts to less fundamental facts. Here, meanwhile, the arrows of fundamentality are

muddled. And this would mean that not only is general relativity not special with regard

to its explanation of inertial motion—it does not explain inertial motion at all!

5. The puzzle ball conjecture

I do not find the argument I offer in the previous section compelling. It rests on a basic

intuition: to explain something like the geodesic principle, one must begin with some truly

fundamental principles and then provide an argument for why the principle-to-be-explained

must follow from these more fundamental ones. This intuition takes for granted that we

can make sense of a distinction between different tiers of fundamentality among the central

principles of a theory like general relativity or geometrized Newtonian gravitation. And I

think that this is a mistake—or at least, that there is a more compelling way of thinking

about things.

Consider what the geodesic principle theorems do accomplish. In both of these cases,

13Of course, the present argument does not imply that the conservation condition and energy conditions
hold for all matter—just for the type of matter directly governed by the geodesic principle.
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the theorems show how in the presence of other basic assumptions of the respective theories,

the geodesic principle follows. Or in other words, they show that given that one is com-

mitted to the rest of (say) general relativity, one must also be committed to the geodesic

principle. One cannot freely change the geodesic principle without also changing the rest of

general relaitivty: one cannot “fiddle” with the theory by (merely) replacing the geodesic

principle with the assumption that free massive test point particles traverse some other class

of curves—uniformly accelerating curves, say, or spacelike curves. The geodesic principle is

not modular, in the sense that one cannot construct a collection of perfectly good theories

that differ only with how they treat inertial motion. More, the theorems clarify precisely

how it is that the geodesic principle “fits in” among the other central principles of general

relativity.

It seems to me that these reflections suggest a proposal. Instead of thinking of the

foundations of a physical theory as consisting of a collection of essentially independent

postulates from which the rest of the theory is derived, one might instead think of the

foundations of a theory as consisting of a network of mutually interdependent principles—a

collection of interlocking pieces, as in the spherical puzzle in figure 2.14 The idea is that, as

with the geodesic principle, one should generally expect that many of the central principles

of a physical theory may be proved as theorems, given the rest of the theory. Trying to

make a distinction between the top-tier principles and the second-tier principles of a theory

14Feynman (1967) makes a distinction between two ways of understanding physical theories that is similar
to the one I make here. On the “Greek” view of theories, one begins with a collection of fixed fundamental
axioms or postulates. Feynman does not like this way of thinking about theories. Instead, he endorses the
“Babylonian” view, on which one observes that the principles of a theory are more richly connected: perhaps
it is sometimes convenient to take certain principles of a theory as axioms and others as theorems, but one
needs to recognize that in other cases one might want to switch this around and think of your theorems as the
axioms, and use them to prove your former axioms. He then observes that “If all these various theorems are
interconnected by reasoning there is no real way to say ‘These are the most fundamental axioms,’ because if
you were told something different instead you could also run the reasoning the other way. It is like a bridge
with lots of members, and it is overconnected; if pieces have dropped out you can reconnect it another
way” (pg. 46). The view I describe here is firmly in Feynman’s Babylonian tradition. I am grateful to Bill
Wimsatt for pointing out this connection.
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Figure 2: One way of thinking about the foundations of physical theories would have it that some of
the central principles of a theory have a distinguished status as the “truly fundamental” principles. An
alternative view, which I describe and advocate here, is that the foundations of a theory are better thought
of as a network of mutually interdependent principles, interlocking like the pieces of a spherical puzzle. On
this view, one would tend to expect that any of the central principles of a theory should be derivable from
the rest of the theory with that principle removed, much like the overall shape of a puzzle ball constrains
the shape of any individual piece.

is not fruitful, then, since most, or even all, of the principles can be understood equally well

as either postulate or theorem, and indeed, in different contexts it may well be desirable

to think of them in different ways. Importantly, theories are not modular, in the sense

described above. We cannot simply replace any given principle with some other one, at

least not without changing the rest of the theory in possibly dramatic ways. And theorems

like the Geroch-Jang theorem and its Newtonian counterpart are of interest because they

exhibit the details of these interdependencies. They show just how the pieces interlock.

To be sure, nothing I have said thus far should count as an apodictic argument for the

view I have described (call it the “puzzle ball view”). Nor will I give such an argument—

indeed, I am not sure what an argument for the claim that there are no truly fundamental

principles of general relativity would look like. Instead, I merely offer the view as an al-

ternative way to conceptualize the kinds of interrelations between the principles of physical

theories on display with theorems like the Geroch-Jang theorem. Perhaps the proposal is
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best conceived as a conjecture, albeit one with some compelling early evidence, for the fol-

lowing reason: while the senses in which, for instance, the conservation condition and the

geodesic principle follow from other standard assumptions of general relativity are now es-

tablished, the senses in which other principles, such as Einstein’s equation or various energy

conditions, are derivable from or constrained by the rest of the theory are less clear. And so

we have the skeleton of a mathematical question: are all of the central principles of relativ-

ity theory and geometrized Newtonian gravitation (or other theories still) indeed mutually

interderivable in the way that I have suggested? Most or many of them? Or are the geodesic

principle and conservation condition anomalies?

Some important work has already been done on this topic: Dixon (1975) has shown a

sense in which the geometrized Poisson equation is the unique dynamical principle com-

patible with a collection of natural assumptions in Newtonian gravitation; similarly, Sachs

and Wu (1973) and Reyes (2009) have shown that there is a sense in which the (vacuum

form of) Einstein’s equation can be derived from (in effect) the geodesic principle, among

other assumptions, and Curiel (2012) has argued that there is a sense in which the Einstein

tensor is the unique tensor that can appear on the left hand side of Einstein’s equation, even

in the non-vacuum case. Meanwhile, Duval and Künzle (1978) and Christian (1997) have

argued that even though the conservation condition in geometrized Newtonian gravitation

does not follow from the geometrized Poisson equation, one can nonetheless derive it from

other principles, at least if one considers Lagrangian formulations of the theory. One might

even understand Newton’s argument for universal gravitation as a kind of heuristic argument

that the inverse square law of gravitation is the unique dynamical principle compatible with

certain other central principles of standard Newtonian gravitation (including generalized

empirical facts, such as the universality of elliptical orbits). Results such as these provide

tentative evidence for my basic hypothesis, that one should expect many or all of the central

principles of these spacetime theories to be mutually interdependent.
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But I do not think these results are yet conclusive. Specifically, what has not been done

is to systematically study such results in order to try to characterize, in the way that has

now been done for the geodesic principle theorems, (1) just what the assumptions going

into these theorems are, (2) how natural the assumptions are in the contexts of the relevant

theories, and (3) how these assumptions, in turn, depend on the other central principles

of the theories (if they do). And the attractiveness of the proposal presented here turns

on the answers to these questions. It is only after a project of this form has been carried

out that one can fully evaluate whether the central principles of of these theories are really

as tightly intertwined as the puzzle ball view would have it. That said, if a careful study

of this sort reveals that only some of the central principles of a theory are interconnected,

it may still be fruitful to think about the foundations of theories in the way I propose

here, since the discovery that some central principles of a theory (say, energy conditions in

general relativity) are more peripheral than others need not imply that one can make sense

of a unique or privileged collection of the most fundamental or basic principles. Much will

depend on just what the structure of the situation turns out to be.

It is worth emphasizing that mapping out these kinds of relations between the central

principles of a physical theory is of some independent interest, since understanding the extent

to which the central principles of general relativity in particular are mutually interdependent

could play an important role in the construction of future theories (and in some ways, it

already has) .15 The reason has to do with this idea of “fiddling” with physical theories.

There is a long-standing tradition of attempting to modify general relativity with small

15Feynman makes a related point about the practical importance of his Babylonian approach to theories.
He writes, “If you have a structure that is only partly accurate, and something is going to fail, then if you
write it with just the right axioms maybe only one axiom fails and the rest remain, you need only change
one little thing. But if you write it with another set of axioms they may all collapse, because they all lean
on that one thing that fails. We cannot tell ahead of time, without some intuition, which is the best way to
write it so that we can find out the new situation. We must always keep all the alternative ways of looking
at a thing in our heads; so physicists do Babylonian mathematics, and pay but little attention to the precise
reasoning from fixed axioms” (Feynman, 1967, pg. 54#).
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changes: for instance, in Brans-Dicke theory, one modifies Einstein’s equation to include

an additional scalar field; in TeVeS gravitational theories, one additionally considers vector

fields. In still other cases, one modifies general relativity by allowing derivative operators

with torsion. In each of these examples (and many others), one makes what appears to be

a local change in the central principles of general relativity.

But these small changes can have dramatic consequences: for instance, in Einstein-

Cartan theory, a modification of general relativity with torsion, the conservation condition

does not generally hold. One does not have a geodesic principle, at least in the ordinary

sense, since in general the collection of self-parallel curves picked out by the derivative

operator do not agree with the collection of extremal curves picked out by the metric, and

free massive test point particles need not propagate along either class of curves. Thus,

apparently small tweaks can lead to a dramatically different theory, conceptually speaking.

A clearer picture of just how the central principles of general relativity do fit together and

constrain one another may provide important clarity into just what the ramifications of

these “small” modifications to the theory are, and more, may help guide us in the search

for alternative theories of gravitation, by indicating which principles are more or less tightly

connected to which others. Indeed, for this reason there is a sense in which the situation I

described above, where some principles are very tightly interlocking and others turn out to

be more loosely connected (for instance, some principles play a role as assumptions in some

theorems, but cannot be proved in complete generality themselves) is the most interesting,

from the practical perspective of mapping out the space of possible future theories.

In the next section, I will return to the question of explanation, now from the perspective

of the present view. But before I do so, I want to clarify the puzzle ball view slightly, as the

language I have used to describe it may call to mind two other well-known ideas. It seems

to me that the view I have described is distinct from both. First, note that the present

proposal involves a picture of theories on which one emphasizes the ways in which the
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principles cohere with one another. This way of thinking may be reminiscent of coherentism

in epistemology, a variety of anti-foundationalism that holds that to justify a belief is to

show how it coheres with one’s other beliefs (cf. Kvanvig, 2007). But there is at least

one major difference. Coherentism takes the coherence of one’s beliefs to be a form of

justification for those beliefs. Nothing about the puzzle ball view should be taken to suggest

that the justification for general relativity comes from the apparent fact that one can derive

certain central principles from others—rather, the justification for the theory is based on

its empirical successes. Or perhaps more precisely, our justification for general relativity is

essentially independent of the relationship between the theory’s central principles. To see the

point most clearly, one might well expect both general relativity and geometrized Newtonian

gravitation to be coherent, in the sense of having mutually interdependent central principles.

But this does not imply that they are equally well justified—indeed, general relativity is

better justified than geometrized Newtonian gravitation even if the pieces of geometrized

Newtonian gravitation are more tightly interlocking.16

Another view that the puzzle ball view may be reminiscent of is some variety of Quinean

holism (cf. Quine, 1951). Quine famously used the “web of belief” metaphor when arguing

for the interdependencies of our scientific beliefs, and against the analytic/synthetic distinc-

tion. One might worry that the puzzle ball picture above is just an alternative metaphor

16The suggestion of a connection to coherentism raises a second, related issue. Even if we do not take
the coherence of a body of beliefs as justification for any particular belief, one might nonetheless think of
coherence as a virtue for a body of beliefs: all else being equal, one might tend to prefer to hold coherent
beliefs than not. Should one say the same thing about physical theories? All else being equal, should one
prefer as theory whose pieces interlock? I am not sure that anything in the body of the paper depends on
this, but I am inclined to say “yes”, for several reasons. First, as I argued above, when the central principles
of theories are (partially) mutually interdependent, the theory provides a guide for the building of future
related theories in a way that may be helpful for scientific practice. Second, principles that are mutually
interdependent are protected against claims of being ad hoc. A particular principle cannot be considered
arbitrary or unmotivated if it is derivable, perhaps in multiple ways, from one’s other principles. To put
this point in a more experimentally-oriented way, if the pieces of a theory are mutually interdependent,
then testing any one principle can be understood as an implicit test of the other principles of a theory (See
Harper, 2012). A third reason comes from Bill Wimsatt (1981), who argues that interderivability (or rather,
multiple interderivability) is an indication of theoretic robustness and confers a kind of stability under theory
change.
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used to make a strikingly similar point—indeed, the claim that we cannot make a fruitful

distinction between top-tier and second-tier principles sounds like an argument against an

analytic/synthetic distinction, at least in the narrow domain of the foundations of certain

physical theories. And perhaps it is right that I have recapitulated Quine here, though if it

is, I think the point deserves to be made again since it is relevant for the present discussion

of the geodesic principle. Still, while this chapter is not the occasion for detailed Quine

exegesis, I will point to two ways in what I have proposed is prima facie different from

Quine’s holism, at least on the web-of-belief version.17

The first difference concerns just what the holism is supposed to be doing. Quine uses

the interdependencies between beliefs as an argument for a radical form of conventionalism:

when faced with evidence that conflicts with our beliefs, we have considerable leeway in

choosing which parts of the web of beliefs to revise. Indeed, the web image is supposed to

support a distinction between “central” or “core” beliefs and “peripheral” beliefs such that

we can always accommodate challenges to our full collection of beliefs by modifying only

the peripheral beliefs and leaving the core beliefs intact. But this is precisely the opposite

of what I have argued here, at least with regard to the foundations of spacetime theories.

17My goal in the text is to distinguish the puzzle ball view from web of belief holism. But this should
not be taken to imply that Quine does not come much closer to the puzzle ball view in other parts of his
opus. For instance, Quine (1960, Sec. V) distinguishes “legislative postulates” from “discursive postulates”.
“Legislative postulation,” he writes, “institutes truth by convention...” whereas “...discursive postulation is
mere selection, from some preëxisting body of truths, of certain ones for use as a basis from which to derive
others, initially known or unknown” (Quine, 1960, pg. 360). He then goes on to argue that “conventionality
is a passing trait, significant at the moving front of science but useless in classifying the sentences behind
the lines. It is a trait of events and not of sentences.” In other words, one might, when first developing a
new scientific theory, begin with some bare, legislative postulates. But as the theory develops, these truths
“...become integral to the corpus of truths; the artificiality of their origin does not linger as a localized
quality, but suffuses the corpus. If a subsequent expositor singles out those once legislatively postulated
truths again as postulates, this signifies nothing; he is engaged only in discursive postulation. He could as
well choose his postulates from elsewhere in the corpus, and will if he think this serves his expository ends”
(Quine, 1960, pg. 362). The idea, I take it, is that once one has a well-developed scientific theory—such as
general relativity—one often identifies postulates for the purposes of deriving new facts about the theory,
but these are always discursive, and more, which facts or statements of the theory one will take to be the
postulates in any given case will depend on one’s purposes. This picture seems quite close to the puzzle ball
view, indeed. I am grateful to Pen Maddy for pointing out this connection to me.
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Instead, the idea is supposed to be that the foundations of physical theories are not modular,

and that in general one has remarkably little latitude in how one revises a theory in light of

new evidence. And this, I take it, is a desirable feature, since it provides a way out of the

radical conventionalism I just described. Since the various principles of a physical theory

constrain one another, we have very few degrees of freedom for enacting minor changes in

theories in light of new evidence.

The second difference is related (and relates, too, to coherentism as described above).

Quine’s web of belief is supposed to be a (descriptive) metaphor for the sum total of one’s

beliefs. The view I have described here is much narrower in its scope. I do not claim that

all of one’s beliefs interlock in the way described; nor do I claim that scientific knowledge as

a whole can be characterized by a puzzle ball. The view does not even hold that particular

scientific theories have this feature. The suggestion is that the central principles of some

scientific theories are mutually interderivable, that the foundations of some physical theories

should be though of in a certain way. I have been deliberately vague about just what is

supposed to count as a central principle, in large part because I think that trying to list

these principles in advance, even for well understood theories such as general relativity or

geometrized Newtonian gravitation, would be unproductive. In fact, one might expect that

a full account of just what the central principles of a theory are may have to wait until

one sees just what assumptions are necessary nodes when trying to map out the network

of interconnected principles at the heart of a given physical theory. What I have done so

far—and what I think can be done at this stage—is give examples of central principles

of particular theories. And so one can say that among the central principles of general

relativity, for instance, are things such as the conservation condition, Einstein’s equation,

the geodesic principle, and various energy conditions. But the point is that a claim about a

collection of principles of this specific character is quite different from a claim about human

knowledge quite broadly.
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Note that this last point means that there is still a robust sense in which one can think

of some parts of a theory as having a special “fundamental” status, even on the puzzle ball

view. Specifically, one might take all of the central principles of a theory to be fundamental.

This leaves quite a bit of a theory as non-fundamental—for instance, particular predictions

of a theory would not be among the central principles, and so these would not count as

fundamental. If the puzzle ball view is to be viewed as anti-foundational, then, it is only

with regard to determinations of relative fundamentality among the central principles of a

theory.18

6. Explaining inertial motion, redux

Now that I have described the puzzle ball view in some detail, I can return to the question of

principle interest in this paper: namely, is there a sense in which we should understand the

Geroch-Jang theorem and its Newtonian counterpart as explanations? As a first remark, let

me reiterate that if we are thinking in terms of the puzzle ball view, it does not make sense

to think of theories in terms of “top-tier” principles and other, derived principles: in short,

there is no way to make the distinction, at least among the central principles of the theory.

None of the assumptions of a theory are distinguished as the truly basic or fundamental

ones. And if if this is right, then the kind of explanation that we apparently cannot get

of the geodesic principle in general relativity and in geometrized Newtonian gravitation

is uninteresting. No, we cannot derive the geodesic principle in either theory from more

fundamental principles, but that is because it does not make sense of talk of unambiguously

“more fundamental” principles in the first place.

18Feynman, and Wimsatt (1981), argue that in cases where some principles can be proved in many different
ways and others cannot be proved or can be proved from fewer starting cases, one can recover a different
sense of “fundamental” principles, namely that the principles that can be proved in the most different ways
should be understood as the most fundamental. Note that this turns the idea discussed above—where the
most fundamental principles were the top-tier principles from which other principles would be derived, not
the ones most often derived themselves—on its head. This idea is intriguing, but I mention it only to set it
aside as it plays no role in the present discussion.
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Instead, what we can do is show how the geodesic principle in both of these theories

fits into the rest of the puzzle (as it were). This, too, may be understood as an answer to

the question, “Why do bodies move in the particular way that they do in the absence of an

external force?” These theorems reveal that in the absence of an external force, in the context

of their respective theories, bodies must move along timelike geodesics. In other words, the

other basic assumptions of the theory constrain the motion of (small) bodies. Why timelike

geodesic motion rather than any other? Because in general relativity, we understand matter

to be conserved, and to be such that observers always attribute instantaneous subluminal

velocities to it at any point. And it turns out that these assumptions, in the presence of the

rest of the theory, imply that the only curves along which free massive test point particles

can propagate are timelike geodesics. If we are committed to the rest of general relativity,

then there is only one candidate principle for inertial motion.

So do general relativity and/or geometrized Newtonian gravitation explain inertial mo-

tion? Given the considerations just mentioned, I think the answer in both cases is “yes”, so

long as one understands “explain” in the right way. At very least, these theorems provide

deep insight and understanding into why bodies move in the particular way that they do

in the absence of any external force—which is precisely what we were after when we asked

the question. Moreover, the insight provided is that, in the context of the other central

principles of the theories, the geodesic principle is necessary, the only principle governing

inertial motion that is compatible with our other principles. It is a demonstration of pre-

cisely the ways in which the working parts of general relativity and geometrized Newtonian

gravitation constrain one another.

That said, this kind of explanation differs in some important ways from other explana-

tions that one may be accustomed to thinking about. In particular, if the puzzle ball view is

correct, the kind of explanation I have just described need not be asymmetrical. That is, if

general relativity might be said to explain inertial motion in the present sense by appealing
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to the fact that one can derive the geodesic principle from various other assumptions in

the theory, one should not conclude that the geodesic principle cannot play a role in other

derivations that should also count as explanatory—even derivations of the assumptions going

into the Geroch-Jang theorem or its Newtonian counterpart. Indeed, one should expect that

just as the geodesic principle is constrained by the other central assumptions of general rel-

ativity, so too are the conservation condition, the strengthened dominant energy condition,

and even Einstein’s equation constrained. And by the same reasons I have offered above

for the view that one might justly call the Geroch-Jang theorem an explanation of inertial

motion, one might also say that explanations can be given for the conservation condition or

Einstein’s equation, by showing how these principles of general relativity are derivable from

the other central principles of the theory. In other words, general relativity explains inertial

motion by appeal to Einstein’s equation, but it may equally well explains Einstein’s equation

by appeal to the geodesic principle and other central assumptions of general relativity.

This observation may give some readers pause. There is, by now, a long tradition of

philosophers of science worrying about the so-called “problem of explanatory asymmetry”

(cf. Bromberger, 1966): intuitively, explanations appear to run in one direction and only

one direction. The trajectory of a comet may explain why we see a bright light in the

nighttime sky once every few hundred years, but a bright light in the nighttime sky cannot

explain the trajectory of a comet; the height of a flagpole may explain the length of its

shadow at sunset, but the length of the shadow does not explain the height of the flagpole.

And so, many philosophers have argued, an account of explanation that allows symmetrical

explanations—situations where A explains B and B explains A—is prima facie unacceptable.

A few remarks are in order. First, van Fraassen (1980) has argued, I think correctly,

that explanation should be understood as essentially pragmatic—and in particular, that

explanations should only be understood as responses to certain classes of question. To

determine whether or not some particular response to a why question (say) should count
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as a satisfactory explanation depends on the context in which the question was asked and

the particular demands of the questioner. While in some contexts we might want to say

that a particular explanation runs in only one direction, there may well be other contexts

in which the explanation would run in the other direction. If one is thinking in this way

then the present example is simply a special case: if the question “why do bodies move

in the particular way that they do in the absence of an external force?” is understood as

“does general relativity require us to adopt the geodesic principle as the central principle

governing inertial motion?”, then one is rightly satisfied by a response along the lines of the

Geroch-Jang theorem, even if in other contexts—i.e., in response to other questions—one

might appeal to the geodesic principle to explain (say) Einstein’s equation.

But there is also a more important point to make, here: I do not claim to be offering an

“account of explanation”, or anything like it. I have not suggested that a necessary or even

sufficient condition for being an explanation is to show how the thing to be explained “fits

in” with the rest of a physical theory, in the sense that it is derivable from other central

principles of a theory. The point, rather, is to try to spell out the sense in which a particular

class of theorems that show how the central principles of a spacetime theory fit together

might be understood as explanatory—to say what, precisely, the theorems are doing, and

why one might think of this as a kind of explanation, at least on the puzzle ball view. Not

all explanations work this way, nor do they need to in order for the story I have told here

to be correct. And so, the fact that in some cases, we would want to say that if A explains

B then B cannot explain A in no way undermines the claim that the present explanations

simply do not work that way.

This point can be made most starkly by pointing to various other questions one can ask

about inertial motion, even in general relativity, whose answers would be quite different from

the Geroch-Jang theorem. Consider, for example, a question concerning a particular instance

of inertial motion. Why, one might ask, does the perihelion of Mercury’s orbit precess? One
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would answer this by appealing to some particular initial state of Mercury and features of

spherically symmetric solutions to Einstein’s equation to show that Mercury’s orbit is the

only allowed trajectory for a body with certain properties in a solar system like ours. The

geodesic principle may play a role in this argument, insofar as one might idealize Mercury

as a free massive test point particle, and Einstein’s equation may play a role, insofar as one

would want to consider a spacetime that is a solution to the equation, but the argument

would have nothing to do with the Geroch-Jang theorem. And moreover, one would expect

this sort of explanation to be asymmetric: Einstein’s equation and the geodesic principle,

along with some details concerning the state of the solar system and initial conditions for

Mercury, explain the precession of the perihelion of Mercury; the precession of the perihelion

of Mercury does not explain Einstein’s equation or the geodesic principle.

But this is just the point. If the Geroch-Jang theorem and its Newtonian counterpart

should be countenanced as explanations, it is only because they are satisfactory answers

to particular questions, and they are only explanatory in the context of those demands for

explanation. A question concerning the orbit of Mercury is quite different from a question

concerning the nature of inertial motion generally. And these theorems answer only the

most general version of the question: why this principle as opposed to any other? This is

no mean task, but it is a specific one, and it needs to be treated with care.
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