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Abstract

I argue that a criterion of theoretical equivalence due to Clark Glymour [Noûs 11(3), 227
(1977)] does not capture an important sense in which two theories may be synonymous. I
then motivate and state an alternative condition that does capture the sense of equivalence I
have in mind. The principal argument of the paper is that relative to this second condition,
the answer to the question posed in the title is yes, at least on one natural understanding
of Newtonian gravitation. I conclude with a discussion of some core topics in philosophy of
space and time.
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1. Introduction

Are Newtonian gravitation and geometrized Newtonian gravitation (Newton-Cartan The-

ory) theoretically equivalent?1 Clark Glymour (1970, 1977, 1980) has articulated a natural

criterion of theoretical equivalence and argued that, by this criterion, the answer is no.

I intend to show that the situation is more subtle than Glymour suggests, by displaying

an important sense of equivalence between theories that Glymour’s criterion is not flexible

Email address: weatherj@uci.edu (James Owen Weatherall)
1One might immediately worry about what is intended here by “theoretical equivalence”. The notion of

theoretical equivalence that I am trying to develop in this paper is one of synonymy between theories. In
short, two theories should be understood to be equivalent just in case they say the same things about the
world, or alternatively, if they ascribe the same structure to the world. There are surely other notions of
what it might mean for two theories to be equivalent, and I do not intend to say that the criteria I consider
here are the only options, or even the best options for other contexts in which one might be interested in
notions of equivalence between theories. But I do want to argue that, for the purposes at hand, the criteria
I discuss are fruitful.
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enough to capture.2 My principal argument will then be that, while there are certainly

senses in which Newtonian gravitation is not theoretically equivalent to the geometrized

theory, there is nonetheless a robust notion of equivalence on which Newtonian gravitation

(properly understood) and geometrized Newtonian gravitation are equivalent.3,4,5

One consequence of these results is that there exists a pair of theoretically equivalent (at

least by one standard), realistic theories that nonetheless disagree with regard to features

that one might have taken to be essential parts of a spacetime theory. In particular, one

might have taken the flatness of spacetime to be an important feature of Newtonian space-

time physics—even a metaphysical commitment of the theory. But the flatness of spacetime

is not preserved under the theoretical equivalence relation I describe here. I take it that this

observation provides new insight on old debates concerning the epistemology of geometry,

and on more general questions concerning the relationship between physical theories and

metaphysics.6

I will begin by reviewing the two formulations of Newtonian gravitation, with a focus

on the results that relate them to one another. I will then move on to describe Glymour’s

criterion for theoretical equivalence, according to which the two formulations of Newtonian

2I should say immediately that I consider the arguments of the present paper to be a friendly amendment
to Glymour’s work on this topic. The point is that there is a subtlety that may be overlooked when working
in the terms Glymour uses, and that if one thinks about theoretical equivalence in slightly different terms,
that subtlety becomes manifest.

3David Zaret (1980) has also replied to Glymour on this question. But his argument is markedly different
than the one presented here, and Spirtes and Glymour (1982) offer what I take to be an effective reply.

4As will become clear, a crucial part of the present argument bears a close connection to arguments pre-
sented by John Norton (1992, 1995) and David Malament (1995), regarding whether one should understand
Newtonian gravitation as a “gauge theory”, and what that means for the relationship between Newtonian
gravitation and its geometrized reformulation.

5A recent paper by Eleanor Knox (2011) addresses topics closely related to those discussed in the present
paper. Knox does not address whether the two formulations of Newtonian gravitation are equivalent, but
she does argue that geometrized Newtonian gravitation is more perspicuous with regard to the ontological
commitments of both theories. There may be a point of disagreement between us, insofar as I will argue here
that since there is a sense in which geometrized Newtonian gravitation and standard Newtonian gravitation
are synonymous, their apparently different ontological commitments turn out not to reflect meaningful
physical distinctions at all, at least in the context of the theories’ background theoretical assumptions.

6It also bears on recent debates concerning scientific realism and instrumentalism, though I will defer
discussion of this connection to future work.
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gravitation fail to be equivalent. Next, I will consider Glymour’s condition with regard

to two formulations of electromagnetism that, I will argue, should be understood to be

synonymous. It will turn out that these theories fail to be equivalent by Glymour’s criterion

of equivalence, which I take to show that there is an important sense in which two theories

may be equivalent that Glymour’s condition does not capture. In the following section, I will

use some basic ideas from category theory to articulate a precise alternative condition that

does capture the sense in which the two formulations of electromagnetism are equivalent.7 I

will then return to the question of principal interest in the present paper, arguing that there

are two ways of construing standard (nongeometrized) Newtonian gravitation. I will state

and prove a simple proposition to the effect that, by the modified criterion, on one of the two

ways of representing standard Newtonian gravitation (but not the other), it is theoretically

equivalent to geometrized Newtonian gravitation.8 I will conclude with some brief remarks

relating this work to certain core questions in the philosophy of space and time.

2. Two formulations of Newtonian gravitation

The two theories with which I am principally concerned are Newtonian gravitation (NG),

expressed in a four-dimensional, covariant formalism, and a variant of Newtonian gravitation

due to Élie Cartan (1923, 1924) and Kurt Friedrichs (1927), called “Newton-Cartan theory”

or “geometrized Newtonian gravitation” (GNG).9 In NG, gravitation is a force exerted by

massive bodies on other massive bodies. It is mediated by a gravitational potential, and in

the presence of a (non-constant) gravitational potential, massive bodies will accelerate. In

GNG, meanwhile, gravitation is “geometrized” in much the same way as in general relativity:

7Category theory may not be familiar to all readers. For this reason, I include a short appendix with the
basic definitions I will rely on in this section.

8I suspect this result could be recovered in Glymour’s own (non-category theoretic) terms, though the
distinction between the two criteria I will discuss is more perspicuous in the category theoretic terms I will
use.

9The discussion here is necessarily brief. For a systematic discussion of geometrized Newtonian gravita-
tion, see Malament (2012) or Trautman (1965).
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the geometric properties of spacetime depend on the distribution of matter in spacetime,

and conversely, gravitational effects are manifestations of the resulting geometry. On their

faces, the theories appear quite different from one another, though there is a precise sense,

which I will state below, in which they are empirically equivalent. There is also a precise

sense in which GNG, rather than NG, is the “classical limit” of general relativity, though I

will not discuss that topic here.10

Despite their differences, the theories share a common geometrical structure. In both

cases, spacetime is represented by a manifold, which I will assume throughout is simply

connected.11 This manifold is equipped with two (degenerate) metrics: a temporal metric

tab that assigns temporal lengths to vectors, and a spatial metric hab that assigns spatial

lengths to co-vectors (and, in an indirect way, to vectors whose temporal length vanishes).12

These are stipulated to be orthogonal, in the sense that habtbc = 0 everywhere. The signature

of the temporal metric guarantees that there exists (at least locally) a covector field ta such

that tab = tatb; in cases where the spacetime is “temporally orientable”, this field can be

defined globally. In what follows, I will assume that the spacetimes under consideration

are temporally orientable and will work exclusively with ta rather than tab. The degenerate

metric structure of Newtonian gravitation does not uniquely determine a derivative operator,

and so one needs to independently identify a derivative operator on the manifold. This

derivative operator ∇ is required to be compatible with both metrics, in the sense that

∇atbc = 0 and ∇ah
bc = 0 everywhere. These four elements together define a classical

spacetime.

Definition 2.1. A classical spacetime is an ordered quadruple, (M, ta, h
ab,∇), where M is

a manifold, ta and hab are, respectively, mutually compatible temporal and spatial metrics,

10For more on this, see Ehlers (1981), Künzle (1976), and Malament (1986b,a). For a discussion of how one
moves from general relativity to NG by way of GNG, and of how certain classical concepts like “gravitational
mass” arise in that transition, see Weatherall (2011).

11This assumption is adopted for simplicity; an alternative approach would be to always work locally.
12Throughout I will use the abstract index notation, which is explained in Penrose and Rindler (1984)

and Malament (2012).
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and ∇ is a derivative operator compatible with both metrics.

In both theories, the matter content of spacetime is represented by a smooth, symmetric

field T ab, called the mass-momentum field. This field can be used to define a mass density

on spacetime by ρ = T abtatb. In both theories, massive point particles can be represented by

their worldlines—smooth, curves whose tangent vector fields have non-vanishing temporal

length, as determined by ta. Such fields are called timelike; vector fields with vanishing

temporal length are called spacelike.

In this context, NG can be understood as a theory whose models are classical spacetimes

with flat (Ra
bcd = 0) derivative operators,13 endowed with a scalar gravitational field ϕ

satisfying Poisson’s equation, ∇a∇aϕ = 4πρ. In the presence of a gravitational field, a

massive point particle whose worldline has tangent field ξa will accelerate according to

ξn∇nξ
a = −∇aϕ. In the geometrized version of the theory, meanwhile, the derivative

operator is permitted to be curved and the gravitational field is omitted. The curvature field

associated with the derivative operator satisfies a geometrized version of Poisson’s equation,

Rab = 4πρtatb, and in the absence of any external (i.e., non-gravitational) interactions,

massive particles traverse timelike geodesics of this curved derivative operator. These two

changes provide the precise sense in which gravity is “geometrized” in GNG. In both cases,

the “empirical content” or the “predictions” of the theory can be understood to consist in

the trajectories of massive bodies, given a particular mass density on spacetime. On NG,

these trajectories correspond to the class of curves whose acceleration at a point is given

by −∇aϕ; on GNG, these trajectories correspond to the timelike geodesics of the derivative

operator. The two theories are empirically equivalent in the sense that, given a mass density

on spacetime, both theories agree on the possible trajectories of bodies.14

13The Riemann curvature tensor Ra
bcd is defined as in standard differential geometry. Given a derivative

operator, the curvature tensor is the unique tensor such that for any vector field ξa, Ra
bcdξ

b = −2∇[c∇d]ξ
a.

14There is an important caveat here. Given only a mass density on spacetime, neither formulation of
Newtonian gravitation uniquely determines the trajectories of massive bodies. In both cases, there is a degree
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Models of NG and GNG are systematically related. First, it is always possible to “ge-

ometrize” the gravitational field on a flat classical spacetime, in the sense that given a model

of NG, one can always produce a (unique) model of GNG that agrees on (a) the mass density

on spacetime ρ and (b) the trajectories of massive bodies. Since the metrical structure of a

classical spacetime is fixed, the models of both theories also agree on that. This translation

is given via a result due to Andrzej Trautman (1965).

Proposition 2.2 (Trautman Geometrization Lemma). Let (M, ta, h
ab,

f

∇) be a flat clas-
sical spacetime. Let ϕ and ρ be smooth scalar fields on M satisfying Poisson’s equation,
f

∇a

f

∇ aϕ = 4πρ. Finally, let
g

∇ = (
f

∇, Ca
bc), with Ca

bc = −tbtc
f

∇ aϕ.15 Then (M, ta, h
ab,

g

∇) is

a classical spacetime;
g

∇ is the unique derivative operator on M such that given any timelike
curve with tangent vector field ξa,

ξn
g

∇nξ
a = 0⇔ ξn

f

∇nξ
a = −

f

∇ aϕ; (G)

and the Riemann curvature tensor relative to
g

∇,
g

R a
bcd, satisfies

g

Rab = 4πρtatb (CC1)
g

Ra
b
c
d =

g

Rc
d
a
b (CC2)

g

Rab
cd = 0. (CC3)

It is also possible to go in the other direction. That is, given a model of GNG, it is

possible to recover a model of NG with the same mass density on spacetime, that once again

agrees on the trajectories of massive bodies.

Proposition 2.3 (Trautman Recovery Theorem). Let (M, ta, h
ab,

g

∇) be a classical space-
time that satisfies eqs. (CC1)-(CC3) for some smooth scalar field ρ. Then there exists a

of freedom corresponding to homogeneous solutions to Poisson’s equation. However, a unique collection of
trajectories is picked out if one imposes additional boundary conditions. In any case, the claim of empirical
equivalence is not affected, since precisely the same underdetermination of the trajectories occurs in both
cases.

15The notation ∇′ = (∇, Ca
bc) is explained in Malament (2012, Prop. 1.7.3).
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smooth scalar field ϕ and a flat derivative operator on M ,
f

∇, such that (M, ta, h
ab,

f

∇) is a

classical spacetime; (G) holds of any timelike curve; and ϕ and
f

∇ together satisfy Poisson’s

equation,
f

∇a

f

∇ aϕ = 4πρ.

It is crucially important for the following discussion, however, that the pair (
f

∇, ϕ) is not

unique. A second pair (
f

∇′, ϕ′) will satisfy the same conditions provided that (1) ∇a∇b(ϕ′−

ϕ) = 0 and (2)
f

∇′ = (
f

∇, Ca
bc), with Ca

bc = tbtc∇a(ϕ′ − ϕ). Note, too, that the recovery

theorem holds only if the curvature conditions (CC1)–(CC3) are met. Poisson’s equation,

condition (CC1), has already been assumed to hold of models of GNG; for present purposes,

I will also assume that conditions (CC2) and (CC3) hold in all models of GNG.16 It worth

pointing out that these two assumptions hold automatically whenever we begin with NG

and translate to GNG.

3. Glymour on theoretical equivalence

Glymour works out his account of theoretical equivalence in several places (Glymour, 1970,

1977, 1980), in the service of a more general argument that there exist cases where two

theories can be empirically equivalent, and yet nonetheless inequivalent in a stronger sense.

The notion of equivalence he develops for this purpose is supposed to capture what it might

mean for two theories to be “synonymous”, in the sense of saying the same things about

the world. The underlying intuition is that two theories are synonymous if (1) they are

16In principle, one can consider models of GNG that do not satisfy condition (CC3). This leads to a
generalized version of geometrized Newtonian gravitation. See Ehlers (1981), Künzle (1976), and Malament
(2012). If one does relax this condition, NG and GNG are not synonymous by any of the criteria I consider
here.
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empirically equivalent,17 and (2) they are mutually inter-translatable.18 There is good reason

to think that this first requirement is often a slippery one. What is meant to be the empirical

content of a theory may be open to interpretation, or dependent on the way in which

predictions and the associated data are represented.19 That said, at least in some cases, it

is possible to say what the empirical content of a theory is supposed to be, and moreover

to determine that two theories are empirically equivalent. In the case of NG and GNG,

for instance, there is a precise sense in which the two theories are empirically equivalent,

insofar as they agree on the trajectories of bodies in the presence of a background matter

distribution.

The second requirement, of mutual inter-translatability between theories, can be made

precise more generally, at least for a first-order theory. Suppose that L and L+ are first-order

signatures (a signature is just the set of non-logical symbols of a language), with L ⊆ L+.

An explicit definition of a symbol in L+ in terms of L can be understood as a sentence in L+

that asserts the equivalence between that symbol (appropriately used) and some formula in

L. To take an example, for any n−ary relation symbol R in L+, and any list of n variables

x̄, an explicit definition of R in L is a sentence of the form

∀x̄(Rx̄↔ ϕ(x̄)),

where ϕ is a formula of L with at most n free variables. One can similarly define the forms

17Glymour does not explicitly state that empirical equivalence is a necessary condition of theoretical
equivalence, though all of the cases he considers are empirically equivalent. Nonetheless, one can imagine
two theories that are mutually inter-translatable, but which are interpreted in such a way that the predictions
of the first theory are translated into parts of the second theory that are not predictions, and vice-versa,
so that the two theories should be understood to be empirically inequivalent. It certainly seems that such
pairs of theories, if they exist, should not be considered theoretically equivalent. Sklar (1982) also makes
the point that empirical equivalence is a substantive additional constraint.

18There is a sense in which “mutually inter-translatable” is ambiguous. See bellow, especially footnote
24.

19See, for instance, van Fraassen (2008).
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of explicit definitions of constants and functions of L+ in terms of L.20 Suppose, then, that

one has a theory T in L. By appending explicit definitions of (all of the) symbols in L+/L

to T , we can extend T to a theory in L+. The resulting theory is a definitional extension of

T in L+.21

The definitional extensions of a theory can be used to define a precise notion of when

two first-order theories are mutually inter-translatable.

Definition 3.1. Suppose T1 and T2 are first-order theories in signatures L1 and L2, respec-
tively, with L1 ∩ L2 = ∅.22 Then T1 and T2 are definitionally equivalent if and only if there
are first order theories T+

1 and T+
2 in L1 ∪L2 such that T+

1 is a definitional extension of T1,
T+
2 is a definitional extension of T2, and T+

1 and T+
2 are logically equivalent.

Definitional equivalence does track an intuitive notion of inter-translatability, since given

any pair of definitionally equivalent theories T1 and T2 and a formula ϕ in the language of

T1, it is always possible to translate ϕ into a formula in the language of T2, and then back

into a formula in the language of T1 that is T1−provably equivalent to ϕ.

Definitional equivalence is the standard of equivalence that Glymour proposes as a stan-

dard of synonymy for two (empirically equivalent) first-order theories.23 In the case of

physical theories, however, we typically do not have first-order formulations available to

work with, and so the syntactic characterization of definitional equivalence given in defi-

nition 3.1 is impractical. But in general, we do know how to work with the models of a

physical theory. So instead of adopting definitional equivalence directly, Glymour expresses

20Explicit definitions of functions and constants entail additional sentences in L. These entailments are
called the “admissibility conditions” of an explicit definition. See Hodges (1993, Ch. 2.6) and fn. 21.

21 Actually, simply adding explicit definitions of all of the symbols is not quite enough. One also has to
require that for any constant or function symbol S in L+/L, T ` χ, where χ is the admissibility condition
for S. See Hodges (1993, Ch. 2.6) and fn. 20.

22See Tarski and Givant (1987). If L1 and L2 are allowed to have non-empty intersection, definitional
equivalence fails to be an equivalence relation, because it is not transitive. To see this, consider the three
theories T1 = {∀x, y(xRy ↔ x = y), T2 = {∀x, y(xRy ↔ ¬(x = y))}, T3 = {∀x, y(xR′y ↔ x = y)}. But this
is not a substantive problem: if the theories have overlapping signatures, one can always generate a new
theory by simply modifying the symbols in one of the signatures.

23Glymour is hardly alone in adopting definitional equivalence as a standard of synonymy for first-order
theories. For instance, see the classic work by de Bouvere (1965b,a). I attribute the proposal to Glymour,
however, because he extends this first-order definition to physical theories.
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his condition in terms of a model-theoretic consequence of definitional equivalence, which

can be stated as follows: Suppose T1 and T2 are definitionally equivalent theories in signa-

tures L1 and L2 respectively, and suppose that A1 is an L1−structure that forms a model

of T1. Then it is always possible to expand A1 into an L1 ∪ L2−structure A that forms a

model of T+
1 , the definitional extension of T1 that realizes the equivalence. Since T+

1 and T+
2

(the extension of T2) are logically equivalent, A is also a model of T+
2 . We can thus turn A

into a model A2 of T2 by simply restricting A to symbols in L2. The whole process can then

be reversed to recover A1. In this sense, definitionally equivalent theories “have the same

models” insofar as a model of one theory can be systematically transformed into a model of

the other theory, and vice versa. Note that it is essential for this characterization that one

can go from a model A1 of T1 to a model A2 of T2, and then back to the same model A1 of

T1.
24

Using this model-theoretic characterization, and limiting attention to terms natural to a

covariantly expressed field theory, Glymour’s condition for theoretical equivalence can thus

be stated as follows.25

Condition 1. Two theories T1 and T2 are theoretically equivalent just in case for every
model M1 in T1, there exists a unique model M2 in T2 such that (1) M1 and M2 are em-
pirically equivalent, and (2) the geometrical objects associated with M2 are uniquely and
covariantly definable in terms of the elements of M1 and the geometrical objects associated
with M1 are uniquely and covariantly definable in terms of M2, and vice versa.

It is this criterion that GNG and NG (allegedly) fail, despite being empirically equivalent.

The reason is that, although it is always possible given a model M1 of NG to uniquely and

24In other words, the ability to translate from each theory to the other does not imply definitional
equivalence. See Andréka et al. (2005) for an example.

25Actually, Glymour states his condition (which is really only part (2) of condition 1) as a necessary
condition for theoretical equivalence. He is mute on whether it is also sufficient, or whether there is some
additional condition that he thinks should be satisfied. It seems to me, however, that in any context in which
definitional equivalence is a natural necessary condition, it is also a natural sufficient condition—at least
when combined with a precise notion of empirical equivalence. In other words, if the sense of equivalence
one wants is synonymy of the sort that definitional equivalence captures, then it is hard to see what else,
aside from definitional equivalence and empirical equivalence, one could ask for. As I said above, however,
there may well be circumstances under which one would want a different condition altogether—indeed, I
will presently argue that the equivalence of GNG and NG is best characterized by a different condition.
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covariantly define a model M2 of GNG, it is not possible to go in the other direction: given

M2, there are a continuum of models of NG that yield the same model of GNG, and so there

is no hope of uniquely picking out one of them in the necessary way. Thus, it would seem,

GNG and NG are not synonymous.

4. Another sense of synonymy?

I will presently argue that condition 1 does not capture the sense in which two clearly

synonymous formulations of electromagnetism are equivalent. For simplicity, I will limit

attention to source-free electromagnetism in a fixed background of Minkowski spacetime.26

Source-free electromagnetism describes the behavior of electromagnetic fields, which are

represented by a smooth, antisymmetric tensor field Fab(= F[ab]) on M , called the Faraday

tensor.27 This field satisfies Maxwell’s equations, which in the present language can be

expressed compactly as

∇[aFbc] = 0 (4.1a)

∇aF
ab = 0. (4.1b)

For present purposes, I will take for granted that the empirical content of this theory amounts

to a specification of Fab at every point of spacetime.

In many contexts, the field Fab is cumbersome to work with directly. Instead, physicists

work with a vector field, Aa, called the 4-vector potential. The 4-vector potential bears a

simple relationship to the Faraday tensor, given by

Fab = ∇[aAb]. (4.2)

26Minkowski spacetime is a (fixed) relativistic spacetime (M,ηab) characterized by three features: M is
R4, ηab is a flat Lorentzian metric, and the spacetime is geodesically complete.

27The notation [·], applied to tensor indices, refers to anti-symmetrization over these indices.
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When Fab is defined in terms of a vector potential Aa, Eq. (4.1a) is automatically satisfied.

(Conversely, assuming that an arbitrary Fab field satisfies Eq. (4.1a) guarantees that there

exists some vector field Aa such that Fab = ∇[aAb].)
28 Meanwhile, we can write Eq. (4.1b)

in terms of Aa as

∇a∇aAb = ∇b∇aA
a. (4.3)

Eq. (4.3) can be understood as the field equation governing this second formulation of

electromagnetism. Once again, the empirical content of the theory should be understood to

be its specification of Fab at every point, as determined using Eq. (4.2).

These two ways of describing the theory—in terms of Fab and in terms of Aa—give rise

to two ways of characterizing the models of the theory. In one, models can be thought of as

a specification of a particular tensor field Fab, satisfying Maxwell’s equations. We can write

these as ordered triples (M, ηab, Fab), where the first two elements of the triplet refer to the

background spacetime. Call these the models of EM1. In the second approach, models can

be thought of as a specification of a particular vector field Aa, satisfying Eq. (4.3). These

can be written as ordered triplets (M, ηab, A
a). They are the models of EM2. Expressed

in this way, EM1 and EM2 can be conceived of as two different theories—though they are

certainly empirically equivalent, since given any model of EM1, there exists a model of EM2

that assigns the same Fab tensor to each point of spacetime, and vice versa.

Understood as two empirically equivalent theories of covariant objects on a manifold—

the two versions of electromagnetism are amenable to analysis by condition 1. And so one

might ask, are EM1 and EM2 equivalent under this criterion? Evidently not.

Proposition 4.1. EM1 and EM2 are not theoretically equivalent by condition 1.

Proof. Given any model of EM2, (M, gab, A
a), one can always (covariantly) define a unique

model of EM1 by Eq. (4.2). Conversely, given any model of EM1, (M, gab, Fab), there exists

28Briefly, if Fab = ∇[aAb], then Fab is an exact 2-form, so it is automatically closed. Conversely, if Fab is
closed, and the background manifold is simply connected (as R4 is), then Fab is exact—so there exists some
field Aa such that Fab = ∇[aAb].
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a vector field Aa such that (M, gab, A
a) is a model of EM2, and moreover, Eq. (4.2) is

satisfied. However, this second translation is not unique. Pick a model of EM2, (M, ηab, A
a),

and consider a map on this model that takes Aa 7→ A′a = Aa + ∇aψ, for some smooth

scalar field ψ. This new triplet, (M, ηab, A
′a), is itself a model of EM2, since it satisfies Eq.

(4.3) (for any choice of ψ). Now consider how the Faraday tensor determined by Aa behaves

under the transformation. We have,

Fab 7→ F ′ab = ∇[a(Ab] +∇b]ψ) = ∇[aAb] +∇[a∇b]ψ = Fab,

where the last equation holds because the derivative operator is torsion-free (and so∇a∇bψ =

∇b∇aψ for any scalar field). Thus, given a model of EM1, there exist a continuum of models

of EM2 that agree with regard to the electromagnetic field, and so EM1 and EM2 are not

theoretically equivalent by condition 1. �

What should we make of this result? Surely Prop. 4.1 indicates a sense in which EM1

and EM2 are inequivalent—namely they are inequivalent by the standard set by condition

1. But this might give one pause. EM1 and EM2 are supposed to be different formulations

of the same theory. There is a strong sense in which they say precisely the same thing about

the world, at least on their standard interpretations. The reason concerns the nature of

the relationship between the models of EM2. The transformation that takes Aa to A′a is

often called a “gauge transformation” (and electromagnetism, a “gauge theory”). Gauge

transformations are considered a special sort of transformation between models of physical

theories, because they only affect degrees of freedom in a physical system that are interpreted

to be redundant, or unphysical. For this reason, when one works with EM2, it is standard

to identify models that differ only by a gauge transformation. This means that if a model

of EM1 and a model of EM2 agree regarding their Fab fields, then they agree, period. The

vector potential is not supposed to be a real feature of the world; the electromagnetic field
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derived from it is.29

It seems to me that there is a clear and robust sense—indeed, the sense that one would

have had in mind to begin with—in which two theories should be understood as synonymous

if, on their standard interpretations, they differ only with regard to features that, by the

lights of the theories themselves, have no physical content. And EM1 and EM2 are examples

of theories that do just that. Thus, while perhaps there are situations in which condition 1

captures what one means by theory synonymy, at least for electromagnetism it would appear

that it does not. At very least, there is a sense of synonymy that is salient and interesting,

but which condition 1 apparently misses.

There are two reasons why EM1 and EM2 fail to be equivalent by condition 1. The

first problem concerns the nature of gauge symmetry, which explicitly identifies models of a

theory that differ only with regard to structure that does not have physical meaning—i.e.,

only with regard to mathematical auxiliary structure. Condition 1 cannot accommodate

a situation in which a translation fails to be unique only because there are a number of

equivalent models to translate a given model into. Really one wants to allow theories to

be equivalent if their models are uniquely intertranslatable up to some antecedent notion of

model equivalence.

The second difficulty is more pernicious. It concerns “covariantly definability”. On the

natural interpretation of covariant definability, the Faraday tensor Fab is always definable in

terms of a vector potential, via Eq. (4.2). But in general, there is no way to define a vector

potential in terms of a covariant formula involving the Faraday tensor. Rather, one has

general existence results that guarantee that for any Faraday tensor satisfying Eq. (4.1a),

an associated vector potential must exist.30 This problem is more difficult to resolve than

29Once one moves to quantum mechanics, the status of the vector potential changes (c.f. the Aharanov-
Bohm effect). But for present purposes, in classical electromagnetism, the interpretation of the vector
potential given here is standard. However, see Belot (1998) and Healey (2007).

30These two problems really are distinct. On the one hand, one can imagine a situation where multiple
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the first because if one were to drop the requirement of explicit covariant definability from

condition 1 altogether, the condition would appear to collapse into empirical equivalence.

Perhaps in some situations, one should follow the positivists and take empirical equivalence

as a standard of theoretical equivalence. But in this case, that seems unsatisfactory: EM1

and EM2 are not merely empirically equivalent theories, they are the same theory, expressed

in different terms. One would like to be able to articulate what this stronger sense of

equivalence amounts to.

5. An alternative criterion of equivalence

Thus far, I have introduced a criterion of theoretical equivalence and argued that it fails to

capture the sense in which EM1 and EM2 are synonymous. In the present section, I will

present a criterion of equivalence that does capture the sense in which EM1 and EM2 are

synonymous. The condition I have in mind is most naturally stated within the setting of

category theory.31 I hope the motivation for bringing in this new mathematical machinery

will become clear as the section progresses, but perhaps it will be useful to make a few

remarks up front. As should be clear from the conclusion of the last section, in order to

adequately represent a gauge theory, one needs information both about the models of the

theory and also about how those models relate to one another. In the present case, that

information amounts to a specification of which models of a theory should be taken to

be physically equivalent to one another. Since the equivalences necessary to adequately

represent a gauge theory can be thought of as a privileged collection of maps between

models, category theory is a natural mathematical setting for the present discussion. More

fields equivalent for the purposes at hand may be explicitly defined, depending on the choice of some fixed
(non-unique) background field. On the other hand, one can imagine a situation where one has an existence
result that, under certain circumstances, some field must exist, and yet be unable to define that field
explicitly in terms of whatever background fields one has access to.

31I assume basic knowledge of category theory. For background, see Awodey (2006), Mac Lane (1998), or
Borceux (2008).
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importantly, category theory provides a way of representing what, in addition to empirical

equivalence, models of EM1 and EM2 have in common. The alternative characterization of

theoretical equivalence I provide will trade on a notion of implicit definability, as opposed

to the explicit definability required by condition 1.32

I will first reconstruct condition 1 in category theoretic terms. As a start, note that

condition 1 is stated as a relationship between the models of each theory. This means that

to apply condition 1, one begins by representing a theory by a collection of models of that

theory.33 To use the example of electromagnetism from the previous section, EM1 and EM2

are represented by the collections of triples of the form (M, ηab, Fab) and the triples of the

form (M, ηab, A
a), respectively. (As a matter of notation, I will use italic type—EM1 and

EM2—to refer to the collections of models, and for all practical purposes I will treat them as

sets.) Condition 1, then, is the requirement that there exists a pair of maps F : EM1 → EM2

and G : EM2 :→ EM1, satisfying certain conditions: namely that (1) F and G map models

of one theory to empirically equivalent models of the other theory, (2) F and G map models

to models in such a way that the elements of the destination models can be covariantly

defined in terms of the elements of the source models, and (3) G ◦ F and F ◦ G act as the

identity on EM1 and EM2, respectively.

To translate this into category theoretic terms, we first represent the two varieties of

electromagnetism as categories, EM1 and EM2.
34 The objects of EM1 and EM2 are just

32Once again, it is likely possible to recover this discussion in terms of models and equivalence classes of
models. Nonetheless, the category theoretic setting makes the difference between the two conditions much
clearer, and avoids the charge that the modified condition I propose is ad hoc.

33This way of thinking about theories is often called the “semantic view”. I do not mean to lump Glymour
in with the strictest adherents to this view; all I meant to say is that since his criterion is expressed in terms
of relations between individual models of a theory, he is in effect using a theory’s models to represent the
theory as a whole. The remarks in the present section can be construed as an argument against the view
that a theory can be represented (simply) by a collection of models, without any additional structure. For
more on this point, see Halvorson (2012) and Halvorson and Weatherall (2012).

34In what follows, I will sometimes refer to specific categories as theories. But I should be clear, I mean
categories that are representations of theories. In particular, while a theory may be representable as a
category of its models, a category need not represent a theory.
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the elements of EM1 and EM2, respectively. But now there is an immediate question that did

not come up when describing EM1 and EM2, regarding the arrows in the categories EM1 and

EM2. At first pass, one might include only the identity arrows.35 But a moment’s reflection

reveals that there are a wide variety of privileged maps between models of electromagnetism

(in either formulation)—namely, maps that preserve the “physical structure” of a model, in

the sense that two models related by such a map are physically equivalent.36

For instance, consider a model (M, ηab, Fab) ∈ EM1 and an isometry ϕ from Minkwoski

spacetime to itself.37 Then the triplet (M, ηab, ϕ
∗(Fab)) is also an object of EM1 (or an ele-

ment of EM1), since the spacetime is Minkwoski spacetime, and ϕ∗(Fab) is an anti-symmetric

tensor field satisfying Maxwell’s equations. Unless ϕ is the identity map, (M, ηab, Fab) will

not be equal (M, ηab, ϕ
∗(Fab)). However, these two models are naturally understood to

represent precisely the same physical situation—indeed, in general one can understand the

diffeomorphism ϕ as implementing a change of coordinates, and the push-forward map on

Fab simply determines the field in the new coordinate system. When one ordinarily describes

models of electromagnetism, the fact that some models represent the same physical situation

in this way is implicit. But in the present context, we have a way of making these relations

between models explicit, or perhaps better, of representing the class of structure-preserving

transformations as part of the physical theory.

To be precise, I will define EM1 and EM2 such that there will be a map f in the

collection of arrows between models (M, ηab, Fab) and (M, ηab, F
′
ab) of EM1 (or EM2, mutatis

mutandis) if there exists an isometry ψ : M → M such that ψ∗(Fab) = F ′ab. When this

35Indeed, to recover condition 1 exactly, perhaps it would appropriate to work with these impoverished
categories.

36One might be tempted to call such maps “symmetries” of the theories, but as Gordon Belot (2012) has
pointed out, there are several ways in which the term “symmetry” is used so I will avoid it. The maps I have
in mind the ones that take models to physically equivalent models, and not necessarily ones that correspond
to other notions of symmetry.

37Let (M,ηab) be Minkwoski spacetime. A Minkowski spacetime isometry is a diffeomorphism ϕ : M →M
such that ϕ∗(ηab) = ηab, where ϕ is the push-forward map associated with ϕ. These maps correspond to
the Poincaré group, consisting of timelike and spacelike translations, Lorentz boosts, and spatial rotations.
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occurs, I will say that f is “generated” by ϕ. Note, too, that this relation is symmetric, and

indeed, ψ−1 : M ′ → M will always generate an arrow in the opposite direction. (In other

words, the maps I have just described are invertible—in category theoretic terms, these

morphisms are isomorphisms.)

A virtue of using the arrows of the categories to represent maps between physically

equivalent models is that it provides a natural way of representing gauge transformations in

EM2: they are simply another class of arrows between equivalent models. Thus in addition

to the maps that preserve M , ηab, and Aa in the sense described above, the arrows of EM2

should also include the collection of arrows corresponding to gauge transformations between

models of EM2 (as well as all compositions of gauge transformations and isometry-generated

maps). Note that these models are such that if a map exists between two of them, it must

be the unique map between those models, since a map between these triplets can only act in

one way. Including gauge transformations with to the morphisms of EM′
2 demonstrates how

specifying a collection of maps can provide information about what the physically relevant

structure of a model is. This information is not contained in a specification of a single model

of EM2, or even by specifying all of the models. But it is encoded once one indicates which

models are physically equivalent.

The next step to translating Glymour’s condition concerns the maps F and G described

above. These now have a natural interpretation as a special kind of functor between EM1

and EM2, which I will call a “translation functor”.

Definition 5.1. Let T1 and T2 be categories whose objects are models of a physical theory,
expressed in terms of tensor fields on a manifold. A translation functor between T1 and T2
is a functor F : T1 → T2 that maps objects in T1 to objects in T2 whose elements can be
covariantly defined in terms of the elements of the source object.

In the present language, then, part of Glymour’s criterion for equivalence will be the existence

of a suitable pair of translation functors.

Condition 1 also requires that the two theories be empirically equivalent, in the sense
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that for every model of one theory there is a model of the other that makes the same

predictions, and vice versa. This condition can also be absorbed into the formalism by

considering an additional category P(T ) whose objects are the possible “predictions” of a

theory T . Given such a category, the relationship between a theory and its predictions can

be represented as a functor P : T → P(T ) that takes models of a theory to that model’s

predictions.38 The very existence of a category of predictions assumes a great deal about a

theory. Moreover, even in cases like the present one, where the predictions of the theories

are reasonably clear, there is quite a bit of flexibility in how one represents the category of

predictions. To be concrete, in what follows I will understand P(EM) to be the skeleton

of EM1, which is the category whose objects are representative elements of the equivalence

classes generated by the arrows of EM1, and whose arrows are just the identity map.39 The

functors PEM1 : EM1 → P(EM) and PEM2 : EM2 → P(EM) then take models to the

physical situation they represent in the obvious way, and take all arrows to identity arrows.

We now have the apparatus to state condition 1 as a relation between categories, using

the notion of an isomorphism between categories.

Definition 5.2. Two categories C and D are isomorphic if and only if there exist functors
F : C → D and G : D → C such that F ◦G = 1D and G ◦ F = 1C, where 1C and 1D are the
identity functors on C and D, respectively.

Condition 1′. Theories T1 and T2 with a common category of predictions P(T ) are theo-
retically equivalent if and only if (1) there exists a pair of translation functors F : T1 → T2
and G : T2 → T1 that together realize a categorical isomorphism between T1 and T2, and (2)
the following diagram commutes (in both directions):

38In some cases, one might represent a theory as a triple consisting of a category of models, a category of
predictions, and a functor between them.

39A skeleton category bears a close relationship to a quotient set; one can think of the objects of the
prediction category thus defined as the various physical situations represented by the equivalence classes of
models in each category.
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T1
F

22

P1

��

T2
G

rr

P2

��
P(T )

This restatement really does capture the content of condition 1: in effect, it requires that

every model of T1 can be explicitly translated into a model of T2 that makes the same

predictions, and moreover the process can be reversed.

Proposition 5.3. EM1 and EM2 are not equivalent by condition 1′.

I will suppress the proof, as it is essentially the same as that of Prop. 4.1.

Thus far, I have simply recovered condition 1 and Prop. 4.1 in a new setting. But

now that I have translated these results, I have the resources available to formulate an

alternative condition that avoids the problems described at the end of the last section. In

the present language, the first problem is that condition 1′ requires that the two categories

be isomorphic. What we really want is a notion of isomorphism of categories “up to model

equivalence”. This idea can be made precise using an equivalence of categories.40

Definition 5.4. Two categories C and D are equivalent if and only if there exist functors
F : C → D and G : D → C such that (1) for every object A ∈ C, there is an isomorphism
ηA ∈ hom(G◦F (A), A) such that for every object B ∈ C and every morphism f ∈ hom(A,B),
the following diagram commutes:

40This definition may call for some explanation. Two categories are equivalent if there are a pair of
functors that are “almost inverses”, in the sense that if you apply the first and then apply the second, you
come back to an object that is (1) isomorphic (by the standard of isomorphism determined by the category
in question) and (2) whose arrows behave in the same way as the original object’s arrows. To take a concrete
example, consider the simple categories C, which consists of two objects A and B with their identities and
a pair of isomorphisms f ∈ hom(A,B) and g ∈ hom(B,A), and D, which consists of a single object C and
its identity. These two categories can be represented by the following pictures.

•A1A
%% f

++
B•

g

kk 1B
yy

•C1C
%%

These two categories are equivalent, with the equivalence realized by the following two functors: F : C → D,
which maps A and B to C, and maps all of the arrows to 1C , and G : D → C, which maps C to A and 1C
to 1A.
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G ◦ F (A)
G◦F (f) //

ηA

��

G ◦ F (B)

ηB

��
A

f
// B

,

and conversely, (2) for every object C ∈ D, there is an isomorphism εC ∈ hom(F ◦G(C), C)
such that for every object D ∈ D and every morphism g ∈ hom(C,D), the corresponding
diagram,

F ◦G(C)
F◦G(g) //

εC

��

F ◦G(D)

εD

��
C g

// D

,

commutes.

For essentially all mathematical intents and purposes, two categories are considered “the

same” if they are equivalent, even if they not necessarily isomorphic. Equivalence of cate-

gories is precisely the required notion of equivalence “up to model equivalence”.

The second problem identified at the end of the last section is the requirement that

there exist translation functors that realize the categorical isomorphism. At the end of the

previous section, I argued that one could not simply drop this requirement, since without it

condition 1 would reduce to empirical equivalence. But in the present setting, that is not

the case. The reason is that the categories EM1 and EM2 contain far more information

than the bare sets EM1 and EM2, encoded in the arrows of the categories. A categorical

equivalence between the categories EM′
1 and EM′

2 preserves this additional information

regarding the arrows of the two theories.

Why should this matter? This relationship between the theories can be understood in

terms of implicit definability. One way of thinking about implicit definability quite generally

is that an object (or a relation, or a function) is implicitly definable in terms of other objects
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just in case the first object is invariant under precisely the same class of transformations

as the objects in terms of which it is to be defined. This notion can be made perfectly

precise in first-order logic, at least for complete theories, by way of Svenonius’ theorem.41 In

first-order logic, of course, it is well known that implicit definability and explicit definability

collapse into one another—this is the content of Beth’s celebrated definability theorem.42

In other logics, however, including full second-order logic, Beth’s theorem is known to fail,

which means that implicit and explicit definability pull apart.43 In the present context, we

are not working in a precise logical setting, but nonetheless we can draw some insight by

analogy: even in contexts where invariance under a class of transformations is not equivalent

to explicit definability, such invariance may nonetheless be interpreted as providing some

notion of (non-explicit) definability. In the present case, one can understand the thing being

implicitly defined to be the physical configuration represented by an equivalence class of

models, since this is what is preserved under the relevant class of transformations.44

These considerations suggest the following alternative to conditions 1 and 1′.

Condition 2. Theories T1 and T2 with a common category of predictions P(T ) are the-
oretically equivalent if and only if (1) there exists a pair of functors F : T1 → T2 and
G : T2 → T1 that together realize a categorical equivalence between T1 and T2, and (2) the
following diagram commutes (in both directions):

T1
F

22

P1

��

T2
G

rr

P2

��
P(T )

.

41See Hodges (1993, Corollary 10.5.2) and surrounding discussion.
42See Hodges (1993, Theorem 6.6.4) and surrounding discussion.
43See Paulos (1976), Burgess (1977), and Makowsky and Shelah (1979). A notion of definability within

physical theories that trades on a similar analogy with Svenonius’ theorem is described by Halvorson and
Swanson (2012).

44In particular, I do not mean to say that a vector potential can be implicitly defined in the way described
above. What is defined is the invariant structure under the equivalence relations in the categories. This, I
claim, is what is shared between two categorically equivalent theories.
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By this criterion, EM1 and EM2 are equivalent.

Proposition 5.5. EM′
1 and EM′

2 are equivalent by condition 2.

Proof. To prove that any two categories C1 and C2 are equivalent, it suffices to show that there

exists a functor F : C1 → C2 that is (1) full and faithful (i.e., for any A,B ∈ C1, the map F :

hom(A,B)→ hom(F (A), F (B)) is bijective) and (2) essentially surjective (i.e., for any A ∈

C2, there is an A′ ∈ C1 such that there exists an isomorphism f ∈ hom(A,F (A′))). We can

define such a functor F : EM2 → EM1 as follows. For any model A = (M, ηab, A
a) ∈ EM2,

set F (A) = (M, ηab, Fab) ∈ EM1, where Fab = ∇[aAb]. Now consider any pair of models

A = (M, ηab, A
a) and A′ = (M, ηab, A

′a) in EM2 for which hom(A,A′) is non-empty. Take

f ∈ hom(A,A′). If F (A) = F (A′), set F (f) = 1F (A1). Otherwise, there must be an isometry

ϕ such that ϕ∗(Aa) = A′a. I claim that ϕ generates a morphism g ∈ hom(F (A), F (A′)).

Since ϕ is already a Minkowski spacetime isometry, we only need to show that ϕ∗(Fab) = F ′ab

(where F ′ab = ∇′[aAb]). It does: ϕ∗(Fab) = ϕ∗(∇[aAb]) = ∇′[aϕ∗(Ab]) = ∇′[aA′b] = F ′ab. So set

F (f) = g. Note that F thus defined is a functor, since it inherits the composition rule

from the properties of diffeomorphisms. Moreover, F is surjective on objects (because every

Faraday tensor has a vector potential that maps to it), which means it is automatically

essentially surjective.

It remains to show that F is full and faithful. First, for any A,A′ ∈ EM2, the re-

striction of F to hom(A,A′) is clearly injective, since either hom(A,A′) = ∅ or else it has

a unique element. Now suppose that there is some g ∈ hom(F (A), F (A′)) such that, for

all f ∈ hom(A,A′), F (f) 6= g. If hom(F (A), F (A′)) = ∅, we are finished, so assume that

hom(F (A), F (A′)) is non-empty. If F (A) = F (A′), then g must be the identity morphism,

and either A = A′ or A and A′ must be related by a gauge transformation. In either case,

there is a map f ∈ hom(A,A′) such that F (f) = 1F (A). So it must be that F (A) 6= F (A′).

It follows that there must be some diffeomorphism ϕ : M → M ′ that generates g. But I

claim that ϕ also generates a map between A and A′. To see this, note that ϕ is already
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a Minkowski spacetime isometry, and moreover, since ϕ∗(Fab) = F ′ab, ϕ
∗(∇[aAb]) = ∇′[aA′b].

This last equation implies that either (1) ϕ∗(Aa) = A′a or (2) ϕ∗(Aa) and A′a are related

by a gauge transformation (because ϕ∗(Aa) and A′a have the same exterior derivative). In

the first case, there is a map f ∈ hom(A,A′) such that F (f) = g, by the definition of

F—namely the map f generated by ϕ. And in the second case, there is a model A′′ such

that Aa and A′′a are related by a gauge transformation h ∈ hom(A,A′′), and such that

ϕ∗(A′′a) = A′a. Thus there is a map h′ ∈ hom(A′′, A′) that is generated by ϕ. Moreover,

F (A′′) = F (A) and F (h′) ∈ hom(F (A), F (A′)) must be g, since it is generated by ϕ. And

so F (h′ ◦ h) = F (h′) ◦ F (h) = g ◦ 1A = g. Thus F restricted to hom(A,A′) is surjective for

any A,A′ ∈ EM2, and F is full and faithful.

We have now shown that F is one half of a categorical equivalence between EM1 and

EM2. Moreover, PEM1 ◦ F = PEM2 , since F takes objects of EM2 to objects of EM1 that

yield precisely the same predictions. It remains to show only that there exists a functor G

that forms the other half of the equivalence and such that PEM2 ◦ G = PEM1 . But this is

easily done: for each B = (M, ηab, Fab) ∈ EM1, simply take G(B) = (M, ηab, A
a), where Aa

is some vector potential for which Fab = ∇[aAb], and let the action of G on arrows simply

be the inverse of the action of F on arrows. Thus F and G realize a categorical equivalence,

and moreover, PEM2 ◦G = PEM1 . �

6. Are NG and GNG theoretically equivalent?

We can now revisit the question at the heart of the present paper. Are NG and GNG

theoretically equivalent by condition 2? One first needs to say what the categories asso-

ciated with NG and GNG are going to be. In the case of the category NG, the objects

will be ordered sextuples (M, ta, h
ab,∇, ϕ, ρ), with ∇ flat, that satisfy Poisson’s equation

(and the curvature conditions (CC2) and (CC3)). In the category GNG, meanwhile, the

objects will be ordered quintuples (M, ta, h
ab,∇, ρ) that satisfy the geometrized version of
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Poisson’s equation. But what about the arrows between the models? For GNG, the answer

seems reasonably clear. As with electromagnetism, one should take the arrows to repre-

sent transformations between physically equivalent models. Two models (M, ta, h
ab,∇, ρ)

and (M ′, t′a, h
′ab,∇′, ρ′) are physically equivalent just in case there exists a diffeomorphism

ψ : M → M ′ such that ψ∗(ta) = t′a, ψ
∗(hab) = h′ab, ρ = ρ′ ◦ ψ, and for any geodesic γ of ∇,

γ ◦ ψ is a geodesic of ∇′.45

The situation forNG is not quite so clear, however. One certainly wants to include arrows

of the sort I have suggested we include in GNG, corresponding to the explicit structure

preserving maps. But are these the only arrows in the category? It depends. There are two

choices, corresponding to two “natural” ways of construing NG:

Option 1. One takes models of NG that differ with regard to the gravitational field to be

distinct.

Option 2. One takes models of NG whose gravitational field and derivative operators are

related by the transformation ϕ 7→ ϕ + ψ and ∇ 7→ ∇′ = (∇, tbtc∇aψ), for any

smooth ψ satisfying ∇a∇bψ = 0, to be equivalent.46

In other words, in the second case one takes the gravitational potential to be a gauge

quantity, much like the vector potential in electromagnetism. In the first case, one does

not. These two options correspond to two different categories. In one case, call it NG1 (and

the associated theory, NG1), one does not add any arrows to the category NG as already

described. The only structure-preserving maps are the ones generated by diffeomorphisms.

This category corresponds to option 1. To represent option 2, on the other hand, one adds

an additional collection of arrows between objects related by the transformation indicated.

45This condition makes sense because a derivative operator is fully characterized by its geodesics (Mala-
ment, 2012)[Prop. 1.7.8].

46Note that, since all of the derivative operators considered in NG and GNG agree once one raises their
index, one can characterize the gauge transformation with regard to any of them without ambiguity.
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Call this category NG2 (and its associated theory NG2). These additional arrows play the

same role in NG2 that the arrows between gauge-equivalent vector potentials play in EM2.

What considerations might lead one to adopt one view of the theory over the other?

I believe, though I am not sure, that the first option aligns better with how physicists

have thought of Newtonian gravitation historically. And moreover, in the presence of cer-

tain boundary conditions—for instance, the assumption that the gravitational field vanishes

at spatial infinity, as is natural when considering matter distributions with spatially com-

pact support, such as the solar system—there is always a unique choice of gravitational

field/derivative operator for a given matter distribution. If one has reason to think that a

particular choice of potential/derivative operator is privileged, there is little to recommend

identifying the privileged choice with other, apparently less physical fields.

That said, there are systems in which option 1 leads to problems. For instance, in cer-

tain cosmological situations, such as in spacetimes with homogeneous and isotropic matter

distributions, one would expect the gravitational field to be non-vanishing everywhere, in-

cluding at spatial infinity. And indeed, under such circumstances, option 1 generates explicit

contradictions, where one can derive that the gravitational potential at any point takes on

multiple values. But if one takes these different choices of gravitational field to be equiva-

lent, then the apparent contradiction dissolves.47 From this point of view, while there may

be systems in which a particular choice of potential/derivative operator is more convenient

than others, one should nonetheless adopt option 2 in general. Such arguments strike me as

compelling, and I tend to agree with the conclusion that option 2 is preferable.

But I will not argue further for this thesis, and for the purposes of the present paper, I

will remain agnostic about which way of understanding NG is preferable. Rather, the point

is simply to remark that once one has distinguished these two possibilities, it is possible

to ask the question with which I began this paper with additional care. Really, we have

47For more on this, see the debate between John Norton (1992, 1995) and David Malament (1995).
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a variety of questions at hand: we have three categories (NG1, NG2, and GNG) and two

conditions (conditions 1′ and 2). Are any of these theories pairwise equivalent by either

criterion?48 None of these theories are equivalent by condition 1′. Moreover, NG1 is not

equivalent to either GNG or NG2 by condition 2. But GNG and NG2 are theoretically

equivalent by condition 2.49 (The situation is summarized by table 1.)

Proposition 6.1. NG2 and GNG are theoretically equivalent by condition 2.

The argument is essentially the same as the proof of Prop. 5.5. I will exhibit the full, faithful,

and essentially surjective functor F : NG2 → GNG and suppress the remaining details. This

functor can be defined as the one that takes objects (M, ta, h
ab,∇, ϕ, ρ) ∈ NG2 to objects

(M, ta, h
ab,

g

∇, ρ) where
g

∇ = (∇,−tbtc∇aϕ). By Theorem 2.2, we know that this destination

object must be in GNG. Now consider any A,A′ ∈ NG such that hom(A,A′) is non-empty,

and any f ∈ hom(A,A′). If F (A) = F (A′), then we can set F (f) = 1F (A). Otherwise,

f is generated by some diffeomorphism ψ : M → M ′, which is such that ψ∗(ta) = t′a,

ψ∗(hab) = h′ab, ϕ = ϕ′ ◦ ψ, ρ = ρ′ ◦ ψ, and if γ : I → M is a geodesic of ∇, then

ψ ◦ γ : I → M ′ is a geodesic of ∇′. I claim that ψ also generates a map g between F (A)

and F (A′). We already know that ψ preserves all the structure shared by models of NG

and models of GNG; it remains to show that if a curve γ : I → M is a geodesic of
g

∇,

then ψ ◦ γ is a geodesic of
g

∇′. But it must be: if γ is a geodesic of
g

∇, then ξa
g

∇aξ
b = 0,

where ξa is the tangent field of γ. We then have ξa(∇aξ
b + tatn(∇bϕ)ξn) = 0. Thus 0 =

ψ∗(ξa(∇aξ
b + tatn(∇bϕ)ξn)) = ψ∗(ξa)(∇′aψ∗(ξa) + t′at

′
n(∇′bϕ′)ψ∗(ξa)) = ψ∗(ξa)(

g

∇′aψ∗(ξa)).

48Actually, before asking whether any of these are equivalent by conditions 1′ and 2, I need to define their
prediction categories. By analogy to P(EM), we will take P(NG) to be the category whose objects are
diffeomorphism equivalence classes generated by quintuples (M, ta, h

ab, ρ, {γ}), where {γ} is a collection of
curves representing the trajectories of massive bodies.

49There is an observation here that deserves mention. Suppose one restricts attention to the collections
of models of NG and GNG in which (1) the matter distribution is restricted to a spatially compact region
and (2) the gravitational field (for models of NG1 and NG2) vanishes at spatial infinity. Then NG1, NG2,
and GNG are all theoretically equivalent by condition 2. The reason is that NG1 and NG2 collapse into
one another, essentially because the conditions I have just described pick out a distinguished gauge. Indeed,
the categories are all isomorphic. But GNG is still not equivalent to the others by condition 1′, because the
functor realizing the isomorphism is not a translation functor.
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Condition 1′ Condition 2
NG1 and NG2 Inequivalent Inequivalent
NG1 and GNG Inequivalent Inequivalent
NG2 and GNG Inequivalent Equivalent

Table 1: A summary of the equivalences and inequivalences of NG and GNG, by the standards set by
conditions 1′ and 2.

But since ψ∗(ξa) is the tangent field to ψ ◦ γ, it follows that ψ ◦ γ must be a geodesic

relative to
g

∇′. Thus we can set F (f) = g. Since diffeomorphisms compose, F is a functor.

Moreover, F can be shown to be full, faithful, and essentially surjective by the same set

of arguments use in the proof of Prop. 5.5; similarly, it is clear that it commutes with the

prediction functors, and that there exists a functor G : GNG → NG2 that with F realizes

the equivalence and moreover also commutes with the prediction functors. �

It immediately follows that there exists a (natural) way of construing NG, and a (reason-

able) standard of theoretical equivalence such that NG and GNG are theoretically equivalent.

Moreover, by both this standard of theoretical equivalence and Glymour’s standard of the-

oretical equivalence, the way of construing NG that is theoretically equivalent to GNG is

not equivalent to another (perhaps also natural) way of construing NG. It is not hard to see

what the physical interpretation of this latter inequivalence should be: NG1, understood

as a theory, reifies the gravitational field in the sense that it distinguishes spacetimes that

differ only with regard to the gravitational field (modulo diffeomorphism); NG2 does not. In

NG2, the gravitational field is an instrumental quantity, akin to the vector potential, and the

choice of a gravitational field/derivative operator pair is a convention. In some cases, there

may be a distinguished choice that arises from boundary conditions, but such conditions

can at best reflect mathematical convenience, since alternative choices that fail to satisfy

stated boundary conditions should not be interpreted as attributing particular features to

the world. Likewise, the interpretation of the equivalence of GNG and NG2 is immediate:

NG2 is equivalent to GNG in just the same sense that EM2 is equivalent to EM1: GNG is
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a gauge independent formulation of NG2.

7. The epistemology of geometry and the curvature of spacetime

I have by now made the principal arguments of the paper. These are, in short, that condition

1, does not capture the sense in which EM1 and EM2 are synonymous. However, there is

a natural alternative to condition 1 that does capture the sense in which EM1 and EM2

are synonymous. And by this criterion, GNG and NG are synonymous too, if one takes

NG to be a gauge theory in the sense described above. Moreover, condition 2 captures an

important physical distinction between the two ways of understanding NG.

There are a few places where one might object to this argument. One might say that it

is simply inappropriate to represent a theory with a category in the way I have proposed,

either because there is never a satisfactory way to formalize theories or because this particular

formalization is lacking. Another kind of objection might be that, even if one accepts the

representations of theories proposed here (for some purposes, anyway), condition 2 does not

adequately capture any interesting sense of synonymy between theories. I do not agree with

either of these objections, but I will not consider them further. For the remainder of this

paper, I will suppose that the representation of theories offered here is unobjectionable, and

moreover, that condition 2 provides at least a reasonable notion of synonymy that captures

some robust sense in which these theories are equivalent. It seems to me that if this is right,

there are several philosophical morals to draw.

The first is that this conclusion is not in conflict with at least one of Glymour’s prin-

cipal philosophical claims, regarding the existence of empirically equivalent, theoretically

inequivalent theories. This is because even if NG2 and GNG are theoretically equivalent,

NG1 and GNG are still inequivalent, even by condition 2. Moreover, Glymour’s further

claim, that GNG is better supported by the empirical evidence even though it is empiri-

cally equivalent to NG, is only slightly affected, in that one needs to specify that GNG is
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only better supported than NG1 despite their empirical equivalence. But this makes sense:

the reason, on Glymour’s account, that GNG is better supported than NG is supposed to

be that NG makes additional, unsupported ontological claims regarding the existence of a

gravitational field. As I have argued, though, a natural way of understanding the difference

between NG1 and NG2 would be that NG1 makes the ontological claim that Glymour argues

is unsupported, while NG2 denies it.50

There is another purpose to which Glymour puts these arguments, however, that I think

is affected by the present conclusions. It concerns the epistemology of geometry and the

metaphysics of space and time. There is a view, originally due to Poincaré and Reichenbach

though also held by others, that one can never know the geometrical properties of spacetime

since there always exist empirically equivalent theories that nonetheless differ with regard

to (for instance) whether spacetime is curved or flat.51 These authors conclude that the

curvature (or lack thereof) of spacetime is a conventional matter. Glymour argues against

conventionalism by pointing out that (on his view of confirmation) the fact that two the-

ories are empirically equivalent does not imply that they are equally well confirmed, and

moreover, that one might have better evidence for one member of a collection of empirically

equivalent theories over the others. But the present discussion suggests that, at least in some

cases, there is another possibility that is not generally considered: theories that attribute

apparently distinct geometrical properties to the world may nonetheless be synonymous.

Let me make this idea more precise. I have argued that the right way of understanding

NG2 is as a theory that takes the gravitational potential to be a gauge quantity, and the

trajectories of bodies given a background matter distribution to be the invariant content of

50I should be explicit that I do not mean to endorse any particular views on confirmation here. All I want
to say is that if one were inclined to hold that GNG is better supported than NG on the grounds Glymour
argues for, then the considerations offered in this paper would only nuance that view slightly, in the way
specified. Of course, one might have other reasons for rejecting the initial claim altogether.

51For a clear and detailed description of the positions that have been defended on the epistemology of
geometry in the past, see Sklar (1977).
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the theory. This might lead a philosopher studying NG2 to conclude that the gravitational

potential should not be interpreted as a realistic feature of the world. This situation is to be

contrasted with NG1, where the particular value of the gravitational field at every point of

spacetime, though undetermined by the empirical evidence, is nonetheless a realistic feature

of the world. GNG, meanwhile, does not make any reference to a gravitational potential,

and so in this sense GNG and NG2 appear to have the same ontological implications, at

least with regard to gravitational potentials.

However, though the gravitational potential is not invariant under the gauge transfor-

mation between models of NG2, some geometric properties of spacetime are preserved. In

particular, in all models of NG2, spacetime is flat : the invariant content of the models of

NG2 is the trajectories of bodies through a flat spacetime. In generic models of GNG, con-

versely, spacetime may be curved. To put this point another way, whether or not spacetime

is curved is not preserved under a natural theoretical equivalence relation. Two theories can

be synonymous in the precise sense I have described, but differ with regard to their answer

to what otherwise might have seemed like a clear metaphysical question. At least in this

context, one can maintain that a classical spacetime admits equally good, fully equivalent

descriptions as either curved or flat.

I want to emphasize that this view is not a recapitulation of Reichenbach’s conventional-

ism. The relationship between these description is not (merely) one of empirical equivalence,

and moreover, I do not think that two empirically equivalent theories need be synonymous.

Rather, the point is that in the presence of certain specific structural features of Newtonian

gravitational theory, properly understood, there is a stronger sense of equivalence between

curved and flat descriptions of spacetime. It is not that one can freely choose between two

descriptions; it is that the apparently different descriptions actually say the same thing.

This discussion suggests a more general point. Many philosophers take at least part of

their work to involve identifying the metaphysical commitments of various physical theories.
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But suppose one were inclined to ask what the commitments of NG2 should be taken to be.

It might seem that NG2 tells us something important about the metaphysical character of

spacetime—namely that it is flat. This feature, it turns out, is not preserved under a natural

theoretical equivalence relation. But this raises an immediate worry: is there any way of

knowing, by looking at NG2 in isolation, that the flatness of spacetime is not preserved

under the theoretical equivalence map? It seems to me that the answer is no. And this,

I think, advises caution. Given a physical theory, it often seems possible to identify what

that theory says about the world, or even to use that theory to answer certain antecedent

philosophical questions concerning (say) ontology or the nature of space and time. Doing

so often involves identifying certain features of the theory or its models that are taken to

bear on the question at hand—for instance, a philosopher who believed NG2 might identify

the flatness of the derivative operators in all models of NG2 and take this to bear on a

metaphysical question concerning the flatness of space and time. But what if, as in this

case, the feature in question is not invariant under all theoretical equivalences?

It seems to me that in general, one cannot know in advance what features of a theory or

its models will prove invariant under this theoretical equivalence map (or others), aside from

the features with direct empirical consequences.52 If this is right, then one might be skeptical

of a certain kind of program in philosophy of physics, or in metaphysics, whereby one tries

to read off the metaphysical commitments of contemporary physical theories, because it is

not clear what features of any given theory are shared by all theories in its equivalence class.

Of course, one can still learn things about the world, and about philosophical questions in

particular, through the careful study of scientific theories. In the present case, for instance,

the claim that there is a sense of theoretical equivalence between a description of the world in

which spacetime is flat and a description of the world in which spacetime is curved provides

52There is something else that is preserved under the present theoretical equivalence relation, namely what
one might call “the possibility structure” of the theory, in the sense of (1) what constitutes a difference in
physical configuration, and (2) what the possible configurations are.
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deep insight into old philosophical questions. But it seems that what one learns, at least in

many cases, may not be quite what one had hoped. For instance, one might discover that a

distinction that seemed to make perfect sense in the abstract, does not in fact correspond

to a meaningful distinction within the context of a particular theory (or rather, equivalence

class of theories).

By now, some readers might be worried. Indeed, one might be inclined to reject the

criterion of equivalence I have proposed on the grounds that she has antecedent or even a

priori reason for thinking that there is a meaningful distinction between a theory that says

spacetime is flat and one that says spacetime is curved—or more generally, that she already

knows what the metaphysical distinctions are, and a notion of theoretical equivalence that

does not preserve the metaphysical structure of a theory is an unsatisfactory criterion of

equivalence. The upshot would be an argument that GNG and NG must be inequivalent,

since they have different metaphysical commitments.

I think this position is probably tenable, though it seems to me that it gets things

backwards. At the very least, let me simply say again that there is another way of looking

at matters, whereby one begins by assuming that what kinds of distinctions one can draw

depend on your physical theory. On this view, what the theoretical equivalence of NG2 and

GNG shows is that, within this theoretical context, a distinction that one otherwise thought

was meaningful—i.e., the distinction between whether spacetime is curved or flat—turns

out to be dependent on one’s choice of (fully equivalent) representation. This point might

be made more clear by pointing out that in the context of relativity theory, it would seem,

one does not have an equivalent theory to general relativity according to which spacetime

is always flat.53 And so, I do not mean to say that one can never make a meaningful

53At least, I do not know of one. Some physicists have argued that so-called teleparallel theories of gravity
offer an example of a spacetime theory in which spacetime is always flat, but which is at least empirically
equivalent to general relativity (see especially Knox, 2011, and references therein). It is an interesting open
question whether there is a precise sense in which teleparallel theory and general relativity are theoretically
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distinction between whether spacetime is curved or flat; rather, it is that one cannot make

that distinction within the framework of Newtonian gravitation (suitably understood).
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