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We develop a relativistic velocity space called rapidity space from the single assumption of Lorentz
invariance, and use it to visualize and calculate effects resulting from the successive application
of non-colinear Lorentz boosts. In particular, we show how rapidity space provides a geometric
approach to the Wigner Rotation and the Thomas Precession in the same way that spacetime
provides a geometrical approach to kinematic effects in Special Relativity.

1. INTRODUCTION

Suppose an observer goes from an inertial frame S,
fixed in the lab, to an inertial frame S′, moving with a
constant velocity with respect to S by the application
of two Lorentz transformations, each of which is a pure
boost. In this case, contrary to what one might expect,
the single Lorentz transformation going directly from S
to S′ is not necessarily a pure boost but rather is the
product of a boost and a rotation. The (unexpected) ro-
tation was discovered by L. H. Thomas [1] in 1926, and
derived thirteen years later by E. P. Wigner [2] in his sem-
inal article on representations of the Lorentz Group. If
successive non-colinear boosts return the spatial origin
of S′ to the spatial origin of S, then all of the Thomas-
Wigner Rotations along the way combine to produce a
net rotation of S′ with respect to S called the Thomas
Precession. [3][4][5][6][7][8]

The Thomas Precession is an essential part of quan-
tum courses discussing relativistic corrections to the
Hamiltonian of a hydrogen atom, since it changes the
non-relativistic form of the spin-orbit term by a factor
of one-half. Rather than derive this result, however,
some quantum texts simply state it without giving any
references,[9] others state it and reference only Thomas’
original article,[10] while others state it and appeal to the
Dirac Equation for its justification.[11][12]

The relatively few texts and journal articles which
derive the Thomas Precession often use mathemat-
ics that is somewhat sophisticated[13] such as infintes-
imal generators of the Lorentz Group, [4] “a weakly
associative-commutative groupoid,”[14] “gyrogroups and
gyrovector spaces,”[15] the Gibbs method for adding fi-
nite rotations, [16] holonomy group transformations and
the Clifford-Dirac algebra,[17] the tetrad formalism,[18]

Fermi-Walker transport,[19] unboosted Fermi-Walker
frames,[20] etc., or give straightforward but lengthy al-
gebraic calculations. [5][6] After many years of studying
the Thomas Precession, we wondered if there was a rel-
ativistic velocity space in which it could be treated geo-
metrically and in this way made easier to understand,

just as relativistic kinematic problems are often easier to
understand when treated geometrically in spacetime.

Perhaps the most intriguing approach to constructing
a relativistic velocity space was mentioned in the 1950’s
by Landau and Lifshitz [21]. They begin an exercise for
the reader by noting that given two non-colinear rela-
tivistic velocities ~v and ~v + d~v, the relative velocity d~v
can be considered as a line element in a 3-D velocity
space in which each point is specified by the azimuthal
and polar angles of ~v, and a radial coordinate equal to
a function of v called the rapidity. To conclude the ex-
ercise, Landau and Lifshitz ask the reader to show that
this relativistic velocity space is non-Euclidean, with a
hyperbolic geometry.

Landau and Lifshitz don’t reference the origin of this
exercise, so it’s not clear whether they discovered the
the velocity space themselves or are simply quoting work
published previously in the Russian or German literature.
Turning to other sources, we found that Pauli [22] credits
a 1909 paper written in German by Sommerfeld as the
first place in which relativistic velocity addition was re-
lated to the analog of vector addition on the surface of a
sphere of radius i. (Sommerfeld most likely agreed with
this since he was the editor of the series in which Pauli’s
book first appeared.)

Both Pauli and Rosenfeld [23] credit a paper written in
Russian by the Croatian mathematician Variçak as the
first place in which relativistic velocity addition was re-
lated to the analog of vector addition in a hyperbolic
space. Pauli cites four additional articles (also written in
Russian) by Variçak, published between 1910 and 1919,
and Rosenfeld notes that Variçak summarized and ex-
panded upon his work in a book (written in Russian)
published in 1924. The two other references on this sub-
ject cited by Rosenfeld also are written in Russian, with
one published in 1963 and the other in 1965.

Given this history, it seems likely that Landau and
Lifshitz’s text was the first written in English to men-
tion a relativistic velocity space with hyperbolic geom-
etry. Indeed, in 1997, when P. K. Aravind [24] showed
how the Thomas-Wigner Rotation and Thomas Preces-
sion had properties identical to those of areas in a hy-



2

perbolic space, he credited this discovery to “the crucial
hint . . . from Landau and Lifshitz . . . ”. More recently,
Criado and Alamo [25] chose a hyperboloid in spacetime
to represent a space of relativistic velocities and then
mapped this space onto a unit disk with hyperbolic geom-
etry (called the Poincaré Disk). They then drew upon
results derived in non-Euclidean geometry texts, such as
the law of cosines and the equations of geodesics in a
hyperbolic space, to show how certain properties of hy-
perbolic triangles correspond to certain properties of rel-
ativistic velocities and velocity addition.

The interesting results presented in both of these pa-
pers are not readily accessible to many physicists since
they depend upon formulas and theorems proved in non-
Euclidan geometry courses. Furthermore, although these
articles make the connection between relativistic velocity
addition and hyperbolic geometry even more compelling,
neither explains this connection or develops it systemat-
ically from first principles.

The purpose of this paper is to derive a relativistic
velocity space (called rapidity space) from first princi-
ples, and to demonstrate how it provides a geometric
approach to solving problems involving the relativistic
addition of non-colinear velocities and successive, non-
colinear, Lorentz boosts. The development is completely
self-contained and assumes no previous knowledge of hy-
perbolic geometry. Beginning with the single require-
ment of Lorentz invariance, we construct rapidity space
using an approach that parallels the one used to establish
the geometry of spacetime. We find that just as so many
kinematic effects in special relativity are more easily and
elegantly understood once the spacetime metric

ds2 = dx2 + dy2 − c2dt2 (1.1)

is established (in a spacetime with two spatial and one
time dimension), so too are many aspects of the addition
of non-colinear boosts more easily understood once the
rapidity-space metric

ds2 =
(

2
1 − x2 − y2

)2

(dx2 + dy2) (1.2)

is established (with x and y related to the usual compo-
nents of velocity, as defined in Section 5). In particular,
once the main properties of rapidity space have been de-
veloped, exact expressions for the Thomas-Wigner Ro-
tation and the Thomas Precession can be found geo-
metrically. Furthermore, working in rapidity space al-
lows various qualitative aspects of these effects to be dis-
played geometrically, some of which are more difficult to
prove with the algebraic equations alone. Indeed, we have
found the relativistic velocity (rapidity) space developed
here to be as accessible and useful for understanding the
relativistic addition of non-colinear velocities, and vari-
ous aspects of successive, non-colinear Lorentz boosts, as
spacetime has been for understanding kinematic effects
in special relativity.

Before ending this section, we note that the material
presented here not only develops a geometric approach to
non-colinear Lorentz boosts and the relativistic addition
of non-colinear velocities, it also unifies (and occasion-
ally corrects) results published previously in a number
of articles and texts. In order to do this while at the
same time presenting the subject in a self-contained and
clear manner, we have ended up with a longer article
than would otherwise have been the case. However, in
our opinion, the lack of an accessible and complete treat-
ment has contributed to some misunderstandings which
we hope the present article, as it stands, will help cor-
rect. Those who would rather bypass the derivations and
proofs can accept that there is a relativistic velocity space
whose metric is given by Eq.(4.29) and whose geodesics
are described at the end of Section 6. They can then pro-
ceed directly to the applications presented in Section 7.
Sections 2 through 6 present the proofs and derivations
needed to establish the relativistic velocity space and its
properties, while Section 8 is included for those interested
in how some of what is presented here is expressed with
group theory, quaternions, spinors, etc.

2. NOTATION AND BACKGROUND

Consider two inertial frames S and S′ whose origins
are coincident when t = t′ = 0, and whose x and x′ axes
are aligned. (This is called the standard configuration,
and it’s easy to show that the linearity of Lorentz trans-
formations makes this choice always possible for any two
inertial frames S and S′.[26]) A non-trivial Lorentz trans-
formation from S to an S′ moving with a velocity ~v with
respect to S is called a boost if it preserves the orienta-
tion of the spatial axes and leaves the sign of the time
component unchanged. If this boost is in the x-direction,
then, as is well known, the transformation equations are

x′ = γ(x − vt), (2.1a)
y′ = y, (2.1b)
z′ = z, (2.1c)

t′ = γ
(
t − vx

c2

)
, (2.1d)

with γ = 1/
√

1 − v2

c2 . In what follows, we restrict our-
selves to spacetimes with one time and two spatial dimen-
sions since this is sufficient for understanding the most
common cases of Thomas Rotation and Precession.[27]

For convenience, let x1 = x, x2 = y, x3 = ct, and β =
v/c. Using this notation, γ = (1 − β2)−

1
2 and Eqs.(2.1)
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become



x′
1

x′
2

x′
3




=




γ 0 −γβ

0 1 0

−γβ 0 γ







x1

x2

x3




. (2.2)

If we let x represent the column matrix on the right
hand side of the above equation, then the length (norm)
squared of x can be expressed as

x2
1 + x3

2 − x2
3 = xT




1 0 0

0 1 0

0 0 −1




x = xT Gx. (2.3)

More generally, any linear transformation Λ is a Lorentz
transformation if and only it leaves the spacetime metric
invariant:

x′T Gx′ = xT Gx (2.4)

for all x, or equivalently, if and only if

ΛT GΛ = G. (2.5)

3. RELATIVISTIC VELOCITY ADDITION AND
THE RAPIDITY

The rapidity φ of a boost ~β is defined by the equation

φ ≡ arctanhβ. (3.1)

Thus,

β = tanhφ, (3.2a)
γ = coshφ, (3.2b)

γβ = sinh φ. (3.2c)

Using the rapidity allows Lorentz boosts to be ex-
pressed in two alternative and interesting ways. In the
first, putting the rapidity into Eq.(2.2) gives




x′
1

x′
2

x′
3




=




coshφ 0 − sinh φ

0 1 0

− sinh φ 0 coshφ







x1

x2

x3




, (3.3)

which illustrates that the rapidity can be interpreted as
an imaginary rotation angle in spacetime.

A second way of expressing Lorentz boosts is found by
introducing the new coordinates (ξ, η),[28] with

ξ ≡ x3 + x1 and η ≡ x3 − x1. (3.4)

Using these coordinates, Eq.(3.3) can be expressed rather
simply as

ξ′ = e−φ ξ (3.5a)
η′ = eφ η. (3.5b)

For future reference, note that Eqs.(3.5) also can be writ-
ten in the form

ξ′ = (γ − γβ)ξ =

√
1 − β

1 + β
ξ (3.6a)

η′ = (γ + γβ)η =

√
1 + β

1 − β
η. (3.6b)

The ξ and η coordinate axes lie on the light cone
(
√

x2 + y2 = ±ct) and transform into themselves under
this type of Lorentz boost. Expressed in another way,
these axes are eigenvectors of the boost in Eq.(3.3) with
real eigenvalues e±φ which, as shown in Eq.(3.12), are
simply the blue- and redshift factors in the relativistic
Doppler effect. [29]

The rapidity is most commonly used to simplify the ad-
dition of colinear relativistic velocities. As is well-known,
the relativistic addition of two colinear velocities ~v1 and
~v2 gives a resultant (colinear) velocity ~v with magnitude

v =
v1 + v2

1 + (v1v2/c2)
⇐⇒ β =

β1 + β2

1 + β1β2
. (3.7)

The correct generalization of this result to n colinear ve-
locities isn’t at all obvious. However, if we reexpress
Eq.(3.7) using the rapidity, we find that

φ = arctanhβ = arctanh
(

β1 + β2

1 + β1β2

)

and, using the identity

arctanh α =
1
2

ln
(

1 + α

1 − α

)
, (3.8)

we have

φ =
1
2

ln
(1 + β1)(1 + β2)
(1 − β1)(1 − β2)

. (3.9)

Thus,

φ =
1
2

ln
(

1 + β1

1 − β1

)
+

1
2

ln
(

1 + β2

1 − β2

)
(3.10a)

(3.10b)
= arctanhβ1 + arctanhβ2 (3.10c)
= φ1 + φ2. (3.10d)

Expressing the sum of two colinear velocities in the
form of any of Eqs.(3.10) rather than in the usual form
of Eq.(3.7), the relativistic sum of n colinear velocities
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~β1, ~β2, . . . , ~βn is easily shown to have magnitude β , with

φ = arctanhβ (3.11a)

=
1
2

ln
(1 + β1)(1 + β2) . . . (1 + βn)
(1 − β1)(1 − β2) . . . (1 − βn)

(3.11b)

=
1
2

ln
(

1 + β1

1− β1

)
+ . . . +

1
2

ln
(

1 + βn

1 − βn

)
(3.11c)

= arctanhβ1 + · · · + arctanhβn (3.11d)
= φ1 + φ2 + . . . + φn. (3.11e)

Thus, the rapidity provides an easy way to express the
sum of n colinear velocities when n ≥ 2.

We end this section by noting that using the Lorentz
transformation as it is written in Eqs.(3.5) allows us to
express Eqs.(3.11) in one other useful form.[30] Combin-
ing Eqs.(3.5b)and (3.6b), we have

eφ =

√
1 + β

1 − β
, (3.12)

and using this relation in Eq.(3.11e), we have

eφ =
(
eφ1eφ2 . . . eφn

)
(3.13)

which implies that
(

1 + β

1 − β

)
=

(
1 + β1

1 − β1

) (
1 + β2

1 − β2

)
. . .

(
1 + βn

1 − βn

)
(3.14)

Equation (3.14) provides a surprisingly easy way to find
the resultant β of the relativistic sum of n colinear boosts.

4. RAPIDITY SPACE.

In this section we derive a 2-D relativistic velocity
space, called rapidity space, directly from the 3-D space-
time of special relativity (i.e., from the spacetime with
two spatial and one time dimension). Using the coordi-
nates x1, x2, and x3 defined in Section 2, the line element
squared for this spacetime is

ds2 = (dx1)2 + (dx2)2 − (dx3)2. (4.1)

We choose this particular form of ds2 because in the x3 =
0 plane it reduces to the usual Euclidean relation

ds2
E = (dx1)2 + (dx2)2. (4.2)

Suppose we fix ourselves in one inertial frame and con-
sider another with the same spacetime origin but moving
with a velocity ~v relative to the first. The spatial origin
of this second frame then appears to us as following a
straight line (x(t), y(t)) = ~vt, where (v/c) < 1. Thus its
trajectory is a line emanating from the origin and lying
within the light cone. This line, in xi-coordinates, also

FIG. 1: The hyperboloid and Klein (or simultaneity) models
of rapidity space. Note that any possible time-axis intersects
each surface exactly once, so the point of intersection can be
used to represent that axis. (Part of the light cone has been
removed to make the figure easier to understand.)

can be described as the one formed by all the scalar mul-
tiples of the vector (~β, 1), where ~β = ~v/c. Turning this
statement around, we can say that every straight line
through the origin which lies within the light cone repre-
sents the trajectory of the origin of some inertial frame
traveling with a velocity ~v relative to the fixed inertial
frame represented by the spacetime.

Another way of describing all the straight lines through
the origin and within the light cone is to note that each
can be viewed as the x′

3 axis of some inertial frame ob-
tained from the original (x1, x2, x3) frame by a unique
boost. Since each x′

3 axis corresponds to one particular
velocity (and visa versa), we can create a model of veloc-
ity space by choosing one point from each x′

3 axis. The
set of all such points will be a velocity space since each
point in it will represent a unique velocity, and since all
velocities ~β with magnitude β < 1 will be represented.

We now construct a geometric model for velocity space.
There are several natural ways to do this. For example,
we could start with all the points (x1, x2) lying in the
plane x3 = 1; alternatively, we could start with all the
points lying on the hyperboloid (x1)2 + (x2)2 − (x3)2 =
−1.

As shown in Figure 1, the first choice is the simultane-
ity plane x3 = 1 for an observer in the inertial frame
represented by our spacetime, while the second is the
set of all points for which the proper time τ = 1. The
first choice results in a velocity space known as the Klein
model, which is not the best choice for our purposes since
angles in this model do not appear like Euclidean angles
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(i.e., the Klein model is not conformal [31]). The reason
we would like a conformal model is that the relativistic
addition of non-colinear velocities, the Thomas-Wigner
Rotation and the Thomas Precession all are built upon
understanding angles between successive boosts, so only
those spaces in which angles behave like Euclidean angles
can be expected to offer the geometric insight we seek.

The second choice, of all the points that lie on the
hyperboloid of revolution, does result in a conformal ve-
locity space and is in fact the one chosen by Criado and
Alamo. This choice is both reasonable and convenient
since the metric on this space, and the geometric proper-
ties which follow from it, are well-known to mathemati-
cians. However, few of us are good at judging angles on
a curved surface.

So how do we motivate or justify choosing one model
over another? Given that we are free to choose any sur-
face created by any method of choosing one point from
each x′

3 axis, why choose the hyperboloid? How do we
know there isn’t some other way of choosing a point from
each x′

3 axis that will lead to an even more convenient or
appropriate model of velocity space?

Rather than trying to justify one choice over another
after the fact, we construct a model of relativistic veloc-
ity space from first principles by following the method
used to derive spacetime and the spacetime metric. In
that case, as is well-known, spacetime is developed from
the physical requirement that “the speed of light is inde-
pendent of the motion of the source and is the same in
all inertial frames.” The mathematical statement of this
property,

r2 = (ct)2 ⇐⇒ x2 + y2 − (ct)2 = 0 (4.3)

leads to interpreting the quantity

x2 + y2 − (ct)2 (4.4)

as the distance squared in a (3-D) spacetime where
Lorentz transformations are represented by linear coordi-
nate transformations Λ satisfying Eq.(2.5). Thus, rather
that choosing a priori the nature of spacetime, a physical
invariance is used to deduce a metric that determines its
mathematical properties.

We use this same approach to deduce the geometry of
the relativistic velocity space called rapidity space. We
begin by noting that Lorentz transformations acting on
spacetime also act on the set of rays inside the light cone
emanating from the origin, and that each of these rays
has a one-to-one correspondence with a rapidity. Thus,
the invariance of the spacetime metric Eq.(4.1) under
Lorentz transformations can be used to define a metric
on the rays (or rapidities) that also is Lorentz invariant.

To find this metric, first note that since we are choosing
the points in rapidity space to correspond to rays inside
the light cone which emanate from the spacetime ori-
gin, the metric in rapidity space should be expressible in

terms of the spacetime coordinates. That is, there should
be functions fi,j such that the line element squared in ra-
pidity space can be expressed in the form

ds2 =
3∑

i,j=1

fi,j(x1, x2, x3)dxidxj . (4.5)

However, since any two points on the same ray in space-
time specify the same rapidity, the line element in rapid-
ity space must be the same regardless of which spacetime
points on the ray we choose. Thus, for any λ, we require

ds2(x1, x2, x3) = ds2(λx1, λx2, λx3). (4.6)

Now the spacetime form ds2 = dx2
1 + dx2

2 − dx2
3 does

not have this property since

ds2(λx1, λx2, λx3) = λ2ds2(x1, x2, x3). (4.7)

However, we can obtain a ds2 with the property given
in Eq.(4.6) by using a simple but clever trick: first take
the logarithm of both sides of Eq. (4.7) (which changes
the multiplication by λ2 into the addition of ln λ2), and
then differentiate (so the ln λ2 term disappears).

More formally, negative one times the spacetime inner
product,

q(~x, ~y) = −x · y = −x1y1 − x2y2 + x3y3, (4.8)

is positive for rays within the light cone, and has the
property

q(λ1~x, λ2~y) = λ1λ2q(~x, ~y). (4.9)

Taking the logarithm of both sides, we find

ln q(λ1~x, λ2~y) = ln λ1 + ln λ2 + ln q(~x, ~y). (4.10)

Finally, taking the differential of both sides with respect
to x and y yields

dxdy ln q(λ1~x, λ2~y) = dxdy ln q(~x, ~y). (4.11)

Thus we are led to look for a rapidity space metric
whose inner product has the form

dxdy ln (−x · y) = dxdy[ln (x3y3 − x1y1 − x2y2)]

= dx

[
x3dy3 − x1dy1 − x2dy2

x3y3 − x1y1 − x2y2

]

= (x · y)−2[(dx · dy)(x · y) − (x · dy)(y · dx)].

Setting x = y, we see that the line element squared in
rapidity space should have the form

ds2 = K(x · x)−2
[
(dx · dx)(x · x) − (x · dx)2

]
. (4.12)

where K is an arbitary constant.
Recall that even though the line element in Eq. (4.12)

is written in terms of spacetime coordinates, it also is a
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function of the rays (inside the light cone and through
the origin) on which those spacetime points lie.

As mentioned above, in order to better visualize the
geometry that follows from ds2 in Eq. (4.12), we may
choose as a model of relativistic velocity space any surface
that intersects each ray in exactly one point. If such a
surface is expressed as

x3 = g(x1, x2) (4.13)

then, by substituting this expression for x3 into
Eq.(4.12), we can express the metric in terms of the two
coordinates x1 and x2. While we have great freedom
in selecting the function g, several judicious choices will
greatly simplify our model.

First, since Lorentz transformations include rotations,
and since we seek a metric that is invariant under Lorentz
transformations, it is natural to choose a surface that has
rotational symmetry. Thus, we require

x3 = g(
√

(x1)2 + (x2)2) ≡ g(r). (4.14)

To find dx3 in terms of x1 and x2, we apply the chain
rule to Eq.(4.14), giving

dx3 =
g′

r
(x1dx1 + x2dx2) , (4.15)

with

g′ ≡ dg

dr
. (4.16)

Since

−x · x = x2
3 − x2

1 − x2
2 = g2 − r2, (4.17)

we can rewrite Eq.(4.12) as

ds2 = K(g2 − r2)−2
[
(dx2

3 − dx2
1 − dx2

2)(g
2 − r2)

− (x3dx3 − x1dx1 − x2dx2)2
]
.

(4.18)

Using Eq.(4.14) and Eq.(4.15) in Eq.(4.18) and doing
some algebra, we find that

ds2 =
[

K

r2 − g2

]
(dx2

1 + dx2
2) −

K

[
g′2(r2 − g2)

r2
+

(
1 − gg′

r

)2
] (

x1dx1 + x2dx2

r2 − g2

)2

.

(4.19)

While there is still great freedom in our choice of the
surface g, we now impose our desire to have a model that
is conformal.[32] We note that a metric will be conformal
if it is a multiple of the Euclidean metric, even if the
multiplicative factor varies from point to point. Thus,
Eq.(4.19) will be a conformal metric if cross terms like

dx1dx2 are not present. To this end, we look for a surface
g for which

g′2(r2 − g2)
r2

+
(

1 − gg′

r

)2

= 0 (4.20)

=⇒ g′(g′r − 2g) + r = 0. (4.21)

One way to solve this first order non-linear differential
equation for g is to look for solutions of the form

g = Ar2 + Br + C. (4.22)

Putting the above equation for g into Eq.(4.21) we find
that g will be a solution if the coefficients A, B, and C
satisfy the three equations

2AB = 0, (4.23)

B2 + 4AC = 1, (4.24)
2BC = 0. (4.25)

One set of coefficients that satisfies these equations is
A = ± 1

2 , C = ± 1
2 , and B = 0, in which case [33]

g = ±
(

1 + r2

2

)
. (4.26)

Therefore, using Eq.(4.26) in Eq.(4.19), we conclude
that

ds2 =
(

K

r2 − g2

)
(dx2

1 + dx2
2) (4.27)

=
(

4K

2r2 − r4 − 1

)
(dx2

1 + dx2
2) (4.28)

=⇒ ds2 =
(

2
1− r2

)2

(dx2
1 + dx2

2). (4.29)

(Note that since we prefer distances in velocity space to
be non-negative and real, we have chosen K = −1 in
Eq. (4.29).)

The surface described by Eq.(4.26) is

x3 ≡ g =
1 + r2

2
=

1 + x2
1 + x2

2

2
, (4.30)

which is a paraboloid of revolution about the x3 axis with
vertex at x1 = x2 = 0, and x3 = 1/2. The paraboloid
also goes through points with r2 = x2

1 + x2
2 = 1 and x3 =

1, which are on the light cone. In fact, not only does the
paraboloid touch the light cone at r = 1, but the light
cone is tangent to the paraboloid at this point since

∆(ct)
∆(r)

∣∣∣
r=1

→
d

dr
(ct)

∣∣∣
r=1

=
d

dr

(
1 + r2

2

) ∣∣∣∣∣
r=1

= 1 ,

(4.31)
which is exactly the slope of the light cone.

As shown in Figure 2, with the exception of the x3-axis,
each ray emanating from the origin and inside the light
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FIG. 2: The paraboloid model. Since each non-vertical time-
axis intersects the paraboloid in two points, the lower point
is chosen as its representation in this model.

(x1,x2,x3)

(x1,x2)

FIG. 3: Possible time axes correspond to their unique
points of intersection with the lower part of the paraboloid,
which then correspond by downward orthogonal projection to
unique points in the Poincaré disk.

cone intersects the paraboloid twice: once below the disk
x3 = 1 and once above it. Since we only need a single
point from each ray to create a velocity space, we only
use that part of the paraboloid which is below the disk
(i.e., points on the paraboloid with |x3| < 1), as shown
in Figure 3.

Finally, before ending this section, note that the line
element squared given in Eq. (4.29) can be expressed in
plane polar coordinates as

ds2 =
(

2
1 − r2

)2

(dr2 + r2dθ2). (4.32)

5. VELOCITY SPACE, RAPIDITY SPACE AND
THE POINCARÉ DISK.

Although the paraboloid of revolution derived in the
last section is a valid model of relativistic velocity space,
in most cases it is much easier to work in the space ob-
tained by projecting this paraboloid downward onto the
(x1, x2) plane by (x1, x2, x3) 7→ (x1, x2), as shown in Fig-
ure 3.

The space created by this projection is a unit disk with
the metric in Eq.(4.29), and is known to mathematicians
as the Poincaré Disk. While both the Poincaré and hy-
perboloid models are conformal (the first in two dimen-
sions and the second in three), the Poincaré model is su-
perior for building intuition about the Thomas-Wigner
Rotation and Thomas Precession since it can be drawn
in two dimensions, which makes line segments and angles
easier to visualize.

As we shall see, the distance from the origin to any
point on the Poincaré disk (as determined by the line el-
ement in Eq. (4.29)) is just the rapidity associated with
that point, which is why we refer to this disk as rapid-
ity space [34]. Since points on the edge of the disk are
defined by the projection of points on the intersection
of the paraboloid and the light cone, they represent ve-
locities with with speed v = c. We shall see that these
points are an infinite (Poincaré) distance away from any
point inside the disk, reflecting the fact that speeds can
approach but never reach the speed of light.

To simplify the notation, we rename the coordinates on
the disk x (≡ x1) and y (≡ x2). We identify the physical
significance of the distance s of any point from the origin
by evaluating [35]

s =
∫ R

0

ds =
∫ R

0

(
2

1 − r2

) √
dx2 + dy2 (5.1)

=
∫ R

0

(
2

1 − r2

) √
dr2 + r2dθ2 (5.2)

=
∫ R

0

(
2

1 − r2

)
dr (5.3)

= ln
(

1 + R

1− R

)
(5.4)

=⇒ s = 2 arctanhR. (5.5)

(We used the identity in Eq.(3.8) to obtain the last equa-
tion.) However a point on the disk whose radial coordi-
nate is R =

√
a2 + b2 corresponds to the spacetime point

(a, b, a2+b2+1
2 ), which lies on the ray in spacetime with
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slope

ct

R
=

(1 + R2)/2
R

(5.6)

=⇒ c

v
=

1 + R2

2R
(5.7)

=⇒ β =
2R

1 + R2
=

2 tanh(s/2)
1 + tanh(s/2) tanh(s/2)

(5.8)

=⇒ β = tanh(s/2 + s/2) = tanh s. (5.9)

We thus conclude that the (Poincaré distance) s of any
point from the origin is

s = arctanhβ = φ = the rapidity! (5.10)

We can further clarify the nature of rapidity space by
relating its coordinates (x, y) to the Euclidean velocity
components vx and vy . First, note that a point (x, y)
on the disk corresponds to a point (x, y, 1+r2

2 ) on the
paraboloid, which means that

βx =
(

2
1 + r2

)
x , βy =

(
2

1 + r2

)
y (5.11)

and β =
(

2
1 + r2

)
r. (5.12)

Equations (5.11) and (5.12) give β (and its compo-
nents) in terms of any radial coordinate r (and its com-
ponents). To find the inverse relation (i.e., the r asso-
ciated with a given β), we first solve Eq. (5.12) for the
magnitude of r:

βr2 − 2r + β = 0 (5.13)

=⇒ r =
1 −

√
1 − β2

β
(5.14)

=⇒ r =
γ − 1
γβ

. (5.15)

(We use only the negative root in the quadratic formula
since r < 1). Putting Eq.(5.15) in Eq.(5.11), and using
the identity

γ2 − 1 =
β2

1 − β2
= (γβ)2, (5.16)

we find

x =
(

1 + r2

2

)
βx =

(
γ

γ + 1

)
βx. (5.17)

y =
(

1 + r2

2

)
βy =

(
γ

γ + 1

)
βy, (5.18)

and

r =
(

γ

γ + 1

)
β. (5.19)

From Eqs.(5.17) and (5.18) we see that the x coordi-
nate in rapidity space is proportional to βx and the y co-
ordinate is proportional to βy. The proportionality factor
in both cases is γ/(γ + 1), which tends to unity as v → c
and to one-half as v → 0. This means that as v → 0, the
line element squared in rapidity space (Eq.(4.29)) tends
to

ds2 = (dβx)2 + (dβy)2

which, of course, is the line element squared of the usual
Euclidean non-relativistic velocity space.

To summarize, we have shown that requiring the ve-
locity space metric to be invariant under Lorentz trans-
formations leads to a model of relativistic velocity space
that can be represented either as a paraboloid of rev-
olution with vertex at x1 = x2 = 0, x3 = 1

2 and top
edge at x3 = 1, or as a unit disk with the metric given
in Eq. (4.29). The unit disk with this metric is known
to mathematicians as the Poincaré disk. In this paper,
however, we refer to it as rapidity space since the distance
from the origin to any point on the disk is its rapidity.
(Note that from the definition of rapidity, it’s easy to
see that any point on the edge of the disk is infinitely
far from any point on the disk.) Any point in rapidity
space is related to the components of any velocity by
Eqs. (5.11), (5.17) and (5.18). The conformal property
of rapidity space can be seen explicitly by noting that
if arctan (vy/vx) is the angle made by a velocity vector
~v with the horizontal axis in real space, then, using the
equations in Eq. (5.11), we have

arctan
vy

vx
= arctan

y

x
= θ, (5.20)

which means that the angle of ~β in real space is the same
as the angle θ in rapidity space. It is this property of
rapidity space that makes it so useful in understanding
the Thomas-Wigner Rotation and Thomas Precession.

6. GEODESICS IN RAPIDITY SPACE.

We need to understand one more aspect of rapidity
space before we can use it to investigate relativistic ve-
locities and boosts. When we boost from one inertial
frame traveling with a velocity ~v1 to another traveling
with a velocity ~v2, the corresponding path in rapidity
space between the points representing these velocities
is the shortest one which, by definition, is the geodesic
connecting them. Hence, in order to study successive
non-colinear boosts, we need to identify the geodesics
in rapidity space. We shall see that these geodesics are
straight lines if the origin (the point representing zero
velocity) is one of the values taken on during the boost.
In all other cases the geodesics are not straight lines but
rather are the arcs of certain circles. Following these arcs
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from one point in rapidity space to another will bring
out most of the interesting features of relativistic velocity
addition, successive Lorentz boosts, the Thomas-Wigner
Rotation, and the Thomas Precession.

We begin by showing that any geodesic which includes
the origin of rapidity space is a straight line. Our proof
parallels the traditional one showing that the shortest
distance between two points in a Euclidean plane is a
straight line, and is accomplished by finding the path
of minimum distance connecting two points on the disk.
The length of any path connecting the origin and a point
(A, B) in rapidity space is

∫ (A,B)

(0,0)

ds =
∫ (A,B)

(0,0)

(
2

1 − r2

)√
dr2 + r2dθ2 (6.1)

=
∫ R

0

(
2

1 − r2

)√
1 + r2θ′2 dr, (6.2)

with R =
√

A2 + B2 and

θ′ ≡ dθ

dr
. (6.3)

Using the Euler-Lagrange equation, we know that the
integral will be an extremum when

∂

∂θ

[(
2

1 − r2

) √
1 + r2θ′2

]

−
d

dr

∂

∂θ′

[(
2

1 − r2

) √
1 + r2θ′2

]
= 0. (6.4)

The first term on the left hand side is zero, so the above
equation reduces to

d

dr

∂

∂θ′

[(
2

1 − r2

) √
1 + r2θ′2

]
= 0 (6.5)

=⇒ d

dr

[(
2

1 − r2

)
r2θ′√

1 + r2θ′2

]
= 0 (6.6)

=⇒
(

2
1 − r2

)
r2θ′√

1 + r2θ′2
= h(θ′). (6.7)

Squaring both sides of Eq.(6.7) and rearranging the
terms, we find h2(Ar6 + Br4 + Cr2 + 1) = 4r4θ′2, with
A, B and C functions of θ′. In order for this equation to
be satisfied for all r, including r = 0, h(θ′) must be zero.
Putting this value into Eq.(6.7) we see that θ′ also must
be zero, and thus θ is a constant whenever r = 0 lies on
the path. Therefore, any geodesic in rapidity space that
includes the origin is a straight line, as shown in Figure
6.

Next we derive the geodesics in rapidity space which
do not include the origin. Since the rapidity space met-
ric is Lorentz invariant by construction, Lorentz trans-
formations must send geodesics to geodesics. Thus, we
can obtain a geodesic that does not include the origin
by applying the same boost to every point on a geodesic

FIG. 4: Geodesics through the vertex of the paraboloid are
formed by intersections of the paraboloid and vertical planes.
These project to Euclidean-straight lines through the origin
in the Poincaré model.

that does include the origin. Rather than doing this di-
rectly, it is easier to obtain the final geodesic geometri-
cally by projecting back and forth between the disk and
the paraboloid. In this approach, we first identify the
geodesics on the paraboloid which correspond to geodes-
ics through the origin of the disk. We then apply the
same boost to every point on one of these geodesics on the
paraboloid. Finally, we project the Lorentz-transformed
geodesic on the paraboloid down onto the disk and find
the equation that describes it.

We already have proved that any geodesic which in-
cludes the origin of the disk is a straight line. Projecting
one of these straight lines back up to the paraboloid, we
see that it corresponds to a parabola through the ver-
tex of the paraboloid, as shown in Figure 4. Thus, any
such (vertically oriented) parabola is a geodesic. Equiv-
alently, any one of these (vertically oriented) parabolas
can be regarded as the curve formed at the intersection
of the paraboloid and the plane defined by two axes x′

3

and x′′
3 , each of which has a point on the paraboloids’

geodesic.
If we now perform the same pure boost on every frame

represented by a point on a parabola passing through
the vertex of the paraboloid, we obtain a new geodesic
that does not include the vertex. Since boosts are linear
transformations, planes through the origin transform into
other planes through the origin. Thus, the new geodesic
can be described as the curve created by the intersec-
tion of the paraboloid and the new plane formed by the
boosted x′

3 and x′′
3 axes, as shown in Figure 5. Projecting

this curve onto the disk, we can find the equation of an
arbitrary geodesic (on the disk) that does not include the
origin in three steps:

(1) Since the boosted x′
3 and x′′

3 axes define the plane
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FIG. 5: All geodesics on the paraboloid are formed by its
intersection with planes through the origin. These project
downward onto circular arcs, orthogonal to the unit disk, in
the Poincaré model.

whose intersection with the paraboloid determines the
new geodesic, this plane must lie within the light cone.
It follows that there is a normal to the plane making an
angle θ with the original x3 axis, with π/2 > θ > π/4, so

0 < cos θ < cos
π

4
=

1√
2
. (6.8)

On the other hand, if we express the normal to the plane
as (a, b, 1), then any point (x1, x2, x3) on the plane satis-
fies the equation

(a, b, 1) · (x1, x2, x3) = 0 ⇐⇒ ax1 + bx2 + x3 = 0. (6.9)

However, Eq.(6.8) tells us that

cos θ =
(a, b, 1) · (0, 0, 1)√

a2 + b2 + 1
<

1√
2

(6.10)

=⇒
√

a2 + b2 + 1 >
√

2 (6.11)

=⇒ a2 + b2 > 1. (6.12)

We thus conclude that the plane shown in Figure 5 is
specified by the equation

ax1 + bx2 + x3 = 0 with a2 + b2 > 1. (6.13)

Since any such plane can be obtained by boosting
the appropriate x′

3 and x′′
3 , we conclude that planes of

the form in Eq.(6.13) determine all the geodesics on the
paraboloid. This is, a curve is a geodesic if and only if it
lies on the intersection of the paraboloid and any plane
including the origin.

(2) Our main interest is in the points shown in Fig-
ure 5 which lie on the intersection of the plane and
the paraboloid. Any point on the paraboloid satisfies
Eq. (4.30),

x3 =
1 + x2

1 + x2
2

2
. (6.14)

Combining this equation with Eq. (6.13), we see that
points on the curve formed at the intersection of the
plane and the paraboloid (i.e., points on a geodesic on
the paraboloid that does not pass through its vertex)
satisfy the equation

− ax1 − bx2 =
x2

1 + x2
2 + 1

2
with a2 + b2 > 1 (6.15)

=⇒ (x1 + a)2 + (x2 + b)2 = a2 + b2 − 1 > 0. (6.16)

Projecting back down onto the disk, as shown in Figure
5, we see that any geodesic that does not include the
origin is the arc of a circle centered at (−a,−b) with
radius

√
a2 + b2 − 1. Note that the center of any of these

circles always lies outside of the unit disk since a2 + b2 >
1, and that any point (a, b) outside of the unit disk is
the center of a circle on which some geodesic inside the
disk lies. Also, since a and b can be positive or negative,
it doesn’t really matter whether we denote the center of
the circle by (−a,−b) or (a, b).

(3) Finally, we can prove that the circles derived in (2)
are perpendicular to the edge of the disk at their points
of intersection. Recalling from Section 5 that points on
the disk are denoted by (x, y), points on the edge of the
disk satisfy the equation

x2 + y2 = 1, (6.17)

while points on a geodesic on the disk satisfy

(x + a)2 + (y + b)2 = a2 + b2 − 1. (6.18)

Taking the differential of both Eq.(6.17) and Eq.(6.18),
we obtain the two equations

2xdx + 2ydy = 0 (6.19)
2(x + a)dx+2(y + b)dy = 0, (6.20)

which can be rewritten as

dy

dx
= −

x

y
(6.21)

dy

dx
= −x + a

y + b
. (6.22)

Equation (6.21) gives the slope of the tangent to any
point on the edge of the disk, and Eq.(6.22) gives the
slope of the tangent to any point on the geodesic. To
prove that the geodesic is perpendicular to the edge of
the disk at their point of intersection, we must show that
these two tangents are perpendicular to each other, i.e.,
that

−x

y
=

y + b

x + a
. (6.23)

To do this, we note that any point on both the edge of
the disk and on the geodesic satisfies both Eqs.(6.16) and
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Φ1

Φ2
Φ3

α1α3

α2

FIG. 6: Three geodesics in rapidity space and a non-Euclidean
triangle.

(6.17). Adding these two equations together we find

2x2 + 2ax + 2y2 + 2by = 0 (6.24)
⇐⇒ x(x + a) + y(y + b) = 0 (6.25)

⇐⇒ −x

y
=

y + b

x + a
, (6.26)

as required. Note that this argument can be reversed to
show that any circular arc orthogonal to the unit circle
at their points of intersection is a geodesic.

Conclusions:
(1) As shown in Figures 4 and 6, geodesics through the

origin of rapidity space are straight lines (in the Euclid-
ean sense), and any straight line through the rapidity-
space origin is a geodesic.

(2) As shown in Figures 5 and 6, geodesics in rapidity
space which do not include the origin are arcs of circles
whose centers lie outside the disk, and which are perpen-
dicular to the edge of the disk at their points of intersec-
tion. Conversely, any point outside the disk is the center
of some circular arc within the disk that is a geodesic.

As Figure 6 shows, the new feature is that rapidity
space contains geodesics which are not “straight”in the
Euclidean sense. One way to understand these curved
geodesics is to note that the metric of Eq.(4.29) tells
us that segments near the edge of the disk are much
longer then they appear, so the shortest path between
two points near the disks’ edge must be bowed inward
rather than straight.

7. APPLICATIONS

Having found the Lorentz invariant metric and geo-
desics in rapidity space we now can investigate the rela-
tivistic addition of velocities and the various interesting
consequences of successive non-colinear Lorentz boosts.

α1
π−α1Φ1

FIG. 7: The first boost.

7.1. Qualitative Results.

Before deriving quantitative expressions for the
Thomas-Wigner Rotation, the Thomas Precession, etc.,
we first discuss results that can be deduced geometrically,
without the use of any equations.

(1) Velocities are represented by points in rapidity
space. A boost from one velocity to another is repre-
sented in rapidity space by the geodesic connecting them.
Since a pure boost doesn’t involve any rotation of the
reference frame being boosted, the coordinate axes rep-
resenting the boost in rapidity space maintain a fixed
angle with respect to the geodesic they follow, as shown
in Figure 7. (This is called parallel transport, and is ex-
actly what happens in the nonrelativistic case, where all
the geodesics are straight lines.)

We begin by considering a set of colinear boosts in real
space. If we assume this set contains the zero-velocity
frame, then the first boost will be represented in rapid-
ity space by a segment of a straight-line geodesic that
includes the rapidity-space origin. Without any loss of
generality, we take that direction as the horizontal axis in
both real and rapidity space. Since straight lines through
the origin of rapidity space are geodesics, each colinear
boost is represented by a segment of the same (horizonal)
line. If we represent a coordinate system in rapidity space
by two small perpendicular lines (crosshairs) centered on
the point of interest then, as shown in Figure 7,when
we boost from one velocity to another, the orientation
of the crosshairs remains fixed with respect to the geo-
desic connecting them. This means the orientation of
the crosshairs is unchanged no matter how many colin-
ear boosts it undergoes since, in each case, it is moving
along the same straight-line geodesic in rapidity space.

Furthermore, since the distance (as measured with the
rapidity-space metric) from the origin to any point in
rapidity space is the rapidity of that point, we see that
when successive boosts are colinear the corresponding ra-
pidities add and subtract like ordinary numbers. Thus,
rapidity space provides an easy geometric way to ob-
tain Eq.(3.11e), and to prove that frames boosted in the
same direction do not rotate with respect to each other.
Working in rapidity space also provides an easy geomet-
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Φ2

π−α1

π−α1

π−α1

α2

FIG. 8: The second boost.

π−α1−α2

π−α1−α2

π−α1−α2

Φ3
π−α1−α2−α3

FIG. 9: The third boost.

ric proof that no matter how many colinear velocities are
added together, the magnitude of their sum always will
be less than the speed of light.

(2) A boost that does not include the zero-velocity
frame corresponds to a geodesic in rapidity space that
does not include the rapidity-space origin. As we proved
in the previous section, this geodesic lies on the arc of
a circle whose center is outside the disk. As shown in
Figure 8, crosshairs moving along this type of geodesic
maintain their orientation with respect to it. Therefore,
crosshairs moving back to the origin along a closed path
that includes one (or more) of these geodesics will end
up rotated with respect to their initial orientation. An
example of this is shown in Figure 9. Suppose we boost
from rest to some velocity ~v along the x-axis (in real
space). Then we perform a non-colinear boost from a
frame with velocity ~v to a frame with velocity ~v′, and
finally, we boost from a frame with velocity ~v′ back to
the original rest frame. Looking at the corresponding
points in rapidity space, as shown in Figure 9, we see
that the frame obtained at the end of these three boosts is
rotated with respect to the one that stayed at the origin.
This is the Thomas-Wigner Rotation, which we denote
by TWR, and the geometry of rapidity space shows that
the TWR is in the clockwise (negative) direction when
a frame or particle is moving in rapidity space in the
counterclockwise (positive) direction (and vice versa).

Furthermore, it is easy to see that there is an upper
limit on the TWR angle. Without any loss of generality,
suppose we first boost along the x-axis (in real space) to
a frame whose speed is very close to the speed of light.

FIG. 10: When a second boost is applied at angle approach-
ing π with the first, the Thomas-Wigner rotation angle ap-
proaches its maximum value of π/2.

There is no orientation change of the boosted frame since
the geodesic it follows in rapidity space is a straight line.
If we next perform a non-colinear boost to a speed even
closer to the speed of light, which makes an angle slightly
less than π with the x-axis then, as shown in Figure 10,
the geodesic representing this second boost will lie on
the arc of a circle that is perpendicular to the edge of
the disk (where v = c) at its two points of intersection.
In the limit as both speeds approach the speed of light
and the angle between the boosts approaches π, the arc
representing the second boost approaches a half circle.
This means that the change in orientation of a reference
frame following the arc approaches π. Thus, we see from
the geometry of rapidity space that any Thomas-Wigner
Rotation angle has an upper limit of π, and that this
limit is approached only when the two boosts involved
have speeds very close to the speed of light and are almost
opposite to each other. In all other cases the TWR angle
will be less than π.

On the other hand, if we perform the same two non-
colinear boosts as above, but now give each a nonrela-
tivistic speed (β � 1) then, as shown in Figure 11, even
though the geodesic representing the second boost still
lies on the arc of a circle, that arc is essentially indis-
tinguishable from a straight line since it is located near
the rapidity-space origin. Therefore, as we would expect,
when the boost speeds are nonrelativistic, there is essen-
tially no rotation of the frame following two geodesics to
reach a final frame relative to one that reaches the final
frame along the straight-line geodesic from the origin.

(3) Next consider a reference frame in real space under-
going circular motion in the counterclockwise (positive)
direction with a constant, nonrelativistic, speed. Classi-
cally, this situation is treated by representing it as the
limiting case of a set of small, non-colinear boosts. That
is, circular motion is approximated as motion along a
polygon with an ever increasing number of sides. Since
the boosts involved all have the same nonrelativistic
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FIG. 11: All of these non-Euclidean triangles have the same
two base angles, but the smaller a triangle is, the closer it is
to appearing Euclidean.

speed, all the circular arcs representing them in rapid-
ity space are essentially indistinguishable from straight
lines. Hence, as long as the speed of the frame in circu-
lar motion is nonrelativistic, it undergoes essentially no
change in orientation upon its return to the origin (as we
would expect).

Now suppose the reference frame undergoing circular
motion has a constant speed that is relativistic. The geo-
desics in rapidity space which form the polygon approx-
imating the circle are now small arcs which lie on circles
whose intersection with the edge of the disk is orthogonal,
as shown in Figure 12. This means that the frame being
boosted undergoes a definite change in orientation with
each boost. Thus, when the reference frame returns to its
starting point, it will have undergone a clockwise (nega-
tive) rotation with respect to its initial orientation that
is the sum of all the rotations it experienced along the
way. This is the Thomas Precession. Furthermore, we
see from the geometry of rapidity space that the amount
of rotation will be a function of the speed of the cir-
cular motion (i.e., the rapidity-space distance from the
rapidity-space origin), and will increase without bound
as this speed approaches the speed of light, as shown in
Figure 12.

(4) We also can use the geometry of rapidity space
to show that relativistic boosts which are non-colinear
are also (in general) noncommutative. Suppose we first
boost a reference frame from speed zero to a speed close
to the speed of light, and then boost the frame through
a second, non-colinear velocity. Looking at a rapidity-
space diagram in Figure 13, it’s clear that we end up at a
completely different point when we do the same boosts in
reverse order. This demonstrates the noncommutativity.
However, if look closely at the rapidity-space diagram,
we see that although the two resultant velocities are rep-
resented by different points in rapidity space, they both
are the same (rapidity-space) distance from the rapidity-
space origin. This means they both have the same rapid-

FIG. 12: Polygonal approximations to curved paths in rapid-
ity space.

φ1

φ2

φ2

φ1

α

α

FIG. 13: Two boosts in non-parallel directions do not com-
mute.

ity (and hence speed), but not the same direction. This
result, that the final speed resulting from two successive
non-colinear boosts is independent of the order in which
the corresponding boosts are applied, is normally proved
by a somewhat long algebraic calculation. [36]

(5) Finally, it is easy to see that the sum of any number
of non-colinear relativistic velocities always results in a
velocity whose magnitude is less than the speed of light.
Although obvious when viewed on a rapidity-space dia-
gram, the algebraic proof of this is somewhat complex.

7.2. Relating the Thomas-Wigner Rotation to the
Area and Angles of the Rapidity Space Triangle.

Because angles in rapidity space behave exactly like an-
gles in Euclidean space, it is relatively easy to quantify
the arguments of the previous section. We begin by con-
sidering case (2) above. As shown in Figure 6, the angles
between the boosts will be called α3, α1, and α2. The
straight-line geodesic making an angle α3 with the hori-
zontal axis will be called Φ3, and the other two geodesics
will be called Φ1 and Φ2 as shown. The length (rapid-
ity) of the segment of the geodesic Φi representing each
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boost will be denoted by φi. As shown in Figure 7, when
we boost from the origin along Φ1, there is no change
in the orientation of the crosshairs. As shown in Figure
8, when we boost along Φ2, the x−axis of the crosshairs
maintains its angle π − α1 with respect to Φ2 since Φ2

is a geodesic. Finally, as shown in Figure 9, boosting
back to the origin along Φ3, the x−axis of the crosshairs
maintains its orientation of (π−α1)−α2 with respect to
the geodesic Φ3. Thus, as the Figure 9 shows, when the
coordinate system returns to the rapidity-space origin,
its x-axis will have rotated from its initial orientation in
the clockwise (negative) direction by the Thomas-Wigner
Rotation angle

TWR = − [π − (α1 + α2 + α3)] . (7.1)

Note that if the two rapidities φ1 and φ2 are small (i.e.,
if the speed v is nonrelativistic) then, as shown in Figure
11, the figure formed by the segments of the three geo-
desics Φi is essentially indistinguishable from a Euclidean
triangle (since in this case α1 + α2 + α3 ≈ π) and, as ex-
pected, the TWR angle is essentially zero. On the other
hand, if the two rapidities are large, then the resulting
TWR angle can approach an upper limit of π, as we dis-
cussed earlier.

The absolute value of the right hand side of Eq.(7.1) is
known to mathematicians as the “angular defect,” since
it is a measure of how much the sum of the angles inside
a triangle differ from the corresponding sum in ordinary
Euclidean space (which of course is π). In hyperbolic
geometry courses one proves the somewhat surprising
theorem that the angular defect of a triangle is equal to
its area. Rather than simply invoking this result, we can
establish it from first principles. Even if we had no previ-
ous knowledge of hyperbolic geometry, we might suspect
that the area enclosed by the rapidity-space triangle is
proportional to the TWR angle because our method for
finding the TWR angle involves traveling around a closed
path and summing up the angular change along the way.
This corresponds to evaluating an integral of the form

∮

C

dθ. (7.2)

An integral like (7.2) appears in Green’s theorem, which
relates an integral around a closed curve to an integral
over the two-dimensional area enclosed by that curve.
Indeed, we now show that the integral Eq.(7.2) is actually
the left hand side of Green’s theorem (Eq.(7.3)) for a
particular choice of the integrand, and that this choice
makes the right hand side of Green’s theorem equal to
the area enclosed by the curve.

We begin by writing Green’s Theorem as
∮

C

~F · d~s =
∫∫

Σ

∇× ~F · n̂ dσ, (7.3)

where C signifies any closed (2-D) curve traversed in the
counterclockwise direction, n̂ is the unit vector normal to
the plane of this curve (according to the usual right-hand-
rule), Σ stands for the region enclosed by the curve, and
~F is any vector defined on rapidity space.

To apply Green’s Theorem in rapidity space we must
first find explicit expressions for each integrand. To do
this, recall that

ds2 =
4

(1 − r2)2
(
dx2 + dy2

)
= h2

1 dx2 + h2
2 dy2

(7.4)

=⇒ d~s =
(

2
1 − r2

)
dx ı̂ +

(
2

1 − r2

)
dy ̂. (7.5)

From this equation, we find that the area element in
Cartesian and plane polar coordinates is

dσ =
[(

2
1 − r2

)
dx

] [(
2

1 − r2

)
dy

]
(7.6)

=⇒ dσ =
(

2
1 − r2

)2

dx dy =
(

2
1 − r2

)2

rdrdθ. (7.7)

We also can give a more informal derivation of Eq.(7.7).
Because the metric Eq.(7.5) is conformal, it is locally a
multiple of the Euclidean metric (even though that mul-
tiple varies from point to point). Therefore, we expect
the area element also to be a multiple of the Euclid-
ean area element, with the multiplying factor equal to(
2/(1− r2)

)2, since the area is the product of the infin-
tesimal length in each of the two orthogonal directions
and each length is the Euclidean length multiplied by
the factor 2/(1− r2).

To evaluate the integral on the right hand side of
Eq.(7.3) we need to express the curl and dot product
in the coordinates of rapidity space. From Boas[37] we
have

∇× ~F · n̂ =
1

h1h2

[
∂

∂x
(h2F2) −

∂

∂y
(h1F1)

]
(7.8)

=
(

1 − r2

2

)2
∂

∂x

[(
2

1 − r2

)
Fy

]
− ∂

∂y

[(
2

1 − r2

)
Fx

]
.

(7.9)

Since Green’s theorem is true for any vector ~F , it is true
for the particular vector ~F = −yı̂+x̂. For this particular
choice, the right hand side of Eq.(7.9) reduces to 1.

Thus, when ~F = −y ı̂ + x ̂, Green’s theorem becomes

Area (Σ) =
∮

C

~F · d~s, (7.10)

where the area enclosed by the closed curve C is calcu-
lated using the rapidity-space line element Eq. (7.5).
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Putting our choice for ~F into the right hand side of
Eq.(7.10), we find

∮

C

~F · d~s =
∮

C

(−yı̂ + x̂) ·
(

2
1 − r2

)
(dxı̂ + dy̂) (7.11)

=⇒
∮

C

~F · d~s =
∮

C

(
2

1 − r2

)
(xdy − ydx) . (7.12)

Therefore, Eq.(7.10) can be written as

Area (Σ) =
∮

C

(
2

1 − r2

)
(x dy − y dx). (7.13)

We now show that the right hand side of the above equa-
tion is equal to an integral of the form given in Eq.(7.2).

Let r and θ be the usual plane polar coordinates mea-
sured from the center of the disk. In terms of these co-
ordinates,

x = r cos θ and dx = −r sin θdθ + dr cos θ, (7.14)
y = r sin θ and dy = r cos θdθ + dr sin θ. (7.15)

Putting these equations into Eq.(7.13) we find that

x dy − y dx = r2dθ (7.16)

=⇒ Area(Σ) =
∮

C

(
2r2

1 − r2

)
dθ. (7.17)

Looking at the hyperbolic triangle in Figure 14 rep-
resenting the three boosts, we see that two of the three
sides are straight lines emanating from the origin, which
means that dθ = 0 for these geodesic segments and they
make no contribution to the path integral. Thus, only the
integral over the arc’d geodesic contributes to the inte-
gral on the right hand side of Eq.(7.17). We can evaluate
this integral by changing it from an integral in terms of
plane-polar coordinates (r, θ) measured from the center
of the disk to an integral in terms of coordinates mea-
sured from the center (a, b) of the circle on which the
curved arc lies, as shown in Figure 14. If

√
a2 + b2 − 1 is

the radius of this circle and ω the corresponding angular
coordinate (defined as positive in the counterclockwise
direction) then the desired coordinate transformation is

x = a −
√

a2 + b2 − 1 cosω, (7.18)

y = b −
√

a2 + b2 − 1 sin ω. (7.19)

After some algebra, we find that

2
1 − r2

= (7.20)

1
1 − (a2 + b2) +

√
a2 + b2 − 1 (a cosω + b sinω)

, (7.21)

α1α3

α2

ω
(a,b)

FIG. 14: The non-Euclidean area of a non-Euclidean triangle
is equal to its angular defect.

and

x dy − y dx =

−
[
1 − (a2 + b2) +

√
a2 + b2 − 1 (a cosω + b sinω)

]
dω.

(7.22)

Using Eq.(7.21) and (7.22) in the integrand of Eq.(7.13)
we conclude that

(
2

1 − r2

)
(x dy − y dx) = −dω. (7.23)

This means the integral in Eq.(7.13) is zero on the
straight lines through the origin, while on the other geo-
desic, it is (to within a sign) the angular extent of the
geodesic segment about its center.

Looking at Figure 14, we see that the two radii of the
circle centered at (a, b) together with the two sides of
the triangle which are straight lines, form a four-sided
figure (i.e., a Euclidean quadralateral). Since the sum of
the angles in a Euclidean quadralateral is 2π,[44] we have
that

2π = α3 +
(
α1 +

π

2

)
+ ω +

(
α2 +

π

2

)
(7.24)

= (α1 + α2 + α3) + ω + π (7.25)
=⇒ ω = π − (α1 + α2 + α3). (7.26)

Therefore, the area enclosed by the triangle is

Area (Σ) = −
∫ ω2

ω1

dω =
∫ ω1

ω2

dω (7.27)

= π − (α1 + α2 + α3) (7.28)
=⇒ Area (Σ) = π − (α1+α2 + α3) = −(TWR).

(7.29)

Note that since we have proved the area of our special
triangle is just the angular sweep of its one arc’d side,
it’s a small step to proving that the area of any geodesic-
sided polygon will be the sum of the angular sweeps of
its sides (about their various centers of curvature).
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We have thus proved the main result of this section,
that the negative of the Thomas-Wigner Rotation is
equal to both the (rapidity-space) area enclosed by the
rapidity-space triangle and the angular defect (π minus
the sum of the interior angles of the rapidity-space tri-
angle). Although we have derived this result from first
principles, it was pointed out by Aravind[24], and later
discussed in a slightly different context by Criado and
Alamo[25].

Although the result (7.29) is quite interesting, it also
suggests that another way to evaluate and compare
Thomas-Wigner Rotations is to look at the areas of the
corresponding triangles in rapidity space. Although pos-
sible in principle, in practice this is not very easy to do
since areas in rapidity space depend upon where they
are located, and thus are not readily compared using our
Euclidean-trained eyes. More specifically, as Eq.(4.29)
for the area element dσ shows, although two regions in
different parts of rapidity space may appear to have the
same area to our Euclidean-trained eyes, the one closest
to the edge of the disk is larger.

7.3. Various Equations for the Thomas-Wigner
Rotation Angle.

We now are in a position to derive the various expres-
sions for the Thomas-Wigner Rotation angle which have
appeared in the physics literature. Since most of these
expressions are for the magnitude of the TWR, we can
use Eq.(7.13) and Eq.(7.29) to write

|TWR| =
∣∣∣∣
∮ (

2
1 − r2

)
(xdy − ydx)

∣∣∣∣ (7.30)

=
∮ (

2
1 − r2

)
|(~r × d~r) · k̂| (7.31)

=⇒ |TWR| =
∮ (

2r2

1 − r2

) ∣∣∣∣∣
(~r × d~r) · k̂

r2

∣∣∣∣∣ . (7.32)

Using Eqs.(5.15) and Eq.(5.16), we find that

2r2

1 − r2
= γ − 1. (7.33)

Eq.(5.19) can then be used to show that for any infintes-
imal segment of the path,

∣∣∣∣∣
(~r × d~r) · k̂

r2

∣∣∣∣∣ =

∣∣∣∣∣
(~v × d~v) · k̂

v2

∣∣∣∣∣ , (7.34)

which means that Eq.(7.32) can be rewritten as

|TWR| =
∮

C

(γ − 1)
∣∣∣∣
~v × d~v

v2

∣∣∣∣ . (7.35)

The above equation can be re-expressed in various
forms. For example, if we call the integrand dχ, then

dχ =
γ − 1

v2
|~v × d~v| (7.36)

=⇒ dχ

dt
=

γ − 1
v2

|~v × ~a| . (7.37)

Eq.(7.36) is the expression for the Thomas-Wigner Ro-
tation angle given by Sard[5] on p.289 and by Arzeliès[6]

on p.178.
Several interesting physical properties can be deduced

from Eq.(7.35). First, the right-hand side tends to zero
in the nonrelativistic limit, showing that in this limit the
Thomas-Wigner Rotation vanishes, as we would expect.
Second, as v → c, the Thomas-Wigner Rotation angle
increases without bound, as we already deduced in Sec-
tion 7.1 using the geometry of rapidity space. Third,
the Thomas-Wigner rotation is a purely kinematic effect
since it is independent of the dynamics causing the ac-
celeration. In other words, it not only occurs for charged
particles moving in electromagnetic fields, it also can oc-
cur for elementary particles accelerated by nuclear forces,
[38] for masses accelerated by gravitational fields, etc.

If we multiply the right-hand side of Eq.(7.37) by (γ +
1)/(γ+1) and use the identity given in Eq.(5.16), we find
that

ω =
dχ

dt
=

γ2

γ + 1

∣∣∣∣∣
~β × d~β

dt

∣∣∣∣∣ , (7.38)

which is the expression for the angular speed of the
Thomas-Wigner Rotation given by Sard[5] on p.290, and
Arzeliès[6] on p.179. Since it is the angular velocity of the
Thomas-Wigner Rotation that enters into the calculation
of the Thomas Precession, it is this quantity that appears
in the relativistic correction to the spin-orbit term in the
Hamiltonian for a hydrogen atom, as we now discuss.

7.4. Applying the Thomas Precession in Quantum
Theory.

Most derivations of the relativistic correction to the
spin-orbit term in the Hamiltonian for a hydrogen atom
relate the time rate of change of the electron’s spin vector
in its instantaneous rest frame to the corresponding rate
in the lab (or proton’s rest) frame.[40] Because any instan-
taneous rest frame of the electron is obtained from pre-
vious instantaneous rest frames by non-colinear Lorentz
boosts, the transformation back to the lab frame will
include Thomas-Wigner Rotations. The rate at which
the Thomas-Wigner Rotations occur is the rate given in
Eq.(7.37). There are a number of excellent derivations
of the correct form of the spin-orbit term (see, e.g., the
treatments of Fisher[3], Jackson[4] or Griffiths[42]), and
Eq.(7.37) can be used in any one of them.
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Some authors (e.g., Haken and Wolf [43]) say the factor
of two difference that comes from including the Thomas
Precession in the spin-orbit term results from the elec-
tron’s rest frame precessing through one complete cycle
each time it completes one revolution around the proton.
However, as Eq.(7.38) (and (7.43)) show, this is incorrect
since the number of rotations completed during each rev-
olution is variable, and tends to infinity as v → c.

7.5. A Special Case of Thomas Precession.

The Thomas Precession of an object is the sum of all
the Thomas-Wigner Rotations it undergoes when it com-
pletes one closed planar orbit. To see this explicitly, con-
sider the simple example of an object moving in a circle
with a constant speed. Using the area element given in
Eq.(7.7), the expression for the magnitude of the Thomas
Precession in this case is

|TP | =
∫ 2π

0

∫ R

0

4
(1 − r2)2

rdrdθ (7.39)

= 2π

∫ R

0

4r

(1 − r2)2
dr. (7.40)

We can evaluate this integral by changing the integration
variable to u = (1 − r2). After some algebra, we find

|TP | = 4π

(
R2

1 − R2

)
. (7.41)

Using Eq.(7.33) we see that
(

R2

1 − R2

)
=

γ − 1
2

, (7.42)

which means that

|TP | = 2π(γ − 1). (7.43)

Note that if the object moves around the circle in the
clockwise (negative) direction, then the Thomas Preces-
sion is in the opposite (positive) direction after one revo-
lution around the circular path. This is exactly the result
derived by Arzeliès[6] on page 179.

8. MATHEMATICAL CONNECTIONS AND
ALTERNATIVE EQUATIONS FOR THE

THOMAS-WIGNER ROTATION.

The purpose of this (next-to-last) section is to give
a brief discussion of the relationship between the re-
sults presented in this paper and Möbius transforma-
tions, spinors, the group SL2(C), and models of the hy-
perbolic plane. The only new physical result is Eq.(8.13),
which expresses the Thomas-Wigner Rotation angle in

terms of the rapidities that give rise to it and the an-
gle between their corresponding boosts. Eq.(8.13) also
can be obtained geometrically in rapidity space; it’s just
easier to derive in the present context.

We have shown that rapidity space, and the actions
of Lorentz transformations on it, together provide valu-
able insight into the Thomas-Wigner Rotation and the
Thomas Precession. While our presentation so far has
not required an actual algebraic expression for the ac-
tion of Lorentz transformations on rapidity space, it is
natural to ask for one. Once we have this expression, it
will be easy to relate Lorentz transformations to certain
Möbius transformations (a.k.a. linear fractional transfor-
mations), and then to the spinor map between SL2(C)
and the Lorentz group.

8.1. Lorentz Transformations of Rapidity Space.

To see how the Lorentz transformation of Eq.(3.3) (a
boost in the positive x-direction with rapidity φ) acts on
a point (x, y) in the Poincaré disk, let (x, y, (x2 + y2 +
1)/2) denote the point on the paraboloid that projects
to this point in the disk, as shown in Figure 3. Applying
the boost to this vector gives




x

y

x2+y2+1
2




7→




(cosh φ)x − sinhφ
(

x2+y2+1
2

)

y

−(sinh φ)x + coshφ
(

x2+y2+1
2

)




,

(8.1)
which we then need to rescale so that it lies on the
paraboloid. Some rather messy algebra shows the cor-
rect scaling factor is

λ =
(

coshφ + 1
2

− (sinh φ)x +
coshφ − 1

2
(x2 + y2)

)−1

,

and thus, that the boost maps points in the Poincaré disk
by



x

y


 7→




x′

y′


 =




λ
(
(cosh φ)x − sinh φ(x2+y2+1

2 )
)

λy


 .

(8.2)
This formula can be expressed in a surprisingly simple
way if we use complex notation to denote points in the
disk. Letting z = x + iy, and setting

a =

√
coshφ + 1

2
= cosh

φ

2
(8.3)

and

b = −
√

cosh φ − 1
2

= − sinh
φ

2
, (8.4)
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the action of the boost becomes

z 7→ z′ =
az + b

bz + a
.

Thus, when we use complex notation to label points on
the Poincaré disk, the action of the boost can be ex-
pressed in a particularly simple way, as a Möbius trans-
formation.

Another special type of Lorentz transformation that is
easy to analyze is a spatial rotation. It’s not hard to see
that a counterclockwise spatial rotation by an angle of θ
produces the map of the disk

z 7→ z′ = eiθz =
eiθ/2z + 0

0 · z + e−iθ/2
,

which is again a Möbius transformation.
Given any Möbius transformation z 7→ az+b

cz+d , with
a, b, c, d normalized so ad−bc = 1, we may associate[45] to

it the matrix
(

a b
c d

)
of determinant 1. Composition of

two Möbius transformations corresponds to multiplica-
tion of the corresponding matrices, and an inverse trans-
formation corresponds to the inverse matrix.

Thus the boost and rotation are associated with ma-
trices

Bx(φ) =
(

cosh φ
2 − sinh φ

2

− sinh φ
2 cosh φ

2

)
, R(θ) =

(
eiθ/2 0

0 e−iθ/2

)
,

which both have the rather special form

M(α, β) =
(

α β
β̄ ᾱ

)
, (8.5)

for some complex numbers α, β with αᾱ − ββ̄ = 1.
Furthermore, given any such matrix M(α, β), choosing
θ1 = arg(α) + arg(β) + π, θ2 = arg(α) − arg(β) − π, and
φ so that cosh φ

2 = |α| and sinh φ
2 = |β|, we have

M(α, β) = R(θ1)Bx(φ)R(θ2).

Thus the matrices arising from boosts and rotations gen-
erate all matrices of the form in equation (8.5).

In fact, the Möbius transformations associated with
matrices of the form in equation (8.5) are known to be
all the (orientation-preserving) conformal maps of the
Poincaré disk to itself.[46] Since every Lorentz transfor-
mation (on (2+1)-dimensional space) must give rise to
a conformal map of the disk, and every such conformal
map arises from a product of two rotations and a boost
Bx, then not only do all the conformal maps arise from
Lorentz transformations, but also every Lorentz transfor-
mation is a product of at most two rotations and a boost
in the x-direction.

8.2. The Upper-Half Plane Model.

The transformation associated with 1√
2

(
1 i
i 1

)
maps

the disk conformally onto the set of points z = x + iy
with y > 0, and results in the upper half-plane model.
The conformal transformations of the this model are the
Möbius transformations corresponding to 2 × 2 real ma-
trices of determinant 1, that is, the group SL2(R). This
is simply because

(
1 i
i 1

) (
α β
β̄ ᾱ

) (
1 i
i 1

)−1

ranges through SL2(R) as α, β range through all complex
numbers with αᾱ − ββ̄ = 1.

Thus Lorentz transformations (on (2+1)-dimensional
space) are in correspondence with elements of SL2(R),
and the action of a Lorentz transformation on rapidity
space is simply the action of the corresponding Möbius
transformation on the upper half-plane model.

8.3. Extension to Three Spatial Dimensions and
the Spinor Map.

Although this paper has been limited to (2+1)-
dimensions for ease of exposition, all the work carries
over in a fairly straightforward way to (3+1)-dimensions
(or more). A higher dimensional paraboloid within the
light cone leads to a conformal model of rapidity space,
which is now the interior of a unit ball. The metric, [47]

not surprisingly, is given by

ds2 =
4

(1 − x2 − y2 − z2)2
(dx2 + dy2 + dz2),

and the geodesics are arcs of circles which intersect the
bounding sphere orthogonally. Within the ball, the sur-
faces formed by pieces of spheres centered outside the
unit ball which intersect the unit sphere orthogonally
should be though of as ‘planar’, since geodesics remain in-
side them. Any of these surfaces, in fact, can be mapped,
by a conformal transformation of the ball to itself, to a
disk bounded by the equator of the ball. The geometry
of such a disk arising from its embedding in the ball is
the same as the geometry developed here for the Poincaré
disk.

Finally, in addition to the ball model, there is an up-
per half-space model, composed of points in R3 where the
third coordinate is positive. Although points in it cannot
be naturally identified by complex numbers — it is after
all 3-dimensional — they can be identified with certain
quaternions x + iy + jz, where z > 0. The (orientation-
preserving) conformal transformations of this space are
identified with matrices in SL2(C), where the matrix
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(
a b
c d

)
acts by[48]

x + iy + jz 7→ (a(x + iy + jz) + b)(c(x + iy + jz) + d)−1.

The correspondence of Lorentz transformations, which
give rise to conformal transformations of the model, to
elements of SL2(C) is usually called the spinor map.[49]

8.4. More Useful Forms of the Thomas-Wigner
Rotation.

Having identified (in Section 8.1) the matrix Bx(φ)
with a boost of rapidity φ in the x-direction, and the
matrix R(θ) with a spatial rotation through an angle θ,
we can now derive a relatively simple equation for the
Thomas-Wigner Rotation produced by two successive,
non-colinear, boosts.

As is easily proved, a pure boost with rapidity φ in the
direction of θ can be obtained by first rotating through
−θ, then applying an x-boost of φ, and then rotating
back by θ. This means it can be identified with the ma-
trix

R(θ)Bx(φ)R(−θ) =
(

cosh φ
2 − sinh φ

2 eiθ

− sinh φ
2 e−iθ cosh φ

2

)
.

Therefore, as shown in Figures 7 and 8, a boost with a
rapidity of φ1 in the x-direction, followed by a boost of
rapidity φ2 in the θ = π − α1 direction, corresponds to

R(θ)Bx(φ2)R(−θ)Bx(φ1)

=
(

cosh φ2
2 − sinh φ2

2 eiθ

− sinh φ2
2 e−iθ cosh φ2

2

) (
cosh φ1

2 − sinh φ1
2

− sinh φ1
2 cosh φ1

2

)
.

(8.6)

On the other hand, any Lorentz transformation in the
direction of ω1 can be expressed as the product of a boost
R(ω1)Bx(φ3)R(−ω1) in the ω1 direction followed by a
rotation through an angle ω2. In matrix form, this is

R(ω2) (R(ω1)Bx(φ3)R(−ω1)) . (8.7)

In the specific case shown in Figures 6, 7 and 8, ω2 is the
Thomas-Wigner Rotation angle and ω1 is the angle α3.
Thus, the product in Eq.(8.6) must equal the product in
Eq.(8.7) which, when expressed in matrix form, is

(
eiω2/2 0

0 e−iω2/2

) (
cosh φ3

2 − sinh φ3
2 eiω1

− sinh φ3
2 e−iω1 cosh φ3

2

)
.

(8.8)
Solving for ω2 by equating the upper left entries of
Eqs.(8.6) and (8.8) we find

ω2 = 2 arg
(

cosh
φ1

2
cosh

φ2

2
+ sinh

φ1

2
sinh

φ2

2
eiθ

)

(8.9)

=⇒ ω2 = 2 arg
(

1 + tanh
φ1

2
tanh

φ2

2
eiθ

)
. (8.10)

Eq.(8.10) is an algebraic formula for the Thomas-
Wigner Rotation ω2 resulting from a boost with rapidity
φ1 in the x-direction followed by a boost with rapidity
φ2 in the θ = π − α1 direction, as shown in Figures 7
and 8. Note that Eq.(8.10) readily produces the qual-
itative results we derived in Section 7.1. For example,
it shows that the Thomas-Wigner Rotation will take on
values between −π and π, and will approach its largest
value when both velocities are near c and θ is near π.
Eq.(8.10) also shows that the magnitude of the Thomas-
Wigner Rotation is the same regardless of the order in
which the boosts φ1 and φ2 are applied.

We end this section by noting that the method used to
derive Eq.(8.10) also can be used to find the rapidity φ3

and the angle α3, and to derive the equations given by
Aravind [24] for tan (ω2/2), coshφ3 and tanα3 (i.e., his
Eqs. (2), (3) and (4)). For example, if we equate the real
and imaginary parts of the upper left entries of Eq.(8.6)
and Eq.(8.8), we find

cos
ω2

2
cosh

φ2

2
=cosh

φ1

2
cosh

φ2

2

+ sinh
φ1

2
sinh

φ2

2
cos θ

and

sin
ω2

2
cosh

φ2

2
= sinh

φ1

2
sinh

φ2

2
sin θ.

Dividing the the latter equation by the former gives

tan
ω2

2
= (8.11)

sinh (φ1/2) sinh (φ2/2) sin θ

cosh (φ1/2) cosh (φ2/2) + sinh (φ1/2) sinh (φ2/2) cos θ
,

(8.12)

which is Aravind’s Eq.(2). If we divide the numerator
and denominator of Eq.(8.12) by sinh (φ1/2) sinh (φ2/2),
we obtain the simpler expression[29]

tan
ω2

2
=

sin θ

cos θ + D
. (8.13)

The coefficient D can be written as

D =
(

coshφ1/2
sinh φ1/2

) (
coshφ2/2
sinh φ2/2

)
(8.14)

=⇒ D =
(

eφ1 + 1
eφ1 − 1

) (
eφ2 + 1
eφ2 − 1

)
(8.15)

which, from Eq.(3.12), is simply a ratio involving Doppler
blueshift factors. Alternatively, using Eqs.(8.3), (8.4)
and (3.2b) in (8.14), we see that

D =

√(
γ1 + 1
γ1 − 1

) (
γ2 + 1
γ2 − 1

)
. (8.16)

Eq.(8.13), together with either Eq.(8.15) or (8.16), is the
simplest expression we have seen for the Thomas-Wigner
Rotation angle ω2.
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9. CONCLUSION.

In this paper we presented a completely self-contained
derivation of a relativistic velocity space called rapidity
space. We then demonstrated how this space can be used
to visualize and calculate various effects resulting from
the successive application of non-colinear Lorentz boosts
and the relativistic addition of non-colinear velocities.
In particular, we showed how rapidity space provides a
geometric approach to the Thomas-Wigner Rotation and
the Thomas Precession, and how it offers both qualitative
and quantitative insight into these (and other) effects.
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be expressed with the ‘denominator’ on the right.

[49] For a more algebraic approach to the spinor map, see
G.L. Naber, The Geometry of Minkowski Spacetime
(Springer-Verlag, New York, 1992), or M. Carmeli and S.
Malin, An Introduction to the Theory of Spinors (World
Scientific, New Jersey, 2000).


