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Abstract

An elementary derivation of the electromagnetic memory effect is given. An

experimental setup to detect it is suggested.
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Classical memory effects and their relation to BMS conservation

laws and soft emission theorems have been the subject of recent in-

terest by Strominger and collaborators (see [1] and references con-

tained therein.) In this note I will give an elementary derivation of

the electromagnetic memory effect and suggest a way of detecting

it.

1 Memory Effect

Consider a large sphere Ω surrounding an explosion which ejects

charged particles, which later pass through the sphere. We assume

the explosion is near the center of the sphere so that the particles

velocities are radial when they pass through the sphere. We also

assume that they move with velocity close to or at the speed of

light. Before the explosion the charge density, current density, and

electromagnetic fields were zero. We work in the temporal gauge

and take the initial value of the vector potential to be Ain = 0.

The Gauss equation

∇ · E = ρ (1.1)

is true everywhere at all time. We will consider it on the sphere.

Since the charges are moving in a lightlike radial trajectory when

they pass the sphere we can assume that the charge density is equal

to the radial component of the current jr.

Thus, on the sphere we may write,

∇ · Ȧ = −jr (1.2)
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where we have used

E = −Ȧ (1.3)

Now integrate over time and we find (on the sphere) that after

all charges have passed through the sphere,

∇ · A = −Q(Ω,∞) (1.4)

where Q(Ω,∞) is the total charge that has passed through the

point Ω after all particles have left.

It is easy to show that the contribution of the normal components

of E average to zero as the charges pass through the surface of

the sphere. As the charge recedes from the surface the normal

component of E is opposite to the value it had while the charge was

approaching the surface. Therefore we may restrict the divergence

of Ȧ to the components along the sphere. The subscript Ω indicates

the restriction to the sphere. Thus at the end of the process we find

that at every point on the sphere:

∇Ω · AΩ = −Q(Ω,∞) (1.5)

Now let us imagine that the sphere is covered with a collection of

superconducting nodes. Initially before the explosion the supercon-

ducting nodes are connected by superconducting wires so that the

relative phases of the superconducting condensates at the nodes are

all zero. Then we disconnect the wires. At the end of the experi-

ment there is a gauge field A present on the sphere but no elecrtic
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or magnetic field. Therefore the gauge field has the form,

A = ∇λ (1.6)

We can eliminate the gauge field by a gauge transformation on

the sphere at the cost of creating a relative phase between the

superconducting nodes. The position dependent phase is just λ

This frozen-in phase is the electromagnetic memory effect.

The relative phases of the nodes can be detected by connecting

pairs of nodes with Josephson junctions. Josephson currents will

flow proportional to the phase differences.

2 Local Conservation Law

We can express the memory effect as an instantaneous conservation

law. Define Q(Ω, t) to be the total charge that has passed through

the point Ω up to time t. Obviously

Q̇(Ω, t) = jr(Ω, t) (2.1)

The Gauss condition becomes,

d

dt
{∇Ω · AΩ +Q(Ω, t)} = 0 (2.2)

Equation 2.2 is a conservation law that is true at every point on

Omega. The reason that it is not trivial is that when integrated

over time the change in A is not zero since it must satisfy 1.4. As

we have seen this leads to an observable flow of charge between

superconductors. The flow will occur when we reconnect the nodes
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no matter how long we wait. The memory of the explosion is frozen

into the relative phases. A last point is that the integrated conser-

vation law may also be understood as the usual soft photon emission

theorem. Thus we see the triangle of ideas: Local conservation law,

soft theorem, memory effect.

3 Generalization

The motion of charges does not have to be light-like to have a

memory effect although the analysis is not as elegant. For simplicity

assume the charges move radially but this is not essential. Also

assume that the charge density and electromagnetic fields are all

zero inside the sphere at the beginning and end of the process. The

simplest case is when the charges move with fixed velocity v < 1.

In that case we can write,

jr = vρ (3.1)

and replace 1.2 by

∇ · Ȧ = −
1

v
jr (3.2)

and 1.3 by,

∇ · A = −
1

v
Q(Ω,∞) (3.3)

If the velocity at the sphere is time dependent then 3.3 becomes

more complicated with the right side being an integral.
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