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Abstract

Energetic causal sets are causal sets endowed by a flow of energy-momentum be-
tween causally related events. These incorporate a novel mechanism for the emer-
gence of space-time from causal relations [1} 2]. Here we construct a spin foam model
which is also an energetic causal set model. This model is closely related to the model
introduced in parallel by Wolfgang Wieland in Ref. [3]. What makes a spin foam
model also an energetic causal set is Wieland’s identification of new momenta, con-
served at events (or four-simplices), whose norms are not mass, but the volume of
tetrahedra. This realizes the torsion constraints, which are missing in previous spin
foam models, and are needed to relate the connection dynamics to those of the metric,
as in general relativity. This identification makes it possible to apply the new mecha-
nism for the emergence of space-time to a spin foam model.

Our formulation also makes use of Markopoulou’s causal formulation of spin
foams[4]. These are generated by evolving spin networks with dual Pachner moves.
This endows the spin foam history with causal structure given by a partial ordering
of the events which are dual to four-simplices.
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1 Introduction

The notions of causality and causal structure is central to special and general relativity,
yet it is controversial whether it plays a fundamental role in quantum gravity. They play a
prominent role in some approaches to quantum gravity, including causal sets, causal dy-
namical triangulations, relative locality and twistor theory-to mention a disparate group.
Most studies of spin foam models, on the other hand, de-emphasize the role of causal
structure. However there are exceptions. In [4] spin foams generated by evolving a dual
spin network with Pachner moves, were given a causal structure by establishing a partial
order between events. In [5] a more global construction was proposed, similar to that ex-
plored in causal dynamical triangulation models. Both these formulations, by providing
a framework in which dual spin networks were evolved causally, married loop quantum
gravity to causal set model

In [1) 2] we introduced a version of causal sets in which events are endowed with
momentum and energy transmitted along causal links, and playing a role in establishing
the causal structure. We call these energetic causal sets. One feature they have which
distinguish them from bare causal sets is that they incorporate a novel mechanism for
the emergence of a classical space-time in the semiclassical limit[1}, 2]. In this mechanism,
space-time co-ordinates of events, which are absent when the model is first formulated,
arise as lagrange multipliers used in the expression of the constraints that enforce the
conservation of energy-momenta at events.

In this paper we establish that a new kind of spin foam model, introduced by Wieland
[3], can be understood as an energetic causal set model, with additional structure. We
achieve this correspondence in three steps. The first is to build a spin foam as a causally
evolved spin-network following [4]. This construction is reviewed in the next section. The

!Other ways to impose causal structures on spin foam models were studied in[6]. Another related
approach is described in [7].



second step is to add holonomy and flux variables appropriate to the dynamics of loop
quantum gravity. The third step is to follow Wieland [3] in adding to the spin foam model
a conservation law for a new kind of four-momentum, assigned to tetrahedra. The four
momenta of a tetrahedron is normal to it, while its norm is proportional to the tetrahedra’s
volume. These momenta are conserved at events, which are dual to four simplices, and
the conservation enforces the closure of the four simplex, as made of its five constituent
tetrahedra.

As shown by Wieland[3], this conservation law realizes the imposition of the con-
straint that the torsion of the space-time connection vanishes. This is necessary if the
dynamical connection is to carry information about the metric and frame fields, neces-
sary to turn the first order dynamic of constrained BF' theories into the metric dynamics
of general relativity.

This conservation law also makes possible the identification of the causal set model
with an energetic causal set. This is the main claim of this paper. This we expect will
be useful as it gives a new route to the emergence of classical space-time and general
relativity from the semiclassical limit of a spin foam model.

The spin foam model we describe here is then very closely related to that presented by
Wieland in [3]. The main difference is that we work with an action that is purely discrete,
whereas Wieland uses an action continuous in a time parameter that parameterizes the
edges of faces of the simplicial complex. This formulation realizes a beautiful Hamilto-
nian structure. For some cases, the continuous of the action, and the related symplectic
structures, may be derived as a limit of our discrete action, along the lines of the deriva-
tion of the free particle action from the discrete action in energetic causal sets in [1} 2].

In this paper we aim to be pedagogical and so we assume no prior knowledge of
causal sets or spin foam models. Indeed, the technical complexities of spin foam models
can be postponed till the last stage of the construction. In the next section we recall the
construction of causally evolving dual spin networks from [4]. In section 3 we add mo-
menta and turn these into energetic causal sets. In section 3 we add additional degrees
of freedom that code geometrical information and so turn the model into a spin network
model, closely related to that of [3]. It is at this last step that the identification of mass
with volume is made.

2 Recalling dual spin network causal evolution

The marriage of loop quantum gravity and causal sets, leading to a formulation of causal
spin foams, was proposed by Markopoulou[4]. We’ll describe this first for 2+1d, where it
is simpler to analyze, then extend to 3+1d.



2.1 2+1d Spin Networks

e Causally evolving spin networks are constructed from evolving states by one of a
set of local evolution moves. In 2+1d a state is represented by a triangulation of a
space-like surface. An evolution move is a discrete time step called Pachner move.
Each Pachner move performed on the spatial slicing corresponds to an event.

e Each triangle in the spatial triangulation represents a locally flat piece of 2d space.
The triangulation is dual to a three-valent spin network I'; embedded in a topologi-
cal two manifold . The center of each triangle is dual to a node in the spin network,
and labeled by intertwiners. The sides of each triangle are dual to edges in the spin
network and labeled by SU(2) spins.

e From this triangulation we evolve to the next state by adding tetrahedra on top of
it. There are different kids of moves, each represented by a way to cover one, two
or three adjacent triangles with the faces of the tetrahedra. For example, a so called
1 — 3 move is made by adding one more point to the future of a given triangle,
which creates a tetrahedron. The initial triangle makes up the bottom (i.e. past)
side of the tetrahedra. This triangle is now replaced by the three new triangles
making up the top, or future, side of the tetrahedron. This tetrahedron represents
the Pachner move and so generates the time step.

The tetrahedron is formed by 4 glued triangles, part of these in the current spatial
slice, the past, and part of these in the new spatial slice, the future. Splitting the 4 tri-
angles in the tetrahedron between the past and future slices gives origin to different
Pachner moves, and in 2+1d there are different 3 possibilities

e In 2+1d the available Pachner moves are 1 — 3 triangles, 2 — 2, and 3 — 1. If
the tetrahedron is placed on top of one triangle in the current triangulation then
that triangle is in the past slice and the three remaining triangles become part of
the future triangulation, forming a 1 — 3 move, which we show in Figure [1in the
dual spin foam/ dynamical triangulation representation. If it’s placed on top of two
adjacent triangles in the current triangulation, then the two complimentary triangles
in the tetrahedron become part of the new representation, forming a 2 — 2 move,
shown in Figure 2| Finally, if it’s placed on top of three adjacent triangles in the
existing triangulation, the remaining triangle becomes part of the new triangulation
forming a 3 — 1 move. This is just the reverse of the 1 — 3 of Figure

e The Pachner moves are repeated many times over, creating a causal spin foam SF.
In the language of ECS introduced in Section [3|the Pachner moves represent events,
V;. Each tetrahedron V; is an event.

o The resulting three dimensional simplicial complex is made from the events, which
have the structure of a causal set. Two events V; and V; have an immediate causal
link, L;; if a triangle in the future set of I is also in the past set of J. Causal links
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between events are denoted edges. Edges represent time-like evolution and have a
unique orientation towards the future?] The causal link L;; can then contain several
triangles, making a chain. We say event K is to the future of event I, J > I if there
is a chain of future pointing causal links beginning on / and ending on K.

o A Pachner move represents the transition amplitude for an event to take place. This
includes the generation of spins and intertwiners for the new edges and nodes intro-
duced in the evolution move, as well as a choice of which of the available Pachner
moves takes place. This issue of identifying and attributing transition amplitudes
to all the available Pachner moves will be addressed in future work, and is outside
of the scope of the current work, which is purely quantum mechanical.

e The edges and faces of the triangles are all space like. Dual to each triangle, 7" is a
time-like link, [, connecting two events which contain 7" as part of the future or past
set.

e The causal network may include multiple time-like links between two causally re-
lated events.

e Except for the initial triangulation, every triangle is uniquely in the future set of one
tetrahedron. Except for the final triangulation, every triangle is uniquely in the past
set of one tetrahedron.

2.2 3+1d spin networks

The 3+1d construction is obtained by increasing the dimension of each of the structures
in 2+1d. A time slice is now a 3d surface triangulated by tetrahedra (instead of the tri-
angles in the 2d+1 case). Evolution moves, or Pachner moves are now represented by
4-simplexes. 4-simplexes are simply tetrahedra lifted up to four dimensions by adding
a point in the extra dimension and drawing an edge to it from each node of the orig-
inal tetrahedron. The difficulty of visualizing the 3+1d model lies in the fact that we
can’t draw tetrahedra in 4 dimensions but we can represent its projection in a 3d volume
which, by analogy with the 2d projection of a 3d tetrahedron, is a tetrahedron composed
of 4 internal tetrahedra composing 5 tetrahedra in total, see Figure

4-simplexes in 3+1d have the same role as tetrahedra in 2+1d i.e. they represent Pach-
ner or evolution moves. A 4 simplex takes one or more tetrahedra on a past space slice
in 3d and evolve it to new tetrahedra in the future 3d slice. A four-simplex is composed
of 5 tetrahedra; just as before we decide which Pachner move by selecting a few adjacent
tetrahedra of the existing space foliation, placing the 4-simplex on top of those, erasing
the existing tetrahedra and replacing them by the remaining tetrahedra in the 4-simplex.
The centre of the tetrahedra is dual to a node and each triangle in the tetrahedra dual

ZNote that this is different from the model of [3] where there is no causal ordering.
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Figure 1: 1 — 3 Pachner moves in 2+1d, in the dual spin network/dynamical triangula-
tion representation. (Upper panel) Spin network move: one node becomes three nodes.
(Middle Panel) 1 — 3 move in triangulations: the lower triangle becomes the upper
three triangles. (Bottom panel) View from top: both triangulation and dual spin network
superposed

to links making up the four-valent spin network. The possible Pachner moveﬂ are then
m —5—m,wherel <m < 4.

3 Energetic causal sets and causal spin foams

An energetic causal set, is defined [1, 2] is a causal set with additional intrinsic momenta
labels. These include d + 1 dimensional momenta p, assigned to links, which are con-

3Generically a Pachner move in n+1 dimensions is generated by a n+1-simplex placed on top of m =
1,..,n existing n- simplices. The remaining n+1-m n-simplices become part of the new triangulation.
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Figure 2: 2 — 2 Pachner moves in 2+1d, in the dual spin network/dynamical triangula-
tion representation.

served on events. In fact there are two momenta associated to each link, I < .J, an outgo-
ing momenta from I, p!/ and an incoming momenta to J, labeled. p!”.

The conjugate quantities to the p, are space-time coordinates z* on links, these arise as
lagrange multipliers which enforce constraints that ensure the conservation and flow of
momenta through the causal set. In particular, there are lagrange multipliers 2 on events;
these define an embedding of the events into a d + 1 dimensional lorentzian space-time
which emerges in the semiclassical limit.

In [1, 2] we proposed an action for an energetic casual set.

=N "ZiPl+ Y (XURE + NFCl + NFCL) + 5™ (1)
I (I,K)

where the momenta are subject to three sets of constraints.
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Figure 3: 3 dimensional projection of 4-simplex. One large tetrahedron composed of 5
tetrahedra, 4 inner tetrahedra plus the large one formed by all others.

1. The first term in Eq. [1]] results from the conservation law associated with each event:
Pa = Pux = D P =0 )
K L

where the sum over K is over all events I is connected to in the past and the sum
over L is over all events [ is connected to in the future.

2. The second term in Eq. [1] comes from the redshifts constraint associated to each
immediate causal link,
R = Par = Ua"'ppy = 0 3)
where UX? € SO(d — 1,1) is a parallel transport operator representing the time-like
components of the space-time connection.

3. The third and fourth term result from the energy momentum relations for relativistic
particles, two for each immediate link.

1 a 5 1 a
Ci = " Parchire +m* =0, Cc = o0 actye +m?* =0 (4)

The equations of motion include
Zi = Uy Zie = o I+ NT) (5)

which can be interpreted as situating the events at points in an emergent space-time,
separated by causal intervals proportional to the four momentum propagated between
them, followed by rotation by a parallel transport operator.
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An interesting feature is that if we take S™ = 0, as we did in [} 2], the action is a
pure linear combination of constraints. However we sill see below that we need a non-
vanishing S to represent a spin foam model.

The usual symplectic structure

/ 2fuds 6)

is gotten by considering a chain of events with each having a single input and a single
output, as shown in [1} 2].

We also gave a twistorial formulation of it for the null case when the masses vanish.
We represent null p!/ by a two component spinor 7/ by the correspondence

o wlfld ”

. / — . . . . ’
ie p, = 047 474 for 3 + 1 dimensional Pauli matrices, o',

g2’ are similarly represented by spinors x%.
Ga € XAXA (8)
The redshift constraints Eq. [3|are now
Rir =i — UfXp =0 )
The conservation law, Eq. [2] at each event is

Pha = Z AT K — Z X =0 (10)
K L

We again form an action only the energy-momentum relation constraints are not present
because they are solved for

Sister — N "M PLa+ D A RA + QF Dy (11)
I (I,K)

where there is a new constraint, fixing the helicity,
D =ws+aVmy —28 (12)

Let us consider the case that the redshift constraint is trivial, so that U} = Id%. In that
case, we can solve the redshift constraints and replace y%; by 7%;. The action reduces to

gwistor — N AAPE L 1 ST LK D (13)
I (I,K)

The variation of the action by 7%, yields the twistor incidence relation

I Al _ _AA' T
QKUJK =2 Tag (14)



4 Wieland’s twistorial spin foam action

We can now see that Wieland’s twistorial action for spin foams[3, 8] is very similar.

We construct a 3 + 1 dimensional causal dual triangulation following Markopoulou'’s
prescription described in section 2. Following Wieland’s work we endow the elements of
the dual triangulation, 7', with the following degrees of freedom.

e We can begin with the original spin-network degrees of freedom, which are holonomies
and fluxes assigned to edges of graphs embedded in spatial slices. Consider a link
7 of a spin network, I', which joins two nodes, which we may call ; and v;. To vy we
can associate an initial flux T, € si(2, ), and a final flux, T, € si(2,C). Conjugate
to these are holonomy, g, € SL(2,C).

e Dual to v, in the triangulation of a spatial slice, is a triangle 7. In the spatial slice
the triangle bounds two tetrahedra, these are each dual to one of the two nodes that
7 connects. (Note that in the four dimensional simplicial complex there will be in
general more tetrahedra bounding a given triangle)

e Thus to each triangle within a spatial slice we have an initial flux II, € si(2, ('), and
a final flux, II, € sl(2,C). These represent the area of the triangle as seen from the
frame of reference of each tetrahedra that bounds it.

e Space-like parallel transport: To each triangle in the tetrahedron, 7 € T', dual in the
3-surface to space-like link, there is an holonomy, g, € SL(2, C). They are related to
the initial and final fluxes by the conservation constraint,

;b = ﬁ;b - (gT_l - gr)ab =0 (15)

Note that as the triangles and the dual links to them are space-like, g denotes space
like components of the space-time connection.

e Similarly, each tetrahedron 7" has associated to it two time-like four momentum, pl
and p! which are vectors in an internal momentum space, P. They correspond to
total momenta incoming to, and total momenta outgoing from the tetrahedron from
past and to future events. They are parallel to the normals to the tetrahedra as seen
in the frame of reference associated with the two four-simplices that bound it, from
the past and from the future.

e Time-like parallel transport, or redshifts:

The p! and p! are also related by a parallel transport constraint

R =p,—U(T)op, =0 (16)
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where U(T"), which is an independent degree of freedom is, in this case, the parallel
transport of the space-time connection in the time-like direction across the tetrahe-
dron, from the event associated with the four-simplex that bounds it from the past
to the event dual to the four simplex that bounds it to the future.

In the case that we can pick U(T) = I we can solve Rl = 0 and equate p, = p,

The four momenta and fluxes are related by three constraints:

The simplicity constraint, ensuring geometricity of the fluxes:
St = plTe =0 (17)

the volume shell constraint, establishing equivalence between mass, in the energetic
causal set language, and volume,

CT = papyn™ + VE(II) = 0 (18)

where internal indices are raised and lowered by 1?°, which is a metric on the inter-
nal momentum space and V; (II) is the volume of the tetrahedron. We will see below
why it is interesting to regard the volume to be expressed as a four momentum.

There is also the Gauss’s law constraint, ensuring geometric closure of the tetrahe-
dra

Gp =) 1, =0 (19)
TeT
where IT°(7) is the dual, in the three-space orthogonal to p?, of the flux I1%(7).

The three volume of a tetrahedron, 7" is a function of the fluxes across any three of
its four triang]les.

V2 —
Vio = 25 leigelE (72 I () T () 0)
The spin network basis we used to represent the initial state is related to the SL(2, C')

connection representation in two steps. First one transforms from the basis of SU(2)
spins, j to the basis of SL(2, C') representations, (p, k) by the map

j—=(p=05k=17) (21)

Then one performs a non-linear fourier transform
U(p, k) = U(g) =) / dpT (1) (9) ¥ (p, k) (22)
k
Putting the two steps together we have,

U(g) =Y Tigra (9) U (BE, k) (23)
k
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e One solves the constraints in terms of two twistors,

T, = (LL)A,ﬁ'A/), Ta = ((IJA,%A/) (24)
These are related to the holonomy and flux variables on the edge (or dual tetrahe-
dra) by
Map = wump) (25)
llap = wuTp) (26)
~B ~B
WATT™ — TTAW
gi = e (27)
VWAT N WRBT
These satisfy Poisson brackets
{w}, 7B} = 656, (28)
and similarly for the tilded twistor.
The simplicity constraint translates into a twisted helicity condition
1
Yy=— A4 it =0 29
ﬂ—I—Z(wAW +LLJA7T)—|—CC ( )
and a linear constraint
T =p"wuma =0 (30)
The condition det g% = 1 requires an area matching constraint on each triangle
AT =708 — 1w =0 (31)
Finally, the Gauss’s law constraint, Eq. translates into
Ghp =) wump =0 (32)

TeT

We can now write the action for a causal spin foam as an example of an energetic
causal set. Note that the sum over events in the first term of Eq. [1]] translates into a sum
over four-simplices, /, while the the sum over causal links in the second term translates
into a sum over tetrahedra, 7. There is also also sum over triangles ensuring the associ-
ated redshift and simplicity constraints, Egs. and [[17],

ST =N ZIPIA Y (XERE+NTCT+NTCT+ ARG+ (VI Ry, +upSe)+ Y Swetse
1 T T

wedges

(33)
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Figure 4: Wedge integration in spin foam face. Figure courtesy of Wolfgang Wieland.

where the constraint that energy and momentum are conserved at events, P! = ( becomes
the condition that volume is relativistically preserved in Pachner moves, i.e. a sum over
all tetrahedra, 7" in the four simplex I,

Pi= > p- > pa =0 (34)

Tepast set of I refuture set of I

The action Eq. is a sum of constraints, plus the wedge term, S**¥9¢. Wedges divide
the face in triangles for summation and are constructed as follows, see Figure
A wedge is defined by selection of a triangle, 7 and two tetrahedra it bounds within
a given four simplex, V/. Let us call the two tetrahedra bounding 7, by T and 7. There
will be a spin network link, /7 joining a point, p(7), on 7 to the point p(7") dual to, and
within, 7. There is another link, /; joining the same point, p(7) on 7 to the point p(T’) dual
to, and within, 7. Now dual to T is a causal edge, ¢(T), joining p(T’) to the point dual to
and inside the four simplex, V. Similarly the edge, ¢(T), joins p(T') to p(V). The wedge is
then the closed loop
w(t,T,T,V)=1:' olzoe(T)oe(T)™* (35)

The holonomy around w is given by
H(w) = hle(T)] o hle(T) "] o g(1) (36)

The wedge action can then be taken from Eq. [26] in Wieland’s formulation of Hamilto-
nian Spin Foams [8]:

el = —%Mw(h[e(f)}h[e(T)1])AB(wA7:TB + Tap) + cc (37)
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where

_1 (v, vE
w3 (42 E) N

The spin foam partition function is then
Z = / 11z [[ dxtdNzdNzdpldpld Ay [ dY dugdil,dgy,e™>™’ (39)
1%3 T T

The theory can be expressed in terms of twistor variables, in which case the action is

S =" Z¢Pl+ Y (XIRE+NTCT + NTCT + ARPGH,) + > (Y + pI + o, A7) (40)
1 T T
and the partition function is

7 = / [1dz: [ dx§dNrdNrdp?dpl dAgP | [ ddp,dw?dn’ydae™ (41)
Vi T T

We can then apply to these spin foam models the mechanism for embedding a causal
set into a Lorentzian space-time the method we developed for energetic casual sets[1} 2].
Varying the action Sest, Eq. , by the momenta we find that the equations of motion
tix intervals between the Z§, which transmute from lagrange multipliers to coordinates
of the events dual to the four-simplices. If  and J are two events causally linked through
a tetrahedron, 7', we have

75 —U(T)Z) = N'pp + > uglie? (42)

TeT

Like Eq. [B], this can be interpreted as situating the events of the causal spin foam
at points of an emergent four manifold coordinatized by the Z7. But this time the rela-
tion between the two causally related events is more complex, the momenta are time-like
rather than null and the other factors may be indicative of curvature.

Again, the symplectic structure is gotten from a limit of a chain of events, as Wieland
shows in [8] and as we show in [1,12].

Note that on any single edge we can choose to go to the analogue of A, = 0 gauge,
whichis U = 1.

Then p, = p,, the redshift constraints can be dropped and the twistorial action simpli-
fies to

S =N "ZgPL+ Y (NTCT + AFPGhL) + > (QV + pT + 0, A7) (43)
I T T
while the partition function becomes,

Z = / [1dz: TT dNedpy 427 T [ d2dprdudnty dages™ (44)
Vi T T
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The equation of motion from varying p! are
%4 — Z4 = Nrph+ 0% 0 Y profaf (45)
TeT

where T are the four simplices to the future and past of the tetrahedron 7.
There are equations of motion from varying the 74’s and w’s.

/ Q / ! ! av
_A T A'B' —T AA —
Wi (o + m) + AZ T Wh + T;T(anT wa + QNVTW) =0 (46)
Note that in terms of twistors
Vi = =23/ |(wA%0) (11) (AT ) (72) (wAT4) (73)) (47)

3

However, the U = I gauge cannot be picked simultaneously on all the causal edges
dual to tetrahedra, because there are in general multiple ways to connect an event to one
in its causal future by future pointing sequences of causal edges. By going forward on
one such sequence and returning to the starting point by going backwards along another
one forms closed loops, to which are associated gauge covariant holonomies. These code
information about the curvature of the space-time geometry.

5 Conclusion

In a work appearing in parallel, Wieland [3] introduces a spin foam model which as-
sociates energy-momentum variables to the volume of tetrahedra in the spin network.
These momenta are conserved in evolution moves, thereby introducing energy-momenta
as fundamental variables of the model. Here we have shown that a closely related model
can be associated to the energetic causal set we proposed in [1, 2] thus establishing a cor-
respondence between this spin foam model and energetic causal sets. This endows the
spin foam with a causal structure of its nodes and allows for the mechanism whereby
space-time emerges in ECS to be considered also in the context of spin foams. This work
suggests a new strategy for deriving a classical space-time from the semiclassical limit
of the spin foam model, which makes use of the dynamically generated causal structure
coded into every quantum history.
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