19A particularly clear exposition of Jarrett’s argument has been given by L.
Ballentine and J. Jarrett, “Bell’s theorem: Does quantum mechanics con-
tradict relativity?”” Am. J. Phys. 55, 696701 (1987).

Your students need not even have leamned about bra vectors or inner prod-
ucts. They need only solve Eq. (17) to express the single-particle 1 states
in terms of the 2 states, make the appropriate substitutions into Eq. (16),
and read off the squared coefficients.

2 Abner Shimony calls it “outcome independence.” T prefer Jarrett’s termi-
nology.

ZShimony calls it “parameter independence.” I again prefer Jarrett’s termi-
nology.

ZThe last paragraph of Appendix A illustrates the fact that when averaged
over A Eq. (B4) does indeed hold in a Hardy state.

A more graceful but more subtle (though entirely correct) route from
Eq. (B5) to Eq. (11) consists of simply noting that
(PL(2X" )P\ (1X)pi(1Y)ps(2Y")) can be interpréted as a distribution for
an ensemble of pairs of particles in which each member of the pair
has a specified outcome (R or G) for each of the switch settings (1 or 2)
it might encounter, and in which the marginal distributions that describe
each of the four sets of experiments one might actually perform
(11, 12, 21, or 22) agree with the experimental distributions. If the experi-
mental distributions can indeed be simulated by such an ensemble,
then my derivation of Eq. (11) in Sec. IV in the manner of Stapp is
indisputably valid, whether or not that ensemble makes any physical
sense.

General relativity before special relativity: An unconventional overview of

relativity theory
Wolfgang Rindier

Physics Department, The University of Texas at Dallas, Richardson, Texas 75083-0688

(Received 7 March 1994; accepted 5 April 1994)

It is suggested how Bernhard Riemann might have discovered General Relativity soon after 1854
and how today’s undergraduate students can be given a glimpse of this before, or independently of,
their study of Special Relativity. At the same time, the whole field of relativity theory is briefly

surveyed from the space—time point of view.
L. INTRODUCTION

Historically, Einstein’s General Relativity of 1915—the
theory of curved spacetime—arose as a generalization of his
Special Relativity of 1905—the theory of flat spacetime—
much as the geometry of curved surfaces arises as a gener-
alization of the Euclidean geometry of the plane. This his-
torical sequence from the special to the general theory is
followed in every presentation of the subject known to me.
And for good reason: in this way the required level of math-
ematical sophistication rises only gradually, whereas the in-
verse sequence would seem to require some heavy math-
ematics up front. However, it is amusing and instructive to
fantasize how, in the best of all possible worlds, General
Relativity might have been developed ab initio long before
1905, for example by Bernhard Riemann soon after 1854,
and how it could then have led to Special Relativity. At the
same time, a mathematically diluted version of such a devel-
opment can prove to be of interest to bright undergraduate
students. It gives them a quick and direct taste of spacetime
and of General Relativity, two topics which are often prom-
ised them “at the end of Special Relativity,” but which only
too often are never quite reached. This sequence also well
illuminates the inner logic and self-sufficiency of General
Relativity.

The following is a sample of such a development, which,
with suitable omissions, can be presented to students in an
hour’s lecture.

II. HOW THEORIES ORIGINATE

New theories are as a rule not developed for sport. Rather,
they arise in response to difficulties, paradoxes, or puzzles in
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the older theories. Thus Special Relativity grew out of diffi-
culties in reconciling Maxwell’s theory with Newtonian ki-
nematics, and, in spite of Einstein’s well-known disclaimer,
it could hardly have come into being without the acute para-
dox of the Michelson—Morley experiment of 1887. This ex-
periment showed that, no matter how fast you chase a light
signal, you can never reduce its speed relative to you. Gen-
eral Relativity, on the other hand, has its roots in the much
older mechanics of Newton. But Newton’s theory, too, is by
no means free of puzzles. Above all, it has long been criti-
cized for its reliance, if not necessarily on absolute space, on
the set of global inertial frames whose absoluteness (““they
act but cannot be acted on”’) so offended the scientific sen-
sitivities of Mach and Einstein. And then there is the mystery
of the equality of gravitational and inertial mass, appearing
simply as a postulate in Newton’s theory. Why should a
quantity measuring a body’s inertia or resistance to accelera-
tion act at the same time as its “gravitational charge?” It
would seem that these two puzzles alone (and there were
others) could drive a man to search for a new theory, i.e., a
new mathematical model, especially when a new and suit-
able mathematical avenue had just opened up. The man
might have been Riemann, and the avenue his newly discov-
ered differential geometry of (irregularly) curved spaces of
higher dimensions.

III. GAUSS’ GEOMETRY OF SURFACES

The year 1854 was a memorable one in the annals of the
famous old German university town of Gottingen. The re-
cently developed railroad had finally reached the town. And
also, though unbeknown to most of its good burghers, the
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Fig. 1. In 1854 the railroad reached Gottingen, but Bernhard Riemann un-
veiled there an even more important system of rails, the geodesics of curved
spaces.

28-year-old Bernhard Riemann unveiled to his ‘““Habilita-
tion” examiners the outlines of his groundbreaking new
geometry.! This was in time to furnish the universe with a
different and more permanent network of rails: the “geode-
sics” along which free particles are constrained to move in
curved space—time. (See Fig. 1.)

Riemann’s teacher, the great Gauss, had already put the
differential geometry of two-dimensional surfaces (i.e., of the
surfaces we know from everyday life) on a firm basis. As
Gauss stressed, the inner or intrinsic differential geometry of
a surface is completely determined by its metric, i.e., by the
formula giving the distance ds between any two neighboring
points on it. For example, for a sphere of radius a (see Fig.
2) we can write

ds*=a*(d6*+sin’6d ¢*), 1

where # and ¢ are the usual angles of “colatitude” and lon-
gitude, respectively. Even if I had never seen a sphere in my
life, T could from this concise “blueprint” construct one. I
might start by making a flat map of the surface, labeling the
vertical and horizontal lines of some arbitrary rectangular
grid =0, 0.1, 0.2,... and ¢=0, 0.1, 0.2,..., say. Then, using
the formula (1), I could write in the actual lengths corre-
sponding to the sides of the elementary squares of my grid,
as well as of one of the diagonals of each square. Then I
could cut out from cardboard little triangles having these

a sin@d¢

Fig. 2. A coordinate displacement d 6, d¢ on a sphere produces a distance
displacement ds given by ds?=a?(d 6*+sin® 6d ¢?).
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actual dimensions (two for each square of the grid), glue
them together according to the map, and the result would be
the sphere!

Gauss emphasized the irrelevance of the particular coor-
dinates chosen. One can quite arbitrarily draw on any surface
two families of mutually intersecting curves, label them ar-
bitrarily =0, 0.1, 0.2,... and v=0, 0.1, 0.2,..., say, and then
express ds? in terms of these “Gaussian” coordinates u and
v:

ds*=Edu?+2Fdudv+Gdv?, )

where E,F,G will in general be functions of u and v. The
reason why the metric ds” will always be a quadratic in the
coordinate differentials du,dv is that the surface is a sub-
space of our everyday Euclidean three-space E ;. The metric
of this latter space, when referred to Cartesian coordinates
X,Y,Z, I8

ds’=dx*+dy*+dz*. 3)

And since every point on the surface is also a point of £, we
must have three relations of the form x= f(u,v), y=g(u,v),
z=h(u,v), which, when substituted into Eq. (3), lead to a
quadratic form like Eq. (2).

A surface corresponding to a given metric might well be
deformable without stretching or tearing, €.g., a plane into a
cone or a cylinder. Intrinsic geometric properties are those
depending only on the metric and they are thus preserved
under any such bending. The most fundamental intrinsic
structure after the metric on any surface is the totality of its
geodesics, these being the analogues of straight lines in the
plane. A geodesic can be defined as the “straightest” path on
a curved surface. For example, on a sphere the geodesics are
all the great circles. If I just follow my nose, I will walk
along a great circle. If I draw a straight line down the middle
of a length of Scotch tape, and then carefully glue that tape
inch by inch without wrinkles onto the surface—any
surface—the center line I have drawn will be a geodesic on
that surface. Alternatively, but equivalently, a geodesic can
be defined by the property that every sufficiently short por-
tion AB of it represents the shortest path between A and B.
In a notation useful for our later purposes, this property can
be written symbolically in the form

B
6L ds=0, 4

which states that the “first variation” of the distance [§ds
vanishes.

The intuitive expectation is that there is exactly one geo-
desic through any given point on the surface with given ini-
tial direction, and this can indeed be established as a theo-
rem. It will play a key role in our development.

Geodesics serve among other things to define the (““Gauss-
ian”") curvature K of the surface at a given point P. Draw
two neighboring geodesics through P and let their (small)
separation 7 be a function of the distance s from P. Then K
is defined by the equation

. [d*q
Sy

and Gauss proved that any neighboring pair of geodesics
through P yields the same K. On the sphere (1) one finds
K=1/a? (exercise!). The sphere has constant curvature, but
for a general surface K varies from point to point.
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Fig. 3. A flatman F blows up a one-dimensional balloon b (a circle) on a
sphere. Eventually the balloon envelops him.

IV. RIEMANNIAN GEOMETRY

Gauss’ differential geometry for two-surfaces was gener-
alized by Riemann to n dimensions in what may today seem
an almost straightforward manner. But the very concept of
irregularly curved spaces of higher dimensions was new and
daring at the time. Just as the blueprint for a two-surface is
encapsuled into a metric of the form (2), that for a “Rie-
mannian” space of n dimensions, referred to Gaussian (i.c.,
arbitrary) coordinates x,,x;,...,X,, is encapsuled into a
similar (i.e., quadratic) n-dimensional metric of the form

= gijdxidx;, (8ij=gji)- (6)

There are three metric coefficients g;; for a two-space [com-
parison with Eq. (2) shows g,,=E, g1,=F, g,,=G if we
set x;=u and x,=v], six for a three-space, 10 for a four-
space, and so on. All the g;; are functions of position, i.e.,
functions of the coordinates x;.

Again the most fundamental intrinsic structure of a Rie-
mannian space, after its metric, is the totality of its geode-
sics. These are defined, just as in the two-dimensional case,
as straightest, or alternatively, as shortest lines between suf-
ficiently close points on them. And, most importantly, there
is again a unique geodesic through a given point in a given
direction. Curvature is defined as in the two-dimensional
case, though now it is no longer a single number at a given
point P. Rather, we must choose a “planar direction” (i.e.,
an infinitesimal plane element) at P, and in this planar direc-
tion choose two geodesics issuing from P, to which we then
apply formula (5). In general, the curvature we find depends
on the planar direction we choose; but these various curva-
tures are interrelated, in fact they constitute a “tensor,” the
so-called Riemann curvature tensor. Only in spaces of con-
stant curvature is that curvature independent of planar direc-
tion and position. A three-space of constant curvature
K=1/a” is called a three-sphere, and many of its propertles
are analogous to those of a two-sphere. Moreover there is a
good chance that the actual universe we inhabit is just such a
three-sphere with presently expanding “radius” a. Looking
in any direction we all could, in principle, see the backs of
our heads. If I blow up an infinitely elastic balloon in such a
universe, there comes a moment when the balloon (always a
two-sphere) attains maximum surface area, at which moment
its inside and its outside are equal halves of the universe!
And if I continue to blow, I ultimately find myself inside a
shrinking balloon. For a two-dimensional analogy, imagine a
“flatman” blowing up circles on a two-sphere! (See Fig. 3.)
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I

Fig. 4. A piano (full-line path) and a ping-pong ball (dotted-line path) fly
side by side through the gravitational field caused by some gravitating bod-
ies A,B,C.

V. NEWTON’S GRAVITATIONAL THEORY

Let us next look at the state of health of Newtonian gravi-
tational theory at the time of Riemann. During the 18th cen-
tury this theory had seen a tremendous flowering, owing
mainly to the work of mathematicians like Euler, Lagrange,
and Laplace, and to advances in the accuracy and in the
volume of astronomical observations. With astonishing pre-
cision the mathematicians were able to explain each new
irregularity in the motions of earth, moon, sun, and the plan-
ets discovered by the astronomers. Newton’s theory had be-
come, in Penrose’s classification of theories into superb, use-
ful, and merely tentative, a superb theory.

And yet it was not perfect. As we noted earlier, it was
open to attack on one of its most indispensable tenets, the
apparently god-given absolute nature of the inertial frames.
Then there was the puzzle of the gravitational charge: if I
have a large ball carrying an electric charge Q, a test particle
of charge —¢q at distance r w111 be attracted to the ball with a
(Coulomb-) force F=Qq/r?>. By Newton’s second law,
F=ma, it will therefore fall towards the ball with an accel-
eration a=Qq/mr2, m being the inertial mass of the par-
ticle. The acceleration thus depends on the ratio g/m and can
be large or small or even zero. This is not so in the analogous
gravitational case! Writing M’ and m' now for the “gravita-
tional charge” of the ball and of the particle, respectively, we
have F=GM'm’/r? (G belng Newton’s constant of gravita-
tion) and a=GM'm’'/mr?. As was first demonstrated on the
Leaning Tower of Pisa by Galileo, all particles fall alike! The
reason: m'=m, i.e., gravitational charge equals inertial
mass. This extraordinary experimental fact is simply taken as
an axiom into the theory. One of its consequences is what has
been called Galileo'’s principle. This states that in the gravi-
tational field of an arbitrary mass distribution the path in
space and time of a test particle is determined fully by its
initial velocity. If I project into this field a piano and a ping-
pong ball side by side with the same initial velocity, they will
stay side by side forever. (See Fig. 4.)

The absoluteness of inertial frames and the unexplained
identity of gravitational charge with inertial mass can per-
haps be regarded as ‘“mere” philosophical difficulties.
Gradually, however, there came to light also a certain small
numerical discrepancy that would not go away. Work on the
fine details of planetary motions had already led the French
astronomer Leverrier in 1846—purely by calculation—to
predict the existence of a new planet he called Neptune,
which was found almost at once just where he predicted. By
1859 the same Leverrier had shown that of the observed
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Fig. 5. The paths of some missiles shot off from a mountain top in the same
horizontal direction but with different speeds.

precession of the orbit of Mercury only a part could be ex-
plained by Newtonian theory as due to other heavenly bod-
ies. The missing part, some 40 arcsec per century (!!), was
soon perceived as an acute puzzle, which was, in fact, not
resolved until Einstein’s General Relativity amazingly
yielded the exact value (giving Einstein as a result several
nights of sleeplessness from sheer excitement.)

As a fourth difficulty of Newtonian theory we can briefly
mention its apparent nonapplicability to the dynamics of an
infinite homogeneous universe of the kind contemplated then
and, among other possibilities, even today. The problem is
that the Newtonian forces in all directions are infinite
(though balancing) and that no sensible potential can be
found.

V1. A SCENARIO FOR DISCOVERING GENERAL
RELATIVITY

So far we have sketched some parts of the scientific scene
as it might have been present in Riemann’s mind around
1860. The full extent of Maxwell’s theory is still four years
away and Einstein will not be born for another 19 years;
Riemann has six more years to live. We now indulge in a
game of “what if.”

What if Riemann, contemplating the mystery of Galileo’s
principle (Fig. 4), had decided that it tells us something not
so much about mass as about space? Space seems to have
rails along whioh all “free” test particles (subject to no
forces other than gravity) must travel alike. But there is just
one set of natural rails in any space: its geodesics. Since
Galileo’s rails are patently curved, it would seem that space,
too, would have to be curved. Could our three-space, then,
be appropriately curved by the gravitating masses in it for its
geodesics to provide the Galilean paths? The immediate an-
swer is no, and a diagram (Fig. 5) essentially dating back to
Newton’s Pricipia well illustrates the reason. If we project a
series of missiles from a mountain top, all horizontally and
all in the same direction but with different speeds, some will
drop nearby, the faster ones will go farther, some will orbit
the earth, and some will escape to infinity. Evidently not all
these paths can be geodesics in three-space, since the geode-
sic in a given direction is unique. Now Galileo’s principle
actually asserts that the path is fully determined by an initial
velocity (dx/dt, dy/dt, dz/dt). Knowing such a velocity in
three-space, however, is equivalent to knowing a direction
dx:dy:dz:drt in space and time. Moreover, the piano and the
ping-pong ball stay together not only in space but also in
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time. So could it be that the orbits are geodesics in “space
and time?” One can easily contemplate a four-dimensional
spacetime whose “points” are all the events (x,y,z,t) of this
world. But what would be its metric? We cannot simply add
something like dt” to something like dx” + dy?+dz?, since a
sum of square centimeters and square seconds makes no
sense. At least we must multiply d¢® by a factor having the
dimensions of a velocity squared. Since we are dealing with
gravity, such a factor readily suggests itself in the form of the
gravitational potential ¢. So we contemplate the metric

ds’= ¢pdt®+dx*+dy*+dz>. 1)

There is a very important aspect of Newton’s theory—
important both in itself and for our immediate purpose—
which we have not yet mentioned. In 1835 Hamilton discov-
ered a variational formulation of Newton’s theory, now
known as Hamilton’s principle, which asserts that the time
integral [3(T— U)dt of the difference of the kinetic energy
T and the potential energy U of any mechanical system be-
tween two of its states A and B, is stationary. For a test
particle traveling between points A and B in a gravitational
field ¢, this becomes

B
5f (3v2—¢)dt=0, ®)
A

where v is the particle’s velocity. (The mass of the particle
drops out of the equation, because of the identity m'=m.)

Now if the coordinates x,y,z,t of Eq. (7) are the usual
coordinates of an inertial frame, then for a moving particle
we have

dx*+dy*+dz?
pl=— 9)
dr?
With that, Eq. (7) becomes
ds*=(¢p+v?)dt?, (10)

and the geodesic Eq. (4) reads
B
5f (p+v2)2dt=0. (11)
A

If this were the same as Eq. (8) we would be home! At least,
the geodesics of the spacetime with metric (7) would then
indeed be the Newtonian paths. But we need not dispair;
there are many alternative choices for the metric. Also let us
stress that we need not reproduce the Newtonian paths ex-
actly. We want to get very close to them—after all, Newton’s
theory has been exquisitely validated experimentally—but
some minute difference could actually be of advantage: it
just might explain the excessive precession of Mercury!
Apart from not leading to Hamilton’s principle for a par-
ticle, the tentative metric (7) has another defect: in the com-
plete absence of gravity, i.e., when ¢=0, it degenerates into
three-dimensionality. Yet we would then wish for a fully
four-dimensional though flat spacetime in which the geode-
sics are straight lines, corresponding to constant velocity
Newtonian paths. Qur next attempt might therefore be

ds?=(V2=2¢)dt*+dx*+dy*+dz?, 12)

where V would have to be some universal constant of nature
having the dimensions of a velocity, and where we have put
—2¢ rather than ¢ for reasons that will become evident pres-
ently. This metric certainly becomes flat while remaining
four-dimensional when ¢=0. We now show that it also sat-
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isfies Hamilton’s principle approximately. To get the geode-
sics of Eq. (12) we simply replace ¢ by V>—2¢ in Eq. (11)

5] (V2 =2¢+vH)2dr=0. (13)
A

Now let us suppose that V? is very large compared to both v*
and ¢. Then, using the binomial expansion, we can transform
the integrand of Eq. (13) as follows:

02—2¢ 1/2
VZ
vi-2¢
2V?

(V2—2¢+v2)1/2=v(1+
~V(1+

! (V2 L2 ) 14
| V25 vi-g). (14)
An extra multiplicative constant like 1/V in the integrand of
a variational principle like Eq. (8) evidently does not affect
the solution; nor does an extra additive constant, like V2 in
the last parenthesis of Eq. (14), if ¢ is held fixed at the ends
A and B. (That, of course, is consistent with the fact that a
potential ¢ is determinate only to within an additive con-
stant.) So the geodesics of the spacetime with Eq. (12) coin-
cide approximately with the Newtonian paths as character-
ized by Hamilton’s principle; and the approximation,
stemming from the use of the binomial expansion in Eq.
(14), gets better the larger V or the smaller ¢ and v.

Incidentally, we need not apologize for this “tinker’s ap-
proach” to General Relativity It is very much in the spirit of
what Einstein himself did in the years leading up to 1915,
trying one thing after another.” Indeed it was he who first and
most eloquently stressed the “manmade,” model-like char-
acter of physical theories.

That said, we can now admit that the metric (12) is still
not satisfactory, even though it has the right geodesics. But it
violates causality. Consider what it implies in the absence of
gravity, when it reduces to

ds’=V2idi*+dx*+dy*+ dz*%. (15)

The coordinates are still the x,y,z,¢ of some inertial frame,
indeed of any inertial frame, since the argument leading up
to Eq. (12) applies in any inertial frame and Eq. (15) merely
results from specialization. (It is here that Newtonian
relativity—the equivalence of all inertial frames for
mechanics—gets encapsuled into the new formalism.) Any
two such sets of coordinates satisfying the “4-Euclidean”
metric (15) (we can think of V¢ as just a fourth Euclidean
dimension) are related by four-rotations. Of these, rotations
in just V¢ and x, as shown in Fig. 6, are special cases. But
rotations of this kind play havoc with causality. Consider a
particle path AB as shown. In the frame of V¢ and x the
particle travels from A to B, where A might be the event of
its being shot out of a gun and B the event of its shattering a
clay pigeon. But in the frame of V¢’ and x’ it travels from B
to A; from the broken pigeon into the smoking barrel of the
gun! Considerations of this kind force us, however reluc-
tantly, to contemplate a simple but drastic modification of the
metric (12) into

ds’=(V2+2¢)dt*— dx*>—dy*—dz>. - (16)

This, too, leads to geodesics satisfying Hamilton’s principle
(8) for large V, and to flat space—time for ¢=0. But addi-
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Fig. 6. If space and time in different inertial frames were related by rota-
tions, a signal going from A to B in one frame could go from B to A in
another.

tionally it is free of the causality violations of Eq. (12). (The
reader must take our word for this; the applicable local co-
ordinate transformations are now essentially the I_orentz
transformatlons and not four-rotatlons) But can a ‘““square
distance” ds® be negative? Well, ds® is now not to be re-
garded as the square of a distance; eventually it is recognized
as the square of a displacement vector ds in spacetime, and
the distance ds must be defined as |ds?|"/2. Spaces with «
definite” metrics like Eq. (16) (that can be positive, negatlve
or even zero) are called pseudo-Riemannian. Much of the
geometry of proper Riemannian spaces applies to them also,
especially the theory of geodesics and of curvature. And Spe-
cial and General Relativity are indeed characterized by met-
rics of this kind.

VII. SPECIAL RELATIVITY

The metric (16) still has quite a way to evolve before it
becomes a viable metric of general-relativistic spacetime.
(We shall outline presently how this is done.) However, it has
already fulfilled an important purpose in demonstrating the
feasibility of modeling Newtonian paths as the geodesics of a
“reasonable” spacetime, and thereby “explaining” Galileo’s
principle. The specialization of Eq. (16) with ¢=0 to
gravity-free inertial frames, on the other hand, is already per-
fect. It is the exact metric of special-relativistic spacetime,
provided we write ¢ for the velocity V and identify it with
the speed of light—as the modern student will have guessed
long ago:

ds?=c%dt’>— dx*— dy*—dz>. (17)

It may be asked what ¢ has to do with gravity. But the an-
swer is that ¢ has to do with everything: it turned out to be
part of the structure of space—time, a kind of “conversion
factor” from time to space, and almost every relativistic for-
mula contains it. Gravity waves propagate w1th speed c,
black holes of mass m have a radius 2Gm/c?, and every
mass m has latent energy E=mc

Consider a “particle” traveling at speed c in an inertial
space—tlme i.e., one with a metric of the form (17). Putting
v=c in Eq. (9) we find that ds*=0 for nelghbormg events at
that partlcle But since the value of ds” (as in every Rie-
mannian or pseudo-Riemannian space) must be 1ndependent
of the coordinates chosen, it follows that ds*>=0 in all other
inertial coordinate systems also, so that the particle has the
same velocity ¢ in all inertial frames: ¢ is an invariant ve-
locity.
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In 1860 ro-one knew about the invariance of the speed of
light (the Michelson—Morley experiment was yet to come) or
even about the possibility of an invariant velocity. But since
that possibility is made evident by the metric (17), the ques-
tion after accepting Eq. (17) would really have been which
the invariant velocity is. Moreover, from the comparison of
geodesics with Hamilton’s principle, one would already
know that it must be big. Perhaps, after all, the identification
of ¢ with the speed of light might have been made. But
independently of that, the rest of Special Relativity could
have been derived from the metric (17), at worst with an
unknown constant ¢. As just one example, consider two
events at a clock fixed in an inertial system S of coordinates
X0,Y0,20,t0, SO that dxg=dy,=dzy=0 and ds*=c%dr3. In
another inertial system S of coordinates x,y,z,r we would
then have

ds’=c2dr?| 1-

2 2 2 2
dxtdy +dz) el b
c2dt? c?)’

(18)

v being the velocity of S, relative to S. This yields the fa-
miliar time-dilation formula

dty=dt(1-v?/c*)'?, (19)

which shows that moving clocks go slow. Together with the
invariance of ¢ this then yields the familiar length-
contraction formula, and so on. Of course, the full Lorentz
transformation equations between inertial frames also follow
from the invariance of the right-hand side of Eq. (17). But
clearly we need not pursue the development of Special Rela-
tivity here. On the other hand, we must at least briefly indi-
cate how the approximate metric (16) can be evolved into
full General Relativity.

VIIL. THE FIELD EQUATIONS OF GENERAL
RELATIVITY

The mathematician Riemann might well have had less
trouble than did the physicist Einstein with the development
of the metric (16). The task is twofold: first, to eliminate all
direct dependence on Newtonian theory (as in the use of the
Newtonian potential ¢ and of Newtonian inertial frames),
and then to make spacetime theory truly geometric in the
spirit of Gauss, namely to express it in a form independent of
any special choice of the coordinates x,x,,x3,x, for label-
ing events.

One must therefore contemplate a general pseudo-
Riemannian four-dimensional metric of the form (6), with
signature +———. (This refers to the distribution of signs
when the metric is expressed as a sum of squared differen-
tials at any given point by a linear transformation of coordi-
nates.) Such a general metric contains 10 as yet undeter-
mined coefficients g;;, which, in view of Eq. (16), are
regarded as the relativistic potentials. Just as in Newtonian
theory (which has one potential ¢) and in Maxwell’s theory
(which has four potentials ¢, A{,A,,A3), the first derivatives
of the potentials (the g;;) determine the (now geodesic) equa-
tions of motion of the theory. By analogy with Poisson’s
differential formulation of Newton’s inverse-square law,
V2¢p=4mGp, and with the corresponding Maxwell equa-
tions, we might expect that out of the second derivatives of
the g;; one can construct the field equations which link the
field g;; to the sources. And this is precisely what Einstein
succeeded in doing. Furthermore, his field equations reduce
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to Poisson’s equation in the case of weak fields, just as the
geodesic equations reduce to Hamilton’s principle in the case
of weak fields and slow motions. (In the context of relativity,
the field of the sun, for example, is exceedingly weak, i.e.,
$<c?, and the motions of the planets are exceedingly slow,
ie, v<c.)

Riemann might not have been able to anticipate Einstein’s
full field equations, which are based on a special-relativistic
analysis of the 10 parameters characterizing a continuous
distribution of sources (the components of the so-called
momentum—stress—energy tensor) and which incorporate
Einstein’s discovery E =mc?. But he could rather easily have
anticipated the vacuum field equations governing source-free
regions like the exterior field of the sun. He would simply
have had to “contract” the very tensor associated with his
name, the Riemann curvature tensor, and set the result equal
to zero. A certain analogy between, on the one hand, curva-
ture having to do with the spread of geodesics, and, on the
other hand, a spread of geodesics having to do with tidal
forces in Newtonian theory, could actually have suggested
this approach.? And the exact precession of the orbit of Mer-
cury would then have been an immediate consequence, ripe
for the picking.

Two features, in particular, of General Relativity set it
apart from theories such as Newton’s or Maxwell’s. The first
is that the field equations are nonlinear in the potentials, and
the second is that the field is the geometry. The main impli-
cation of nonlinearity is that solutions cannot be superim-
posed. If we simply add the fields of the parts of a star in
Newton’s theory, we get the field of the star. Not so in Ein-
stein’s theory, and we should not expect it: here the negative
gravitational binding energy holdin% the various parts to-
gether has itself a mass (via E=mc”) and this reduces the
sum of the fields of the parts. The dilemma inherent in the
coincidence of field and geometry is that, on the one hand,
we cannot describe the sources properly unless we know the
geometry in which they are embedded, and, on the other
hand, we do not know the geometry until we have solved the
field equations which, of course, involve the sources. This
forces us to work “from both ends” at the same time—quite
a new technique.

IX. CONCLUDING REMARKS

General Relativity, apart from reproducing all the results
of Newtonian theory to within the classical accuracy of ob-
servation, additionally yields the correct orbit of Mercury
and also takes care of the other three difficulties of Newton-
ian theory that we mentioned: the Galilean principle is ex-
plained by the geodesic law of motion, the absolute inertial
frames have been replaced by a spacetime susceptible to the
influence of matter via the field equations, and last, General
Relativity provides a completely satisfactory dynamics and
geometry for the universe as a whole. Beyond that, of course,
like any good theory, it has led to many new and unexpected
predictions, such as the existence of gravity waves and of
black holes, to mention just the two best known.

Furthermore, General Relativity linked the propagation of
light to gravity. One can prove that light follows null geode-
sics in spacetime, i.e., geodesics having ds’=0 all along
them. Since the geodesics are determined by the metric,
which in turn is determined by the sources, we see that light
paths are also dependent on the latter: just like particle paths,
light paths are bent in the presence of gravitating sources. Of
course, in Newton’s theory, too, particles (photons) traveling
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at the speed of light are deflected (as are particles traveling at
any other speed.) But it turns out that the general-relativistic
orbits of photons (unlike the orbits of slow particles) can
differ radically from their Newtonian counterparts. For ex-
ample, radio signals from distant quasars passing the edge of
the sun on their way to us should be bent by twice the New-
tonian value according to General Relativity. And this is con-
firmed by observation.

In any presentation of General Relativity, however
sketchy, the opportunity should not be missed to drive home
to the student an important insight on the nature of physical
theories. Ever since Fancis Bacon, it had been believed that
the laws of Nature were there to be “discovered,” if only one
made the right experiments. Einstein taught us differently.
He stressed the vital role of human inventiveness in the pro-
cess. Newton “invented” the force of gravity to explain the
motion of the planets. Einstein “invented” curved space—
time and the geodesic law; in his theory there is no force of
gravity. If two such utterly different mathematical models
can (almost) both describe the same observations, surely it
must be admitted that physical theories do not tell us what
nature is, only what it is like. The marvel is that nature seems
to go along with some of the “simplest”” models that can be
constructed in the context of various mathematical formal-
isms.

Finally, as a kind of summary, the student could well be
left with a modern definition and characterization of relativ-
ity. Thus, relativity should be regarded primarily as a new
theory of space and time, in which these two concepts meld
into a pseudo-Riemannian spacetime; secondarily relativity
is the theory of a new physics consistent with this new
space—time background. Special Relativity deals with phys-
ics in flat spacetime, which ideally exists only in the total

absence of gravitating matter. For, according to the field
equations of General Relativity, the presence of matter
curves the spacetime. General Relativity is thus the modemn
theory of gravity. But it also deals with the rest of physics in
curved spacetime. In practice this can often be avoided by
treating sufficiently small portions of curved spacetime as
flat, and simply using Special Relativity. Such an approach is
analogous to treating a small portion of a curved surface
(e.g., our backyard) as flat, and applying plane Euclidean
geometry to it.

Perhaps to a bright student we have raised more questions
than we have answered. But if this whets the appetite for a
deeper study of relativity, then our purpose will have been
amply served.*
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Are science and religion independent or conflicting systems of thought? This question was the focus
of a course on science and religion given at Brooklyn College. The class explored the underlying
metaphysical assumptions, sources of knowledge, and methodologies of science and religion from
philosophical and historical perspectives. The conclusion is that science and religion are basically
independent modes of inquiry, but they have come into conflict over questions about the origin,
history, and nature of the physical world. These are areas in which science has been far more
successful in providing fruitful explanations and predictions. Nevertheless, the limitations of science
and the scientific method must be understood and respected.

The subject of the relationship between science and reli-
gion never fails to stimulate passionate debate. The classic
text on the subject, written in 1895, referred to their interac-
tions as “warfare.” ! Scientists have come in conflict with
religious authorities dating back to ancient Greece; the Gali-
leo affair still resonates after three and a half centuries. In
our times, the conflict between creationism and evolution
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reminds us that a full accommodation has yet to be reached.
Most recently, the publication in the American Journal of
Physics of the review of a book on science and religion
stimulated one of the more spirited and sustained exchange
of letters to the editor in recent memory.?

The purpose of this article is to report on a course on
Science and Religion given at Brooklyn College in the Fall
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