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The differential equations of motion for a test particle moving
with uniform acceleration in a curved space time are proposed.
They are obtained by generalizing the differential-geometric
characteristics of a rectangular hyperbola in Minkowski space
time. The problem is proposed, though not solved, of deriving
these equations of motion from the field equations of general
relativity. However, it is suggested that they also hold independ-
ently of general relativity in cosmological space times based on
the Robertson-Walker metric. The equations are solved in detail
for the particular case of de Sitter space time, which is relevant
to the steady-state theory. It is found, Zuter alia, that in this

space time a particle moving radially with uniform acceleration
ultimately moves with constant relative velocity through the
substratum; that there is a critical first fundamental particle
(galaxy) on its line of motion which it will never overtake; that,
in turn, a light signal emitted at or after a certain critical time
will not catch up with the accelerating particle; and that, if a
particle with a given available acceleration « passes beyond a
certain proper distance (the a horizon) it can no longer return
to its place of origin. Possible applications to intergalactic rocketry
are examined.

1. INTRODUCTION

N the special theory of relativity the term ‘hyper-
bolic motion” is commonly applied to the motion
of a test particle moving with constant proper accelera-
tion along a straight line in a suitable Galilean frame of
reference. (Proper acceleration=acceleration relative
to the instantaneous Galilean rest frame.) Hyperbolic
motion was first noted by Minkowski! and was further
studied by Born,> who also coined its name. This name
derives from the fact that the plot of distance against
time is a rectangular hyperbola [see Eq. (9) below].
By the same terminology the classical motion with
constant acceleration is “parabolic.”

The problem discussed in the present paper is the
generalization of the concept of hyperbolic motion to a
general space time. The immediate motivation for this
work was a paper by McMillan® which discusses some
aspects of intergalactic rocket travel by use of the
special relativistic formulas for hyperbolic motion. But
it is evident that for such problems on the cosmological
scale the special theory of relativity can, in general,
only furnish answers that are at best approximate. One
exception occurs in the cosmological theory of Milne!
which is based strictly on special relativity and in which
McMillan’s calculations, if correctly interpreted, hold
exactly. In general cosmological space times, however,
a more general treatment is needed. Such expected
effects as the inability of the space traveller to return
to earth after crossing the cosmological horizon (or
rather a nearer point, depending on the available ac-
celeration) are, even qualitatively, beyond the scope
of the special theory of relativity.

From a theoretical point of view the problem is by no
means without interest. Indeed, on the basis of the
general theory of relativity, the problem seems extraor-
dinarily difficult. The intricate calculations necessary

1 H. Minkowski, Physik. Z. 10, 104 (1909).

2 M. Born, Ann. Physik 30, 1 (1909), Sec. 5.

3 E. M. McMillan, Science 126, 381 (1957).

*E. A. Milne, Nature 130, 9 (1932); Kinematic Relativity
(Oxford University Press, New York, 1948).

for obtaining the geodesic path law for free test particles
from the field equations are well known.> To make
allowance for the changes caused by a firing rocket in
the surrounding field would seem to be a prodigious
task, though it should theoretically be possible to
derive the equations of motion in that way. The prin-
ciple of equivalence by itself is certainly insufficient for
the purpose, just as it is insufficient in the case of “free”
motion: innumerable paths are consistent with it. But
we can, nevertheless, proceed from the principle of
equivalence with the help of a simplicity requirement,
as was originally done also by Einstein® in order to
justify his geodesic law. In this way we are led to unique
differential equations for the path. It would be very
surprising if these equations turned out, on deeper
analysis, to be inconsistent with the field equations
which themselves arise from the principle of equivalence
by a simplicity requirement.

Even if the differential equations proposed below
could be deduced from the field equations of general
relativity, we should still have to merely postulate them
in the case of cosmological theories not based on either
general or special relativity. It is well known from the
work of Robertson” and Walker® that all possible cos-
mological theories using homogeneous and isotropic
world models share with general relativity the form of
the line element and most of its properties [see Eq. (18)
below], and I believe my results are applicable to such
theories. I am not aware of alternative methods of de-
duction in any such theory, nor, on the other hand, of
any conflict of the proposed equations with the axioms
of such theories.

My equations turn out to be equivalent to one of the
definitions of ‘“‘uniform acceleration” proposed by
Marder.® Marder also proposed another definition

8V. Fock, The Theory of Space, Time, and Gravitation (Per-
gamon Press, New York, 1959), Chap. VI and references 28-42.

6 A. Einstein, Ann. Physik 49, 769 (1916), Sec. 13.

7H. P. Robertson, Astrophys. J. 82, 284 (1935).

8 A. G. Walker, Proc. London Math. Soc. 42, 90 (1937).

9 L. Marder, Proc. Cambridge Phil. Soc. 53, 194 (1957).
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HYPERBOLIC MOTION

which, however, I find does not reduce to hyperbolic
motion in flat space time. I comment on Marder’s work
in an Appendix.

2. HYPERBOLIC MOTION IN MINKOWSKI
SPACE TIME

For our later purpose it is necessary briefly to re-
derive the standard equations of hyperbolic motion in
special relativity by a slightly novel method. The 4-
velocity U* (Greek suffixes range from 1 to 4) and the
4-acceleration 4* of a moving particle, which has co-
ordinates x¢= (x,y,3,/) in a given Galilean reference
frame, are defined by the equations

Ur=dar/dr, Ar=dUr/dr=dx#/dr, (1)

where 7 is proper time. Throughout this paper we shall
assume that the units of length are chosen so as to make
the speed of light unity. Then

dr*= — (da*+dy*+ds?) +ar, )

or
drt=gudatdy’, (—gu=—gn=—gp=gu=1;

g,“.=0, M#V)' (3)

Primes will be used throughout to denote differentiation
with respect to 7. Then from (2), as usual,

V= (1—1?) "=y, 4)

where v is the speed of the particle and v its Lorentz
factor. If v is the 3-velocity of the particle, we have,
from (1) and (4),

dx* d
UMZ_—tII'Y(v)I)y A“:y—('yv,-y), (5)
dt di
whence we can easily compute the squared magnitude
(4)% of A*10 In the special case of a particle moving
rectilinearly in a given Galilean frame we find

(4)=guArA”= —~(dv/dl)*. (6)

If we denote by « the proper acceleration of the par-
ticle, we see from (6) that, in the rest frame, (4)2= —a?.
But (4)? is an invariant and thus in all Galilean refer-
ence frames we have

(A)=g,Ardr=—a2. )

Now assume that the particle moves with constant
proper acceleration « from rest at the origin at time
zero along the positive x axis. On equating the right
members of (6) and (7) we find, successively,

Yo at

—(yv)=qa, t=—, PE
dt @ (1+a?2)?
W. Rindler, Special Relativity (Oliver and Boyd, Edin-
burgh, and Interscience Publishers Inc., New York, 1960), Sec. 23.

(8)
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One further integration yields the equation of motion
ax?+2x—a?=0, O]

which represents a rectangular hyperbola with asymp-
totes (x+1/a)= =t in the (x,f) plane.

Evidently, light signals emitted at the origin at or
after f=1/a never reach the receding particle. Note also
that any particle P which moves uniformly along the
x axis meets the particle Q performing hyperbolic
motion either not at all or twice, and then with the same
relative speed on both occasions. This is obvious when
we consider that in the rest frame of P the plot of Q’s
path is also a rectangular hyperbola and that the plot
of P’s path is a straight line perpendicular to the axis
of the hyperbola.

Consider now the simplest of all modern cosmological
models, namely that due to Milne.* According to Milne,
all fundamental particles (galaxies) originally occupy a
small volume in Minkowski space time and are then
suddenly shot out in all directions with all speeds short
of the speed of light. Each fundamental observer (i.e.,
one attached to a galaxy) sees himself at the center of
a sphere of galaxies whose unattained boundary expands
at the speed of light. Consider a rocket performing radial
hyperbolic motion in this model. By reference to an
(x,f) diagram it is graphically obvious that the rocket
will eventually overtake every given fundamental
particle on its line of motion, no matter how small «
may be. Moreover, it will overtake the fundamental
particles with ever increasing relative velocity, as
follows easily from the second remark of the last para-
graph. But these two properties are by no means char-
acteristic of hyperbolic motion in all cosmological
models, as we shall see.

The following formulas, easily deducible from Egs.
4), (8), and (9), will be needed later. If 7 denotes the
proper time elapsed at the moving particle and = and ¢
vanish together, we find

v=tanhar, v =coshar,
(10)
t=(1/a) sinhar, x=(1/a)(coshar—1).

3. HYPERBOLIC MOTION IN GENERAL
SPACE TIME

The term “hyperbolic motion” is very suggestive. For
it draws attention to the purely geometric aspect of the
world line of a uniformly accelerating particle, and this
lends itself to immediate generalization. What char-
acterizes a rectangular hyperbola in the (x,) plane of
Minkowski space time, as a curve in that 4-space, is that
it is a timelike plane curve of constant curvature. (In
Euclidean space with positive definite metric a curve
so characterized would be a circle. We recall that
Sommerfeld" referred to hyperbolic motion as ‘“‘circular”
motion.) And the properties of plane-ness and constant

LA, Sommerfeld, Ann. Physik 33, 670 (1910).
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curvature in flat 4-space have well-defined generaliza-
tions in curved 4-space, which we shall now discuss.

Let us begin by recalling the following standard for-
mulas®? of the differential geometry of twisted curves
in Euclidean 3-space:

t=dr/ds, kn=dt/ds, wb=dn/ds+«t, (11)

where «, w, s, 1, t, n, b denote curvature, torsion, arc
length, position vector, unit tangent, unit normal, unit
binormal, respectively. (The last two equations are two
of the three so-called Serret-Frenet formulas.) These
formulas have analogs in the Riemannian geometry of
n dimensions.”® In particular, in the space times of rela-
tivity and in Robertson-Walker cosmological space
time, referred to a metric

ar?= g, dx*dx’,

we define the generalized velocity and acceleration
vectors for a particle having world line a*=x*(7) as
follows:

a2+
=—"+I‘vvﬂ‘— y

dr? dr dr

dx* DU+
U“=—, Ar=

dr dr

where DU*/dr denotes the absolute derivative of U*,
and the I',,# are Christoffel symbols of the second kind.!*
Comparison of (12) with (11) shows that 7 along the
world line corresponds to arc length, and U* and 4*
correspond to t and xn, respectively. Consequently the
magnitude of A# corresponds to the curvature of the
world line, and, by reference to (7) and use of the
equivalence principle, this magnitude is seen to be ia,
a being the proper acceleration. Analogously to (11)
(442) there is defined in Riemannian geometry' a torsion
@ (or second curvature) and unit binormal B* (or
second normal) by the equations

D s A+
QB":'d—(-—) FiaU*.

Writing 8¢ for QB*, these equations become

D s A+
{i”‘=-——(——)——aU“.

ar\ a

(13)

In the differential geometry of twisted curves it is
well known that the vanishing of the curvature of a
curve implies that the curve is a straight line, and the
vanishing of the torsion implies that it is a plane curve.
Let us call the left members of Eqgs. (11) (¢) and (11)
(72) the curvature vector and torsion vector, respec-
tively. In the Euclidean 3-space in which these vectors

2D, J. Struik, Classical Differential Geometry (Addison-Wesley
Publishing Company, Reading, Massachusetts, 1950), Chap. I,
Egs. (2-7), (6-1).

18 J. L. Synge and A. Schild, Tensor Calculus (University of
Toronto Press, Toronto, 1949), Sec. 2.7.

14 See reference 13, Sec. 2.5.
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are defined, the vanishing of their magnitudes implies
the vanishing of each of their components. This is not
the case in spaces with indefinite metric unless certain
reality conditions are imposed.!® The true generalization
of the characteristics of straight lines and plane curves
are obtained not by requiring the scalar curvature or
torsion to vanish, respectively, but by requiring the
curvature or torsion vecfor to vanish component-wise.
The vanishing of the “curvature vector” 4* is the well-
known characteristic of a geodesic path. The analog of
a plane (i.e., torsionless) curve is one whose “torsion
vector” QB* vanishes, which is equivalent to 3* vanish-
ing. Thus the analog of a plane curve of constant curva-
ture will be characterized by the differential equations
D s A+
ﬂ“=;(——) —alUr=0, —a?=g,,A*A”=constant. (14)
.

a

It turns out that any curve so characterized will be time-
like along its entirety if the initial direction is chosen
timelike. This we shall show presently. At first sight it
seems that we have too many equations to determine
the path. However, the 8* are not all independent ; they
automatically satisfy the two identities

(15)

as can easily be verified. (It must be remembered that
g U*U’=1, whence, by successive differentiation,
guwU*A7=0 and g, U*DA”/dr=—g.,A*4".) Therefore
only two of the four 8* are independent. With (14) (4%)
and the given metric of the space there are then exactly
the right number of equations to determine the four
unknowns x*(7).

The two equations (14) are completely equivalent to
the equations

DA*/dr=a?U*,

gwU"8"=0, g, 4%68"=0,

(16)

a=constant,

where the significance (14) (#4) of « is not a prior:
assumed (though it is implied). For, any curve satis-
fying (14) satisfies (16). And the converse is also true:
multiplying (16) () by g.,U” and using the parenthe-
sized remark following (15), we find —g,A#4"=a’
This is constant by (16) (i), whence (14) (i) follows.

15Tt is shown in reference 10 that in Minkowski space time
(4)? is related to the space curvature « of the world line by the
equation — (4)2=+592-+y%%?, where v is the time derivative of
the speed. If we drop the requirement <1, it is easy to specify
nongeodesic paths for which (4)?=0. Examples are provided by
any path satisfying v=cosha!, x=a sech?af, a=constant. It is
nevertheless true that, for any #imelike portion of the path, the
condition (4)?=0 implies 4#=0. For A4#, being orthogonal to
U*, is necessarily spacelike over such a portion and the statement
follows. But it is simpler to use the equations A#=0 than the
equivalent equations (4)2=0, g, dx*dx*>0, for the free motion
of a real particle. (The condition that the path be timelike is
still necessary, but, as is well known, this is an automatic conse-
quence of the equations A#=0 if the initial direction is chosen
timelike.) In the same way, the vanishing of the magnitude of g*
implies B#=0 only along timelike portions of the world line
[see Eq. (15)(z)].
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Equations (16) possess an obvious first integral,
U*#= (coshar) L*+ (sinhat) M*#, V)]

where DL*/dr=DM*/dr=0. Moreover, since at 7=0
we have U¢=L* and A*=aoM*, it follows that L* and
M* must be orthogonal unit vectors, timelike and space-
like, respectively, for a real particle path. It is also
evident from (17) that the relevant world line must
stay timelike if it is timelike initially, no matter what
constant value we give to a.

We now assert that a particle having uniform accel-
eration in a general space time will have a timelike
world line satisfying the differential equations (14)
[or, equivalently, the differential equations (16)].
Firstly, these equations are certainly invariant.
Secondly, in Minkowski space time they yield hyper-
bolic motion in the accepted sense. For if, in (17), we
set L*=(0,0,0,1) and M#=(1,0,0,0) and integrate, we
find

(%,9,2,) = (coshar—1, 0, 0, sinh a7),

which agrees with Egs. (9) and (10). Thirdly, we have
evidently chosen the simplest generalization from
Minkowski space time to general space time. If we wish
to avoid involving the curvature tensor, the generaliza-
tion is unique. This completes our justification of the
proposed equations.

Two important limiting cases may be noted. Al-
though, as we have seen, the condition a=0 is insuffi-
clent to ensure a geodesic path, any curve satisfying
Eqgs. (14) becomes a geodesic as @ — 0. For, on differ-
entiating (17) absolutely, we find

A*=q[ (sinhar) L*+ (coshar)M*],

and therefore in the limit, as « — 0, we get A*=0, the
conditions for a geodesic path. If, on the other hand,
we let o — o, the hyperbolic path becomes a null
geodesic (light path). That this is true in Minowski
space time is evident from Eq. (9). That it is also true
in general space times can be seen as follows: reference
to (17) shows that, as a — «, the direction of U*
becomes L*+M*, i.e., a null direction; and since this
direction is transported parallelly along the path,
the path must be a geodesic.

As a simple illustration of hyperbolic motion consider
the Schwarzschild metric

dr= — £\ 4 — 1 (d6*+-sin®0dep?)+ €2,

where §=1—2m/r. It is easy to demonstrate the intui-
tively expected fact that a particle with fixed spatial
coordinates in this metric executes hyperbolic motion.
Setting 7, 8, ¢ = constant, we find U*= (0,0,0,£7%). From
(12) we then find A#=T4*£"". The only nonvanishing
Tu4# for our metric'® is T'y'= Em/7?, whence, from (14)
(#1), a=m/ &2 The condition (14) (7) also holds. Evi-
dently « equals the 3-force per unit mass experienced

16 R. C. Tolman, Relativity, Thermodynamics, and Cosmology
(Oxford University Press, New York, 1934), Egs. (95.2).
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by the particle. The fact that the essential information
comes from (14) (47) and that (14) (4) is automatically
satisfied is characteristic of all applications to axially
symmetric situations.

4. HYPERBOLIC MOTION IN DE SITTER
SPACE TIME

At the moment, the main interest of Egs. (14) proba-
bly lies in the field of cosmology. We therefore propose
to find the form which these equations take in the case
of world models based on the Robertson-Walker metric,
and to proceed to an integration of the equations only
in the still more particular case of de Sitter space time.
This is the space time relevant to the steady-state
theory and as such constitutes an important special
case. It also has the didactic merit that in it all the
necessary integrations can be performed in terms of
elementary functions.

The Robertson-Walker metric is defined by

dr*= — e[ dr+r*(dP+-sin0de?) ]+dr,
(18)
ov=R2(1) (1-+kr2/4),

and it has been shown to be applicable to all homo-
geneous and isotropic world models.”'® It has the follow-
ing significance: (7) { is a cosmic time coordinate; (71)
0, ¢ are the usual angular measurements made on in-
coming light rays at the spatial origin #=0 (which can
be identified with eny fundamental particle); (44z) the
world lines of fundamental particles are the geodesics
7, 8, ¢=constant, whence 7 is a “co-moving’’ radial co-
ordinate; (7v) light tracks correspond to the null geo-
desics of the metric and, in particular, those through
the spatial origin have the equations 6, ¢ = constant, and

dt/R(1) = dr/ (1-+kr2/4), (19)

the positive sign evidently corresponding to light
travelling in the direction of increasing r. Additional
hypotheses are needed before a particular form can be
assigned to the scale function R(¢#) and a particular
value (1, —1, or 0) to the curvature index %, and these
are supplied by the various cosmological theories.
Furthermore, the hypothesis of isotropy and homo-
geneity alone does not imply that free particles, other
than the fundamental particles, have geodesic paths.
Tolman!? gives the Christoffel symbols of the second
kind for a metric somewhat more general than (18)
above, taking x*= (r,0,0,f). For our purposes we shall
need only those I',,* in which neither » nor ¢ is 2 or 3.
From Tolman’s list we find that the only nonvanishing
I’s of this kind for the metric (18) are the following:

Tyl= %au/ar, Tui= %e"au/at, 1114,1 = P41l= %3%/(” (20)
We shall restrict our discussion to purely radial

motions (6, ¢=constant).!® From symmetry considera-
17 See reference 16, Eqs. (98.5).

18 In contrast to geodesic motions in a space (18), which are
always radial with respect to a suitably chosen origin, hyperbolic
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tions it is clear that all such motions satisfy Eqs. (14)
(4) automatically. Thus the conditions for hyperbolic
motion reduce to (14) (). From (12) (¢4) and (20) we
easily calculate the components of A* for a purely radial

motion:
dr 10ufdr\?> Oudr dt
"‘——+— —(—) +— )
dr? 2 or\dr ot drdr
A?=A3=0, (21)

2! 1 Em
Ai= ( )
dT 2 ot
Reading off the metric coefficients g,, from (18) (1),

and substituting the 4* from (21), we find that Eq. (14)
(#2) now takes the following form:
ou dr di ]2

d¥r 10w fdr\?
)
dr? 2 dr\dr 0t drdr

a% 1 duygdr\*7
+P_+¢u(_)]=_a (22)
dr* 2 dt \dr
This is true for a radial motion with constant proper
acceleration « in the space time whose metric is (18).
In a particular model we must substitute in (22) the
particular function #.

We now specialize our discussion to de Sitter space
time, which is characterized by the metric
dr= — P [dr+-r(dP+sin0dg?) ]+-de,  (23)
where p is Hubble’s constant. This is evidently a par-
ticular case of (18), with R(f)=e?* and k=0, i.e.,
u=2pt. For a radial path we deduce from (23) that

r2=¢20t({"2—1), (24)

where a prime, here and in the sequel, again denotes
differentiation with respect to 7. Differentiating (24)
logarithmically we get

r”/r'= ~—pt'+t’t”/ (tlg_ 1)'

By means of this and the preceding relation, r can be
eliminated from (22): taking out a factor 7’ from the
first bracket and using (24) and (25), we find

2= D" (= D)7 p P [+ p(*— D =" (26)

motions may or may not be so, depending on the initial conditions.
It is well known that any two fundamental particles in a homo-
geneous and isotropic substratum determine a ‘‘linear equivalence”
of fundamental particles (which can be repeatedly traversed by
light signals). Every radial motion is confined to such a linear
equivalence. Thus a motion containing three particles which do
not belong to the same linear equivalence cannot be radial with
respect to any origin. It is easily seen that there are hyperbolic
motions of this type. One has only to recall that every substratum
(18) is locally Minkowskian and that slow hyperbolic motions
are locally parabolic: a spatially parabolic trajectory through an
almost static and flat substratum can evidently not be duplicated
by a light signal.

(25)
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The substitution

#'=coshz 27)
reduces this differential equation to the form
z'+p sinhz=q, (28)
and thus we find
f (a— p sinhz)~'dz= 7+ constant. (29)

It is convenient at this stage to introduce the following
notation, to which we shall adhere throughout:

=g, ¢t+p=S, ¢—p=D, (30)

and we note that SD=q?. Integration of (29) now yields
S+« tanh(z/2)

=Ae, (31)

D—a tanh(z/2)

where 4 is an arbitrary constant of integration. From
Eq. (4) and use of the the equivalence principle, it
follows that ¢’ represents the Lorentz factor y of the
accelerating particle relative to the substratum. We
shall now suppose that the particle leaves the origin
from rest when {=7=0. Then, from (27), =0 at the
beginning of the motion and, from (31), A =.5/D. Thus,
since from (27)

1+4-tanh?(z/2)

' =coshz= ,
1—tanh?(z/2)

we find from (31) that

y=t'=g(Ser+ D)V,

V= pSe2a7+25SDes— pD.  (32)

Making the substitution E=e?", integrating, changing
back to e?7, and finally adjusting the constant of inte-
gration, we obtain the relation

t=p71In(¥/2¢%7). (33).

Next we propose to find 7 as a function of 7, by use
of (24). For this purpose we obtain from (33) the
relation

ePt=2¢%e 1™, (34)
and from (27) the relation
(2= 1) =a(Se2?"— 2pe?"— D)¥ . (35)

Substituting these expressions in (24) and taking the
positive square root for motion in the direction of in-
creasing r, we get

7' =2¢%ae? (Se*1"—2pet"— D)V 2, (36)

We again make the substitution E=e?, integrate,
change back to ¢?7, and adjust the constant of integra-
tion; thus we finally obtain

)21, (37)

r=c(e?—
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The relative local velocity at which the particle moves
through the substratum is given by

v=(1—y)i=(1/) (*— 1)},
which, by use of (32) and (35), becomes

a(SeZq’—Zpeq’—D)

v=-— (38)
Sere™+D

Now we can draw some conclusions. Note that 7 is
the time measured by a standard clock fixed to the ac-
celerating particle while ¢ is the cosmic time measured
by standard clocks properly synchronized and fixed to
the fundamental particles. At the beginning of the
motion 7, £, 7 are all zero. Equation (33) now shows that
¢t and 7 become infinite together. From (38) we see that,
as 7— o, v approaches the limiting value a/g, which
means that the accelerating particle ultimately moves
through the substratum with the constant relative
velocity '

Vo=0a/q=a(p?+a?)% (39)

The corresponding Lorentz factor v, can be obtained
directly from (39), or by letting 7 — e in (32); we find

Yo=q/p=1p"" (p*+c)*. (40)

From Eq. (37) it follows that the accelerating par-
ticle approaches asymptotically, but never overtakes,
the fundamental particle with radial coordinate

Te=a/pS. (41)

To investigate this phenomenon further, it is convenient
to introduce the proper radial distance /. This represents
the sum of the infinitesimal distance measurements
made at some cosmic instant ¢ by a chain of funda-
mental observers situated along the line 6, $=constant,
between the origin and a given fundamental particle
with coordinate 7. In the case of de Sitter space time,
we have, from (23),

l=e¢Pr.

(42)

In terms of this variable the equation of motion of the
accelerating particle simplifies. Substituting from (34)
and (37) in (42), we find

1= (a/¢* (coshgr—1). (43)

Note that ! becomes infinite with 7, in contrast to 7,
which approaches a finite limit. Note also the simi-
larity of Eq. (43) with the special relativistic formula
(10) (4v). In fact, it is evident that when p=0 the metric
(23) reduces to that of a flat static substratum and all
our formulas must reduce to those of special relativity,
as indeed they do.

At the beginning of the motion (i.e., at the cosmic
instant /=0) the proper distance between the spatial
origin and the fundamental particle with radial co-
ordinate 7, is given by

lorit= €7, =a/pS. (44)

IN CURVED SPACE TIME
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Suppose the rocket had originally come from this fun-
damental particle at 7,,. Evidently o is a critical dis-
tance for rockets with an available proper acceleration
a: having travelled that far from their place of origin
and being then at rest relative to the substratum, they
can no longer return. We shall call /.. the distance of
the “a horizon.” For an actual return to its base, the
outward going rocket must, of course, begin to de-
celerate long before it reaches that proper distance. We
have seen that, as a — o, hyperbolic motion becomes
geodesic motion with the constant velocity of light. The
a horizon then becomes the event horizon,® from
beyond which not even light signals can be sent to the
origin. Letting « — « in (44) we find that for the event

horizon
I=1/p. (45)

We can next show that a light signal emitted at the
origin at or after the time

t=p~11n(S/a) (46)

will not catch up with a particle released from rest at
the origin at time /=0 and having constant proper ac-
celeration «. This is analogous to the situation in
Minkowski space time where a light signal sent out
after {=1/a will not reach the receding particle. To
prove our assertion, we note from (19) that the equation
of motion of a light signal emitted at the origin at {=0is

I=p1(evt—1). (47)

Solving for ¢, we find the cosmic time /; needed for the
signal to travel a proper distance /, namely

ts=ptInpl+0(™).
On the other hand, from (43) we find
et =2¢%a '+ 2+0(1),

(48)

which, when substituted in (33), gives the cosmic time
¢, which the particle takes to travel the distance :

1=~ Inpl+p~1 In(S/a)+0(1Y).

The difference between the times needed by the signal
and by the particle to attain a given cosmic distance /
is found by subtracting (48) from (49); if in this dif-
ference we let /— «, we obtain (46). We may note
that when p/a is small compared with unity, the critical
time is approximately 1/a, as in special relativity.

For the sake of comparison we give brief mention to
the case of unaccelerated motion in de Sitter space time.
Tolman® has given the analysis of geodesic (i.e., un-
accelerated) motion in a space time referred to the
Robertson-Walker metric. In the present notation
Tolman’s formula (153.6) becomes

P—1=A4/R(), (50)
¥ W. Rindler, Monthly Notices Roy. Astron. Soc. 116, 662

(1956).
20 See reference 16, Sec. 153.

(49)
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where 4 is an arbitrary constant. Thus in all models
with unbounded expansion y=¢— 1, i.e., the particle
ultimately comes to rest relative to the substratum. For
de Sitter space time, using (24), we easily find from (50)

that
1 ’Yo—l H
rw=limr=-( ) ,
T30 p ,yo+1

where <o is the Lorentz factor of the particle at the
origin. This formula gives the radial coordinate at which
the particle ultimately comes to rest. Thus the proper
distance /=7, gives a horizon for ballistic missiles with
an available take-off speed corresponding to a Lorentz
factor vo. From such a distance the missile can no
longer be shot back to the origin.

(S1)

5. NUMERICAL CONSIDERATIONS

It will not be out of place here to compute a few of
the numerical values involved in possible space travel.
Present day space vehicles do not, of course, travel with
constant proper acceleration, but schemes have been
discussed for providing permanent thrust by the anni-
hilation of matter carried on board or of hydrogen
scooped up in flight. Something approximating to
motion with uniform acceleration could then result.
The terrestrial gravitational acceleration g would no
doubt be the most comfortable intergalactic cruising
acceleration. With it, we should reach the g horizon
comparatively quickly, as measured by the proper time
on the rocket. This proper time we find by equating the
right members of (43) and (44), which gives

coshgr=¢g*p151+1. (52)

McMillan® has observed that if we measure time in
years and distance in light years, the value of g is 1.03.
As for p, the recent redetermination of Hubble’s con-
stant is not yet completed, but it seems to be agreed
that the value 1/p=10" years is not likely to be out by
more than a factor of 2. With these values for g and p
we find from (52) that r=23.0 years. Even if the error
in 1/p is as much as a factor of 2, the corresponding
error in 7 is no more than 0.7 year. The proper time
needed to reach the event horizon is only infinitesimally
greater than that needed to reach the g horizon. From
(43) we have
dl=(g/q) sinhgrdr=gldr.

But the dl relevant to our question is the difference
between the right members of (45) and (44), and for /
we can take either of these, whence

di/l=(S—g)/g=p/¢.

Combined with the preceding relation this gives
dr=p/gg=1071 years ~3X10~° second.

The cosmic time elapsed during the trip to the
horizon is easily calculated from (33). It comes to
6.9X10° years. In this time the proper distances be-
tween the galaxies in the universe have just more than
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doubled. They double exactly in the cosmic time
(1/p) In2 which it takes a light signal to travel from the
origin to the event horizon, and this cosmic time differs
by less than one year from that taken by our g rocket.
This follows from the remark after Eq. (49) above.

One fact brought out by such calculations is the vast-

ness of the terrestrial acceleration in a cosmological
context. A graphic view of this fact is that a radius of
curvature of approximately one light year is extremely
small compared with intergalactic distances of the order
of millions of light years; or, a rectangular hyperbola
with unit semiaxes and linear extension of the order of
108 units is hardly distinguishable from its asymptotes
(light paths).
" As long as pe? is small compared with «, our main
formulas (32), (33), (38), (43) do not differ appreciably
from their counterparts 10(z)—(zv) in special relativity.
Thus with a=1, when 7 is less than 18, pe?” is still less
than 1/100, and special relativistic formulas give fair
approximations.

Unfortunately, the prospect of ever realizing the
acceleration g intergalactically seems slight. Consider
the two most likely sources of energy : () matter carried
on board, and (42) intergalactic hydrogen scooped up
in flight. In either case the most efficient method of
propulsion consists in converting the available mass
totally into propellant radiation. In case (), if the total
rest mass of the vehicle at its proper time 7 is M and
radiative energy E=—c3dM/dr is emitted per second
(we temporarily adopt cgs units), the momentum gained
per second by the vehicle is E/c¢ relative to its rest
frame. Consequently, if the process is regulated to pro-
duce constant proper acceleration «, we have, since
Newton’s laws apply in the rest frame,

—cdM/dr= (a/c)M, M,/ M=e*"l"

where M is the initial rest mass. A ratio of M /M much
larger than 10® would seem to be impracticable, and
this makes the ratio ar/c=~7. The maximum distance
we could reach in, say, fifty years of proper time is then
found from (43) to be less than 3500 light years, a cos-
mologically quite insignificant distance which would
not even take us out of our own galaxy.

In the second method, viz., that of scooping up hy-
drogen, the rest mass of the column of hydrogen in
front of the vehicle corresponds to the rest mass Mo—M
annihilated in the first method. The steady-state theory
predicts an intergalactic hydrogen concentration of the
order of 107% g/cm? and thus a column one cm? across
and extending from the earth to the event horizon
(10" light years) would contain no more than 0.1 gram
of hydrogen. A square scoop of side 1 km would pick
up no more than 10? tons in all that distance, and so this
method would seem to offer no advantage over the first.
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APPENDIX. MARDER’S DEFINITIONS

Three years ago Marder® briefly proposed two defi-
nitions of “‘uniform acceleration in special and general
relativity” which should be further clarified. In the
notation of the present paper, Marder’s first definition
stipulates that (7) gu.,4#A” remain constant and that
(#) A* remain in a plane determined by two orthogonal
unit vectors L* and M*, of which the first is timelike
and the second spacelike, and which are transported
parallelly along the path. Marder finds that, if L#=U*
at the beginning of the motion, U* must then satisfy
what is exactly Eq. (17) above. Hence, our definitions
are equivalent. The simpler stipulation that U*, rather
than A#, should remain in such a plane also implies
Eq. (17) and would be analogous to the demand for the
“plane-ness” of the path.

Marder’s second definition is dynamical. The vector

Cr=—At— (m'/m)U*, (T)

where m is the rest mass of the moving particle, is to be
transported parallelly along the path. Evidently, al-
though this is not stated, C* is minus the four force per
unit rest mass: Ct=—(1/m)D(mU*)/dr. In these
terms the definition seems ‘“reasonable”. But it does
not reduce to hyperbolic motion in flat space time
(except in the degenerate case of geodesic motion), it
implies a very special change of rest mass, and it leads
to infinite proper accelerations. Writing

¢= _m,/m’ (II)
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we have, from (I),
Ar= SU““C“.
According to the definition, DC*/dr=0, whence

DA#/dr=¢Ur+£45, (IT1)

Multiplying by U, and 4, in turn, and using the re-
lations given after (135), we find, respectively,

@?=¢, V)

Now suppose « is constant and nonzero. Then £=0,
from (V), and DA*/dr=0, from (III). But this means
a=0 since U,DA*/dr=a?. Thus hyperbolic motion
with @520 is not included in this definition. If « is #o!
constant, it follows from (II) and (V) that

(IV) and ad'=¢al.

ma=k(constant), (VI)

which shows that the fofal proper three force is constant
and ot the proper three force per unit rest mass, as in
hyperbolic motion. In addition, the proper mass must
vary in a prescribed manner: from (IT), (IV), and (VI)
it follows that mm”—m'2=—Fk2, whence m=(k/B)
sinh(C— Br), B and C being arbitrary constants. Thus,
from (VI),

a=B csch(C— B7), (VID)

and this becomes infinite as r — C/B. The purely geo-
metric equations for the path result if in (III) we sub-
stitute for ¢ and ¢’ first from (IV) and (V) and then
from (VII).



